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Physics competitions target at motivating students for engaging in physics 
and at promoting students talented in physics. Physics competitions also 
aim at conveying a picture of physics as a scientific discipline, going beyond 
regular physics classes in school, and should thus also include a more intense 
mathematization of physics problems. Given that physics students often struggle 
with mathematics, mathematics in the competition may pose a challenge 
beyond the intended physics challenge. The present paper therefore presents 
an analysis of theoretical tasks employed in the German Physics Olympiad. 
Mathematical requirements were (1) identified by analyzing sample solutions and 
(2) compared to mathematics curricula. Then, (3) the solutions were categorized 
regarding whether the mathematics employed was used in a tool-like manner, 
a structuring manner, or both. Findings indicate that the first competition round 
typically includes rather basic mathematical requirements which are addressed in 
lower secondary mathematics education. In the higher rounds, more advanced 
mathematics is needed, which is only taught in the last years of high school, or 
not taught at all. The structural role of mathematics proved to be  essential in 
the analyzed tasks. Beside the (intended) physics challenges, participants thus 
have to deal with mathematics they have not learned at school and have to apply 
mathematics in a different way than is often done at school when participating 
in the competition. As a consequence, unintended negative effects may occur, 
potentially counteracting the aim to promote students talented in physics. 
Implications for science education and future research are discussed.
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1. Introduction

Given the reported decline of students’ interest in science (e.g., Potvin and Hasni, 2014), 
various programs aim at increasing students’ interest and motivation for science and at fostering 
talented students in these fields. Competitions in STEM subjects are one means to identify and 
foster talented students thought to ensure a sufficient amount of highly qualified scientific and 
technical personnel and thus economic growth and wealth. Competitions are expected to attract 
extraordinarily talented students, to develop their talent, and “once developed, this talent is 
expected to contribute to society” (Campbell and Walberg, 2010, p.  8). International 
competitions (e.g., the International Biology, Chemistry, and Physics Olympiads) bring together 
top students in their respective domains from countries around the world to compete against 
each other and to get to know other students with similar interests. In the field of Physics, the 
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FIGURE 1

Mathematics in solving physics tasks.

International Physics Olympiad (IPhO) is the most prominent 
international competition with a 50-year-long tradition and 
participants from more than 80 countries (Gorzkowski and Tichy-
Rács, 2010). Student delegations are usually selected through national 
Olympiad programs of one or more selection stages (Petersen and 
Wulff, 2017).

In Germany, the delegation for the IPhO is selected by a four-
staged selection process, the so-called German Physics Olympiad 
(GPO). Presumably, the GPO can hardly do without mathematics 
as it aims to communicate a picture of physics which goes beyond 
regular physics classes at school. However, it is unclear whether 
mathematics in the competition may pose a challenge beyond the 
intended physics challenge. Students could get demotivated by 
struggling with mathematics when expecting to do physics. The 
present paper therefore aims at addressing this research gap and 
reports about a study, which (1) identified the mathematical 
requirements by analyzing GPO sample solutions, (2) compared 
them with school mathematics curricula as indicators for the 
mathematical knowledge which can be  expected by the 
participants, and (3) examined if the requirements rather addressed 
a technical or a structural role – the two roles mathematics can 
take in physics (Uhden et al., 2012).

2. The role of mathematics in physics

“The description of physical processes by mathematical means is 
one of the most characteristic traits and most powerful tools of physics 
research” (Pospiech et  al., 2015, p.  1). When solving physics tasks, 
mathematics can take a “technical role” (Uhden et al., 2012, p. 493) and 
a “structural role” (Uhden et al., 2012, p. 493). The technical role of 
mathematics refers to the “tool-like use of mathematics” (Uhden and 
Pospiech, 2011, p. 219). Solving physics tasks typically includes such 
purely mathematical calculations not connected to the phenomenon 
itself, for example, when polynomials are differentiated, or when an 
equation is rearranged into an equivalent form. In physics education, 
the technical role of mathematics is often quite obvious, so that 
mathematics is regarded a prerequisite for physics (e.g., Uhden et al., 
2012; Pospiech et  al., 2015; Hertel and Großmann, 2016): “[M]
athematical skills alone are not sufficient to guarantee success in physics, 
but … unless the student has the mathematical skills, the performance 
in the physics will be poor” (Hudson and McIntire, 1977, p. 470). The 
technical role often leads students to view “mathematics as a mere tool 
to quantify entities and express relations between them” (Karam, 2014, 
p.  010119–1) and to employ a “Recursive Plug-And-Chug Game” 
(Tuminaro and Redish, 2007, p. 020101–7) to solve physics tasks, that 
is they choose the physics equations based on the givens and the 
unknowns and calculate some value, regardless of the physical setting.

The structural role of mathematics refers to the fact that 
mathematics also provides structures to represent idealized physics 
systems. Mathematics can serve to “order the physical phenomena 
according to underlying patterns (modelling and hinting at analogies) 
and in a further extension it enriches physical thought by the physical 
meanings of mathematical operations” (Pospiech et al., 2015, p. 2). For 
example, straight lines – abstract mathematical objects – are used in 
geometrical optics to describe the propagation of light. Teaching 
students not only to use mathematics as a tool, but also to use 
mathematical structures to reason in physics is regarded important for 
physics education (e.g., Sherin, 2001; Karam and Krey, 2015). 
However, often teachers directly start off from the purely mathematical 
operations (e.g., Hansson et  al., 2015), and only seldom the 
mathematical structures used and the interpreting of mathematical 
results are emphasized (e.g., Karam, 2014). As a result, the process of 
mathematization and the structural role remains implicit. This might 
be one reason for students often struggling with structural aspects of 
mathematics in physics education (e.g., Rebello et al., 2007; Uhden 
and Pospiech, 2011).

Figure  1 visualizes the technical and the structural role of 
mathematics in the process of solving a physics task. The process starts 
with a phenomenon or situation in the real world (“World”). This 
phenomenon is translated into a physical–mathematical model (1); 
that is, it is idealized, simplified, and described by mathematical 
means (such as mathematical structures, terms, or formulae). The 
physical–mathematical model can be considered a mathematical one, 
when all physics-based knowledge and assumptions are considered 
and described by mathematics means. Then, one can restrict to the 
domain of mathematics, and reach a mathematical solution (2). 
Finally, the mathematical solution is translated back to the world (3) 
to evaluate whether it is a (meaningful) physics solution. The 
described structure of solving a physics task integrates a physics 
education and a mathematics education perspective, as it combines 
the physics modelling cycle (Uhden et  al., 2012) with the inner-
mathematical steps of the mathematics modelling cycle (Blum and 
Leiß, 2005). The structural role of mathematics in physics is located in 
the transitions between world and model (1, 3); and the technical role 
comes into play in finding a mathematical solution (2) (see Uhden 
et al., 2012).

3. The German Physics Olympiad

Given the importance of mathematics in physics in general, it is 
very likely to assume that mathematics is also important in the 
GPO. The GPO is a four-staged competition taking about 1 year. In the 
first round, up to 1,000 participants solve theoretical tasks at home. 
About 300 to 600 students qualify for the second round which consists 
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of theoretical tasks and an experimental task to be solved at home 
again (since 2019: written exam at the students’ schools.) The 50 best 
students qualify for the third round, organized as a seminar week 
including theoretical and experimental exams. The 15 best students 
from the third round qualify for the fourth round, again a seminar 
week with theoretical and experimental exams. Every student from a 
German school can participate in the competition. Most participating 
students (about 85%) are in grade 11–13 (about 16–19 years old), but 
there is also a considerable amount of participants from grades 8–10.

The goals of the GPO are twofold (Petersen and Wulff, 2017): The 
tasks of the first round aim at arousing interest and motivation to 
participate in the competition which, in turn, is hoped to create a 
sustained motivation for physics. Afterwards, the focus shifts towards 
identifying and training the national team for the IPhO. Therefore, 
most tasks in the first round of the GPO require physics knowledge 
that is mostly covered by the German physics school curriculum. In 
the higher rounds, as selecting and fostering become more relevant, 
the required level of physics knowledge increases and exceeds the high 
school level.

Good mathematical knowledge is emphasized as one important 
skill to perform successfully in the competition (GPO, 2021). Also, 
the IPhO syllabus (IPhO, 2015) – a guideline detailing the topics to 
expect in the IPhO – includes mathematical aspects, besides physics 
content aspects and experimental skills; such as solving linear systems 
of equations or knowing the properties of conic sections. However, 
the syllabus states: “Problems should focus on testing creativity and 
understanding of physics rather than testing mathematical virtuosity” 
(para. 1.2). The international syllabus serves as a guideline for the 
GPO, but the organizers emphasize that it is not necessary to know 
every aspect mentioned in the syllabus, especially not for the first 
rounds, rather training and experience in solving physics tasks is 
important (GPO, n.d.-a). GPO tasks usually differ from tasks in 
school in that they require different solution strategies, but address a 
more advanced level regarding physics and mathematics (Petersen, 
2010). Overall, this indicates that GPO tasks include mathematical 
aspects, however, it is unclear whether the focus is on the technical 
role (as is the case in school physics) or on the structural role. Given 
students’ problems with the structural role of mathematics in physics 

education (e.g., Rebello et al., 2007; Uhden and Pospiech, 2011) such 
insight would be valuable to evaluate challenges GPO participants 
might face.

Figure 2 displays a sample task from the second round of the 
German Physics Olympiad 2017 and Figure  3 the corresponding 
sample solution, as provided by the competition organizers. Sample 
task and solution exemplify the structure of solving a physics task 
(Figure 1) and the role of mathematics in the GPO. The situation is 
idealized by neglecting the semiconductor’s dimensions – which 
corresponds to the transition from the world to the physical–
mathematical model. Using the mathematical concept “point” for the 
semiconductor as well as the ray model of light corresponds to the 
structural role of mathematics (1). The phenomenon of refraction at 
the surface of the dome is mathematized in the law of refraction. 
Calculating the angle between light ray and normal vector refers to the 
technical role of mathematics (2); it requires, e.g., knowledge about 
congruent angles and trigonometric functions, but the original 
situation is not relevant. Additionally, the trigonometric functions are 
approximated, as can be seen in the sample solution in which they do 
not appear explicitly. Of course, a student experienced in physics 
reading “near the axis of symmetry” will likely know at once that the 
small angle approximation has to be used; but for a less experienced 
student (such as a participant in the Olympiad) this might not be as 
obvious. Finally, an equation has to be solved (which also corresponds 
to the technical role) and then the numerical result is connected to the 
physics situation again (3).

This sample task and solution illustrate that the Physics Olympiad’s 
tasks require the participants to employ knowledge related both to 
physics and to mathematics beyond the mere calculation aspect. Task 
and solution moreover illustrate that a variety of mathematical aspects 
is required. Younger students in particular may lack knowledge about 
trigonometry, but even students from higher grades, who typically 
know sine and cosine will not have learned about the small angle 
approximation in school. In particular, students may be not used to 
applying mathematics in a structural manner. Overall, even if the 
participants know well the phenomenon of refraction and formula of 
the law of refraction (i.e., they can solve the physics challenge), they 
might lack knowledge on mathematical aspects or the application of 

FIGURE 2

Task from the German Physics Olympiad 2017, second round (GPO, n.d.-b – in German; translation by the authors).
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mathematics in a structural manner (i.e., they fail the 
mathematics challenge).

4. Research questions and research 
design

As students often struggle with mathematical aspects in school 
physics (e.g., Hertel and Großmann, 2016), it is likely to assume that 
mathematics poses challenges to Physics Olympians, as well. It is thus 
important to know more about the mathematics in the competition, 
both regarding content and the role. For example, it is unclear whether 
mathematical challenges (such as in the sample task) appear regularly 
or only occasionally. If participants struggle with mathematics in the 
GPO, they might lose their motivation for physics which would 
counteract the goal of the competition. The present study therefore 
aims at investigating the role of mathematics in the GPO. In particular, 
the following research questions are addressed:

 1. Which mathematical aspects are needed to solve the theoretical 
tasks in the GPO?

 2. To what extent are the aspects covered by the school 
mathematics curriculum?

 3. To what extent does the structural role of mathematics come 
into play?

Research question 1 was investigated by a content analysis of the 
theoretical tasks employed in the four rounds of 4 years of the 
GPO. Research question 2 was investigated by comparing the results 
from research question 1 with the school mathematics curriculum. 
Research question 3 was investigated by categorizing the mathematical 
aspects used in each sample solution with respect to the role.

5. Method

To investigate the role of mathematics in the GPO, we focused on 
the theoretical tasks for several reasons. First, theoretical tasks are 

required in every round of the competition, whereas experimental 
tasks are only required from the second round on. [With the change 
in the second round (from tasks to be solved at home to a written 
exam), the experimental task which was part of the second round 
before 2019, was shifted to the first round]. Second, the experimental 
tasks impact less the participants’ total score than do the theoretical 
tasks as is also the case in the international competition (see §6 of the 
IPhO statutes; IPhO, 2018). Third, the experimental tasks typically 
focus on experimental skills; in contrast, the theoretical tasks require 
more advanced mathematics. Finally, including also the experimental 
tasks into our analysis would expand our theoretical frame by adding 
experiments as a means to gain insights into physics beside the role of 
mathematics in physics which is not our intention.

To approach the first research question, we analyzed 257 sample 
solutions distributed over 4 years and all four competition rounds (see 
GPO, n.d.-b for sample solutions; in the Supplementary material a 
table is provided showing the distribution of the analyzed sample 
solutions over the competition rounds and years). An overview of the 
process is given in Figure 4. For the analysis, we developed a category 
system regarding the mathematics used in the sample solutions. As 
initial categories we used the set of mathematical aspects provided by 
the IPhO Syllabus (IPhO, 2015). That is, we  read each task and 
respective sample solution and tagged, which mathematical aspect(s) 
of the IPhO Syllabus is addressed. During this process, we inductively 
refined the categories provided in the IPhO Syllabus bottom-up in 
order to generate a more detailed categorization which could later on 
be compared with the mathematics school curriculum (RQ2). For 
example, one category provided by the IPhO Syllabus is “derivatives 
of elementary functions” (IPhO, 2015, para. 4.7). During our analysis, 
we found some sample solutions requiring derivatives of polynomials 
as well as some sample solutions requiring derivatives of the 
exponential function. As these two types of derivatives are not 
necessarily taught in the same grade, we  replaced “derivatives of 
elementary functions” by the categories “derivatives of polynomials” 
and “derivatives of the exponential function.” Additionally, some 
mathematical categories were added, that were not covered by the 
IPhO syllabus but addressed in the sample solutions (e.g., “limit of a 
function as the function value approaches zero requiring a formal 

FIGURE 3

Sample solution to the task in Figure 2 (GPO, n.d.-b, translation by the authors).
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evaluation”). Given the complexity of the tasks and thus the sample 
solutions, typically more than one mathematical aspect was assigned 
to each sample solution. For example, the sample solution provided in 
Figure 3 addressed the categories “introducing identifiers”, “definition 
of sin, cos, tan in a right triangle”, “geometric approximation” as well 
as “polynomial approximation based on Taylor series”, “describing a 
situation in terms of mathematics”, “inserting one term into another”, 
“equating two terms” and “rearranging an equation into an equivalent 
form”. Employing this procedure, we  generated a highly detailed 
catalogue consisting of 204 mathematical categories which provides 
an overview of the mathematical requirements in the GPO as 
comprehensive as possible. The high level of detail allowed for a 
comparison with the mathematics school curriculum in 
Germany (RQ2).

After analyzing all sample solutions, to confirm the objectivity of 
the catalogue a subset of 33 (13%) sample solutions covering all years 
and all rounds was categorized by an independent second rater. Based 
on the developed catalogue, the rater indicated for each of the 33 
sample solutions and each of the 204 mathematical categories whether 
the category was addressed in the sample solution or not. The 
interrater agreement (97.2%, κn = 0.94, accounting for free marginal 
due to the varying frequencies of the categories, see Brennan and 
Prediger, 1981) was very high indicating well-established categories 
and a sufficient objectivity of the classification of the sample solutions. 
The few disagreed cases were discussed by the two raters to reach a 
consensus. As a result, the descriptions for some of the aspects were 
refined to enhance clarity and two categories were split into two each. 
The resulting catalogue thus included 206 mathematical categories. 
When analyzing the sample solutions, we  not only noted which 
mathematical categories are needed (at all), but also when, that is, in 
which year and in which round of the competition. This information 
helped us to better evaluate the relevance and importance of single 
mathematical aspects. The final catalogue including all 206 
mathematical categories is provided in the Supplementary material.

To investigate to what extent the participants may reasonably 
be assumed to possess the required mathematical knowledge for the 
GPO (RQ2), we compared the catalogue of 206 mathematical aspects 
with the school mathematics curriculum. Since most of the 
participants (more than 80% participants in the first round in 2018) 
are in the “gymnasiale Oberstufe” (the upper level of the school track 

“Gymnasium”, which implements the most advanced curricula), 
we restricted our comparisons to the Gymnasium curriculum. Given 
that each federal state in Germany implements its own school system 
and respective curricula, the curricula vary: The mathematical 
contents are not assigned the same grades across the different states, 
but some contents are addressed in one state a year earlier or later than 
in another state; similarly, some curricula are written in a very precise 
manner and some address rather broad mathematical key ideas. 
We therefore assigned the mathematical aspects identified in the GPO 
to either (a) the lower secondary grades (grades five to ten/eleven) or 
(b) the last 2 years of Gymnasium, but not to single grades. As most of 
the Olympians are at least in grade eleven, this differentiation 
corresponds approximately to the classification of “mathematics 
known to the average participant” (a) and “possibly not known 
(yet)” (b).

Four federal states were chosen to represent the south-west, 
mid-east, and northern part of Germany as well as one city state. To 
compare the identified aspects with the curricula, first, each 
curriculum document (Baden-Württemberg, KM, 2004; Hamburg, 
BSB, 2011, 2015/2016; Saxony, SMK, 2004/2009/2011/2013; 
Schleswig-Holstein, Bimi, 2014) was read and whenever an aspect was 
found, it was noted. Then, the aspects which had not been found, were 
explicitly searched in the different curricula documents, as not all the 
aspects appeared literally or nearly literally in the curricula. In this 
step, words similar to or part of the aspects were used as key terms for 
the search in the digital version of the curricula. If again there was no 
result, the parts of the curriculum dealing with the topics possibly 
covering the aspect searched for were carefully read again. Sometimes, 
the aspects were found implicitly, sometimes, an equivalent wording 
was found (which then was used for searching other documents as 
well). For this analysis, the level of detail of the list of 206 aspects 
proved very helpful, as for example the derivative of the exponential 
function is taught in the last 2 years, whereas differentiating 
polynomials in some states in the lower grades.

To investigate the third research question regarding the technical 
or structural role of mathematics in the sample solutions, we noted for 
every mathematical aspect in every sample solution whether it 
corresponded to the technical or the structural role. To this end, 
we rated whether the respective step in the solution can be understood 
by a person knowing the prior steps and possessing good mathematical 
knowledge and skills, but without any physics knowledge. To confirm 
the objectivity of this classification, another independent second rater 
categorized a subset of the sample solutions. First, the rater categorized 
eight solutions and the differences in the categorizations were 
discussed. Based on the discussion, the coding rule was refined. Then, 
another 30 sample solutions (12%) were rated. The interrater 
agreement (86.3%, κn = 0.79, accounting for free marginal, see Brennan 
and Prediger, 1981) indicated a sufficient objectivity of the 
classification. As a result, each sample solution was categorized as (1) 
purely technical, (2) purely structural, or (3) both if every 
mathematical aspect corresponded to the technical role (1), the 
structural role (2), or if some aspects corresponded to the technical 
and some to the structural role (3). Additionally, we categorized each 
aspect as (1) purely technical, (2) purely structural, or (3) both if it was 
always used in a technical manner (1), always used in a structural 
manner (2), or sometimes used in a technical and sometimes in a 
structural manner (3).

FIGURE 4

Approach to answer research question 1.

https://doi.org/10.3389/feduc.2023.1196189
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Treiber et al. 10.3389/feduc.2023.1196189

Frontiers in Education 06 frontiersin.org

6. Results

6.1. RQ1: mathematical aspects in the 
sample solutions

The 206 identified mathematical aspects cover a broad spectrum 
of mathematics. Many belong to the topic calculus (43 categories) or 
functions (39 categories), e.g., derivatives or integrals as well as 
properties of different types of functions. Other aspects relate to 
geometry and stereometry (36 categories, e.g., surface areas of 
different figures), to vectors (8 categories, e.g., the scalar product of a 
vector), and to complex numbers (8 categories, e.g., the product of two 
complex numbers). Aspects related to algebra (28 categories) concern 
mostly the handling of terms or equations like inserting one term into 
another or identities for exponents. And students need to use 
approximate methods, analyze data and uncertainties, or model 
mathematically, e.g., when describing a physical situation. A 
comprehensive list of all mathematical categories is provided in the 
Supplementary material.

Only seven of all 257 sample solutions did not include any 
mathematical requirements (like a crossword asking, e.g., for “the 
capability to store charge”). Based on our detailed catalogue, on 
average, more than eight mathematical aspects were addressed in 
every sample solution. The categories differed widely in their 
appearance over the rounds and the years, corresponding to the 
relevance for the competition: Aspects that appear in every year and 
every round are fundamental for all participants and thus the most 
relevant, whereas aspects occurring in some years only affect just some 
participants and can therefore be considered as less relevant. To draw 
conclusions from this extensive catalogue, we grouped the aspects 
with respect to their appearance in the sample solutions. An overview 
is given in Table 1 with the appearance as the basis for the grouping, 
an interpretation of each group (third column) and a short summary 
of the results of research question 2 (fourth column). A table 
containing all aspects ordered by group is provided in the 
Supplementary material.

6.1.1. Aspects occurring in every year and every 
round

Eight aspects were found every year in every round and can thus 
be regarded the basic mathematical requirements for the GPO. These 
include mostly aspects dealing with the manipulation of formulae 
(simplifying formulae by factorization and expansion, equating two 
terms, rearranging an equation into an equivalent form, inserting one 
term into another), calculating values (using a formula to calculate 

numerical values, rounding, handling measurement units), and 
introducing identifiers.

6.1.2. Aspects occurring every year, but not in the 
first round

Twenty-four aspects were found in every year, but only in higher 
rounds. These aspects can be regarded necessary requirements for 
those students who qualify for the higher rounds. Many of the aspects 
relate to the topic calculus, e.g., differentiating and integrating 
polynomials (round two and higher) or the chain rule (round three 
and four). Other aspects address Taylor series or logarithmic identities 
(round two and higher).

6.1.3. Aspects occurring every year but with 
varying appearance in the rounds

Twenty-six aspects were found every year, but their appearance in 
the rounds varied. The aspects thus represent a collection of 
requirements met by students who qualify for the IPhO. For example, 
in 1 year, the volume of a sphere had to be known in the first round, 
whereas in another, it occurred only in the third round. Similarly, 
exponential identities or the scalar product in some years occurred in 
round one, and in round three or four in others.

6.1.4. Aspects occurring in some years only
Finally, 148 mathematical aspects were found in some years only 

(see Supplementary material for details). These aspects thus highly 
relate to the specific physics tasks in the competition. Regarding the 
regular mathematical challenges in the GPO, these aspects are less 
crucial than the aspects of groups 1 to 3. Thus, in the following we will 
focus on the aspects needed every year.

Based on our results we do not expect big changes by analyzing 
more tasks from earlier competitions: Maybe, some single aspects 
would additionally be identified which did not occur in any of the 
257 analyzed tasks. As we already found many aspects covered in 
these 4 years, especially aspects occurring in some years only, this 
would not change the overall result that aspects from a wide range 
of mathematics are important for the competition. Then, one could 
also imagine that the assignment of one aspect to one of the groups 
could change: An aspect from group 1 could be classified as not basic 
anymore – as these aspects present basic requirements even for 
physics classes we  consider this as very unlikely. An aspect of 
group 2 could be found to also appear in first round – having in 
mind the second research question, such a change could at most 
make our results worse, namely if it is an aspect participants might 
not know. An aspect of group 2 or 3 could change to group 4 – a shift 

TABLE 1 Overview of the identified mathematical aspects, their interpretation for the competition and the availability for participants based on 
curricula.

Group Appearance in GPO (RQ1) Resulting relevance for GPO Coverage by mathematics 
curricula by the end of grade 10 
(RQ2)

1 Every year, every round Basics for participants Yes

2 Every year, not in round 1 Necessary for participants qualifying for higher rounds Only partly, differences between the federal states

3 Every year, no pattern concerning the rounds Necessary for participants qualifying for the 

international competition

Mostly yes

4 In some years only Related only to specific physics tasks Only partly, differences between the federal states
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we do not consider as very plausible: The aspects in group 4 are those 
that are related to single physics tasks. In our opinion, it is very 
unlikely to have one task in every of four subsequent years 
addressing the same special mathematical aspect which would not 
be  needed in advanced physics tasks regularly. Last, carefully 
inspecting our data showed that omitting the tasks of 1 year would 
have resulted in basically the same groups, indicating our catalogue 
and grouping to be quite robust.

6.2. RQ2: coverage of the mathematical 
aspects by mathematics curricula

As indicated before, the curricula vary regarding the level of 
detail. So, it was not possible to spot every single aspect in every 
curriculum. Nonetheless, there are some evident trends in the findings 
(see also Table 1).

The biggest differences are found for the topics of differentiation 
and integration regarding both when and what is taught. Some 
requirements identified in the GPO were not found in any of the 
curricula (e.g., Taylor series). In the following, we detail our findings 
for the groups of aspects identified in RQ1.

6.2.1. Aspects occurring in every year and every 
round

These aspects present the basic requirements for the GPO and can 
be found explicitly or implicitly in all of the four curricula in lower 
grades. For example, dealing with common measurement units (e.g., 
time or length units) is part of the mathematics curricula; even if the 
handling of more physics specific units (such as voltage) is not, 
we  assume that the basic skill of handling units is addressed in 
mathematics classes. Similarly, introducing identifiers (as part of 
modelling) or handling terms is covered by the curricula and is as 
such likely known by the Physics Olympians.

6.2.2. Aspects occurring every year, but not in the 
first round

These aspects present necessary requirements for students who 
qualify for higher rounds. The biggest percentage is comprised by 
aspects dealing with calculus and, as can be seen in Table 2, this might 
prove as a challenge: None aspect is scheduled before the last 2 years 
in all of the four states, but more than half of the aspects are 
consistently scheduled in the last 2 years (e.g., the linearity of the 
integral) or not at all (the transition from an equation f(z)dz/dx = g(x) 
to the corresponding integral equation).

Two calculus aspects (derivatives of polynomials, linearity of 
derivatives) are not consistently scheduled in the four federal states; 
that is, in some federal states they are scheduled in the last 2 years, 
whereas in other federal states they are scheduled earlier. What is not 
found in any curriculum are aspects regarding approximate and 
numerical methods (e.g., Taylor series). Of the remaining aspects, at 
least some are commonly scheduled in the lower secondary grades 
and so should be known to an average participant. But again, some 
aspects are mentioned in only single curricula (e.g., the cross product), 
while some are not mentioned at all, such as identities for sine and 
cosine. Certainly, the trigonometric functions are taught in the lower 
secondary grades, but how much teaching time (if any) is spent, e.g., 
for angle addition formulae, is unclear. The German Physics 
Olympians may consult a formulary, but without knowing about the 
existence of such formulae, probably no participant will look for it.

6.2.3. Aspects occurring every year but with 
varying appearance in the rounds

These aspects present those that will be met by any student who 
qualifies for the IPhO. There again are aspects not covered by any 
curriculum (e.g., differentials) and others show a broad variance 
across the states (e.g., the dot product). However, as reported in 
Table 3, almost half of the aspects are covered in lower grades (e.g., the 
area of a circle, identities for exponentiation), while only one is 
addressed in the last 2 years (systems of linear equations with 
three variables).

6.2.4. Aspects occurring in some years only
The comparison with the curricula yields a similarly diverse 

picture as the aspects of group 2 do (see Table 4 for an overview and 
Supplementary material for details). We  do not consider this as 
problematic as for the aspects of group  2, because the aspects of 
group 4 do not appear every year in the competition, in contrast to the 
aspects of group 2.

6.3. RQ3: role of mathematics in the 
sample solutions

The analysis of the 250 sample solutions containing mathematics 
showed that less than 10% were categorized as purely technical 
(Table 5). That is, more than 90% of the solutions contained structural 
mathematics. Less than 5% of the sample solutions contained purely 
structural mathematics. Interestingly, solutions that were purely 
technical always followed a task which included structural 

TABLE 2 Number of group 2 aspects and their occurrence in the four considered curricula.

Consistently 
scheduled 
before the 

last two 
years

Consistently 
scheduled in 

last two 
years

Inconsistently 
scheduled

Not found 
in any of 

the 
curricula

Only found 
in some of 

the curricula
Total

Calculus 0 6 2 1 2 11

Approximate and numerical methods 0 0 0 3 0 3

Remaining 4 0 0 3 3 10

Total 4 6 2 7 5 24

“Inconsistently scheduled” means that an aspect is found in all of the four curricula, but sometimes it is scheduled in the last 2 years, sometimes before.
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TABLE 5 Number of sample solutions containing purely technical mathematics, both technical and structural mathematics or purely structural 
mathematics.

1st round 2nd round 3rd round 4th round Total

Purely technical 1 6 2 14 23 (9.2%)

Both 17 41 87 71 216 (86.4%)

Purely structural 1 0 6 4 11 (4.4%)

Total 19 47 95 89 250 (100%)

TABLE 6 Number of purely technical, purely structural and technical and 
structural aspects.

Purely 
technically 
used 
aspects

Purely 
structurally 
used 
aspects

Technically 
and 
structurally 
used 
aspects

Technically 
or 
structurally 
used 
aspects 
(depending 
on the 
approach to 
solve the 
task)

45 104 55 2

mathematics. For example, one task asked for the relationship between 
two physics entities and the following task asked for calculating an 
entity’s value given specific values. Thus, implicitly the purely technical 
solutions still rely on structural mathematics.

The categorization of the single mathematical aspects showed that 
nearly half of the aspects (100 out of 206) were, at least in some sample 
solutions, used in a structural manner (Table 6). Restricting to the 
aspects occurring every year (groups 1–3), we found that at least half 
of the aspects were used in a structural manner in some or all sample 
solutions. The (partly) structurally used aspects covered all 
mathematics topics and were not restricted to aspects one would 
intuitively expect, e.g., equating two terms, but also included for 
example the formal notation of an integral. Some aspects (such as on 
approximate and numerical methods), which are not covered by the 
curriculum, might thus prove even more challenging as they are used 
every year in the GPO in an at least partly structural manner.

7. Discussion

The aim of the present work was to investigate the role of 
mathematics in physics competitions by investigating tasks and 

sample solutions from the GPO. We  found more than 200 
mathematics aspects covered in the sample solutions, partly 
exceeding what is taught at school. Additionally, the vast amount of 
tasks addressed the structural role of mathematics.

Our results show that mathematics might prove as a challenge 
in the GPO, both regarding content and the role of mathematics. 
Participants may face the need for mathematics knowledge they 

TABLE 3 Number of group 3 aspects and their occurrence in the four considered curricula.

Consistently 
scheduled 

before the last  
two years

Consistently 
scheduled in last 

two years

Not found in any 
of the curricula

Only found in 
some of the 

curricula
Total

Algebra 5 1 1 2 9

Geometry and stereometry 4 0 0 2 6

Remaining 3 0 4 4 11

Total 12 1 5 8 26

TABLE 4 Number of group 4 aspects and their occurrence in the four considered curricula.

Consistently 
scheduled 
before the 

last two years

Consistently 
scheduled in 
last two years

Inconsistently 
scheduled

Not found in 
any of the 
curricula

Only found in 
some of the 

curricula

Total

Algebra 2 0 0 8 2 12

Functions 10 0 3 9 11 33

Geometry and stereometry 13 0 1 6 9 29

Calculus 0 5 1 15 10 31

Remaining 6 0 1 30 6 43

Total 31 5 6 68 38 148

“Inconsistently scheduled” means that an aspect is found in all of the four curricula, but sometimes it is scheduled in the last 2 years, sometimes before.
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have not learned in school yet. Indeed, there is some anecdotic 
evidence for participants facing this need: During the third round 
of the GPO 2018, we had the opportunity to talk with participants. 
They mentioned some mathematical aspects necessary for the 
competition they had not learned in mathematics classes; 
especially those participants who were not in their final year of 
schooling, had had to learn mathematics (such as integration) on 
their own. Given that all but two of the 50 Olympians were in 
grade 11 or higher, and thus already had undergone substantial 
mathematics education, their lacking of mathematics knowledge 
might be an important statement, especially regarding younger 
participants in the early rounds. Additionally, in the sample 
solutions the structural role of mathematics proved as very 
relevant. This is in stark contrast to physics education which 
typically emphasizes the technical role (e.g., Karam, 2014; 
Hansson et al., 2015). Thus, even if the participants possess the 
required mathematics knowledge, applying this knowledge to 
solve the competition tasks might be a problem for the students 
as mathematics in physics is different from pure mathematics 
(e.g., Redish, 2006). Consequently, it is possible that students, 
though talented and/or highly interested in physics, fail quite early 
in the competition due to a lack of mathematics knowledge or 
because they cannot apply their mathematics knowledge to solve 
the competition tasks. For example, in the interviews mentioned 
above, one participant reported to have been taught in 
mathematics lessons how to calculate with complex numbers, but 
not “what else could be done with them”, for example applying 
them to two-dimensional physics problems. Some participants 
said that as a part of their preparation for the competition they 
learned mathematics which they had not covered at school like “to 
integrate I’ve learned by myself ” or “last year, I prepared very 
intensely and learned a lot by that, integral and differential 
calculus and approximation methods”. Mathematical aspects like 
these – integral and differential calculus, approximation methods 
– were found to occur quite often across years, and early in the 
competition (round 2 the latest). They thus might, in fact, pose 
(substantial) challenges to some participants.

7.1. Limitations

As every empirical investigation, the study comes with some 
limitations. First, we  only analyzed sample solutions, though, 
surely, we cannot expect every participant to hand in a sample 
solution. Participants’ solutions could be less formal – this would 
not change the needed mathematics yet – or even more complex 
– this could have resulted in an even lengthier catalogue. Second, 
we used the mathematics curricula as indicators of what can or 
cannot be expected by the participants. Normative curricula and 
enacted curricula may differ (Stein et al., 2007), so it is possible 
that students lack some knowledge which we assumed them to 
have based on the curriculum. However, students may also possess 
knowledge beyond the curriculum; for example, because they 
already participated in previous Olympiads or because their 
teachers may have highlighted mathematical aspects in their 
physics teaching. Nevertheless, one may not expect that every 
Physics Olympian is supported by a designated physics teacher or 
experiences physics education by an engaged teacher who 

explicitly emphasizes mathematical tools or mathematics thinking 
during the physics lessons. Finally, our studies are restricted to the 
German Physics Olympiad. In order to generalize our findings to 
other physics competitions or countries, future studies 
are necessary.

7.2. Implications

Despite the above limitations, our study and the identified 
catalogue of mathematical aspects contribute implications to 
science (and mathematics) education research and practice. First, 
given that mathematics in the GPO may cause particular 
challenges to participants, it is possible that talented students get 
discouraged by mathematical challenges and turn to other 
domains instead. This would counteract the goal of the 
competition that is to foster such talented students, increase their 
interest and possibly motivate them to enter a STEM-related 
profession. If the prominent role of mathematics in physics 
competitions is in fact a problem to the participants remains to 
be investigated.

Second, it is unclear, in how far knowledge of the identified 
mathematical aspects implies success in the GPO and the IPhO. Future 
studies may use the catalogue to design tests of participants’ 
mathematical knowledge and skills, and to relate them with their 
success in the Olympiads.

Third, our study may be informative to tertiary STEM research. 
It is well known that mathematical challenges may lead freshmen 
to drop out from a STEM study (e.g., Heublein et al., 2010). In 
contrast, physics Olympians are known to often choose and 
successfully complete a STEM career (e.g., Campbell and Walberg, 
2010). This may indicate that Olympians are better prepared to cope 
with the mathematical challenges of a STEM study. In a first step, 
our catalogue of identified mathematical aspects could be compared 
with insights from current tertiary STEM research. Mapping our 
catalogue against the KUMA model (Rach and Ufer, 2020) or the 
MaLeMINT catalogue (Deeken et al., 2020) will show in how far 
mathematical aspects in the GPO correspond to mathematical 
requirement for STEM studies. Moreover, the strong emphasis of 
the structural role of mathematics in the GPO may also be  an 
important preparation for a STEM, in particular a physics, study. 
This, in turn, could also imply the necessity to highlight the 
structural role of mathematics in school physics education 
more strongly.

Finally, our catalogue (see Supplementary material) offers 
practitioners – such as Physics Olympiad organizers and teachers – 
the possibility to specifically foster talented students. Organizers, 
who aim to offer supporting material (e.g., especially for younger 
students), based on our results we  would suggest to especially 
address aspects from calculus or approximate methods. Similarly, 
mathematics and physics teachers can strongly influence the 
promoting of students talented in physics, when using our catalogue 
to decide which topics to address or not. Providing extracurricular 
opportunities for the Olympians to learn mathematics in physics 
contexts, the students would receive a fostering in mathematics 
beside the intended fostering in physics. Such additional offers 
would benefit from joint – mathematics and physics education 
– expertise.
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