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3Departamento de F́ısica Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales,
Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
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A monitored quantum system undergoing a
cyclic evolution of the parameters governing
its Hamiltonian accumulates a geometric phase
that depends on the quantum trajectory fol-
lowed by the system on its evolution. The
phase value will be determined both by the
unitary dynamics and by the interaction of the
system with the environment. Consequently,
the geometric phase will acquire a stochas-
tic character due to the occurrence of random
quantum jumps. Here we study the distribu-
tion function of geometric phases in monitored
quantum systems and discuss when/if differ-
ent quantities, proposed to measure geometric
phases in open quantum systems, are represen-
tative of the distribution. We also consider a
monitored echo protocol and discuss in which
cases the distribution of the interference pat-
tern extracted in the experiment is linked to
the geometric phase. Furthermore, we unveil,
for the single trajectory exhibiting no quantum
jumps, a topological transition in the phase ac-
quired after a cycle and show how this criti-
cal behavior can be observed in an echo pro-
tocol. For the same parameters, the density
matrix does not show any singularity. We il-
lustrate all our main results by considering
a paradigmatic case, a spin-1/2 immersed in
time-varying a magnetic field in the presence of
an external environment. The major outcomes
of our analysis are however quite general and
do not depend, in their qualitative features, on
the choice of the model studied.

1 Introduction
As Berry first stated in his seminal work [1], when a
quantum system is prepared in an energy eigenstate
and adiabatically driven in a cycle, it acquires, in ad-
dition to the dynamical phase, a phase that depends
solely on the path traced in the ray space. Being
independent of the specific dynamics giving rise to
the path, this phase is of geometrical nature. Follow-
ing Berry’s breakthrough, consistent generalizations

of the Geometric Phase (GP) have been found for
unitary evolutions which are kept cyclic while they
are not required to be adiabatic [2], in the presence
of degenerate subspaces [3], and for the case in which
both the adiabaticity and the cyclicity conditions are
removed [4, 5]. Further generalizations include the
definitions of GPs for mixed states [6–10] and the so-
called off-diagonal GPs [11, 12], which apply in the
case where the initial and final states are orthogonal.

GPs are profoundly linked to the theory of fiber
bundles and holonomies, bridging geometrical con-
cepts like parallel transport over curved spaces with
physics [13–15], and contributing in this way to the
understanding of quantum mechanics at the founda-
tional level. Since their discovery, GPs have also
emerged in most diverse physical systems [16, 17],
deepening the comprehension of numerous phenom-
ena such as integer quantum Hall effect [18], topolog-
ical insulators and superconductors [19, 20], as well
as playing a pivotal role in quantum information pro-
cessing [21–23].

The quest for implementations of geometric quan-
tum information processing has also spurred the
search for geometric interferometry in several different
setups. The first proposal of this kind was realized in
NMR [22]. Thereafter, Berry phases in superconduct-
ing qubits were both studied theoretically in [24] and
observed experimentally for different regimes of cou-
plings in circuit-QED arrangements [25–30]. In this
direction, high-fidelity quantum gates were demon-
strated with trapped ions [31]. The need to improve
the performance of quantum information processing
devices against the exposure to external environment
has led to the suggestion of non-adiabatic geometric
gates schemes [32–37]. In this context, it becomes of
fundamental importance to understand how geomet-
ric interferometry is affected by the presence of an
external environment. Consequently, GPs need to be
generalized to deal with the systems subject to non-
unitary quantum evolution. The effect of fluctuations
in the classical control parameters of a quantum cyclic
evolution may average out mitigating their effect on
the accumulated Berry phase [38]. The presence of an
external bath was found to give rise to new geomet-
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ric contributions to decoherence [39, 40], as experi-
mentally detected in [41, 42]. Different definitions of
GPs applicable in the non-unitary case have been put
forward. Tong et al. [43] introduced a purification-
independent formula computed over the reduced den-
sity matrix while an average over different histories
(trajectories) taking into account system-bath inter-
action was discussed in Carollo et al. [44, 45] and fur-
ther analyzed in [46–48]. Additional work along these
lines can be found in [49–52].

There is, however, a different level of description
of open quantum systems which may capture features
that are washed out by simply looking at the prop-
erties of density matrices. This level is accessed, for
example, when the state of the system is continuously
monitored. In this case, the quantum system is de-
scribed by a wave function whose smooth evolution
is interrupted by random quantum jumps induced by
the coupling with the environment [53]. This sequence
of smooth evolutions interrupted by jumps is named a
quantum trajectory (see [54] for a recent review on the
subject). There are also formal connections between
this setting and that emerging in monitored quantum
circuits [55], a tractable setting to explore universal
collective phenomena as dynamics of quantum infor-
mation and entanglement [56, 57].

Goal of the present work is to describe the proper-
ties of accumulated GP along quantum trajectories. In
this approach we are inspired by the work of Gebarth
et al. [58] where the GPs induced by a sequence of
weak measurements stirring the system along a path
in a parameter space were analyzed. The random-
ness introduced by the occurrence of jumps in a given
trajectory is reflected in the fact that the GPs in-
herit a stochastic nature. By random sampling over
the trajectories, the entire distribution can be recon-
structed. Since the Berry phase is not an observable,
the average value does not correspond to the phase
accumulated by the average state (this is, the density
matrix). Previous works, with the notable exception
of [58], either restrict the study of the dynamics of
smoothly evolving pure states with no jumps or de-
fine average quantities. Understanding the fluctua-
tions of GPs induced by random jumps is to a large
extent unexplored. We would like to fill this gap by
studying this distribution and whether it is related
to the corresponding distribution in the interference
fringes in a spin-echo experiment. Finally, with re-
gard to the topological transition discussed in [58],
further investigated theoretically in [59, 60] and ex-
perimentally observed in [61, 62], we will argue that
despite the different dynamical settings it is a generic
feature present in adiabatically driven monitored sys-
tems. We will show that depending on the coupling
to the external environment, the monitored quantum
system will show a topological transition in the phase
accumulated in a cycle and we will argue that this
transition is visible in echo dynamics.

The paper is organized as follows. In the next Sec-
tion, we will define the dynamical setting we are in-
terested in: A quantum system subject to a time-
periodic Hamiltonian and coupled to an external bath.
With the intention to highlight the essence of our re-
sults, we will consider the paradigmatic case of a two-
level system that evolves in presence of an externally
varied magnetic field. The associated density matrix
is governed by the Lindblad equation. In order to
follow the dynamics of the system along its quantum
trajectories, we introduce a specific unravelling of the
Lindblad equation which relays on microscopic con-
siderations, these aspects are introduced in Section 2.
In Section 3 the model and its coupling to the environ-
ment are introduced. In Section 4 we define the GP
that will be the founding block of all our analysis. For
an isolated system and sufficiently slow driving, this
reduces to the Berry phase [1]. The presence of the
environment induces both a smooth drift and random
jumps in the dynamics, so the evolution of the state
is generically neither adiabatic nor cyclic. To keep
the presentation self-consistent, we further include in
this same Section other definitions of GPs present in
the literature. These will be employed for compari-
son in the posterior Section 5.1, where we discuss the
distribution of the GPs accumulated along quantum
trajectories and analyze reference GP values in or-
der to account for differences with other definitions
of GPs proposed in the context of open quantum sys-
tems. Due to the intrinsic randomness of the quan-
tum trajectory, a monitored echo experiment might
be altered. In Section 5.2 we discuss the probabil-
ity distributions of the interference fringes and detail
whether/when they relate to the corresponding dis-
tribution of the GPs. Our analysis of GPs in mon-
itored systems is completed in Section 5.3 where we
will show that the topological transition discovered
in [58] for a specific setting is actually a generic feature
in periodically driven open quantum systems. Indeed,
for the sequence of states known as no-jump trajec-
tory, which can be thought of as the smooth evolu-
tion generated by a non-hermitian Hamiltonian, we
find the GP displays a complex pattern in the param-
eters space exhibiting singular points. These singu-
larities can be tracked down to correspond to points
of vanishing probability for such a trajectory, and to
reveal the border between distinct topological sectors.
The transition observed in the evolution when vary-
ing the parameters is topological in the sense that it is
related to a discontinuous jump of an integer-valued
topological invariant. Section 5.3 will be entirely de-
voted to the study of this transition and ways to de-
tect it through an echo protocol. A summary of our
results and concluding considerations are presented
in Section 6. The appendices give some additional
ingredients used to compute the GP in the numer-
ical simulations, Appendix A, a detailed analysis of
the already mentioned interference fringes distribu-
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tion, Appendix B, a brief discussion on how the dis-
tribution of GPs may depend on the unravelling of
the Lindblad equation (leading to the same averaged
evolution), Appendix C, and analytical treatment of
the no-jump trajectory, Appendix D.

2 From Lindblad dynamics to quan-
tum trajectories
Lindblad equation - In order to make a connection
with existing literature, it is convenient to set the
stage and start from the case in which the state of an
open quantum system is described by a density matrix
ρ(t). In this case, under proper conditions, the dy-
namics is governed by the Lindblad equation [63, 64]
(ℏ = 1)

ρ̇ = −i [H, ρ] +
∑
α

[LαρL†
α − 1

2{L†
αLα, ρ }] . (1)

The first term in the r.h.s. of the Lindblad equa-
tion accounts for the unitary evolution, while the sec-
ond originates in the coupling to the environment.
The strength and the nature of this coupling are en-
coded in the Lindblad operators Lα. We will consider
a Hamiltonian H that depends periodically on time
H(t + 2π/Ω) = H(t) with T = 2π/Ω the period of a
cycle in suitable parameter space. The Lindblad oper-
ators, if time-dependent, should also be time-periodic
Lα(t+ 2π/Ω) = Lα(t).

It is useful to already at this point briefly comment
on the adiabatic limit for slow dynamics as this issue
will be central in the analysis conducted along the pa-
per. If the evolution is unitary, for a sufficiently large
period T , a system prepared in an eigenstate will re-
main in the corresponding instantaneous eigenstate
up to small corrections due to Landau-Zener transi-
tions between energy levels. In other words, the occu-
pancy of any given eigenstate will not change in time.
The situation strongly differs in presence of an envi-
ronment. In this case, a proper adiabatic limit is not
well defined, since the slow driving limit where adi-
abatic dynamics sets in, is also the regime in which
the consequences of the external baths are the most
severe and the system reaches a (possibly periodic)
steady state. The adiabatic limit itself should be re-
considered [65–69] in an open system, as the existence
of a continuum of energy levels makes the energy split-
tings of the system a bad reference scale for defining
the regimes. Effects due to non-adiabaticity and cor-
rections due to the presence of the environment seem
thus to be inextricably linked.

Monitored dynamics and quantum trajectories -
The dynamics of the systems radically change when
it is possible to continuously monitor their state. In
this case, the state of the system remains pure and
consists of intervals of smooth evolution interrupted

at random times by abrupt changes called quantum
jumps. A sequence of smoothly-evolving intervals to-
gether with a set of random events is denominated a
quantum trajectory. The literature on the subject is
vast and we refer to the following papers and books
for a general overview [53, 54, 70, 71] and applications
e.g. to many-body systems [72, 73].

Evolution is described in this framework as follows.
If at time t the state of the system is |ψ(t)⟩, at a later
t+ δt time it will be

|ψ(t+ δt)⟩ =


Ko|ψ(t)⟩√

po(t)
with probability po(t)

Kα|ψ(t)⟩√
pα(t)

with probability pα(t)
(2)

where o, α = 1, .. label the different operators Kα in-
ducing dynamical steps

Ko = 1 − i δt

[
H − i

2
∑
α

L†
αLα

]
Kα =

√
δtLα

(3)
and po/α(t) = ⟨ψ(t)|K†

o/αKo/α |ψ(t)⟩. Each choice in

the r.h.s. of Eq.(2) represents evolution steps of dif-
ferent characters. The second line corresponds to the
occurrence of a jump Kα at time t, while the first is a
smooth evolution (no jump), albeit altered from uni-
tarity by the fact that acquiring the information that
no jumps occurred modifies the evolution of the sys-
tem. The no-jump operator Ko can also be thought
of as generated by an effective drift Hamiltonian Ho

to which it relates in the usual way Ko = 1 − i δtHo.
The full evolution in a time interval [0, t] is therefore
characterized by a sequence of NJ jumps of types αi
occurring at times ti. We will denote the string of
these events

R(t,NJ) = {(α1, t1), . . . , (αi, ti), . . . (αNJ
, tNJ

)},
(4)

with 0 ≥ ti ≥ t ∀i, the quantum trajectory. As
mentioned above, this framework naturally emerges
when the system is continuously and indirectly mon-
itored, so that each trajectory can be viewed as the
result of continuous measurements of the environment
on a given basis. From this perspective, continuous
monitoring may lead to decoherence mitigation by the
environment [74], also post-selection and error correc-
tion schemes [75, 76] have been proposed.

The properties of the Kraus operators Ko/α guar-
antee that the probabilities to get a given outcome
sum up to one, and the time step δ t should be taken
small enough for the first order approximation to be
valid, which requires

∑
α pα ≪ 1. Averaging over

every possible jump sequence one gets back the Lind-
blad equation [53] in Eq.(1), the converse implication
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is not valid, an infinite number of different unravel-
lings give rise to the same Lindblad evolution [54]. We
will address this question in Appendix C.

3 The model
Since we are interested in studying the impact of
an external environment on the GPs, we will con-
sider a unitary evolution over which the accumu-
lated GP, in the adiabatic limit, is the Berry phase.
To be concrete, we shall consider a spin-1/2 parti-
cle in presence of a time-dependent magnetic field
B(t) = ω n̂B(t), whose direction is given by n̂B =
(sin (θ) cos(Ω t), sin (θ) sin(Ω t), cos θ) with fixed polar
angle θ and time-varying azimuthal angle Ω t. Such
unitary evolution is generated by the Hamiltonian

H(t) = 1
2 B(t) · σ, (5)

with σ = (σx, σy, σz); and |0⟩ and |1⟩, the eigenstates
of σz. The instantaneous eigenstates of H(t) are de-
noted |ψ−(t)⟩ and |ψ+(t)⟩ .

Figure 1: Trajectories described by the state of the system
on the Bloch sphere under different conditions. The black
line corresponds to unitary evolution in the adiabatic limit.
The purple line depicting a curly ring corresponds to general
unitary dynamics in which non-adiabatic corrections start to
be visible. In the presence of an environment, the quan-
tum state can suffer from jumps or can be smoothly driven
along the whole evolution. For a system prepared in the ex-
ited eigenstate, the orange trajectory corresponds to a fully
smooth drift. Differently, the blue path shows a jump that
projects the state into the instantaneous ground eigenstate
and is afterward smoothly driven. Finally, the light blue path
shows a case with several jumps, where the non-adiabatic
corrections appear in between the jumps.

If the system could be kept perfectly isolated while
the direction of B(t) is adiabatically changed in a cy-
cle parameterized by t ∈ [0, T ], with T = 2π/Ω (as
shown in Fig.1), it would acquire an adiabatic (Berry)
phase ϕ±

a = −π(1 ∓ cos θ), where the ∓ sign depends
on the energy eigenstate in which the system was ini-
tially prepared.
Lindblad operators - For a system that evolves ac-

cording to H(t) given by Eq. (5) coupled to an en-

vironment of harmonic oscillators a consistent time-
dependent Lindblad equation of the form in Eq. (1)
can be derived from microscopic considerations as
long as the evolution remains sufficiently slow [77, 78],
with Lindblad operators given by

L−(t) = √
γ− ⟨ψ−(t)|σx |ψ+(t)⟩ |ψ−(t)⟩ ⟨ψ+(t)|

L+(t) = √
γ+ ⟨ψ+(t)|σx |ψ−(t)⟩ |ψ+(t)⟩ ⟨ψ−(t)|(6)

Ld(t) = √
γd

∑
i=±

⟨ψi(t)|σx |ψi(t)⟩ |ψi(t)⟩ ⟨ψi(t)|

and corresponding to decay, spontaneous excitation,
and dephasing respectively. The coupling strengths
considered in this work are, in terms of the dissipa-
tion ratio Γ, γ− = Γ ; γd = 0.32 Γ, while we consider
γ+ to be negligible (all the results that we will show
are rather generic and do not qualitatively depend on
the chosen values). The jumps defined by Eq. (3)
from the Lindblad operators above lead, after aver-
aging, to a consistent Lindblad equation for slow dy-
namical evolutions [79]. The operators introduced in
Eq. (6) induce transitions and dephasing between the
instantaneous eigenstates of the Hamiltonian defined
in Eq.(5). In order to keep the analysis as general as
possible, we will include a further term in the Lind-
bladian which requires considering a fourth operator

Lz = √
γzσz (7)

along a fixed direction in the Bloch sphere. The par-
ticular choice of σz operator as the additional Lind-
blad operator is motivated by the need of introducing
transitions that do not simply involve the instanta-
neous eigenstates. Any other Lindblad operator that
differed from those in Eq.(6) would lead to similar
qualitative conclusions.

While the unitary evolution of the closed system
will follow the curly path indicated in purple in Fig.1,
the actual dynamics will follow, with some probabil-
ity, the path indicated in blue (see Fig.1 for illustra-
tive purposes), i.e. it will be discontinuous and not
necessary closed after a cycle of the driving, even in
the slow-driving limit. Moreover, the slower the driv-
ing, the more jumps will occur (see light blue curve in
Fig.1). The task of the next Sections is to characterize
GPs under these conditions.

Smooth evolution with no jumps - A particularly in-
teresting quantum trajectory is that which is smooth
along the whole evolution. Before addressing the
characterization of GPs in indirectly monitored sys-
tems, we provide insight into the evolution giving rise
to it. When the records of the measurements per-
formed on the environment reveal zero jumps, the
dynamics describe a continuous smooth path and is
generated by an effective drift Hamiltonian which de-
pends both on the Hamiltonian of the system and
the Lindblad operators as described by Eq. (3).
Within the model considered in our work, the effective
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drift Hamiltonian Ho governing the no-jump dynam-
ics [Ko = 1 − δtHo in Eq.(3)] is given by

Ho(t) =
(

1 − i
Γ
2ωf(t)

)
H(t) (8)

with f(t) = cos2(θ) + sin2(θ) sin2(Ωt). We highlight
the fact that, due to the unitarity of σz matrix, the
no-jump evolution is completely independent of the
fourth Lindblad operator Lz included ad-hoc and,
consequently, from the parameter γz. An illustrative
example of the trajectory generated by the above evo-
lution, referred to as the no-jump trajectory in what
comes, is the orange path in Fig. 1. In Appendix D we
provide the analytic solution for the dynamics asso-
ciated with the non-Hermitian Hamiltonian Ho(t) of
Eq.(8). While this trajectory is unique, the number
of possible (even though unevenly probable) trajec-
tories in which NJ > 0 jumps occur increases with
the number NJ of jumps, diverging as δt goes to zero.
Its uniqueness will make the no-jump trajectory espe-
cially suitable for the analysis of some features of the
GPs, we come back to this question in Section 5.3.

4 Geometric phases in open systems
As mentioned in Sec. 1, the accumulation of a GP
during the dynamics of a quantum system is not nec-
essarily restricted to an adiabatic evolution. For a
generic quantum trajectory, consisting of a sequence
of smoothly-evolving intervals together with a set of
random quantum jumps R, a proper phase that deals
with both aspects of evolution can be defined.

Considering the evolution in a time interval [0, T ],
parameterized with t, the GP associated to a trajec-
tory in which NJ jumps are registered at times ti, can
be written as

ϕ[R] = arg ⟨ψ(0)|ψ(T )⟩

− Im

NJ∑
i=0

∫ ti+1

ti

dt
⟨ψ(t)| ψ̇(t)⟩
⟨ψ(t)|ψ(t)⟩

−
∑

(ti,αi)∈R

arg ⟨ψ(ti)|Kαi
|ψ(ti)⟩ , (9)

where R = R(T,NJ) for brevity, with t0 = 0 and
the convention that tNJ +1 ≡ T in the sum of inte-
grals. The definition of GP as given in Eq.(9) will be
at the basis of our analysis and we refer to Appendix
A for a derivation of this expression. As it is evi-
dent from the dependence on the times and nature of
the jumps, the phase ϕ[R(T,NJ)] will be a stochas-
tic variable, dependent on the trajectory R(T,NJ).
The first term in Eq. (9) is the total relative phase
between the initial and final states. The remaining
terms are of two different kinds, reflecting the prop-
erties of the dynamics itself. The second term fea-
tures the dynamical phases accumulated along the in-

tervals of smooth evolution that take place before,
between, and after jumps, and which should be sub-
tracted in order to access the purely geometrical ob-
ject ϕR. The occurrence at time ti of a jump gen-
erated by the operator Kαi introduces a contribu-
tion arg ⟨ψ(ti)|Kαi |ψ(ti)⟩ given by the Pancharat-
nam phase difference ϕ1→2

P = arg ⟨ψ1|ψ2⟩ between the
state before and after the jump. Such terms, arising
when the path traced by the state shows discontinu-
ities [4, 5], can also be thought of as the GP accumu-
lated along the geodesic arc in the Hilbert space that
fills the discontinuity by joining both states. The ex-
pression in Eq. (9) is independent of the U(1) gauge
choice. It neither requires the trajectory to trace a
close path in the state space nor relies on adiabaticity
condition. Moreover, it does not even demand uni-
tarity as it is well defined also if the states |ψ(ti)⟩ or
|ψ(t′)⟩ are not normalized (the norm should, however,
be non-vanishing).

Suitable to be applied to the trajectories that
emerge in master equation unraveling, Eq. (9) has
been employed in limiting forms for addressing the
definition of GPs fitting non-unitary evolution. A first
explored route was to focus on the no-jump trajec-
tory [44, 45]. This approach, which disregards the
possibility of quantum jumps by restricting to the
smooth evolution, preserves the well-known defini-
tions of GPs applicable to pure states and includes en-
vironmental effects through the non-hermiticity ofHo.
If no jumps are registered along the entire evolution,
this is, if R(T, 0) = ∅, the GP ϕ0 ≡ ϕ[R(T, 0) = ∅]
reads

ϕ0 = arg ⟨ψ(0)|ψ(T )⟩ − Im

∫ T

0
dt

⟨ψ(t)| ψ̇(t)⟩
⟨ψ(t)|ψ(t)⟩ (10)

which trivially reduces to the expression for the GP
accumulated in the most general unitary evolution [5]
when this is indeed the case, and therefore the states
are instantaneously normalized, rendering the denom-
inator ⟨ψ(t)|ψ(t)⟩ ≡ 1 ∀ t. Eq.(10) also reduces to
Aharonov-Anandan and Berry phases as the condi-
tions required by each definition are fulfilled, namely,
for cyclic and unitary while not necessarily adiabatic
evolution and for both cyclic and adiabatic evolution.
Note that phase ϕ0 is ill-defined if some internal prod-
uct on its argument vanishes, this observation will
become of relevance when discussing the topological
transition in Section 5.3.

Several other works consider the full Lindblad equa-
tion unraveling, suggesting to define the GP of the
ensemble-averaged state ρ(t) as an average over the
ensemble of phases {ϕR} = ϕ{R} obtained by apply-
ing Eq.(9) to each trajectory [44–46]. It has been
extensively discussed whether this is a proper defini-
tion of a GP for the density matrix representing the
state of the system as it does not allow for a one-to-
one relation between the set of density matrices and
the obtained GP values [47, 48, 80].
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Finally, a different approach introduces a general-
ized GP defined directly from the reduced density ma-
trix [43]. The expression reads

ϕρ = arg

∑
j

√
λm(0)λm(t) ⟨ξm(0)|ξm(t)⟩

× exp
{

−
∫ t

0
dt′ ⟨ξm(t′)| ξ̇m(t′)⟩

})
(11)

where λk(t) and |ξk⟩ are the instantaneous eigenval-
ues and eigenstates of the density matrix ρ(t) which
describes the state of the system. Even though de-
fined for non-degenerate but otherwise general mixed
states, when computed over pure states under uni-
tary evolution, reduces to the unitary expression of
the GP.

All the above-mentioned proposals of GPs appli-
cable when dynamics are non-unitary either restrict
to modified evolutions on which pure-state GP defi-
nitions would be applicable or seek a consistently de-
fined GP for the reduced density matrix ρ(t), which
accounts for an averaged description. Stochastic pro-
cesses, however, arising from master equation unrav-
eling, acquire independent physical relevance in con-
tinuous monitoring schemes. As anticipated in the in-
troduction, the randomness introduced by the occur-
rence of jumps in a given trajectory reflects in the GPs
acquiring a stochastic nature itself. This approach,
therefore, requires a study of the environmentally-
induced effects in GPs from a statistical perspective.
The probability associated with some GP value will
be related to that of individual trajectories as

P [ϕ] =
∑

R/ϕ[R]=ϕ

P [R]. (12)

The average phase corresponds only to the first mo-
ment of the distribution

ϕ̄ = arg
(∑

eiϕP [ϕ]
)

and in some cases may be not sufficient in character-
izing the dynamics.

For easy later reference, we provide a table summa-
rizing the GP definitions reviewed along this section

GP Description

ϕa Adiabatic Berry phase

ϕ[R] GP associated to the quantum
trajectory R(T,NJ)

Eq.(9)

ϕ0 GP associated to the no-jump
trajectory

Eq.(10)

ϕu GP accumulated on general uni-
tary evolution ( from Eq. (10)
with ⟨ψ(t)|ψ(t)⟩ = 1)

ϕ̄ Average over the probability dis-
tribution P [ϕ]

ϕρ Mixed state geometric phase [43] Eq.(11)

The next Section will be devoted to the properties
of P [ϕ] and how representative the different GPs ap-
plicable to trajectories are, see Eqs. (9 - 10). As we
will be showing in the following, in most cases the
entire probability distribution, i.e. all higher order
cumulant, is necessary to understand the accumula-
tion of GPs in a continuously monitored system. We
will also discuss under which circumstances and what
features of P [ϕ] can be extracted by geometric inter-
ferometry through a spin-echo protocol.

5 Results
5.1 Geometric phase distribution P [ϕ]
We investigate in this section the distribution of the
ensemble {ϕR} = ϕ{R} of GPs obtained by applying
Eq. (9) to each individual realization (trajectory) of
the evolution, characterized by some set R(T,NJ). In
Fig. 2 we show two representative cases in which the
corresponding dynamics of a hypothetical unitary evo-
lution would either be faster (with small but non-zero
non-adiabatic corrections) or slow enough to be con-
sidered in the adiabatic regime while the environment
remains the same, characterized by the dissipation
rate Γ = 10−3ω, which leads to γ− = Γ, γd = 0.32 Γ,
and negligible γ+.

We first attend the case with γz = 0, in which the
environment induces jumps involving instantaneous
eigenstates only. The two situations, corresponding
to the two sets of parameters indicated before, are
shown in Fig. 2, in panels (a) and (b) respectively. In
both panels, we also plot for reference the adiabatic
(Berry) result, the no-jump and unitary GPs, and the
average of the distribution. Being the Berry phase in-
dependent of Ω, it is exactly the same for both cases,
this is, ϕa ∼ 1.482π. For the parameters chosen, the
value ϕ0 computed from Eq.(10) over the trajectory
with no jumps, shows small deviations from ϕa. While
the values of these characteristic GPs are similar, the
entire distribution of the monitored system is dras-
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Figure 2: Probability distribution P [ϕ] of GPs for a magnetic
field oriented with θ = 0.34π and driven in a loop at frequen-
cies (a) Ω = 5 × 10−3ω and (b) Ω = 5 × 10−4ω. The envi-
ronment is characterized by the dissipation rate Γ = 10−3ω
and a γz = 0. In both panels, the solid red line depicts
the adiabatic (Berry) phase ϕ+

a , and the black dashed and
dot-dashed lines signalize the GPs ϕ0 and ϕu associated with
no-jump and general unitary evolution. The black dotted line
indicates the first moment of the distribution ϕ̄. The inset
in panel (a) is a zoom in which the difference between these
reference GP values is visible.

tically different on each panel. In the first case of
faster driving, the period T is such that a considerable
amount of times the evolution is completed registering
no jumps, with the mean number of jumps over the
ensemble N̄J = 0.63. The narrow peak in the Figure
shows these cases of entire smooth evolution. In addi-
tion, there is a small background revealing the accu-
mulated GP along those trajectories where jumps oc-
curred. The composition of the ensemble is reflected
in the histogram by the presence of a large contribu-
tion, corresponding to ∼ 50% of the realizations, due
to the no-jump GP-value and the remaining 50% of
the counts distributed in a broad way over the pos-
sible GP values. This broad background distribution
can be easily interpreted as the randomness inher-
ited by the GP due to the (random) time at which
the jump occurred. A single term ⟨ψ(ti)|K−i |ψ(ti)⟩

in Eq. (9), denoting a contribution to the GP from
a jump at time ti, successfully accounts for the back-
ground when considering all possible jump-times. The
peak in the distribution agrees well with both the adi-
abatic and the no-jump values. The average phase, on
the other side, is a bit off due to the small and poorly
structured background, broadly distributed over 2π.
This clearly demonstrates that even a single jump oc-
curring at a random time leads to very large fluctua-
tions in the accumulated GP. In the case with slower
driving shown in panel (b) the mean number of jumps
over the set of trajectories is N̄J = 1.77. This means
that the state of the system is much more likely to
undergo an abrupt change, or even more than one, in
each realization of the cycle. As expected, the distri-
bution of GPs becomes much wider, and a sharp peak
around ϕ0 is not visible anymore. Higher-order cumu-
lants become necessary to understand the dynamics.
The three lines, corresponding to the adiabatic, no-
jump, and average GPs do not provide thorough in-
formation on the dynamics of the monitored system.

Figure 3: Probability distribution P [ϕ] of GPs as a function
of the ratio Ω/ω. The field is oriented with θ = 0.34π
and the environment is characterized by the dissipation rate
Γ = 10−3ω and a γz = 0 amplitude for the fourth Lindblad
operator. The GP values are displayed on the y-axis, while
the intensity of the count color indicates their probability.
The solid red line depicts the adiabatic (Berry) phase ϕ+

a ,
the black dashed line indicates the GP ϕ0 accumulated along
smooth trajectories with no jumps, and the black dotted line
shows the first moment of the distribution ϕ̄.

The rate Ω/ω at which the magnetic field is rotated
has thus a direct impact on the distribution of GPs.
For larger rates, the system is exposed to the envi-
ronment for a shorter period of time, but deviations
from the adiabatic regime become non-negligible. On
the other hand, lowering the driving frequency might
result in the system being exposed to environmen-
tal effects for too long, implying strong corrections
to ϕR from ϕ+

a . Fig. 3 shows the distribution of
GP-values obtained along a range of different Ω/ω
rates which include the cases presented in Fig.2. For
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high enough frequency, the distribution shows a sharp
peak around the no-jump value of the GP and al-
most no background counts. On the other hand, this
no-jump value deviates considerably from the Berry
phase. The broad background visible in panel (a) of
Fig. 2 develops as the frequency rate is lowered and
the relative period grows. Further on, the background
turns into a second peak, while the one in the no-jump
value decreases. For the smaller rate values, the dis-
tribution shows the behavior depicted by panel (b)
of Fig. 2, this is, a broad single-peaked distribution.
This regime shows non-negligible environmental ef-
fects also over the GP associated with the no-jump
evolution, which deviates from the adiabatic result
even though the driving is performed slowly. We refer
to Appendix D for an analytical expression of the de-
pendence of this deviation on the different parameters
involved. The broadening exhibited by the distribu-
tion as the frequency rate decreases is reflected in the
increment of the distribution variance. We note that,
for variables described on a circle as the GP, this mea-
sure is constrained to the [0, 1] range. The described
behaviour is shown in Fig. 4.

Figure 4: Variance σ2
{ϕR} of the GPs’ distribution as a func-

tion of the ratioΩ/ω. The field is oriented with θ = 0.34π
and the environment is characterized by the dissipation rate
Γ = 10−3ω and a γz = 0 (same as in Fig.3).

We conclude this section by analyzing the distribu-
tion of GP values when γz ̸= 0. As already discussed,
a non-zero value of γz induces jumps to states that
are not instantaneous eigenstates of the Hamiltonian
and thus allows to consider of a wider class of cases.
The resulting phenomenology depends only quanti-
tatively on the choice of the Lindblad operator Lz.
Specifically, we take γz = 0.1 Γ and consider, as we
did before, two different values of the speed at which
the system is cyclically driven. The results are shown
in Fig.5, with the qualitative features of the distri-
bution closely resembling those obtained in the case
with γz = 0.

Panel (a) of Fig.5 corresponds to the faster case.
The mean number of jumps N̄J = 0.69 is slightly

Figure 5: Probability distribution P [ϕ] of the GPs for a mag-
netic field oriented with θ = 0.34π and driven in a loop at fre-
quencies (a) Ω = 5×10−3ω and (b) Ω = 5×10−4ω. The en-
vironment is characterized by the dissipation rate Γ = 10−3ω
and γz = 0.1 Γ. In both panels, a blue solid contour indi-
cates (for comparison) the γz = 0 distributions. The solid
red line depicts the adiabatic (Berry) phase ϕ+

a , the black
dashed and dot-dashed lines signalize the GPs ϕ0 and ϕu

associated with no-jump and general unitary evolution. The
black dotted line shows the first moment of the distribution
ϕ̄. The inset in panel (a) zooms in to see the differences in
the positions of the lines

above the one obtained in the γz = 0. The addi-
tional jumps generated by Kz are not sufficient to
modify the distribution qualitatively, which continues
to show a well-defined peak (arising from the occur-
rence of smooth evolution with no jumps) plus a broad
small background. In panel (b), showing the case in
which the system is driven slower, the mean number
of jumps is also slightly increased from the γz = 0 case
due to the additional presence of γz jumps, reaching
a value N̄J = 2.66.

The cases discussed above contain the first message
of the present work. The stochastic nature of the GP
in monitored dynamics needs to be taken into account
and it is not possible to characterize it only through
a single value. This raises the additional question of
how this fact reflects on the experimental outcomes.

Accepted in Quantum 2023-05-26, click title to verify. Published under CC-BY 4.0. 8



To address this question, we will consider in the next
Section a spin-echo protocol and see how, when, and
whether the distribution in the interference fringes is
affected by the randomness of the process.

5.2 Distribution of interference fringes in a
spin-echo protocol
If the system is prepared in an eigenstate of the
Hamiltonian and subsequently driven in a cycle, adi-
abatically and in absolute isolation from the environ-
ment, then the quantum state accumulates a Berry
phase that can be measured by implementing a spin-
echo protocol [81]. It goes as follows. The system
is initially prepared in a superposition state |ψ(0)⟩
which reads (1/

√
2)(|ψ+(0)⟩ + |ψ−(0)⟩) in terms of

the ground and exited instantaneous eigenstates of
H(0). Then, it is driven for a period T , causing each
eigenstate to acquire both a dynamical and a geo-
metric phase ϕ±

a . A spin-flip operation and a second
cycle in the opposite direction lead to a cancellation
of the dynamical phases, resulting in a purely geomet-
ric relative phase. Berry phase can thus be extracted
through state tomography [25, 27, 82] or by realizing
that the probability for the system to be back in the
initial state once the full evolution is completed, the
persistence probability, is related to the Berry phase
as |⟨ψ(0)|ψ(2T )⟩|2 = cos2(2ϕ+

a ) [83]. The relation
between the persistent probability and the GP given
above relies on two factors: the adiabatic regime pre-
venting the transitions between eigenstates and the
exact cancellation of the dynamical phases during the
protocol. If an echo experiment is performed on a sys-
tem that is exposed to the effect of the environment
and continuously monitored, the persistence probabil-
ity will retain its dependence on the dynamical evolu-
tion. Nevertheless, it is worth understanding to which
extent it is possible to learn features of GPs in a mon-
itored system through an echo protocol.

For each realization of the protocol, character-
ized by a sequence of jumps R(2T,NJ), we can
parametrize the persistent probability PR through an
associated angle φR

PR = |⟨ψ(0)|ψ(2T )⟩|2 ≡ cos2 (2φR) . (13)
Both the persistence probability and the parameter
φR inherit the stochastic character of the trajecto-
ries, with the probability of measuring a given value
φ related to the probability of the trajectories as

P [φ] =
∑

R/φR=φ

P [R]. (14)

In the limiting case in which the persistence proba-
bility approaches its adiabatic value, φ will approach
ϕ+

a . Away from that particular regime, φR is NOT
equal to the GP ϕR = ϕ[R] but, as mentioned previ-
ously, a convenient parametrization of the spin-echo
interference fringes.

The non-adiabatic and environment-induced devi-
ations from ϕ+

a can be analyzed by examining the en-
semble {φR} = φ{R} that is obtained by computing
Eq. (13) for each individual realization of the proto-
col. This study will also allow seeking possible rela-
tions, if any, between the stochastic behavior of the
GPs and that of experimental outcomes (note that φR
is defined modulo π/2 and up to a sign, therefore, any
relation between the distribution of GPs and the dis-
tribution of the experimental results should take this
into account). The frequency Ω at which the magnetic
field is rotated is expected, once again, to have a di-
rect impact on the distribution [36, 37]. On increasing
the relative value of Ω, the system will be exposed to
the disruptive influence of the environment for shorter
times, allowing to a larger extent a partial cancella-
tion of the dynamical phases. At the same time, in
this regime, non-negligible deviations from the adia-
batic results will be unavoidable. On the other hand,
smaller values of Ω might result in the system being
exposed to environmental effects for too long, leading
to strong deviations of the echo-parameter values φ
from ϕ+

a .

In analogy with what we did in section 5.1, we ex-
amine first the case γz = 0 and present, in Fig.6, two
representative cases in which the hypothetical unitary
evolution would either be faster or slow enough to be
considered within the adiabatic regime. These are
shown in panels (a) and (b) of Fig.6 respectively. In
both panels, we also display the adiabatic Berry phase
ϕa (which does not depend on Ω), the GP ϕ0 obtained
in a no-jump evolution, and the GP ϕu obtained in
general unitary evolution. The φ value obtained from
an echo experiment which is completed without de-
tecting jumps is also shown. For the parameters cho-
sen, both panels show very small deviations of φ ex-
tracted in a protocol with no jumps from the Berry
phase (see the insets in Fig.6). It should be noted,
however, that the probability of registering this spe-
cific trajectory is different in the two cases, as can be
seen in the differences in the full P [φ] distributions.

The first striking feature that comes out is the pres-
ence of three distinct sharp peaks. The broad distri-
bution observed in the GP values completely disap-
pears in the spin-echo. This behavior originates from
the fact that when γz = 0, only jumps between in-
stantaneous eigenstates are possible. This particular
aspect of the unravelling leads, when combined with
the properties of the persistence probability, to a dis-
tribution of interference fringes qualitatively different
from that of the GPs. Each of the peaks shown in
panel (a) of Fig. 6 can be understood as arising from
a different set of quantum trajectories in the follow-
ing way. For the parameters chosen in panel (a) of
Fig. 6 trajectories with at most one jump are pos-
sible. The three peaks correspond to protocols with
no jumps, protocols with one jump of the type L±,
and one jump of the type Ld respectively. We refer to
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Figure 6: Probability distribution P [φ] obtained in the echo-
protocol for a magnetic field oriented with θ = 0.34π and
driven in a loop at frequencies (a) Ω = 5 × 10−3ω and (b)
Ω = 5×10−4ω. The environment remains the same, charac-
terized by the dissipation rate Γ = 10−3ω and a γz = 0. In
both panels, the solid red line depicts the adiabatic (Berry)
phase ϕ+

a , and the black dashed and dash-dotted lines sig-
nalize the GPs obtained in no-jump and unitary evolution
respectively. Furthermore, the black dash double-dotted line
indicates the φ value obtained in an echo protocol with no
jumps. The insets in both panels show a range in which
the result of a smoothly performed echo experiment is dis-
tinguishable from the Berry phase.

Appendix B for a detailed justification of this identi-
fication. Trajectories that remain smooth along the
whole protocol induce the right peak in Fig.6 (closest
to the no-jump result, φ ∼ 1.475π for this choice of
parameters). The central peak, centered at the value
φ ∼ 1.375π trivially associated via Eq. (13) with a
persistence probability taking the value 1/2, builds up
from all those cases in which the state of the system
is, at some given time, projected into an eigenstate of
H(t). In those trajectories, all the information about
the accumulated phase before the jump is lost. As a
consequence, immediately after a jump L±, and re-
gardless of both the previous evolution and the time
at which the jump occurred, the persistence proba-
bility takes the exact value 1/2. The third peak, the

left one, is due to trajectories in which a jump Ld
occurs. This type of jump has the effect of introduc-
ing a π-shift in the relative phase of the echo state,
that corresponds with the position of the left peak
in Fig.6. Therefore, the interference fringes distribu-
tion shows three peaks out of which two encode the
same information, namely, the φ value of a smoothly
driven protocol, while the central peak contains al-
most no information. Furthermore, the distribution
is quite sharp because, for the parameters chosen,
the described classes of trajectories are all detected,
while more complex quantum trajectories are highly
improbable (see Appendix B). In panel (b) of Fig. 6
the two peaks located at the sides have almost van-
ished. This reveals that when the system is driven
at lower relative frequencies, a decay jump or a spon-
taneous excitation will be detected in almost every
trajectory. A similar effect is obtained if the decay
rate Γ/ω increases while keeping the ratio Ω/ω fixed.

A second aspect of the distribution P [φ] is which
features of GPs in open systems it captures. In panel
(a) Fig. 6, the fast-driven regime, the φ value ob-
tained from protocols with no jumps agrees well with
the adiabatic (Berry) phase, and both of these show
small but visible deviations from no-jump GP. The
φ value is more closely related to the adiabatic case
than the actual GP accumulated in smoothly drifted
dynamics. For the slower driving shown in panel (b)
of Fig.6, the no-jump φ value remains a good indica-
tor of the adiabatic phase, even though registering a
smooth protocol is in this case less probable. Under
these conditions, most of the experiment realizations
will contribute to the central peak, which is not re-
lated to any characteristic GP.

Inspection of Fig.6 suggests that, as in the case
of the GPs distribution, the interplay between non-
adiabatic corrections and environmentally induced
jumps is better revealed when the distribution P [φ]
is analyzed as a function of the rate Ω/ω. This is
shown in Fig. 7, which includes the two paradigmatic
cases of Fig. 6. The Berry phase ϕa and the values
ϕ0 and ϕ̄ of the GP associated with smooth trajecto-
ries and the first moment of the GP distribution are
also given for reference. In the fast-driving regime,
Ω/ω ≳ 0.1 the φ value is most of the time the one
arising in a protocol with no jumps and shows ap-
preciable but still small deviations from the adiabatic
phase. A trajectory with a single jump might be ob-
served, albeit with less probability. If this is the case,
the mixing of the eigenvalues due to non-adiabatic
transitions will produce slightly broad distributions
around the other two peaks, revealing the stochastic
nature of the jump times. Non-adiabatic corrections
have a much stronger impact on ϕ0 (for an analyt-
ical expression of this scaling, see Appendix D), its
behavior completely disconnects from that of the dis-
tribution of echo protocols. On the other side, ap-
proaching the slow driving regime, the three peaks get
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sharper. This behavior is accompanied by a sharp de-
crease in the height of the side peaks and an enhance-
ment of counts on the trivial, middle peak. Along
the full range, there is a region in which the interplay
between environmentally-induced and non-adiabatic
effects allows for good agreement between the GP ac-
cumulated in smooth non-unitary evolution and the
value of φ. The behavior displayed by both the GP
and the echo ”phase” in smooth non-unitary evolution
is further analyzed in Appendix D. The (consistently
re-ranged) first moment of the GP distribution ϕ̄ re-
mains, along the whole frequency range, uncorrelated
from both the φ distribution to a greater degree than
all other characteristic values.

Figure 7: Probability distribution P [φ] of φ (as determined
in an echo experiment) as a function of the ratio Ω/ω. The
field is oriented with θ = 0.34π and the environment is char-
acterized by the dissipation rate Γ = 10−3ω and a γz = 0 .
The φ values are displayed on the y-axis, while the intensity
of the count color indicates their probability. The solid red
line depicts the adiabatic (Berry) phase ϕ+

a , while the black
dashed and dotted lines signalize the no-jump GP ϕ0 and the
first moment ϕ̄ of the GP distribution respectively.

The distribution changes radically when γz ̸= 0.
In what follows we discuss the case γz = 0.1 Γ with
Γ = 10−3ω. We start re-considering the two repre-
sentative cases of fast and slower driving, displayed
in panels (a) and (b) of Fig. 8 respectively. The first
noticeable aspect is that, while three peaks observed
in Fig. 6 (indicated here by the blue contours) can
still be detected, they are now coexisting with a broad
distribution.

As visible in panel (a) of Fig. 8, the three peak
heights discussed previously decrease in the presence
of γz. The suppression of the peaks is accompanied
by the appearance of a broad background distribu-
tion covering the entire range. Panel (b) of Fig. 8
attends the slow driving situation, in which the prob-
ability to have a jump, and even several, along each
trajectory, grows. The inclusion of the Lz jump mod-
ifies the sharp-peaked distribution into a broad one,
which covers the entire range of φ values. In partic-
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Figure 8: Probability distribution P [φ] for a magnetic field
oriented with θ = 0.34π and driven in a loop at frequencies
(a) Ω = 5 × 10−3ω and (b) Ω = 5 × 10−4ω. The envi-
ronment is characterized by the dissipation rate Γ = 10−3ω,
and finite γz = 0.1 Γ. In both panels, a blue solid contour
indicates the γz = 0 distributions. The solid red line depicts
the adiabatic (Berry) phase ϕ+

a , and the black dashed and
dash-dotted lines signalize the GPs obtained in no-jumps and
unitary evolution respectively. Finally, the black dash double-
dotted line indicates the φ value obtained in an echo protocol
with no jumps. The insets zoom in a range in which differ-
ences between the reference values, panel (a), and the full
magnitude of the central peak, panel (b), are visible.

ular, the two peaks connected to the no-jump trajec-
tory disappeared. The inclusion of this term in the
Lindbladian induces jumps into states other than the
eigenstates of the Hamiltonian. In this sense, we may
consider the results quite generic, not specifically de-
pendent on the choice of the Lindblad operator. In
order to get a more complete view of the effect of a
finite γz, Fig. 9 shows the distribution of φ-values
as a function of Ω/ω. For a fast-driven evolution in
which almost no jumps are detected, the behavior ex-
hibited by the distribution is similar to that observed
in the γz = 0 case. When the velocity of the driv-
ing is reduced, gradually favouring the occurrence of
jumps, the effect of introducing a finite γz value be-
comes more relevant. The Lz jumps lead to φ values
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that do depend on the time at which the jump took
place and hence biuld up a broad background.

Figure 9: Probability distribution P [φ] as a function of the
rate Ω/ω between the frequency Ω at which the magnetic
field its rotated and its amplitude ω. The field is oriented
with θ = 0.34π and the environment is characterized by the
dissipation rate Γ = 10−3ω and γz = 0.1Γ. The φ values
are displayed on the y-axis, while the intensity of the count
color indicates their probability. Extra lines signalize refer-
ence GP factors. The solid red line indicates the adiabatic
(Berry) phase ϕ+

a , while the black dashed line is the value ϕ0
extracted from evolution with no jumps.

Summarizing, while the distribution of interference
fringes is, in general, quite different from that of the
phase accumulated along a single trajectory, the anal-
ysis of a spin-echo protocol allows to extract reliable
information on both the no-jump trajectories and the
adiabatic (Berry) phase in some regimes of parame-
ters. In the following Section we will concentrate on
the no-jump trajectory (the kind of smooth evolution
associated to the side-peaks of the probability distri-
bution emerging in the echo-protocol) and show that
undergoes a topological transition as a function of the
coupling to the environment.

5.3 Topological transitions
As already anticipated, we conclude this analysis of
GPs in monitored systems by focusing on the no-jump
trajectory. We will show, following in spirit the work
in Ref. [58], that the drift jump-free dynamics encode
a topological transition. We would like to emphasize
that, although the setting is very much different from
that of [58], we believe that the nature of the tran-
sition is the same. Our analysis is a strong hint to
the conjecture that this type of transition is rather
generic for monitored systems.

Phase diagram - The GP ϕ0 given by Eq. (10)
depends, for every fixed θ, on the ratios Ω/ω and
Γ/ω. We recall the no-jump trajectory, and there-
fore the GP associated with it, have no dependence
on γz. Plotted as a function of the above-mentioned

parameters, the GP shows discrete singularities at
critical points, around which it makes a 2π winding.
Meanwhile, the probability associated with this par-
ticular trajectory vanishes at these points. We stress
that, being the initial state of the system the eigen-
state |ψ+(0)⟩ of H(0), the null probability condition
⟨ψ(0)|ψ(T )⟩ = 0 implies a final state |ψ−(T )⟩, mean-
ing a singular point if found when full population
transfer is attained within a time-interval t ∈ [0, T ],
and refer to Appendix D for details on the analytical
derivation. Fig.10 shows a color plot of the GP in the
Γ − Ω diagram at fixed values of the angle θ. The
range of the parameters is shown to highlight the sin-
gular point and the 2π winding of the GP around it.
The white lines indicate the probability for the no-
jump trajectory, which approaches zero on reaching
the singularity. We will show that the collection of
these singular points delimits regions of the parame-
ter space associated with different topological classes
of evolution. This will be done by defining a topologi-
cal invariant n ∈ Z (see below) and explicitly showing
it takes different values over different regions of the
parameter-rates plane.

Figure 10: Geometric phase associated with the no-jump
trajectory, displayed over a limited region of the parameters
plane defined by the ratios Ω/ω and Γ/ω. The value of the
GP is given by color, as indicated by the bar on the right.
The direction of the field is fixed to θ = 0.34π. A singularity
is observed Ω/ω = 4.8082 × 10−3 and Γ/ω = 0.0306. The
crosses indicate points slightly to the left of the singularity
(Ω/ω = 4.8 × 10−3) and slightly to the right of it (Ω/ω =
4.8084 × 10−3), which will be shown to belong to different
topological sectors.

Topological transition in the no-jump trajectory -
Direct inspection of the effective drift Hamiltonian
shows that, if the magnetic field points in the z-
direction, the exited eigenstate |ψ+⟩ of H(t) remains
fixed in a pole of the Bloch sphere independently of
the values taken by the parameter rates Ω/ω and Γ/ω.
Therefore, the GP associated with the no-jump tra-
jectory identically vanishes (mod 2π) for θ = 0 and
θ = π. Without loss of generality, the mod 2π free-
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dom can be eliminated from the GP by simultaneously
setting ϕ0(θ = 0) = 0 and demanding continuity. In
this way, ϕ0(θ = π) is completely determined by the
evolution and acquires a value

ϕ0(θ = π) = 2π n, (15)

where n is an integer number that characterizes the
dependence of the GP with θ for fixed parameter val-
ues. Being an integer, n constitutes a topological in-
variant because it can not be changed by smoothly
deforming ϕ0(θ). As a consequence, if the GP is char-
acterized by different values of n as a function of the
various parameters, this will impose the GP to un-
dergo a non-smooth transformation, as the singular
behavior exhibited in Fig.10. Indeed, points in the pa-
rameter space slightly to the right and slightly to the
left of the singularity (indicated with crosses in Fig.
10) give rise to no-jump evolutions associated with
topological invariants n = 0 and n = 1 respectively,
thus identifying different topological classes. To ex-
plicitly show this, Fig. 11 compares the behavior as
a function of θ of these GPs by means of showing the
difference ∆(θ) between them. Given two points, say
(1) and (2) and labelled by crosses in Fig. 11, ∆(θ) is
defined as

∆(θ) = 1
2π

[
ϕ

(Γ1,Ω1)
0 − ϕ

(Γ2,Ω2)
0

]
. (16)

This difference is seen to vanish (up to some smooth
small deviations) up to θ = 0.34π, this is, until the
angle of the singularity. At this specific θ value the
GP obtained from each parameter rate abruptly devi-
ates, so that their difference shows a step and settles
around ∆ = 1 for the remaining range. The differ-
ent topological numbers n is reflected by the value
∆(π) = 1 for θ = π.
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Figure 11: ∆(θ) between GPs computed for points slightly to
the right and slightly to the left of the singularity, indicated
in Fig. 10 with x’s. The GP is, in each case, characterized
by a different value of the topological invariant n. This is
reflected in the fact that they differ by 2π for θ = π.

Over the full parameter space, the GP shows
several singularities, with locations that depend on
the value of θ. The set of singular points composes
two counter-phase oscillating curves that define
a chain of concatenated closed regions and split
the parameter-rate space into an upper and lower
region. This is shown in panel (a) of Fig. 12.
Parameters within each sector lead to the same n

Figure 12: Critical lines dividing the parameters’ plane into
different topological classes of the no-jump evolution. The
classes are characterized by different n values. The critical
angle θc at which each singular point is found is indicated by
a color as described by the bar on the right. Panels (a) and
(b) display different ranges for the rates Ω/ω and Γ/ω.

value. The area below the sequence of closed regions
is characterized by n = −1. The points given by
parameter values Γ = 0 and Ω/ω ≪ 1, defining the
adiabatic regime, belong to this region. The regions
in between the lines are topologically trivial sectors
with n = 0, while the upper one is characterized
by n = 1. It is worth pointing out that these
topological sectors are not equally probable. Besides
the singular points of vanishing probability, the
probability of attaining a trajectory with no jumps
increases as Γ is reduced. This implies that the up-
per topological sector is less probable than the others.
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Topological transition in the echo experiment -
With the aim of seeking experimentally detectable
signatures of the topological transition, we perform
a close inspection of the echo experiment that is
completed without any jump event. In Section 5.2,
the φ value extracted in this case was observed to
show good agreement with the adiabatic (Berry)
phase for a wide range of frequencies. However,
the close agreement of φ with ϕa will not hold for
arbitrarily small frequency values, and it will deviate
when the ratio Γ/Ω becomes sufficiently large. Fig.
13 shows the φ value as a function of the frequency
ratio. For easy reference and comparison, we consider
an environment characterized by the dissipation
rate Γ/ω = 0.0306, which is included in the ranges
exhibited by Figs. 10 to 12.

Figure 13: Dependence of φ (black dashed line) obtained in a
protocol with no jump events, as a function of the ratio Ω/ω.
The field is oriented with θ = 0.34π and the environment is
characterized by the dissipation rate Γ = 0.0306ω, included
in the ranges displayed in Figs. 10 - 12. The adiabatic
(Berry) phase is also indicated for reference, with a red solid
line. The inset shows the φ value as a function of the rate
Γ/ω, with the magnetic field characterized by the same angle
θ and Ω/ω = 4.8 × 10−3, coinciding as well with the values
used in the previous plots.

For a large frequency ratio, the no-jump φ value
shows the behavior described in Section 5.2. However,
approaching smaller frequencies, it shows a highly os-
cillating step and finally settles in the constant value
φ ∼ 1.375π, associated with a persistence probability
1/2. Such a persistence probability is obtained when
the state at the end of the protocol coincides, up to
a global phase, with |ψ−(0)⟩, what happens when the
smooth drift suppresses the occupancy of the exited
eigenstate within a cycle leading to |ψ(T )⟩ ∼ |ψ−(T )⟩.
As discussed, the parameter rates leading to full pop-
ulation transfer from the excited to the ground eigen-
state exactly in a cycle of magnetic field rotation
t ∈ [0, T ] correspond to the singular points observed
in the phase diagram. Thus, full population transfer
within the cycle requires the system to be driven at a
slower frequency than that leading to a singular point,

allowing therefore for greater exposition. This re-
quirement establishes a connection between the value
of the echo phase and the topological classes of evo-
lution, as distinctive regimes of φ are accessed on one
and the other side of the singular points. We refer
to Appendix D for details on this point. The limits
of the range along which φ shows the step and turns
from ∼ ϕa into the central value are marked, on Fig.
13 with two light blue dotted lines. The righter region
of the plot corresponds to evolutions characterized by
the topological number n = −1. The range between
the light-blue lines corresponds to the densely packed
sequence of topological sectors illustrated by panel (a)
of Fig. 12. Finally, once on the left of the last vertical
line, the evolution is associated with a value n = 1 of
the topological number.

The inset in Fig. 13 shows φ as a function of the
dissipation rate. In this plot, for easy reference and
comparison, the value of the frequency rate is kept
fixed at Ω/ω = 4.8×10−3, also included in the ranges
exhibited by Figs. 10 to 12. Once again, the φ value
shows good agreement with the adiabatic phase up
to some critical Γ/Ω relation, at which it shows a
decreasing step, finally landing at φ ∼ 1.375π. As in
the main plot, light blue dotted lines mark the limit
of the step and split the plot into three distinctive
sectors. The left of the first line corresponds to n =
−1 evolution, while the right side of the plot, to n = 1.
The space between lines, once again, can be associated
with the intermediate zone, which is a single region
(see Fig. 12 (a)) thus leading to no oscillations.

In summary, a measure of the persistent probabil-
ity in an echo protocol carries clear indications of the
topological transition. The peak structure discussed
in Section 5.2 allows to identify the no-jump trajec-
tory. The subsequent analysis of this peak, as summa-
rized in Fig.13, is sufficient to capture the topological
transition.

6 Conclusions
In this paper, we have studied geometric phases in a
continuously monitored quantum system. In absence
of any coupling to the environment, the cyclic time-
dependence of the Hamiltonian leads, in the adiabatic
regime, to the Berry phase, and to its consistent gen-
eralization for a generic unitary evolution. The pres-
ence of an environment induces quantum jumps so
that in a single realization of the dynamics the wave
function, following a given quantum trajectory, accu-
mulates a GP that is itself a stochastic quantity. We
have analyzed the distribution of GPs by highlight-
ing the interplay between non-adiabatic effects and
the influence of the external environment. We have
shown that for slow drivings the distribution of phases
is broad because of the several different occurrences
of jumps at random times. On speeding up the driv-
ing, the number of jumps reduces and the distribu-
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tion becomes peaked around the no-jump trajectory
(still deviating from the Berry phase because of the
non-adiabatic correction and the non-Hermitian drift
term). A first quantitative measure of the distribution
has been given by the variance, discussed in Fig.4.

In order to have experimental access to the GPs
along a given trajectory, we have also analyzed a spin-
echo protocol. The structure provided by the jump
operators taken together with the possibility of level
transitions due to non-adiabaticity and the character-
istics of the persistence probability can be set in such
a way that they lead either to the observation of broad
distributions or extremely sharp peaks. This interplay
should be thus considered in order to be explored as
a tool or otherwise, the experiment is rendered unin-
formative.

We have finally concentrated on the no-jump tra-
jectory, showing that it undergoes a topological tran-
sition as a function of the dissipation strength. Inter-
estingly, this transition is not necessarily connected to
singularities occurring in the dynamics of the density
matrix. Indeed, for the model considered herein, at
the transition point occurring in the no-jump trajec-
tory the behavior of the density matrix is smooth. De-
spite the striking differences shown between the GP
and the interference fringes of an echo experiment,
traces of this transition can be observed in the behav-
ior of the interference fringes.

In this work, we have considered a specific model
for the jump operators corresponding to a well-defined
type of monitoring. However, it is important to un-
derstand to which extent the properties we have dis-
cussed here depend on the type of unravelling. This
question might be of particular relevance, especially
if one wants to define topological properties associ-
ated with Markovian systems starting from the prop-
erties of their trajectories (there are infinite ways of
unravelling the same Lindblad dynamics). A glimpse
on this question is summarised in Appendix C where
we consider an unraveling corresponding to a homo-
dyne detection. For what concerns the distribution
the qualitative pictures we have outlined in the body
of the paper remain valid although important quanti-
tative differences may arise.
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A Pancharatnam phase along a quan-
tum trajectory
As stated in section 2, the quantum trajectory emerg-
ing in a single monitored evolution of the system can
be understood as intervals of smooth dynamics inter-
rupted at random times by quantum jumps. Consid-
ered in this way, evolution in a time interval t ∈ [0, T ]
is characterized by an array of jumps of type αi oc-
curring at times ti of the form given by Eq. (4), and
the parameter t is a continuous variable within the
intervals delimited by the ti’s. In the quantum jumps
approach, the algorithm applied in constructing the
trajectories goes as follows [53]. The time interval
[0, T ] is discretized into N steps of length δ t. and
the state is consistently updated at each time step
according to a randomly-decided non-hermitian oper-
ator, as described in Eq. (2). Hence, each quantum
trajectory can also be thought of from an algorithmic
point of view as the ordered collection of states gener-
ated by the action of a specific sequence of operators
K0,α given by Eq. (3), and is in this way a discrete
set of states.

For a sequence of N discrete pure states, the suit-
able GP expression is Pancharatnam phase [5, 44, 45],
and is given by

ϕP [ψ] = arg ⟨ψ1|ψN⟩ − arg(⟨ψ1|ψ2⟩ ... ⟨ψN−1|ψN⟩).
(17)

The Pancharatnam phase is independent of the
U(1) gauge choice and does not require the sequence
to close, rely on adiabaticity condition or demand for
unitarity, allowing for non-normalized states in the
sequence, as long as non of them perfectly vanishes.
Exhibiting these characteristics, it becomes a natural
definition of GP to be applied to monitored dynamics,
in which evolution is generated by non-hermitian op-
erators. It equals the unitary GP associated with the
trajectory build-up from joining consecutive states in
the sequence by the shortest geodesic in the Hilbert
space.

While this definition does not imply any constraint
on the number of states in the sequence by itself, when
applied in the context of quantum jumps the number
N of states is constrained from below as a consequence
of the condition reigning the time step. An evolution
in time-interval [0, T ] consist of N = T/δ t ≫ 1 states.
Splitting the sequence of states {|ψ1⟩ |ψ2⟩ ... |ψN⟩} into
sets starting and ending at those corresponding to
the specific times ti where a jump is registered, sets
a bridge between this two different descriptions of a
quantum trajectory. Each time interval [ti, ti+1], dis-
cretized in time-steps of length δt, consist of a number
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of steps that depend on the specific values of ti and
ti+1. From a given jump-time ti, any time-step in the
consecutive interval can be found as ti + ki δt, this is,
by adding some amount ki ∈ N of increments δt, up to
some maximum value k∗

i that satisfies ti+1 = ti+k∗
i δt

(See Fig. 14).

0 Tti

|ψ(ti)⟩

ti+1

|ψ(ti + ki δt)⟩
.

+ki δt

Figure 14: Illustrative diagram depicting time interval [0, T ].
Both the discretization in δt steps and the splitting at jump
times ti are indicated. The relation between times and states
is represented as well

At each given time, the outcome of a measurement
performed on the environment will be associated to
the corresponding Kraus operator acting on the sys-
tem and the state generated by its action. Therefore,
there is a to a one-to-one correspondence between the
discrete set conforming the time interval and the ar-
ray of states forming the trajectory. The splitting at
jump-times ti can thus be mapped into the trajectory
as

NJ⋃
i=0

{|ψ(ti + ki δt)⟩ ki = 0, ..., kmaxi − 1} (18)

with NJ the number of jumps occurring in the trajec-
tory and the out-bounds indexes i = 0 and i = NJ +1
signaling the entire time-interval limits t0 = 0 and
tNJ +1 = T .

Introducing such a decomposition into the formula
for Pancharatnam phase, Eq. (17) can be re-written
as

ϕP = arg ⟨ψ(0)|ψ(T )⟩

−
NJ∑
i=0

k∗
i −1∑
ki=1

arg ⟨ψ(ti + ki δt)|ψ(ti + (ki + 1) δt)⟩

−
NJ∑
i=0

arg ⟨ψ(ti)|Kαi
|ψ(ti)⟩ . (19)

The formula in Eq.(9) for the GP is thus associated
with a single trajectory is derived by taking the con-
tinuous limit δt/T → 0 within the intervals of smooth
evolution [44, 45]. This expression, more suitable for
the exam performed in our work, inherits all the prop-
erties of the Pancharatnam phase from which it is ob-
tained.

B Interference fringes distribution
As discussed in Sec. 5.2, the distribution of inter-
ference fringes from an echo experiment, which we
parameterize with φ, shows three (sometimes sharp)
peaks. When γz = 0 only jumps between instanta-
neous energy eigenstates are possible, and the three
peaks emerge from sets of trajectories of a different
character as follows.

1. Smooth protocols with no jumps generate the pil-
ing up in the no-jump value φ0 ∼ 1.43π

2. Protocols in which at least one decay or spon-
taneous excitation jump occurred, projecting the
state into an eigenstate |ψ±(ti)⟩ of H(t), give rise
to the peak at φ ∼ 1.375π.

3. Protocols in which only dephasing jumps took
place give rise to the peak at φ ∼ 1.275π.

In this appendix, we provide a detailed justifica-
tion of this observation. With the aim of provid-
ing an accessible presentation of the qualitative as-
pects of the phenomena, we will generally disregard
the non-hermiticity of the smooth evolution between
jumps, thinking of those intervals as unitary (slowly
or rapidly driven) evolution. Hence, this presentation
should not be taken as a rigorous quantitative analy-
sis.

We begin with the consideration of the peak (1.)
coinciding with the no-jump value φ0 ∼ 1.34π. As
presented in Sec. 2 this smooth trajectory is unique
and therefore the exact same value of φ will be ex-
pected on every case in which this trajectory is ob-
tained.

We thus turn to the case in which jumps are in-
deed detected, with special care on the anti-intuitive
shrinking of the distribution in the slower regime
in which more jumps are detected. When γz = 0
three jumps are possible within our unravelling of the
Lindblad equation. Two out of these three jumps
project the state into an energy eigenstate, namely,
decay jumps and spontaneous excitations. Whenever
a jump of this kind takes place at some instant of time
ti, immediately after the jump the state of the system
turns into

|Ψ(ti)⟩ = ei ξ(ti)+i ϕ(ti) |ψ±(ti)⟩ (20)

with ξ(ti) the dynamical phase and ϕ(ti) the geo-
metrical phase, given by Eq. (9) accumulated up
to the occurrence of the jump. If the protocol ends
immediately after, the persistence probability PR =
| ⟨ψ(0)|ψ(2T )⟩ |2 = 1/2 preserves no information on
either the GP or the specific characteristics of the
jump. If, on the other hand, the system contin-
ues to evolve, the possibility of obtaining any infor-
mation on a phase or the jump time will rely on
the interplay between the non-adiabatic transitions
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and the existence of further jumps. If the evolution
continues from the first jump on, this will happen
smoothly until either the protocol is finished or an-
other jump takes place. Different regimes of Ω/ω
give rise to the smooth evolution of different na-
tures. If the protocol is performed slowly enough,
this smooth evolution is (almost) transition-free and
|ψ(t)⟩ ∼ ei ξ(t>ti)+i ϕ(t>ti) |ψ±(t > ti)⟩, so the result
obtained for the persistent probability remains to be
PR = 1/2. Moreover, this regime favors the occur-
rence of further jumps, thus reinforcing the erasing of
information by re-projecting into eigenstates of H(t).
The complete independence of the result on the times
ti of the jumps makes this peak (2.) extremely sharp
in the slow regime. On the other hand, if the system
is driven faster, along the smooth evolution after the
jump the state develops contributions from the other
eigenstate due to non-adiabatic effects, favoring the
emergence of relative phases and becoming

|ψ(t > ti)⟩ = A±(t > ti) |ψ±(t > ti)⟩
+A∓(t− ti) |ψ∓(t− ti)⟩ (21)

with A ± (t) the amplitudes for each eigenstate. In
such a situation, the persistence probability depends
on ti, leading to the broadening observed in the cen-
tral peak of Fig.7 for faster driving, while still not
trivially connected to the GP. As anticipated in the
previous paragraphs, each jump of this kind will erase
all information on the phases and any dependence on
previous jump times. The possibility of further eras-
ing events is mitigated in faster protocols by the re-
duction of exposure to the environment.

The third peak (3.) observed in the distribution
at φ ∼ 1.475π can be understood by adding dephas-
ing jumps to the previous discussion. A dephasing
jump has the effect of introducing a π shift in the rel-
ative phase of the state. If the evolution afterward
remains transition-less (and no erasing jumps occur
at any point), the evolution resembles that of the adi-
abatic echo experiment up to corrections that can be
disregarded, so the persistence probability takes the
value P ∼ sin2(2ϕa) (with cos replaced by sin due
to the relative π shift). This situation leads to a
well-defined single φ-value which is independent of the
time ti at which the jump took place. Therefore, in
the slow-driving range, a well-defined peak emerges,
that might however be small, as in this regime de-
cay jumps are likely. As the magnetic field is rotated
faster, non-adiabatic effects induce a dependence on
ti on the persistence probability. This dependence on
ti is inherited by the ”phases” extracted, and thus
responsible for the broadening of the distribution ob-
served in Fig. 7 for larger Ω/ω values.

The inclusion of a jump operator ∝ σz modifies this
three-peaked distribution by leading to a broad back-
ground which is present even in the case in which it is
not the dominant process. The Kz jumps promote the
development of relative phases as they mix eigenstates

of the Hamiltonian. Even if the system has, at some
time, transitioned to an eigenstate, suffering from a
σz-jump suddenly drags it away into a superposition
state.

C Dependence on the unravelling:
field displacement
Another paradigmatic quantum trajectories scheme
arising from a different unraveling of the master equa-
tion is that of the so-called diffusive trajectories,
in which the monitored quantities produce contin-
uously fluctuating signals instead of discontinuous
jumps [84]. This is the prototypical scheme of contin-
uous or ideal homodyne detection, which can be theo-
retically obtained as a limiting case of the mentioned
discrete homodyne detection [70, 71, 80, 85, 86].

The master equation Eq. (1) is invariant under the
transformation

H(t) → H ′(t) = H(t) −
√
λ
i

2
∑
α

(Kα −K†
α)

Kα → K ′
α = Kα +

√
λ I, (22)

where
√
λ ∈ R. Therefore it is possible to substitute

Kα and H(t) in Eq. (1) by K ′
α and H ′(t) without

modifying the averaged dynamics of the system and
unravel it using the standard direct detection (quan-
tum jumps) scheme applied before. When the reser-
voir is assumed to be made of harmonic modes, like
electromagnetic radiation, adding the displacement√
λ to the Lindblad operators corresponds to the im-

plementation of homodyne detection [71, 85, 87]. In
this case, taking

√
λ suitably large leads to a measure-

ment of the quadrature of the system dipole Kα+K†
α.

However, in order to keep the collapse probability per
step small, it would be necessary to reduce the time
step and hence increase the simulation time by the
same order. For this reason, we refrain to consider
finite large

√
λ values in this section and focus on the

modifications suffered by P [ϕ] for smaller
√
λ values.

In Fig. 15 we present, also for the case of this dif-
ferent unravelling of the Lindblad equation, the two
cases in which the driving is performed faster or slow
enough for the hypothetical unitary dynamics to be
considered adiabatic. As in the previous cases, the en-
vironment remains fixed with Γ = 10−3ω and γz = 0,
and we have taken λ = 2.5 × 10−5ω < Γ. The two
cases are shown in panels (a) and (b) of Fig.15 respec-
tively, where we also plot the no-jump and unitary
GPs, and the average of the distribution for reference.

Striking differences from the case of direct detec-
tion arise. For this λ/ω ≪ 1, the reference values
displayed remain close to those obtained in the λ = 0,
while the distributions behave differently. In the fast-
driven case displayed in panel (a), the expected in-
crease in jumps is reflected by the decrease of the
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Figure 15: Probability distribution P [ϕ] of GP values ob-
tained in an unravelling with K′

α and H ′(t) operators. The
magnetic field is oriented at θ = 0.34π and driven in a cycle
at frequencies (a) Ω = 5 × 10−3ω and (b) Ω = 5 × 10−4ω.
The environment is characterized by the dissipation rate
Γ = 10−3ω and γz = 0. We have taken λ = 2.5 × 10−5ω.
In both panels, a blue solid contour recalls the distributions
obtained in the original unraveling considered in this work.
Extra lines indicate the new reference GP values. The black
dashed and dot-dashed lines signalize the GPs ϕ0 and ϕu

associated with no-jump and general unitary evolution. The
black dotted line shows the first moment ϕ̄.

sharp peak piling up from no-jump trajectories. How-
ever, the formerly broad, but still uneven background,
has now turned into a completely uniform distribu-
tion in which each phase value (but the no-jump) is
evenly probable. The described behavior is reinforced
when the system is driven at slower frequency rates.
The previously broad while single-peaked distribution
lacks, in a system monitored through the operators
K ′
α forming the new basis, of any structure.

D Smooth evolution with no jumps:
analytic approach
We provide in this Appendix some additional analyt-
ical results for the no-jumps evolution. As previously

mentioned, this particular case can be thought of as
generated by the non-hermitian Hamiltonian in Eq.
(8), in such a way that a non-normalized state

∣∣ψ̃(t)
〉

will follow Schrodinger’s equation

i
d

dt
|ψ̃(t)⟩ = Ho(t) |ψ̃(t)⟩ (23)

where Ho(t) is not only non-hermitian but also ex-
plicitly time-dependent due to the function f(t). The
effective drift Hamiltonian shares eigenstates with
H(t), but the eigenvalues associated with these eigen-
states are now complex and time-dependent, given by
±ω/2 [1 − iΓ/(2ω)f(t)].

The dynamics of the normalized state of the system

|ψ(t)⟩ = |ψ̃(t)⟩√
⟨ψ̃(t)|ψ̃(t)⟩

(24)

will be governed by the more involved, nonlinear equa-
tion which is found by jointly differentiating Eq. (24)
and making use of Eq. (23).

The not-normalized state can be expanded into
the instantaneous eigenstates of Ho(t), as

∣∣ψ̃(t)
〉

=
c̃+ |ψ+(t)⟩ + c̃− |ψ−(t)⟩. Explicit computation of Eq.
(23) leads to the following differential equations for
the coefficients c̃±(t)

˙̃c± =
(

∓iω2 − i
Ω
2 (1 ∓ cos(θ)) ∓ Γ

4 f(t)
)
c̃±(t)

+ i
Ω
2 sin(θ) c̃∓(t), (25)

where the real term ∼ −Γc̃+(t) indicates that even in
the case with no jumps, the presence of the environ-
ment favors state transitions, as the amplitude of the
excited eigenstate is suppressed. Taking into account
the normalization procedure involved in turning from
the not-normalized state into the real, normalized one,
this suppression implies a population transfer from
the excited eigenstate into the ground state. As a
consequence, any trivial implementation of the adi-
abatic approximation is prevented. A second feature
observed in Eq. (25) is that, for the parameters chosen
in this work, a good agreement can be obtained by re-
placing f(t) with its mean value f(t) ∼ 1 − sin2(θ)/2.
By performing this replacement, dynamics become
easily solvable in the rotating frame. The smooth
evolution of each eigenstate of the system is, within
this approximation, given by∣∣ψ(±)(t)

〉
= N± e

−iΩ/2 t{[
±(ν + ε)e−iε/2 t ∓ (ν − ε)eiε/2 t

]
|ψ±(t)⟩

−Ω sin(θ) |ψ∓(t)⟩} ,
(26)

where both ν and ε are complex quantities given by
ν = ω − Ω cos(θ) − iΓ/2(1 − sin2(θ)/2) and ε =√
ν2 + Ω2 sin2(θ), N± is a normalization factor. At
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this point, it should be stressed that Eq.(26) explicitly
shows how the state

∣∣ψ(±)(t)
〉

obtained when evolving
an eigenstate will not be equal to the instantaneous
eigenstate at a later time in the general case.
Geometric phase - The GP associated with a tra-

jectory in which no jumps can be explicitly computed
from Eq. (10). While the general expression is quite
involved, it takes, for small rates Ω/ω ∼ Γ/ω of the
driving frequency and the dissipation rate to the am-
plitude of the magnetic field, the form

ϕ0 ∼ − π(1 − cos(θ)) (27)

− π sin2(θ)
(

Ω
ω

+ cos(θ)Ω2

ω2

)

− sin2(θ)
4

(
Ω
ω

+ cos(θ)Ω2

ω2

)
e−4π Im(ν)/Ω − 1

2 Im(ν)/Ω ,

where the first term in the r.h.s is the Berry phase.
The term in the second line of the equation is the
main correction originating exclusively from non-
adiabaticity, in otherwise unitary evolution. The
third line accounts for the non-trivial effect of the en-
vironment in the no-jump evolution. As Γ → 0 this
term turns into a further contribution due to non-
adiabaticity.
Phase diagram singularities - When computing the

accumulated GPs analyzed in Sections 5.1 and 5.3 we
have taken |ψ+(0)⟩ as our initial state. Thus, a van-
ishing probability for observing this particular trajec-
tory, of the kind observed at the GP singular points,
requires |ψ(T )⟩ ∼ |ψ−(T )⟩. Considering the cyclic
character of the instantaneous eigenstates, this means
a singular point will take place whenever a full pop-
ulation transfer is achieved exactly in a time period.
It was already inferred from the differential equations
governing the evolution of the c̃± coefficients, that
the dynamics generated by the effective drift Hamil-
tonian Ho(t) favored transitions from the excited to
the ground instantaneous eigenstate. As long as the
original approximation remains accurate, the singular
points of the GP will be defined through the equation
(ν + ε) − (ν − ε)e2iπε/Ω = 0.
No-jump interference fringe - In Section 5.2, we

have studied the interference fringes of an echo exper-
iment. For this purpose, we’ve defined the convenient
parameter φ given by Eq. (13). Restricting to the
case of a protocol performed without registering any
jump, it was shown that the value of φ displays, gener-
ally, better agreement with the Berry phase than with
the GP ϕ0 accumulated by the state of the system
under equal conditions, this is, when it is smoothly
driven along one period of time. As long as the no-
jump value φ ∼ ϕa, good agreement between this
“phase” and the GP will be obtained when the sec-
ond and third lines in Eq. (27) are sufficiently small.
However, it is worth noting that the φ value will not
remain close to the Berry phase for arbitrarily small

driving frequency. While the protocol has shown to be
less sensitive to both non-adiabatic and environmen-
tally induced effects than the GP, it will account for
the non-ideal conditions. It was already shown that
the environment induces population transfer from the
excited to the ground state. The asymmetry between
the smooth evolution of each eigenstate should be ex-
pected to prevent, at some point, the cancellation of
the dynamical evolutions. Figure 13 illustrates this
situation, by showing the φ value as a function of
the rate between the driving frequency and the field
amplitude. While for larger rates ≳ 0.01 the phase
reproduces the behavior discussed in Section 5.2, this
situation does not hold if the rate is lowered enough.
At some critical value, the parameter extracted from
the echo protocol starts deviating from the adiabatic
phase.

A rather singular situation arises when the state at
the end of the protocol coincides, up to a global phase,
with |ψ−(0)⟩, so that the persistence probability turns
P = 1/2. As a consequence, the φ ∼ 1.375π value ob-
served in Fig. 13, trivially associated with P ∼ 1/2
by Eq. (13) is obtained. In this case, the three
peaks observed in the distribution P[φ] (see Section
5.2) merge into a single, central peak. This regime is
therefore accessed when full population transfer oc-
curs within a cycle and the system reaches a steady
state ∼ |ψ−(t)⟩. As we have discussed above, the pa-
rameters leading to full population transfer exactly
in a cycle t ∈ [0, T ] correspond to singular points of
the GP. Then, full population transfer within a cycle
implies evolutions performed either at higher dissi-
pation rates or at slower frequencies than those for
which the singularity occurs. This requirement es-
tablishes a connection between the value of the echo
phase and the topological classes of evolution, as dis-
tinctive regimes of φ are accessed on one and the other
side of the singular points.
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[9] Erik Sjöqvist, Arun K. Pati, Artur Ekert,
Jeeva S. Anandan, Marie Ericsson, Daniel K. L.
Oi, and Vlatko Vedral. Geometric phases
for mixed states in interferometry. Phys.
Rev. Lett., 85:2845–2849, Oct 2000. DOI:
https://doi.org/10.1103/PhysRevLett.85.2845.

[10] K. Singh, D. M. Tong, K. Basu, J. L.
Chen, and J. F. Du. Geometric phases for
nondegenerate and degenerate mixed states.
Phys. Rev. A, 67:032106, Mar 2003. DOI:
https://doi.org/10.1103/PhysRevA.67.032106.

[11] Nicola Manini and F. Pistolesi. Off-
diagonal geometric phases. Phys. Rev.
Lett., 85:3067–3071, Oct 2000. DOI:
https://doi.org/10.1103/PhysRevLett.85.3067.

[12] Stefan Filipp and Erik Sjöqvist. Off-diagonal
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Erik Sjöqvist. Adiabatic approxima-
tion for weakly open systems. Phys.
Rev. A, 72:022328, Aug 2005. DOI:
https://doi.org/10.1103/PhysRevA.72.022328.

[67] XX Yi, DM Tong, LC Kwek, and CH Oh.
Adiabatic approximation in open systems: an
alternative approach. Journal of Physics B:
Atomic, Molecular and Optical Physics, 40(2):
281, 2007. DOI: https://doi.org/10.1088/0953-
4075/40/2/004.

[68] Ognyan Oreshkov and John Calsamiglia.
Adiabatic markovian dynamics. Phys.
Rev. Lett., 105:050503, Jul 2010. DOI:
https://doi.org/10.1103/PhysRevLett.105.050503.

[69] Lorenzo Campos Venuti, Tameem Al-
bash, Daniel A. Lidar, and Paolo Zanardi.
Adiabaticity in open quantum systems.
Phys. Rev. A, 93:032118, Mar 2016. DOI:
https://doi.org/10.1103/PhysRevA.93.032118.

[70] Howard Carmichael. An open systems ap-
proach to quantum optics. Lecture Notes in
Physics Monographs. Springer Berlin, Heidel-
berg, 1993. DOI: https://doi.org/10.1007/978-
3-540-47620-7.

[71] Howard M. Wiseman and Gerard J. Mil-
burn. Quantum Measurement and Control.
Cambridge University Press, 2009. DOI:
https://doi.org/10.1017/CBO9780511813948.

[72] Andrew J Daley. Quantum trajectories and
open many-body quantum systems. Ad-
vances in Physics, 63(2):77–149, 2014. DOI:
https://doi.org/10.1080/00018732.2014.933502.

[73] G. Passarelli, V. Cataudella, and P. Lucig-
nano. Improving quantum annealing of the

Accepted in Quantum 2023-05-26, click title to verify. Published under CC-BY 4.0. 22

https://doi.org/https://doi.org/10.1103/PhysRevA.67.020101
https://doi.org/https://doi.org/10.1103/PhysRevA.67.020101
https://doi.org/https://doi.org/10.1103/PhysRevA.74.042311
https://doi.org/https://doi.org/10.1103/PhysRevA.74.042311
https://doi.org/https://doi.org/10.1103/PhysRevA.89.012110
https://doi.org/https://doi.org/10.1103/PhysRevA.89.012110
https://doi.org/https://doi.org/10.1364/JOSAB.10.000524
https://doi.org/https://doi.org/10.1364/JOSAB.10.000524
https://doi.org/https://doi.org/10.1116/5.0079886
https://doi.org/https://doi.org/10.1116/5.0079886
https://doi.org/https://doi.org/10.1146/annurev-conmatphys-031720-030658
https://doi.org/https://doi.org/10.1146/annurev-conmatphys-031720-030658
https://doi.org/https://doi.org/10.1146/annurev-conmatphys-031720-030658
https://doi.org/https://doi.org/10.48550/arXiv.2210.11547
https://doi.org/https://doi.org/10.48550/arXiv.2210.11547
https://doi.org/https://doi.org/10.48550/arXiv.2210.14242
https://doi.org/https://doi.org/10.48550/arXiv.2210.14242
https://doi.org/https://doi.org/10.1073/pnas.1911620117
https://doi.org/https://doi.org/10.1073/pnas.1911620117
https://doi.org/https://doi.org/10.1103/PhysRevLett.127.170401
https://doi.org/https://doi.org/10.1103/PhysRevLett.127.170401
https://doi.org/https://doi.org/10.1103/PhysRevResearch.3.043045
https://doi.org/https://doi.org/10.1103/PhysRevResearch.3.043045
https://doi.org/https://doi.org/10.1103/PhysRevResearch.4.023179
https://doi.org/https://doi.org/10.1103/PhysRevResearch.4.023179
https://doi.org/https://doi.org/10.48550/arXiv.2211.08519
https://doi.org/https://doi.org/10.48550/arXiv.2211.08519
https://doi.org/https://doi.org/10.1007/BF01608499
https://doi.org/https://doi.org/10.1007/BF01608499
https://doi.org/https://doi.org/10.1007/978-3-642-23354-8
https://doi.org/https://doi.org/10.1007/978-3-642-23354-8
https://doi.org/https://doi.org/10.1103/physreva.71.012331
https://doi.org/https://doi.org/10.1103/physreva.71.012331
https://doi.org/https://doi.org/10.1103/PhysRevA.72.022328
https://doi.org/https://doi.org/10.1103/PhysRevA.72.022328
https://doi.org/https://doi.org/10.1088/0953-4075/40/2/004
https://doi.org/https://doi.org/10.1088/0953-4075/40/2/004
https://doi.org/https://doi.org/10.1103/PhysRevLett.105.050503
https://doi.org/https://doi.org/10.1103/PhysRevLett.105.050503
https://doi.org/https://doi.org/10.1103/PhysRevA.93.032118
https://doi.org/https://doi.org/10.1103/PhysRevA.93.032118
https://doi.org/https://doi.org/10.1007/978-3-540-47620-7
https://doi.org/https://doi.org/10.1007/978-3-540-47620-7
https://doi.org/https://doi.org/10.1017/CBO9780511813948
https://doi.org/https://doi.org/10.1017/CBO9780511813948
https://doi.org/https://doi.org/10.1080/00018732.2014.933502
https://doi.org/https://doi.org/10.1080/00018732.2014.933502


ferromagnetic p-spin model through pausing.
Phys. Rev. B, 100:024302, Jul 2019. DOI:
https://doi.org/10.1103/PhysRevB.100.024302.

[74] KW Murch, SJ Weber, Christopher Macklin,
and Irfan Siddiqi. Observing single quan-
tum trajectories of a superconducting quantum
bit. Nature, 502(7470):211–214, 2013. DOI:
https://doi.org/10.1038/nature12539.

[75] Charlene Ahn, Andrew C. Doherty, and An-
drew J. Landahl. Continuous quantum er-
ror correction via quantum feedback control.
Phys. Rev. A, 65:042301, Mar 2002. DOI:
https://doi.org/10.1103/PhysRevA.65.042301.

[76] R. Vijay, D. H. Slichter, and I. Sid-
diqi. Observation of quantum jumps in
a superconducting artificial atom. Phys.
Rev. Lett., 106:110502, Mar 2011. DOI:
https://doi.org/10.1103/PhysRevLett.106.110502.

[77] Tameem Albash, Sergio Boixo, Daniel A
Lidar, and Paolo Zanardi. Quantum adi-
abatic markovian master equations. New
Journal of Physics, 14(12):123016, dec
2012. DOI: https://doi.org/10.1088/1367-
2630/14/12/123016.

[78] Tameem Albash, Sergio Boixo, Daniel A
Lidar, and Paolo Zanardi. Corrigendum:
Quantum adiabatic markovian master equa-
tions (2012 new j. phys. 14 123016). New
Journal of Physics, 17(12):129501, dec
2015. DOI: https://doi.org/10.1088/1367-
2630/17/12/129501.

[79] Ka Wa Yip, Tameem Albash, and Daniel A.
Lidar. Quantum trajectories for time-
dependent adiabatic master equations.
Phys. Rev. A, 97:022116, Feb 2018. DOI:
https://doi.org/10.1103/PhysRevA.97.022116.

[80] Patrik Pawlus and Erik Sjöqvist. Hid-
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