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There exists a global challenge of feeding the growing human population of the

world and supplying its energy needs without exhausting global resources. This

challenge includes the competition for biomass between food and fuel

production. The aim of this paper is to review to what extent the biomass of

plants growing under hostile conditions and on marginal lands could ease that

competition. Biomass from salt-tolerant algae and halophytes has shown

potential for bioenergy production on salt-affected soils. Halophytes and algae

could provide a bio-based source for lignoceelusic biomass and fatty acids or an

alternative for edible biomass currently produced using fresh water and

agricultural lands. The present paper provides an overview of the opportunities

and challenges in the development of alternative fuels from halophytes and

algae. Halophytes grown onmarginal and degraded lands using saline water offer

an additional material for commercial-scale biofuel production, especially

bioethanol. At the same time, suitable strains of microalgae cultured under

saline conditions can be a particularly good source of biodiesel, although the

efficiency of their mass-scale biomass production is still a concern in relation to

environmental protection. This review summaries the pitfalls and precautions for

producing biomass in a way that limits environmental hazards and harms for

coastal ecosystems. Some new algal and halophytic species with great potential

as sources of bioenergy are highlighted.
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1 Introduction
There is a growing demand to feed the expanding human

population and to supply its energy needs without exhausting the

biological and physical resources of the planet. Besides food

security, clean and renewable energy is also central to achieving

at least 20% of the world’s total energy use with renewable resources

by 2020, and 32% by 2030. Field crops like sugarcane, corn, soybean

and some cereals have so far been the major source of biofuel

production, but their use is in direct conflict with their use as food

crops (Wang et al., 2020b). Bioenergy production from

unconventional non-edible resources offers significant potential as

an alternative, but is not without consequences that need careful

consideration from a range of environmental, social and economic

perspectives (Hasnain et al., 2021). The consequences of bioenergy

production depend on biomass conversion technology, types of

lands used for annual crops, forest, grassland, or marginal land, the

location and level of production, and how these factors integrate

with or displace existing land use (Abideen et al., 2015b). This

review is based mostly, but not exclusively, on a global scenario of

climatic change, and the advantages and pitfalls of using algae and

halophytes as non-food bioenergy crops with potential as

sustainable bioenergy resources (Figure 1)
Frontiers in Plant Science 02
1.1 Sustainable alternative bioenergy
technologies: advantages and
disadvantages

The global population is expected to exceed nine billion by

2050, with the current demographic trends requiring an average

annual increase of 44 million tons of food production (Bologna and

Aquino, 2020). Achieving this goal is challenging because of the

increasing threat of soil salinization and desertification, which are

reducing the amount of arable land and crop yields. It is worth

mentioning that nearly 98% of earth’s water is saline (Li et al.,

2020b), ~7-10% of the land surface is estimated as salt-affected

(Zhang et al., 2020), and although the scourge of soil salinization is

spreading worldwide, the situation is worse in arid and semiarid

regions (Edrisi et al., 2020). For instance, India has 7 million ha

(Mha) of saline lands, Bangladesh 1 Mha, Pakistan 3-6 Mha, and

Australia 2 Mha (Rogers et al., 2020). The current estimate of 3 ha of

arable land becoming infertile due to secondary salinization every

minute indicates the gravity of the situation and a cause of concern

requiring remedial steps (Farooqi et al., 2021). The acuteness of this

problem is compounded by changes to the global climate that are

expected to increase the frequency and severity of temperature

extremes, drought in some places, and floods in other regions

(Sharif et al., 2021), with adverse effects on crop production.
FIGURE 1

Potential of algae and halophytes as a sustainable biofuel feedstock by using saline land and brackish water.
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Energy from fossil fuels is important in sustaining human life

on earth, but the long-term availability of coal, oil, and natural gas is

uncertain and projected to last only until the middle of the next

century (Meyer et al., 2017). In order to search for alternative fuels,

numerous feedstocks have been identified. Plant-biomass-

based feed stocks are consequently gaining momentum with

different potential candidates; e.g. edible (first generation), non-

edible (second generation) and various saline-irrigated (third

generation) feedstocks (Abideen et al., 2014a). Plant-based first-

generation biofuel feedstocks such as sugarcane, wheat, corn,

rapeseed and soybean have been used extensively for this

purpose, but their use faces opposition due to impacts on the

human food chain, while second generation crops such as

Miscanthus and Jatropha require land and water that are needed

for food crops (Munir et al., 2021). Production of biofuels from

biomass of plants that can grow in saline habitats has consequently

emerged as an environmentally-friendly, practical and economical

alternative (Abideen et al., 2012). Growth rates of halophytes

produce similar yield with saline irrigation compared to

conventional crops. For instance, using seawater irrigation of

plants of Salicornia bigelovii yielded 10 to 20 ton/ha of biomass,

equivalent to the yield from conventional crops (Christiansen

et al., 2021).

Using salt-tolerant species offers an economic opportunity, as

well as a possible mechanism to reduce greenhouse gas (GHG)

emissions and enhance energy security without encroaching upon

resources (arable land, fresh water) needed for crops for human

consumption (Abideen et al., 2015b). Increasing the list of

environmentally sustainable sources of biofuel by using feedstocks

is a proactive soil-security concept necessary for offsetting land

degradation and desertification. Similarly, use of algal biomass can

enhance the biological and physical resources of the planet, increase

the supply of non-crop biomass to produce clean and renewable

energy (such as a feedstock for biodiesel) and help to secure food

security by reducing the competition on field grown biomass. Algae

are largely non-food resources which do not necessarily need arable

land and good quality water as many algal strains grow in seawater

(Abideen et al., 2020). In addition, algal production offers

remarkably high growth rates leading, for example, to a

generation of up to 15 times more oil production per ha than

palm, rapeseed or Jatropha.

Halophytes and algae are alternative resources for biomass and

could be used to reduce the food via fuel dilemma. While the

practicalities of large-scale production are still questionable,

solutions may even open the way for a win-win situation by

reducing the problems of insufficient bioenergy supply, excessive

greenhouse gas (GHG) emission and uncontrolled desertification.

The question remains whether biofuel production fed by halophytes

and algae can be maintained with long-term stability. This review

focuses on the advantages and disadvantages of biofuel production

from algae and halophytes. The review highlights the major

advancements achieved through biofuel processing technology to

enhance bioenergy production. Technical insights that help to

maintain optimal operating parameters for successful operation of

biofuel processing from algae and halophytes are summarized. The

technology must overcome a number of hurdles before it can
Frontiers in Plant Science 03
compete in the fuel market and be broadly deployed. These

challenges include strain identification and improvement, both in

terms of oil productivity and crop protection, nutrient and resource

allocation and use and production of co-products to improve the

economics of the entire system. As far as we are aware, there are no

studies on a comparison of algae and halophytes as sustainable

sources of energy. The mass-scale cultivation of these potential

resources for bioenergy production can help to revolutionized

world energy production while avoiding competition in land use

for food production. In view of the current situation with the

energy-water-food nexus and use of plants for bioenergy, the use of

new non-food resources, such as halophytes and algae, requires

evaluation. Halophytes and algal species are salt-tolerant organism

that can prosper in sea or brackish waters and are feedstocks for fuel

and food (fuel-food feedstocks) in developing countries. The

suitability of these feedstocks is reviewed and recommendations

and solution for their cultivation in saline agriculture highlighted.

The aim of this article is to incentivize efficient saline agricultural

biomass production. We elucidate the major challenges to the

economic production of algal and halophytic biofuels at scale,

and provide a focus for the scientific community to address the

challenges of moving these feedstocks from promise to reality.
2 Algal biomass as biofuel feedstock

Algae, ranging from small, single-celled microalgae to multi-

cellular macroalgae, occupy a variety of habitats from damp places

to bodies of fresh or sea water [36-38] and present a wide range of

species that could be cultivated. High oil content; in some cases

almost 80% of cell weight, together with the high growth rates with

biomass doubling in periods as short as 3.5 h have generated

interest in using algae as biofuel feedstock (Jazie et al., 2020). Oil

production from algae can exceed that from the oilseed crops such

as rapeseed, canola (Petrie et al., 2020), Jatropha (Kumar et al.,

2017) and karanja (Pongamia pinnata) (Tıpırdamaz et al., 2020).

Growing algae on a large scale has the benefit of removing

greenhouse gases by consuming CO2 for photosynthesis during

growth (Gharbia et al., 2019). By utilizing their high photosynthetic

ability, algae appear an attractive energy feedstock among

renewable resources, for rapid generation of carbohydrates and

lipids. There are, in addition, other possible benefits such as use for

human food (albeit on a limited scale) or as a source of byproducts

of commercial interest (Roostaei et al., 2018). Like other plants,

growing algae requires optimizing water, nutrients, light,

temperature and pH (Hasnain et al., 2023). The following issues

require consideration and further research.
2.1 Culturing space

Availability of suitable land is the primary limiting factor for

bioenergy development from algal feedstock The largest micro-algal

commercial production unit covers 750 ha using an open pond

system, but even this facility is insufficient to meet local biofuel

demands (Randhir et al., 2020). Although, open ponds are easier to
frontiersin.org

https://doi.org/10.3389/fpls.2023.1026063
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Abideen et al. 10.3389/fpls.2023.1026063
build and operate than closed systems, a large quantity of water is

evaporated. Other constraints that limit algal production are: low

light penetration, poor carbon dioxide diffusion from the

atmosphere, inefficient stirring causing poor mass transfer, and

contamination by microbes and other algal species (Talaei et al.,

2020). Proper mixing systems are required if sedimentation is to be

avoided and light utilization maximized (Fong-Lee et al., 2020).

Closed systems such as photo bioreactors are used to overcome

problems of open pond cultivation systems. A photo bioreactor

(PBR) is a closed vessel and energy is supplied through electric

lights (Zhao et al., 2021). PBRs are classified as flat plate, tubular or

columnar on the basis of their illuminated surface and stirred,

bubble-column or airlift depending on how mixing is achieved

(Sero et al., 2020). So, a PBR should have a highly transparent

surface, good uniform illumination, low mutual shading, quick

mass transfer of carbon dioxide and oxygen and should attain

high growth (Amaral et al., 2020).
2.2 Photobioreactor (PBR) design
improvements (Data collection
and modeling)

Experimental evaluation and consecutive model development

are used to predict the behavior of actual and expected algal growth

at different culturing conditions, which can be optimized in situ

(Sheehan et al., 2020).
2.3 Light utilization and mixing of
algal culture

As light is the source of energy, it needs optimization for

biomass productivity (Munir et al., 2022). High productivity of

algal culture requires annual average sunshine of 2,500-5,000 lux

(its intensity, spectral quality and photoperiod), and temperatures

in the range of 18-24°C. Flat plate PBRs are more efficient in

utilizing sunlight than other PBRs because of their flat surface area.

Light utilization can be optimized using panels of tubes and

supplementary light from light emitting diodes (LEDs) using fiber

optics (Alzahrani et al., 2020). About 1.5% photosynthetic efficiency

has been achieved using the open pond method with 21 ton/ha algal

productivity, while with tubular PBRs photosynthetic efficiency was

3% yielding 41 ton/ha algal biomass (Clements et al., 2020). The

highest photosynthetic efficiency achieved with flat panel PBRs has

been 5% with 64 ton/ha algal productivity (Negi et al., 2020). For

naturally illuminated PBRs, the orientation with respect to the sun

is highly critical if photosynthetic efficiency is to be maximized. To

gain maximum light; at latitudes, above 35° N, an orientation of

east/west is preferable over north/south for optimal algal

productivity (Sivakaminathan et al., 2020). The effects of self-

shading in PBRs are reduced by using thinner algal cultures.

Circulation is an important step to maintain proper mixing of

algal cells in suspension, remove thermal stratification, optimize the

distribution of nutrients, boost gas-liquid mass transfer, and stop

oxygen accumulation (El Shenawy et al., 2020). Moving algal cells
Frontiers in Plant Science 04
between the illuminated surfaces and dark regions to induce

periodic light/dark cycles, is also very important for maximum

growth (Alami et al., 2021). By using circulatory apparatus, with

cultures of Spirulina platensis, 0.5 g/L/day algal cell productivity was

obtained, which was assumed to be a high value by the researchers

(Serrà et al., 2020).

Algae are an attractive energy source but important questions

still exist about the sustainability of this technology on a large scale.

Two particularly important questions concern the method of

cultivation and the type of alga to be used. Resurreccion et al.

(2012) combined elements of life cycle analysis (LCA) and life cycle

costing (LCC) to evaluate open pond systems (OPs) and horizontal

tubular photobioreactors for the cultivation of freshwater or

brackish-to-saline water algae. According to the LCC, all four

systems are currently financially unattractive investments, though

OPs are less so than PBRs (Sun et al., 2019). Salt-tolerant species

deliver better energy and GHG performance and higher profitability

than fresh water species in both OPs and PBRs. Sensitivity analyses

suggest that improvements in critical cultivation parameters (CO2

utilization efficiency or algae lipid content), conversion parameters

(anaerobic digestion efficiency) and market factors (costs of CO2,

electricity, and sale prices for algae biodiesel) could alter these

results (Muhammad et al., 2021).
2.4 Algal production cost

The overall production cost of algae depends on the selection of

algal strain, type of PBR and of biomass production technology; a

major cost is that of construction if the installation is large (Ma

et al., 2017). The cost of production can be reduced by using flue

gases instead of CO2, which is very expensive, and using wastewater

instead of adding minerals or nutrients to growth media (Roostaei

et al., 2018). More than 150 ton/ha/year algal biomass can be

produced with low labor costs, using flue gases as carbon source

and wastewater as growth medium (Norsker et al., 2011). By using

flat panel tubular PBRs, the production cost can be reduced to

€0.70/kg or €0.68/kg as compared to open pounds where the cost

cannot be reduced below €1.28/kg (Negi et al., 2020; Oostlander

et al., 2020). Using arable land and good quality irrigation water is

not advisable, but salt-affected/marginal land, including deserts,

together with saline/waste water may be used subject to the

availability of suitable strains of algae (Amiri and Ahmadi, 2020).
2.5 Growth conditions

Biofuel production depends upon optimizing growth conditions

for any species. Good growth in open ponds can be achieved but,

generally, not over a whole year, because of short days, low light

intensity and temperature during winter, the more so in cold

regions (Jacob et al., 2020). However, higher oil production under

stressed than optimal conditions has been reported by some

researchers (Juneja and Murthy, 2017; Bélanger-Lépine et al.,

2018; Tan et al., 2020), but needs assessment. With photo-

bioreactors, it is important that mixing is optimized so that algal
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cells are transferred between light and dark phases; this has allowed

the successful use of very high light intensities (Severes et al., 2017).

During photosynthesis, photons are used to synthesize biochemical

components in the algae and in different light conditions, a change

in photon flux can bring about a noteworthy change in the

biochemical compositions of algal cells (Naira et al., 2020). A

higher intensity or length of light energy triggers the

accumulation of storage lipids (MUFAs) used in biodiesel

production, while a lower intensity stimulates the accumulation of

structural lipids (PUFA) (Brindhadevi et al., 2021). Carbohydrate

content was enhanced from 16.3 to 22.4% in Scenedesmus obliquus

by the exposure to high light intensity (Ho et al., 2017).

Physicochemical properties of algae also change with increasing
Frontiers in Plant Science 05
or decreasing temperature. Table 1 shows the effect of different light

intensities and temperature on lipid content and fatty acid profile.

2.6 pH effects

Physiological and biochemical functions for optimal growth of

most algal species require maintenance of neutral pH in the growth

medium (Correa et al., 2020). The relationship between CO2

concentration and pH in algal growing system is complex

(Alzahrani et al., 2020). Increasing internal CO2 concentration

can lead to higher photosynthetic efficiency but it can also

decrease pH; these two factors and their antagonism can alter

algal physiology and biomass production. An increase in pH of
TABLE 1 The impact of variable light intensities, change of temperature and pH on lipid accumulation and fatty acid profiles on the basis of % dry weight.

Algae Light intensities Algae response References

Chlorella vulgaris 2700 lx lipid 19% (Azizi et al., 2020)

3300 lx lipid 13%

Chlorella vulgaris 24 h photoperiod Lipid production increased

Pavlova lutheri High light intensities Lipid production increased

Isochrysis galbana, Nannochloropsis oculata High light intensities Lipid production increased

Scenedesmus sp. 250–400 µmolm2 s −1 Lipid production increased

Isochrysis galbana Shorter light/dark regime PUFA’s increased

Selenastrum capricornutum Dark treatment Increase in 18:3 and decrease in 18:1

Algae Temperature (°C) Response References

Nannochloropsis oculata Shift – 20 to 25 15% increase in total lipid (Wei et al., 2015)

Chaetoceros sp. 25 16.8% increase in total lipid

Ochromonas danica 15 to 30 Increase in total lipids

Nannochloropsis oculata > 30 Polar lipid increased

Nitzschia laevis 15 to 23 TAG increased (Touliabah et al., 2020)

Dunaliella salina 30 to 12 UFA’s increased

Synechococcus Lividus 55 to 38 16:1 and 18:1 increased

Selenastrum capricornutum 25 to 10 C 18:1 increased

Algae Optimal pH Response References

Chlorella sp. 8 Lipid content 23% (Qiu et al., 2017)

C. vulgaris 7.5 53.43

Chlorella protothecoides 6.5 3.75 g/l lipid yield

Pavlova lutheri 8.0 35% lipid content

Nannochloropsis salina 8.0–9.0 21.8

T. suecica 9.0 lipid content increased

Chlorella vulgaris 7.0, 8.0, 9.0, and 10.0. No change (Nouri et al., 2021)

6.0, 7.0, 9.0 No change

Chroococcus minor 9.0 22

B. braunii 6.5 2.2 gm−2/d lipid productivity
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growing media can be favorable for inactivation of harmful

pathogens in open-type growth chambers, but can also inhibit

growth (Almutairi and Toulibah, 2017). Growth medium pH

above 9 generally creates difficulty for the utilization of HCO−
3

and CO2
3 for maintaining internal CO2 although there are some

resistant species that can survive at pH above 9, but at the cost of

metabolic disturbances and compromises in productivity (Alami

et al., 2021). In addition to low capacity to absorb internal CO2,

elevated pH interferes with the cell’s ability to maintain activity of

carboxylation via Rubisco, which reduces photosynthetic rate (Li

et al., 2020a).

High pH may convert ammonium ions to free ammonia which

in quantities such as 34 and 51 gm3 (at pH 9.5 and 20-25 C)

inhibited the rate of photosynthesis in three micro-algal cultures by

50 and 90%, respectively (Galès et al., 2020). The presence of

ammonia also creates problems in sunshine, especially during

summer when light intensities may raise pH of the growing

medium and ultimately inhibit photosynthesis. Elevated pH can

also alter membrane transport processes, metabolic function and

uptake of trace metals consequently affecting photosynthesis and

growth of algae (Miyauchi et al., 2020). Under elevated pH,

flocculation of some microalgal cultures can occur, negatively

impacting light absorption, photosynthesis and nutrient uptake. If

wastewater is being used for algal culture, pH above 8.3 has been

reported to inhibit growth of aerobic bacteria: high pH tolerating

algal strains can be used in high pH waste water for cultivation

(Vadlamani et al., 2017).

2.6.1 Water availability
The production of algal biomass, either in closed photo-

bioreactors or open ponds, and its conversion to biofuels,

consumes a considerable amount of water (Vu et al., 2020). The

availability of fresh water is limited especially in areas where

productivity of algae is potentially high - i.e. regions with high

year-round solar radiation (Mayer et al., 2020). Algal growth and

subsequent processing likely cause substantial water pollution

(Rahman et al., 2020). High-value food crops have preference for
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cultivation with fresh water in arable lands, necessitating exploring

the potential of biofuel feedstock from those species that can grow

optimally and complete their life cycle in marginal/saline lands

irrigated with low quality/brackish water (Fork et al., 2020). Table 2

shows the salt tolerance of algal strains.

Biological desalination is an innovative technology in which

salts are absorbed by salt-tolerant organisms. For example,

Scenedesmus obliquus is a fresh-water alga with a high tolerance

of salts and the capacity to remove NaCl from (0.18- 1.4 g/L) when

salinity increased from 2.8- 8.8 g/L (El-Katony and El-Adl, 2020).

Salinity also enhances hydrocarbon content in algae: S. obliquus

treated with 8.8 g/L NaCl increased its lipid content (21%) while

removing 2.5 g/L NaCl and achieving the highest desalination rate

(30%) within 30 min contact time (Wei et al., 2020). The rate of

evaporation is another limiting factor in any open pond system and

one that will increase when days are long and intensity of light is

high in hot regions. The lost volume of water should be made up

with fresh water but this might burden supply of this commodity if

scarce (Prudkin-Silva et al., 2021). If fresh water is not added, the

salinity of the medium may consequently rise to a level too high for

growth of even highly salt-resistant strains. A solution may be

found in frequent renewal of evaporated water which could,

however, pose other problems, as any discharged saline water

may still have unused nutrients (Khuram et al., 2019) such as

phosphorus and nitrogen creating a disposal challenge downstream,

a potential additional cost and raising questions about

environmental sustainability. Use of wastewater as a source of

water has been advocated to attain a double benefit of biofuel

production as well wastewater treatment (Juneja and

Murthy, 2017).
2.7 Nutrient requirements

The elemental composition of algae with empirical formula

CH1.7O0.4N0.15P0.0094 will generally fluctuate with environmental

conditions and nutrient status of the strains and growth medium.
TABLE 2 Salinity and heat resistance and their interactive effect on growth responses of algae strains.

Algae species Salinity levels Temperature °C Growth rates References

Dunaliella tertiolecta 33 to 59 g/L 23 1.9696 g/L (Morales-Sánchez et al., 2020)

Chaetoceros calcitrans 3% 30 0.28 µl/d

Chlorella sp. 2.5% 25 0.37 µl/d (Gour et al., 2020)

Fucus vesiculosus. 5 psu 4-10 0.007 g/g.d (Zamani-Ahmadmahmoodi et al., 2020)

35 psu 15–20 0.024 g/g.d

Nannochloropsis oculata 15–55 g/L 26 0.078-0.282/d

Desmodesmus sp. 15 g/L 25 5.35 g/L (Chen et al., 2020)

Ulva prolifera 14–32 5–32 10.6–16.7%/d (Bews et al., 2021)

Hypnea cervicornis 25 20–25 5.37%/d (Vo et al., 2020)

Shewanella sp. 0–7% 30 0.04 to 0.36 g/L

Chaetomorpha sp. 3.4–90.0 20.1–40.9 60%/d
frontiersin.org

https://doi.org/10.3389/fpls.2023.1026063
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Abideen et al. 10.3389/fpls.2023.1026063
The essential nutrients (N, P, and in some cases Si) should be

provided in adequate amounts for optimal growth (Tan et al., 2020).

Approximately 50-80 kg of nitrogen and 5 kg of phosphorus are

required to produce one ton of algal biomass. Commercial

production of algal biofuels would hence need large quantities of

these elements and maybe of other nutrients. For instance, if saline

ground water is used, the medium may also require potassium.

Algal biomass production under the circumstances can hence be

competing with the edible plants for nutrient requirements (El-

Katony and El-Adl, 2020). Moreover, production of fertilizers

needed for algal growth is at an environmental cost due to use of

energy and emission of considerable amounts of the greenhouse

gases carbon dioxide, nitrous oxide and methane (Yuasa et al.,

2020). It has been reported that ~45% energy input in algal culture

is in the form of nitrogenous fertilizer; each kg of this fertilizer

produced from natural gas, which is also depleting, generates about

2 kg of CO2.

Phosphorus is not a renewable resource and, at current rates of

mining, global phosphate rock reserves are likely to be finished in

50-100 years (Dubey and Dutta, 2020). Taking into consideration

the nutrient requirements, which may vary with species, a study

found that meeting the demand of algal bioenergy to substitute 5%

of the fuel used annually for transportation in the United States

would require 44-107% of the total nitrogen and 20-51% of the total

phosphorus requirement of the country. In the natural ecosystem,

the phosphorus and nitrogen requirements are met to a great extent

by dead bodies of animals but in artificial systems these have to be

supplemented at a cost to the purchaser. Wastewater can be used as

a source of nutrients to attain a double benefit of biofuel production

as well as wastewater treatment and pollutant removal (Juneja and

Murthy, 2017). Acutodesmus obliquus culture consumed 175 mg/g/

day nitrogen and 1.5 mg/g/d phosphorus from swine wastewater

having 5.2% salinity with 1923 mg/L/d chemical oxygen demand

(El-Katony and El-Adl, 2020). At 11 ppt of salinity Picochlorum

atomus nutrient uptake was four times higher than controls, 34 mg/

L/d uptake of nitrogen and 1.3–2.4 mg/L/day uptake of phosphate

(Zhang et al., 2018). At 3.2% salinity, Spirulina platensis removed

80% nitrogen, 93% phosphate and 90% COD with 15.69, 1.03, and

90.24 mg/L effluent concentration respectively (Koech et al., 2020).
2.7.1 Improved growth capacity through
increased photosynthetic efficiency

The production of any biofuel is dependent on the efficiency of

the metabolic pathways that lead to accumulation of storage

compounds, such as lipids and starch, as well as on the ability to

produce large amounts of biomass rapidly. Experiments with small-

and large-scale microalgal photobioreactors and molecular research

in photosynthetic efficiency have revealed several factors that can

limit biomass accumulation. One important consideration is the

intensity of light at which a given strain of microalga reaches its

maximum growth rate, which corresponds to the maximum

photosynthetic efficiency and is usually around 200 to 400

µmol photons m-2 s-1 for most species (Lee et al., 2002). Light

intensities above the maximum photosynthetic efficiency actually

reduce the growth rate, a phenomenon known as photoinhibition.
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Photosynthetically active radiation intensities from sunlight can

exceed 2,000 µmol photons m-2 s-1 during midday. Consequently,

most microalgae will not grow at maximum efficiency during most

of the day.

Microalgae are considered great model organisms to study

photosynthetic efficiency, and several attempts have been made to

improve the photosynthetic efficiency and/or reduce the effects of

photoinhibition on microalgal growth (Melis, 2009). Much of this

work has been focused on reducing the size of the chlorophyll

antenna or lowering the number of light-harvesting complexes to

minimize the absorption of sunlight by individual chloroplasts. This

approach may seem counterintuitive, but this strategy may have two

positive effects; first, it permits higher light penetration in high-

density cultures and second, it can allow a higher maximum rate of

photosynthesis due to the fact that the cells are less likely to be

subjected to photoinhibition since their light-harvesting complexes

absorb less light (Priyadharsini et al., 2022). Earlier, research relied

on random mutagenesis strategies to generate mutants with fewer

or smaller chlorophyll antennae, but a recent publication used an

RNAi-based strategy to knock down efficiently both LHCI and

LHCII in C. reinhardtii (Mussgnug et al., 2007). This strategy can

most likely be applied to many different microalgae more easily

than a random mutagenesis approach. It seems clear that

manipulation of light-harvesting complexes can lead to increased

biomass productivity under high light in controlled laboratory

conditions. However, it remains to be seen how well these

mutants will perform in larger-scale cultures with more varied

conditions and perhaps with competition from wild invasive

microalgal species. In one study of algal antenna mutants, no

improvement in productivity was observed with outdoor ponds

(Mussgnug et al., 2007). However, they also did not observe any

improved productivity in laboratory cultures. With more research,

it should become clear whether the current approach can be

successfully applied to increase biomass production.
2.8 Pollution of land and aquatic system

Production of wastewater derived from many anthropogenic

activities such as industry, agriculture and domestic use is a major

environmental issue and a threat to water security. About half of the

global waterbodies such as the lakes, rivers and seas have been

contaminated by domestic and industrial wastewaters; it is essential

to treat and remediate wastewater so that it could be recycled and

reused (Aron et al., 2021). Discharge of residual nutrients from algal

cultures could have a negative impact on land and aquatic systems

and the natural flora of an area. Ecological consequences that can

occur includes decrease in biodiversity, changes in species richness

and altered fitness of other living organisms. Toxic discharge and

accumulation may create problems for plant agriculture and

restoration can be a costly long-term process, depending upon

the extent of damage due to effluents (Liu et al., 2017). Introducing

production of suitable algal strains that would scavenge harmful

excess nutrients could, however, help in reversing the damage. For

instance, algal turf scrubber (filtering device) can capture 70-100%

of phosphorus runoff and 60-90% of nitrogen from manure
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effluents (Aston et al., 2018). Wastewater from municipalities,

agriculture and industry could provide cost-effective and

sustainable support for the use of algae for biofuels (Tan et al.,

2020) In addition, there is also potential for combining wastewater

treatment, such as nutrient removal, with biofuel production. The

following are three examples; at 35 g/L NaCl, Potamocorbula laevis,

A. nodosum and F. vesiculosus accumulated copper from growing

medium (Vo et al., 2020); in saline wastewater (2.6% salinity), by

bio-assimilation and adsorption Chlorella sp. removed 99% of

amoxicillin; and under 171 mM NaCl, S. obliquus biodegraded

93.4% of levofloxacin (Leng et al., 2020).

2.8.1 Environmental aspect of
microalgae cultivation

Microalgae introduced into new environments also have the

potential to become invasive species. There are an estimated 1–10

million algal species on earth, with the majority being microalgae

(ElFar et al., 2022). Microalgae that are native or introduced to an

area and become invasive are often referred to as harmful algal

blooms (HABs). HABs are species of phytoplankton that cause

negative effects on human health (through the production of

toxins), impact living marine sources (wild and cultivated fish),
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impact tourism and recreation of coastal waters (through ‘red tides’)

and damage marine ecosystems by creating anoxic areas that kill

marine life (Anton et al., 2019). There are approximately 80 toxic

and 200 noxious microalgal species involved in HABs out of a total

of 4000 described marine planktonic microalgae (Table 3). Research

indicates that the rise in HABs shows the signs of a global epidemic

(Zedler and Kercher, 2004). Whether this recognition is the result of

an increase of scientific awareness of toxic algal species, utilization

of coastal waters for aquaculture, cultural eutrophication of waters,

unusual climatalogical conditions or the transport of dinoflagellates

by ships ballast water or shellfish stock is unclear. The invasion

patterns of microalgae are dependent on human vectors and

subsequent adaptation of the algae to their new environment

(Gressel et al., 2013). Anthropogenic nutrient enrichment of

coastal areas has also been linked to HAB events around the

world. Microalgal genera or species proposed for biofuel

production that have had HAB incidents include Amphora,

Nitzschia, Pseudo-nitzschia and Prymnesium parvum. It has been

suggested that locating algal biofuel production plants close to

seawater will remove the need for fresh water resources and

increase their sustainability (Nyström, 2017). However there is

little discussion on the ecological impacts resulting from an
TABLE 3 Organisms used for the removal of harmful algal blooms (HABs) from their populations.

Predatory bacteria Mode of action Major host References

Bacillus sp. Cell-to-cell contact mechanism Aphanizomenon Flosaquae (Jeon et al.,
2017)

Bacillus sp. Production of extracellular product M. aeruginosa

Bacillus cereus Secretion of cyanobacteriolytic Microcystis aeruginosa

Bacillus sp. Secretion of algalytic substance Phaeocystis globosa

Brachybacterium Produce secondary metabolites A. catenella

Cytophaga Direct contact Microcystis aerugenosa

F. flexilisi, F. sancti Inhibition of glycolate dehydrogenase Electron transport &
nitrogenase activity

Oscillatoria williamsii

Bdellovibrio-like bacteria Varese Penetration Microcystis aeruginosa

M. fulvus Entrapment Phormidium luridum

Pseudomonas fluorescens Indirect attack by alga-lytic substances Heterosigma akashiwo

Halobacillus sp. Bio-flocculation Microcystis aeruginosa

Zoonplankton

Daphnia ambigua Grazing Microcystis aeruginosa (Richards,
2019)

Daphnia hyaline Grazing Chlorella

D. galeata Grazing Scenedesmus

Cyclops sp.

Eudiaptomus gracilis Grazing Chlorella

Eudiaptomus gracilis Grazing Microcystis aeruginosa

Cyclopoid copepods Grazing Anabaena, Microcystis
and Planktothrix species

(Continued)
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accidental introduction of a microalgal biofuel species into the

surrounding environment. Table 4 shows the number of chemicals

that are potentially toxic for water and human food materials.

Documentation and more studies are required to protect wildlife

from HABs, the effects of red tides and freshwater cyanobacterial

blooms in the future (Müller et al., 2020). Reducing fertilizer use,

improving animal waste control, and sewage treatment should also

reduce the population of toxic algal blooms. Tables 5, 3 listed

various methods to control harmful algal blooms from water water

and other water resources.
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2.9 Biomass to biofuel conversions

Algal cultures are very dilute in nature necessitating dewatering,

to produce an algal cake that can be readily handled manually or

mechanically for conversion to biofuel (Tables 6, 7 and Figure

2). However, dewatering is expensive if done by current

methods, accounting for approximately 20-40% of the energy

required (Tan et al., 2020). Currently, commercial dewatering

methodologies include centrifugation, flocculation, coagulation,

flotation and sedimentation. Other harvesting techniques such as
TABLE 3 Continued

Predatory bacteria Mode of action Major host References

Algae

Ankistrodesmus falcatus Bioflocculation Chlorella vulgaris (Jalgaonwala,
2020)

Scenedesmus obliquus Bioflocculation Chlorella vulgaris

Tetraselmis suecica Bioflocculation Neochloris oleoabundans

Poterioochromonas Grazing Microcystis aeruginosa

Fungi

Trichaptum abietinum Direct attack Microcystis aeruginosa &
Microcystis flosaquae

(Sun et al.,
2018)

Lopharia spadicea Direct attack Microcystis aeruginosa

Irpex lacteus,
Trametes hirsute Trametes versicolor
&Bjerkandera adusta

Direct attack Microcystis aeruginosa

Cyanophage

SM-1 Species-specific interaction M. aeruginosa (Xu et al.,
2020a)

SM-2 Species-specific interaction M. aeruginosa

Ma-LBP Species-specific interaction M. aeruginosa

Cyanostyloviridae Species-specific interaction Lyngbya majuscule

Ma-LMM01 Species-specific interaction M. aeruginosa

S-PM2 Species-specific interaction Synechococcus

MaMV-DC Species-specific interaction M. aeruginosa

MaCV-L Species-specific interaction M. aeruginosa

SAM-1 Species-specific interaction Broader host range

Myoviridae Species-specific interaction M. aeruginosa

Siphoviridae Bursts and virus lytic cycle C. raciborskii

Ma-LEP Mechanical stiffness M. aeruginosa

Fish

Hypophthalmichthys molitrix Grazing Microcystis aeruginosa (Gu et al.,
2021)

Aristichthys nobilis Grazing Microcystis aeruginosa

Hyriopsis cumingii Ingestion and digestion Microcystis aeruginosa

Oreochromisni loticus Ingestion and digestion Microcystis aeruginosa
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TABLE 4 Potential biotoxin producers and human health implications of algal biomass.

Algae Toxins Human health
implication

References

Alexandrium catenella, A. minutum complex, A. ostenfeldii, A. tamarense Saxitoxins, gonyautoxins PSP (Pang et al.,
2017)

Chattonella antiqua, C. marina Breve-like NSP

Coolia monotis Uncertain Uncertain

Dinophysis acuta, D. acuminata Okadaic acid; dinophysis toxin 2
(DTX2); pectenotoxin 2

DSP

G. mikimotoi complex Breve-like NSP, respiratory
distress

(Niu et al.,
2021)

Gyrodinium galatheanum Breve-like NSP

Heterosigma akashiwo Ichthyotoxic Ass. with peppery taste

Ostreopsis siamensis Uncertain Uncertain

Prorocentrum lima Okadaic acid; DTX1,4; diol esters DSP

Protoceratium reticulatum Yessotoxin Uncertain (Zingone
et al., 2020)

Pseudo-nitzschia australis, P. delicatissima, P. fraudulenta, P. multiseries, P.
pseudodelicatissima, P. pungens, P. turgidula

Domoic acid ASP

Fibrocapsa japonica Ichthyotoxic None
F
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TABLE 5 Various methods to control harmful algal blooms from water resources.

Methods Techniques Advantages Limitations References

Chemical
methods

Metals (Fe, Cu, Ca & Al) Low cost and High residence
time

Toxicity against non-target species and
Accumulation in the environment

(Li et al.,
2020a)

Photosensitizers (hydrogen peroxide,
phthalocyanines and titanium dioxide)

Low cost and Degradability Risky manipulation and Coloration

Herbicides (diuron, endothall, atrazine and
simazine)

Low cost and High residence
time

Release of toxins

Physical
methods

Ultrasound techniques Low impact on ecosystems
and Contamination free

To be confirmed at up-scaled levels (Kong et al.,
2019)

UV irradiation Eco-friendly and
Contamination free

High energy consumption and To be
confirmed at up-scaled levels

Membrane filtration technology Well-established technology
and High stability

High cost

Adsorption Eco-friendly and
Contamination free

Costly and To be confirmed at up-scaled
levels

Biology
methods

Aquatic plants Technically simple reactor Affect biodiversity and Deteriorate
eutrophication

(Zerrifi et al.,
2018)

Aquatic animals User-friendly and
Environmentally sound

It will not work in oxygen-poor conditions,
Affect biodiversity and Poor efficiency

Combined
technologies

Microorganisms High specificity and High
efficiency

High cost and To be confirmed at up-scaled
levels

(Park et al.,
2019)

Ultrasonic radiation and jet circulation to flushing High efficiency High cost and To be confirmed at up-scaled
levels

Combination of uniform design with artificial
neural network coupling genetic algorithm

High efficiency and Low cost To be confirmed at up-scaled levels
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electrophoresis, electro-flotation, and ultra-sonication are used less

frequently but require either prohibitive quantities of energy or

harmful chemicals (Almomani, 2020).

Filtration using a suction pump with a filter of some sort can be

used for dewatering. The advantage over other methods is that algal

suspensions of low density can be harvested with very high

efficiency. The main problem is clogging of the filter by the algae

being harvested (Cha et al., 2020); this has to be tackled by frequent

backwashing. Dewatering by centrifugation uses a centrifugal force
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that is a few orders of magnitude higher than the force of gravity

(Hua et al., 2020) but has to be stopped periodically (batch mode)

for the solids to be removed (Kong et al., 2020). Efficiency and

reliability of centrifugation techniques are high, but so are the

operating costs often negating the efficiency of the method. If good

quality algae are to be continuously produced, continuous

centrifugation (by solid ejecting-type or nozzle-type disc

centrifuges) is recommended. These centrifuges, which are

suitable for all microalgae, can be cleaned easily and sterilized.

However, their cost of operation needs be compared with the value

of the end product (He et al., 2020). Harvesting micro-algal biomass

by chemical coagulation and flocculation is the most economical of

the methods available. The advantage of chemical coagulation/

flocculation is that large culture volumes can be collected and the

methodology applied to a wide variety of species. Microalgal

suspensions can be concentrated 20-100 times by this harvesting

technique (Li et al., 2020c). Flocculation increases the effective size

of the particles before dewatering and so reduces the energy cost.

Coagulation/flocculation is generally followed by gravity

sedimentation which is a low-cost method of harvesting

microalgae. While coagulation involves adjusting the pH or

adding an electrolyte, flocculation uses cationic polymers that are

added to the broth (Pei et al., 2021). Liquid biphasic flotation system

is a novel method of biomolecules extraction. The system is an

integration of aqueous two-phase system with mass transfer mode

of solvent sublation, which has been used in the downstream

processing of microalgae biorefinery (Aron et al., 2022).

After harvesting, the dewatered cake is usually dried to improve

the efficiency of the downstream processes (e.g., lipid extraction)

(Najjar and Abu-Shamleh, 2020). Recent technologies have shown

that biofuel production from algal biomass may not be energy

efficient because the production process consumes more energy

than that produced by combusting the resulting biofuel. The

harvesting of small algae (usually between 10 and 30 mm in

diameter) is laborious and the cheaper press method of extracting

oil from oilseed plants is not applicable with algae, which adds to

the production cost (Saengsawang et al., 2020). Extraction of the

substrates (lipids and sugars) also requires rupturing of the cell

walls through an energy intensive process, depending on the algal

strains (Dharmaprabhakaran et al., 2020). Lowering harvesting

costs is thus important for the sustainable production of micro-

algal biomass. Optimizing the method of harvest depends on the

characteristics of the alga and the nature of the end product.

Harvesting half of algal biomass and allowing it to double again

before each subsequent harvest has proven difficult to manage

(Hirooka et al., 2020). To date, most of the techniques used to

harvest algae have drawbacks, such as costs of operation that may be

high, and low efficiencies producing a relatively poor quality

product: mechanical processes involved in sedimentation,

centrifugation, and filtration can result in cell rupture, leading to

leakage of cell content and a low quality (Bosňjaković and Sinaga,

2020). It is suggested that microbes should be engineered to

perform direct photosynthetic and conversion of carbon by
TABLE 6 Potential of different biofuels feedstocks on the basis of their
oil yield for sustainable energy production.

Species Oil (%) References

Soybean 20 (Giuffrè et al., 2020)

Palm oil 30

Coconut 63 (Suryani et al., 2020)

Rapeseed 38 (Konur, 2021)

Sunflower 25 (Subas ̧ı et al., 2020)

Peanut oil 45 (Dun et al., 2019)

Olive oil 45 (Giuffrè et al., 2020)

Cottonseed 18 (Riaz et al., 2021)

Halophytes

Salicornia bigelovii 30 (Zapata-Sifuentes et al., 2021)

Cressa cretica 23 (Afshari and Sayyed-Alangi, 2017)

Suaeda salsa 22 (Kefu et al., 2003)

Haloxylon stocksii 23 (Abbas et al., 2022)

Kosteletzkya virginica 30 (Ruan et al., 2008)

Atriplex rosea 13 (Abideen et al., 2015b)

Ricinus communis 55 (Salimon et al., 2010)

Descurainaia sophia 44 (Mokhtassi-Bidgoli et al., 2022)

Suaeda torreyana 25 (Arias-Rico et al., 2020)

Crithmum maritimum 40 (D’Agostino et al., 2021)

Algae

Botryococcus braunii 25 (Cheng et al., 2013)

Chlorella sp. 28 (Munir et al., 2022)

Crypthecodinium cohnii 20 (Li et al., 2015)

Dunaliella salina 20 (Yilancioglu et al., 2014)

Nannochloropsis sp. 31 (Pal et al., 2011)

Neochloris oleoabundans 35 (Tao et al., 2019)

Nitzschia sp. 45 (Sahin et al., 2019)

Schizochytrium sp. 50 (Ren et al., 2014)
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TABLE 7 List of halophytes used for lignocellulosic biomass cellulose, hemicellulose and lignin for bioethanol production.

Species Cellulose (%) Hemicellulose (%) Lignin (%) References

Calotropis procera 12 11 5 (Narayanasamy et al., 2020)

Suaeda monoica 10 11 2 (Abideen et al., 2011)

Panicum virgatum 45 13 12

Suaeda fruticose 8 21 4 (Abideen et al., 2012)

Phragmites karka 26 29 10

Arthrocnemum indicum 11 13 7 (Munir et al., 2020)

Sporobolus ioclados 15 30 2

Desmostachya bipinnata 26 24 6 (Abideen et al., 2022)

Urochondra setulosa 25 25 6

Aeluropus lagopoides 26 29 7 (Attia-Ismail, 2016)

Tamarix indica 12 24 3

Cenchrus ciliaris 22 23 7 (Zheng et al., 2007)

Eleusine indica 22 29 7

Salsola imbricate 9 18 2 (Abideen et al., 2011)

Lasiurus scindicus 24 29 6

Abideen et al. 10.3389/fpls.2023.1026063
efficient nutrients and light energy capturing to produced algal

biofuel and other industrial product.
3 Biofuel production from halophytes

Halophytes appear an ecologically and economically feasible

alternative to agricultural crops for biofuel production (Figure 2),
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especially in arid and semi-arid regions, because of their ability to

survive in saline habitats and tolerate extremes of temperature, high

irradiance, and scarcity of water (Halat et al., 2020). Table 8 and

Figure 3 illustrate the biofuel properties generated from halophytes

and glycophytes. Conversion of lignocellulosic biomass to ethanol

has been widely studied in past decades. New technologies are being

proposed for lignocellulosic ethanol production, which includes

mild torrefaction (is a mild form of pyrolysis at temperatures
FIGURE 2

Different key steps of biomass to biofuel conversion form wild halophytic plants from screening to ethanol yield.
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typically between 200 and 320°C). Different processing methods

have also been proposed after a pretreatment step, which include

separate hydrolysis and fermentation, simultaneous saccharification

and fermentation, simultaneous saccharification and co-

fermentation and consolidate bioprocessing. In consolidate

bioprocessing, lignocellulosic materials are depolymerized into

sugars and simultaneously enzymes that convert the sugars to

ethanol or other products (Zoghlami and Paës, 2019). Brethauer

and Wyman (2010) achieved 67% ethanol yield by dilute acid

pretreatment of wheat straw using natural strains of microbes.

For ethanol production, organosolv pretreatment using ethanol is

preferred, as the ethanol used is recovered during distillation, when

the final pure product is obtained (Liu et al., 2019).
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Using plants has particular potential especially in areas where

large populations of diverse halophytic species already grow and

can be cultivated using saline water for irrigation without using

existing arable lands or clearing forests to open new lands (Xu et al.,

2020b). By providing a cover on barren lands, halophytes can

reduce soil erosion and reduce greenhouse gases by C-

sequestration; some halophytes are potential sources of oil seeds

(Abideen et al., 2015b); others have value in medicines and various

other purposes (see Figure 4) (Abideen et al., 2012; Abideen et al.,

2014b; Yasin Ashraf et al., 2020). Many perennial halophytic grasses

produce enough lignocellulosic biomass under saline conditions to

warrant conversion into biofuel (Munir et al., 2021). In our

preliminary study, Halopyrum mucronatum, Desmostachya
FIGURE 3

Comparisons of halophytes over non-halophytes as environment factors, plant biomass compositions and their cost effectiveness as energy source.
TABLE 8 Lignocellusic biomass (cellulose, hemicellulose and lignin composition of different plant feedstocks.

Species Example Cellulose Hemicellulose Lignin References

Edible crops Sugar beet 20.0 25.0 20.0 (Câmara-Salim et al., 2021; Turcios et al., 2021)

Sunflower 25.0 17.0 17.0

Maize 33.8 25.4 8.6

Corn stover 38.0 28.0 7.0

Alfalfa 34.4 6.7 7.2

Halophytes

Halopyrum mucronatum 37.0 28.7 5.0 [31–33]

Panicum turgidum 28.0 28.0 6.0

Phragmites karka 26.0 29.0 10.3

Typha domingensis 26.3 38.7 4.7

Desmostachya bipinnata 26.7 24.7 6.7
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bipinnata, Typha domingensis, Phragmites karka and Panicum

antidotale emerged as suitable bioethanol candidates among

halophytic grasses of coastal region of Pakistan (Toqeer et al.,

2018). These species show high growth rates reaching up to a

meter in height in 4-5 weeks and therefore can compete with

conventional edible biofuel crops (Tipnee et al., 2015). These

halophytes not only accumulate high biomass but also contain
Frontiers in Plant Science 14
low lignin with high cellulose and hemicelluloses contents, which

can make the hydrolysis of their biomass more efficient than that of

the conventional biofuel crops (Table 8). Similarly halophytic plant

species like Salicornia fruticosa, Cressa cretica, Arthrocnemum

macrostachyum, Alhagi maurorum, Halogeton glomeratus,

Kosteletzkya virginica and Atriplex rosea appear to be promising

biodiesel candidates based on the quality and quantity of seed oil
FIGURE 4

Application of salt resistant plant for different industrial purposes using saline land and brackish water.
FIGURE 5

Salt tolerance machanisms and plant adaptaion of salt resitant plants to grow and complete their life cycle under saline medium.
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(Abideen et al., 2015a). Further surveys are needed to identify other

halophytes that have the potential to grow satisfactorily under

saline/arid conditions and can be harvested for several years

without replanting, thus making them more economical to grow

than annual species. However, while producing biofuel from

halophytes is attractive, halophytes will only serve as a

supplement to existing sources and need research to solve various

problems discussed below that might occur if adopted for industrial

scale biofuel production. The steps of biofuel conversion from wild

halophytic plants are described in detail in Figure 5.
Ecological constraints

Experimental and circumstantial evidence proves the

advantages of halophytes over the present day glycophytic crops

in tolerating salinity stress. However, systematic research on

halophytes has gained momentum only during the last 40-50

years and shows wide diversity in growth response to salt. Some

halophytic seeds may germinate better in the absence of salinity but

as plants, many require salt for optimum growth (Flowers and

Colmer, 2015): the optimal growth of a number of halophytes,

particularly dicotyledonous species, was obtained in about 200 mM

salinity (Flowers et al., 2010). Halophytic grasses like Halopyrum

mucronatum, Aeluropus lagopoides, Sporobolus ioclados show

higher growth under fresh than salt water conditions (Abideen

et al., 2014a). Phragmites karka and other halophytic grasses like

Phragmites australis, P. communis, Spartina maritima and

Pennisetum clandestinum show reduced growth as the

concentration of NaCl increases (Faustino et al., 2020).

Arthrocnemum macrostachyum exhibited extreme salt resistance

by surviving in up to 1000 mM NaCl salinity (Gulzar and

Khan, 2008).

To survive in saline conditions, plants must adjust osmotically

to the low water potentials of their growth media by accumulating

solutes in their organs. On average, dicotyledonous halophytes have

higher ion concentrations in their above-ground biomass than do

monocotyledonous halophytes, of which the family with most salt-

tolerant species is the Poaceae (Santos et al., 2016). Since efficient

biomass saccharification and pyrolysis depends upon a low salt load

in the foliage, salt tolerant grasses are more suitable than

dicotyledonous halophytes because of their ability to restrict ion

uptake at the root level and reduce salt buildup in above-ground

parts (Wang et al., 2020a). But this advantage of being a better

feedstock carries the associated trait of decreasing growth with

increasing root zone salinity. Combining a salt excluder grass for

use as biofuel feedstock and a salt accumulator in the same saline

land to reduce root zone salinity may offer a partial remedy but

needs further study (Huang et al., 2020). Responses to saline

substrates need to be analyzed on all halophytic species with

potential as sources of biofuel and to uncover the mechanism of

salt resistance and ascertain the optimum level of salinity to

improve productivity and identify suitable candidate(s) for use

(Figure 3) (Lu et al., 2020). It is worth mentioning here that

research on the improvement of salt tolerance of conventional

crops for the benefit of mankind has been attempted over
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thousands of years but with little significant progress; work on

the domestication of halophytes is still very limited (Yeo

et al., 1990).
3.1 Availability of seeds

Availability of good quality seed is a basic requirement for plant

production, which is critical in the case of halophytes because,

unlike conventional crops, seeds of halophytes are rarely available

commercially but have to be collected from the wild populations

(Lombardi and Bedini, 2020). Availability, collection and

multiplication of seed is labor intensive and costly (Bhatt et al.,

2020). The role of the plant breeding industry is not only to produce

adequate quantity of seeds but also bring desirable changes in its

characteristics, keeping in consideration the end use (Munir et al.,

2020). Support will be required for examining the quality and type

of seed for a particular region. This will require capacity building of

public institutes to produce breeder seeds and to conserve genetic

resources in seed production as well as harmonization of policies

and regulatory frameworks for large-scale planting. Very large

nurseries are needed requiring technical know-how and this will

involve cost. Tissue culture techniques may help to meet the

demand, although information in this regard is scanty. If adopted,

tissue culture techniques will require hands-on practical and

consultative training for interested seed multipliers (Palchetti

et al., 2020). Seed coating technology can modify seed shape and

size with improve delivery to sites mainly for small-seeded plants

and for seeds with complex morphology (Staples et al., 2020). Seed

coating of P. spicata improves seedling emergence and growth in

crusting soil as well as improving handling and sowing efficiency of

small seeds such as those of Artemisia tridentata (Serpe et al., 2020).
3.2 Agronomy and cultural practices

Crop cultivation requires detailed information about best

cultural practices for optimum yield, information that is available

for most of our current conventional crops. However, such

information is rarely available for halophytes (Hanus-Fajerska

et al., 2020). Halophytes are substantially different from other

agricultural crops in their morphology, growth habit, nutrition

pattern and a proper understanding of various aspects of their

cultivation is required if yields are to be maximized. For instance,

detailed information is needed about the planting density for

optimum growth, fertilizer requirement, irrigation scheduling and

harvesting interval (Andreotti et al., 2020). Chemical testing of soil

has long been an accepted agricultural management practice to

assess soil fertility, and avoid excess fertilizer application or

pollution of the environment especially in deserts with very deep

water tables (Koyro, 2003). For coastal regions, this information is

generally missing for halophytic plants including those meant for

use as biofuel crops. Interpretations and fertility recommendations

based on soil analyses and the information on cropping systems,

tillage practices, soil texture and structure and manure use can

contribute to increased efficiency of biomass production in saline
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lands (Maciel et al., 2020). Currently, the amount of land devoted to

growing crops for energy is only 0.19% of the world’s total land area

and only 0.5–1.7% of global agricultural land. The wasted saline

land could be used for halophyte cultivation which can reduce land

competition and freshwater resources so there will be no

competition with the cultivated lands.
3.3 Knowledge of plant diseases

Losses from insects and diseases range from 9 to 16% in major

field crops (rice, barley, wheat, maize, potato, soybean, cotton)

(Ahmad et al., 2020) and are a significant constraint to crop

production that stands between the rapidly growing world

population and starvation. Research on diseases in halophytic

plants is limited but needs to be pursued to find suitable control

measures using methods available in conventional agriculture

(Tıpırdamaz et al., 2020). The techniques of molecular biology

may be helpful in analysis of gene expression for responses to

different biotic and abiotic stresses and potential trade-offs. Seed

coating with predator repellents can reduce seed consumption by

rodents (Carter et al., 2020). Seeds coated with salicylic acid

improved growth of Austrostipa scabra, Microlaena stipoides, and

Rytidosperma geniculatum as well as survival. Biological control is a

very promising strategy to control plant diseases. Coniothyrium

minitans and Sporidesmium sclerotivorum are used to control

diseases caused by Sclerotinia sp. Coniothyrium minitans based

products are available in the European market (Patel et al., 2021).

Pseudomonas fluorescens, which produces toxins or secondary

metabolites such as siderophores, phenazines and cyanide, can be

used against Gaeumannomyces graminis and Chalara elegans

(Martin-Rivilla et al., 2020). However, there are no such examples

for halophytes.
3.4 Variable seed germination
and propagation

Halophytes are plants of saline habitats that grow under

conditions with variable stress and may change their responses

rapidly between seed germination and later growth. Germination at

high salinity may provide an advantage of high seedling population

to start with but subsequent growth and biomass yield may not

necessarily reflect tolerance to salinity during seed germination

(Becerra-Vázquez et al., 2020). Seed dormancy is an important

means of delaying seed germination and initiating growth under

suitable conditions. Many halophytic species do not, however,

possess such elaborate systems because they naturally propagate

through ramets and have no ecological compulsions for seed

germination. Seed priming technology is used to reduce

variability in seed germination rate with constant and rapid

germination within populations (Banerjee and Roychoudhury,

2018). Seed dormancy is an important means of delaying seed

germination and initiating growth under suitable conditions. Many

halophytic species do not, however, possess such elaborate systems

because they naturally propagate through ramets and have no
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ecological compulsions for seed germination. Seed priming

technology is used to reduce variability in seed germination rate

with constant and rapid germination within populations. Priming

can provide resistance to heat, moisture and osmoticum stresses

(salt) (Banerjee and Roychoudhury, 2018). Seed priming improves

germination in Guazuma ulmifolia, Albizia saman (Ibrahim and

Hawramee, 2019), Cedrela odorata, Enterolobium cyclocarpum

(Becerra-Vázquez et al., 2020), Swietenia macrophylla and also

the performance of E. cyclocarpum (Pedrini et al., 2020). Seed

priming improved fast emergence in seeds of Poa fendleriana and

P. spicata (66–82%), while the density of P. spicata seedlings was

2.9-3.8 fold higher than non-treated seeds (Madsen et al., 2018).
3.5 Invasive potential

Biological invasions are an increasingly important threat to

biodiversity and ecosystem functioning and a major component of

global change worldwide. In addition to affecting ecosystems and

contributing to the extinction of native species, invasive non-native

species can also cause major socio-economic damage. Many species

that are currently invasive were introduced without proper study of

after-effects and many spread providing usually small benefits to a

sector of society but with harmful (often irreversible)

environmental consequences. Once introduced and established in

a new region, plant species, are extremely difficult to eradicate or

control. Next generation biofuel crops, whose production demands

large biomasses, have the potential to become problematic and

costly invasive species that if alien for an area; need to be closely

watched. Characteristics like wide environmental resistance, ease of

establishment, ability to re-sprout when harvested, fast growth rate,

low demand or good quality water are precisely the traits that

predispose species to become invasive (Hussain et al., 2020); see

Figure 3 for comparison or similarities in biofuels and non-invasive

properties. For example Arundo donax, Phalaris arundinacea and

Phragmites karka are fast growing C3 invasive species with tolerance

to drought, salinity, and low-fertility soils (Abideen et al., 2012;

Abideen et al., 2014a; Qasim et al., 2014). They should be targeted

for cultivation in specific areas where they can flourish and produce

lignocellulosic biomass without harming the ecosystem.

A prospect which is apparently yet to be examined is that

harvesting biomass for conversion into biofuels could be used as a

tool for controlling invasive species (Nayak et al., 2020). Imperata

grasslands found in Indonesia could be harvested to provide

biomass, and then exchanged with more productive crops (e.g. oil

palm) or with native biomass feedstocks that are non-invasive. The

major risk of this approach is that it could encourage planting and

spread of invasive species (Duarte and Caçador, 2021). This risk

could be reduced if it were managed specifically as a control

strategy, with penalties for replanting. No attempt has been made

to quantify actual, relative or potential invasiveness of terrestrial

biofuel crops at an appropriate regional or international scale, and

their planting continues to be largely unregulated. Scientist must

assess ecological risks before suggesting a new biofuel crop, to avoid

introducing an invasive species (Mao et al., 2020).
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4 Comparison of algae vs halophytes
as biofuel candidates: a summary

In spite of harmful environmental consequences, fossil fuels

continue to be used extensively in our daily life. The recent

discovery of alternate energy sources such as shale oil have raised

confidence in the continued availability of fossil resources. This

optimism has been strengthened further by access to deposit sites

previously considered difficult to reach. Technological

improvements, coupled with general inflation in prices, have been

an impetus for pumping oil from depths previously uneconomical

to drill. However, there are still forecasts that these developments

will only delay the inevitable loss of supply for which there is need

to explore other sources of energy like nuclear, wind, solar, tidal,

plant biomass as potential alternates.

Commercial interest with the rising awareness for

environmental and energy issues are strong catalysts for

producing biofuels from non-food resources. Halophytes and

algae may be suitable options for this purpose because they do

not need arable land and the freshwater required for growing food

crops - with additional benefit of carbon sequestration and

removing greenhouse gases (GHG) from the atmosphere by

consuming CO2 for photosynthesis during growth. The seed

germination dynamics and growth of halophytes are rarely well

documented but there are examples where substantial

improvement in growth can be achieved by applying different

growth promoting agents such as biochip, compost and growth

promoting bacteria. In the case of algae, there are a few studies

that help in improvement of growth parameters; dry biomass

accumulation is key factor. The major advantage that growing

algae has over halophytes is the faster growth rate of the former

than the latter, achieved with lower nutrient requirements.

Halophytes need at least one month to establish their seedling

in the saline soil. After establishment they can achieve fast growth,

but seed is only produced once, or rarely twice, a year. The smaller

seed size of most halophytes compared with glycophytes can

reduce the efficiency of biodiesel production in halophytes

compare to algal blooms. However, the feedstock from

halophytes could be a good source of bioethanol production

compared to algae. Halophytes can produce leaf and shoot

biomass on large scale and their biomass saccharification and

fermentation could give more sustainable bioethanol than other

bioenergy resources including algal biomass. The cultivation of

halophytes for biofuel on otherwise saline barren lands could

develop the use of non-agricultural lands for industrial

application, although the potential for invasiveness needs care.

The pond system of cultivation of algal biomass can raise

environmental problems due eutrophication following discharge

of nutrient-rich water to the local water resources. The

exploitation of algal biomass directly from the ocean can disturb

the food web, nutrient cycling and cause ecosystem damage.

The technology of converting biofuels from non-food options is

potentially sound but it is not ready for instant application and

needs a cautious approach with a number of obstacles to overcome
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before large scale adoption. The oil contents of algal biomass sounds

very appealing but starting from identifying suitable algal strains

and their growth optimization under particular conditions followed

by subsequent processing involving harvesting, dewatering and

conversion to the end product involves covering a long, tedious

and underexplored terrain. Halophytes too have several problems

that need to be assessed. Starting from the difficulty of availability of

seed in adequate quantities for planting on a commercial scale to

dearth of information about the cultural practices for optimum

biomass yield and all the intermediary management steps; there are

many questions. Without answers There are also many risks and

uncertainties, such as variable germination, problems with

propagation, plant diseases, scaling up, processing plant biomass,

market demand and economic competition with bulk-produced

raw materials from other conventional crops already being used.

Cost effectiveness will be the prime consideration which will be

compromised if halophytic plants are grown under artificially

controlled conditions such as in a green house. Plants which are

growing naturally near the coast or on inland degraded areas and

producing suitable feedstock with saline irrigations is likely to be a

better option as such systems have other important advantages like

soil protection against wind and water erosion, enhancing

biodiversity, creation of habitats for animals and mitigating

environmental degradation.
5 Conclusions

In spite of projected shortages of energy and harmful

environmental consequences of their production, fossil fuels

continue to be used extensively in our daily life. Commercial

interest with the rising awareness for environmental and energy

issues are strong catalysts for the initiative of producing biofuels

from nonfood resources. Halophytes and algae may be suitable

options for this purpose because they do not need the arable land

and freshwater required for growing food crops with additional

benefit of removing greenhouse gases from the atmosphere by

consuming CO2 for photosynthesis during growth. Potential food

value of both algae and halophytes is very limited at least for the

time being – except, perhaps, the use of halophytes as high-value

foods and animal feed. The facilities to produce biofuel other by

products such as protein and other useful substances from the post

processing residue can decrease the total cost of biofuel production.

It is worth mentioning that while some algal strains contain suitable

forms of carbohydrates that can be fermented to bioethanol, oil in

adequate quantities can be obtained from oilseed halophytes for

conversion into biodiesel.
6 Future prospects

The oil contents of algal biomass seem very appealing but

starting from identifying suitable algal strains and their growth

optimization under particular conditions and subsequent
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processing involving harvesting, dewatering and conversion to the

end product involves covering a long, tedious and underexplored

terrain. The use of halophytes also has problems that need to be

assessed. Starting from the poor availability of seed in adequate

quantities for planting on a commercial scale to the dearth of

information about the cultural practices for optimum biomass yield

and all the intermediary management steps, there are many

unanswered questions. There are also many risks and

uncertainties such as variable germination, problems with

propagation, plant diseases, processing plant biomass, market

demand and economic competition with bulk-produced raw

materials from other conventional crops. Cost effectiveness will be

the prime consideration, which will be compromised if halophytic

plants are grown under artificially controlled conditions such as in a

greenhouse. Domestication of these plants can be initiated by

screening collections for the best genotypes and detailed chemical

analysis to judge their suitability for particular purposes. This article

has highlighted some of the stumbling blocks that may lie on the

way but there may be more bottlenecks to remove for successful

adoption of this novel approach. It is also evident that biofuels will

not meet the total demand but will only be part of the future energy

mix of liquid fuel.
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Bélanger-Lépine, F., Tremblay, A., Huot, Y., and Barnabé, S. (2018). Cultivation of
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