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Centralized heating is an energy-saving and environmentally friendly way
that is strongly promoted by the state. It can improve energy utilization and
reduce carbon emissions. However, Centralized heating depends on
accurate heat demand forecasting. On the one hand, it is impossible to
save energy if over producing, while on the other hand, it is impossible to
meet the heat demand of enterprises if there is not enough capacity.
Therefore, it is necessary to forecast the future trend of heat
consumption, so as to provide a reliable basis for enterprises to
reasonably deploy fuel stocks and boiler power. At the same time, it is
also necessary to analyze and monitor the steam consumption of
enterprises for abnormalities in order to monitor pipeline leakage and
enterprise gas theft. Due to the nonlinear characteristics of heat load, it is
difficult for traditional forecasting methods to capture data trend. Therefore,
it is necessary to study the characteristics of heat loads and explore suitable
heat load prediction models. In this paper, industrial steam consumption of a
paper manufacturer is used as an example, and steam consumption data are
periodically analyzed to study its time series characteristics; then steam
consumption prediction models are established based on ARIMA model
and LSTM neural network, respectively. The prediction work was carried
out in minutes and hours, respectively. The experimental results show that
the LSTM neural network has greater advantages in this steam consumption
load prediction and can meet the needs of heat load prediction.
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1 Introduction

While generating electricity, the cogeneration plant also uses the steam extraction or
exhaust steam from the turbine to supply heat to the customers. Due to the large scale of
heat supply, large boilers with high parameters and high efficiency can be used.
Compared with decentralized heat supply, energy utilization efficiency is greatly
improved, fuel is saved, and emissions are reduced. Therefore, centralized heat
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supply is an energy-saving and environmentally friendly way that
is strongly promoted by the state. However, due to the ineffective
energy use of thermoelectricity, the heat loss is great. On the one
hand, energy cannot be saved if there is overproduction, while on
the other hand, heat demand of enterprises cannot be met if there
is not enough capacity. Therefore, accurate steam consumption
prediction becomes an important issue.

Load forecasts for thermoelectric company can usually be
divided into four categories based on the length of the forecast:
long-term forecasts, medium-term forecasts, short-term
forecasts and ultra-short-term forecasting (Du et al., 2019; Li
et al., 2020). Short-term forecasting refers to forecasting data for
one to a few days in the future and is the focus of this paper
(Längkvist et al., 2014). In thermoelectric load forecasting,
classical methods include regression analysis (Qing et al.,
2013), time series methods, mathematical and statistical
methods such as Kalman filtering (Dong et al., 2015).
Machine learning was gradually introduced into short-term
load forecasting (Greff et al., 2016; Geysen et al., 2018), such
as expert systems (Chen et al., 1991), fuzzy forecasting (Jović,
2021), wavelet analysis (Kumbinarasaiah et al., 2023), chaos
theory (Al-Shammari et al., 2016), support vector machines
(Kuzishchin and Ismatkhodzhaev, 2020; Razzak et al., 2020),
cluster analysis models (Liu et al., 2020) and artificial neural
networks (Mao et al., 2021; Wang et al., 2022a; Wang et al.,
2022b; Yang et al., 2022).

Potocnik (Potočnik et al., 2014) investigated static and
adaptive models for short-term natural gas load forecasting,
constructing linear models, neural network models and support
vector machine regression models. Forecasts of gas
consumption by individual customers and local gas
companies show that the adaptive model has better
forecasting performance. Ervural et al. (Ervural et al., 2016)
developed a combined forecasting model based on MA and
ARMA, in which a genetic algorithm was used to determine the
p, q values in ARMA (p, q). The single model and the combined
model were used to forecast natural gas consumption in
Turkey, and the results showed that the combined model
had a higher prediction accuracy. Beyca (Beyca et al., 2019)
forecasted natural gas consumption in Istanbul, Turkey.
Multiple linear regression (MLR), artificial neural network
(ANN) and support vector regression (SVR) were used in
the study, and the results showed that SVR had the lowest
forecasting error.

Yu et al. (Yu and Xu, 2014) improved the traditional BP neural
network, increased the adaptive learning rate of the BP neural
network, and applied a genetic algorithm to optimally determine
the initial weights and thresholds of the BP neural network, and
proposed the BPNN-GA natural gas load forecasting model. The
model takes into account the effects of maximum temperature,
minimum temperature, average temperature, date type and
weather conditions, and predicts the natural gas load in
Shanghai. The experimental results show that the MAPE value of
the BPNN-GA model is 4.59%, and the optimized combined model
has better prediction results.

The goal of deep learning is to stack multiple modules
together to form deep net-works in order to create more
expressive models that can learn more abstract representations

of data and achieve better learning performance (Muzaffar and
Afshari, 2019; Li et al., 2020). As a type of deep learning neural
network, recurrent neural networks (RNN) rely on their own
hidden layer recurrent structure to capture temporal correlations
between data well and have been widely used in various time
series prediction problems. However, RNNs are prone to gradient
disappearance when training network parameters, and therefore
cannot handle long-term dependence between data (Wang et al.,
2018; Wang et al., 2019; Wang and Song, 2019). Currently,
several RNN architectures have been derived to solve the
gradient disappearance problem, including gate architectures,
cross-timescale connections, initialization constraints and
regularization methods, etc. The most influential of these are
the gate architectures represented by the LSTM (Hochreiter and
Schmidhuber, 1997).

Pang et al. (Pang et al., 2021) integrated the historical load
and various load influencing factors to build a load prediction
model. Using the feature extraction capability of neural networks
and the temporal memory capability of LSTM, the long-term
change pattern of load and the non-linear influence of various
influencing factors on load are identified, and the load prediction
performance of different historical time windows and different
network architectures are verified based on actual load data.
Zhuang et al. (Zhuang et al., 2020) studied and analyzed
various popular RNN architectures, and designs a cross-time
scale sub-modular recurrent neural network architecture by
combining the Zoneout technique, focusing on the random
update strategy of the hidden layer modules, which effectively
solves the RNN gradient disappearance problem and
substantially reduces the network parameters to be trained
(Fang et al., 2022; Wang et al., 2020; Shen et al., 2022; Duan
et al., 2022; He et al., 2021).

The data in this paper are derived from the actual steam
consumption data of a local paper mill from 2020 to 2021. Firstly,
the steam consumption data of this enterprise for the past 2 years were
pre-processed for annual and monthly visualization analysis; then, the
time series characteristics of the steam consumption load data were fully
investigated; finally, to investigate the forecasting of steam consumption
and optimal control methods, forecasting models were established
based on the differential autoregressive moving average model
(ARIMA) and the long and short-term memory model (LSTM),
respectively. The objectives are: i) to supply heat on demand, save
energy and reduce emissions, conserve resources and protect the
environment; ii) to understand the habits and conditions of
enterprises and adjust steam supply in time; and iii) to reduce
energy consumption and operating costs and improve the steam
revenue of thermoelectric company.

2 Data sample description and pre-
processing

2.1 Data sources

The data in this paper is real data from a local thermoelectric
company, which provides heat and gas to hundreds of companies. In
this paper, the industrial steam consumption of a paper company is
selected for analysis and forecasting. The table information
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records some basic information on the amount of steam used by
this paper company, with an original sampling interval of 1 min,
describing the company’s industrial steam consumption over the
last 2 years.

In order to facilitate analysis of steam consumption, prevent gas
theft and gas leakage, as well as guide the production of the company,
the total daily steam consumption and the average steam consumption
per hour were chosen to represent the data characteristics.

2.2 Data pre-processing

Common problems in time series data are unordered time
stamps, missing values, outliers and noise in the data, and we
will deal with each of these below.

(1) Null and outlier handling. Null and outlier values were identified
and removed during the data collation.Missing values were deleted,
and duplicates were removed. Since steam consumption is always
positive, there were no cases where steam consumption was zero.
Therefore, outlier values were not present.

(2) Set the time index. The date time column has a default string
data type and must first be converted to a datetime data type.
Because this paper is analyzed by time series, so the index of
DataFrame must be time type. This paper selects recTime as the
index of data.

(3) Normalization. Normalization was performed to improve
model training accuracy and convergence speed. The
normalization method used is detailed in Eq. 1.

xnorm � x − x min

x max − x min
(1)

Where: xnorm denotes the normalized data; x denotes the original
data; xmin denotes the minimum value of the sample data; xmax

denotes the maximum value of the sample data.

2.3 Data visualization and analysis

Visual presentation includes: data import, time series
generation, data down-sampling, etc.

Data of 2020 and 2021 are stored in excel and now need to be
exported from 12 excel files to a python environment to be presented as
a data-frame. Due to the amount of data and the repetitive nature of the
operation, a programmatic loop is used to import.

As the data is recorded once a minute, when visualizing the data,
the display in minutes is not only extensive but also too microscopic,
so it is necessary to down sample the data. A visual analysis was then
carried out by matplotlib, and the average monthly steam
consumption in 2020 is shown in Figure 1.

To present the data as a Python data frame, data from 12 Excel files
from 2020 to 2021 were programmatically looped. To down-sample the
data, monthly steam consumption was visualized using Figure 1. The
company’s daily steam consumption was about 0.37 tons and remained
stable in all months except for February, May, and December, with the
most significant fluctuations in February due to low consumption
during the New Year holidays.

3 Steam consumption prediction

Heat load forecasting, from a large perspective, can reduce energy
waste, shrink excess capacity and deepen structural reform on the
energy supply side; from a small perspective, by achieving accurate heat
supply and heat delivery on demand, it can further achieve energy
saving and emission reduction effects, and improve the operational
efficiency of the entire heat network.

One need for heat load forecasting is to predict heat consumption data
fromone to 7 days in the future, so as to guide recent production planning.
This paper examines the problem of short-term data forecasting. Steam
usage varies over time and can be viewed as a set of time series data, so a
time series analysismodel can be used to analyze and forecast steamusage.
The following prediction analysis is performed using a linear regression
model and a machine learning model, respectively.

3.1 ARIMA model

3.1.1 ARMA
ARMA (Autoregressive Moving Average Model) is a

combination of autoregressive model (AR) and moving average
model (MA).

FIGURE 1
Average monthly steam consumption statistics for 2020.
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3.1.1.1 Autoregressive model (AR)
AR uses the variable’s own historical values to predict itself by

determining the relationship between current and historical
values. The model requires the data to have smooth
characteristics, and if not smooth, it needs to be differenced,
and the number of differences depends on the value of p.

p denotes the time interval, e.g., p = 1 means it is today and
yesterday’s data, and p = 2 means today and the previous day’s data.
p-order autoregressive process is defined by the following
expression:

yt � μ +∑
p

i�1
γiyt−i + ϵt (2)

Where yt is the current value, μ is the constant term, p is
the order, yi is the autocorrelation coefficient, ϵt is the
error。

3.1.1.2 Moving Average model (MA)
MA is a linear combination of the data at the current moment

being the past q order white noise, and is mainly concerned with the
accumulation of the error term (ϵt above) in the autoregressive
model. Its mean and variance are constant; it can better eliminate the
random fluctuations in the prediction and make the error values
relatively balanced.

The equation for the q-order autoregressive process of MA is as
follows.

yt � μ + ϵt +∑
q

i�1
θiϵt−i (3)

3.1.1.3 Autoregressive moving average model (ARMA)
ARMA (Autoregressive moving average model) is a

combination of autoregressive model (AR) and moving average
model (MA). The equation for of ARMA is as follows.

yt � μ +∑
p

i�1
γiyt−i + ϵt +∑

q

i�1
θiϵt−i (4)

3.1.2 ARIMA
ARIMA (Autoregressive Integrated Moving Average Model),

also noted as ARIMA (p, d, q), is one of the most common statistical
models used for time series forecasting, where AR is “autoregressive”
and p is the number of autoregressive terms,MA is “sliding average”
and q is the number of sliding average terms. ARIMA is based on
ARMA with the addition of the differential order I. The basic idea is
to transform an unstable time series into a stable time series to
obtain a stable time series, thus building the model, as shown in
Figure 2.

3.1.3 Modeling process
3.1.3.1 Obtain a smooth time series

A smooth time series is obtained. The data for the whole day
of 2 January 2021 was used as the training data. The potential
requirement for time series autoregressive analysis is that the
time series analyzed shall meet the requirement of smoothness.
Therefore, the stability of the data needs to be judged first, and if
it is not good, it needs to be differenced. For series plotting, ADF
test is performed to observe whether the series is smooth or not;
for non-smooth time series, d-order differencing is to be

FIGURE 2
ARIMA modeling process.
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performed first to transform into a smooth time series, as shown
in Figure 3.

From the result graph, it can be seen that both the original data tot_
cha and the data diff_1 after differencing the first order do not fluctuate
much, within 1.0, and the smoothness is good, so we can consider not to
differ the original data and take tot_cha for prediction.

3.1.3.2 Calculation of ACF and PACF
the function is evaluated by taking the following two main

indicators: i) autocorrelation function ACF. ii) Partial autocorrelation
function PACF. The two data sets are not adjacent to each other, i.e., the
relationship obtained between x(t) and x (t-k) is not a pure correlation,
and x(t) will also be affected by the intermediate k-1 values, which will
produce some bias, which requires the PACF partial correlation
function to correct for the correlation between the two and strictly
control the correlation between the two variables.

The calculation and visual analysis of the indicators is carried
out below. Plotting with the plot_acf and plot_pacf functions
indicates the order of the data and the change in autocorrelation
to determine the values of q and p. The determination of q and p is

primarily based on how many orders in the respective plots are
truncated after the tail. The truncated tails indicate that the points
fall within the confidence interval, which is the shaded area in
Figure 4.

3.1.3.3 Parameters calculation
From the above analysis, d, q and p were calculated to obtain the

ARIMA model. The model parameters are then estimated, and the
residuals and white noise are tested, so that the model was built.

3.2 LSTM models

LSTM networks are an improved variant of Recurrent Neural
Networks (RNN), retaining the ability of RNN networks to
efficiently process time-loaded data and effectively solve the
problems of gradient disappearance and gradient explosion.
LSTM has the ability of processing no-linear data, and can
calculate the dependence between individual observations in a
time series.

FIGURE 3
Differential results.

FIGURE 4
Distribution of ACF and PACF parameters.
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3.2.1 RNN
Recurrent Neural Network (RNN) is a class of recursive neural

network that takes sequence data as input, recursion in the direction of
sequence evolution and all nodes (recurrent units) are connected in a
chain, as shown in Figure 5. The RNN network structure has a hidden
layer “recursion” function, which allows the nodes in the hidden layer to
be interconnected, thus providing the network withmemory capabilities.

The connection structure of RNN is shown in Fig. The hidden state
st and the model output ot on the moment t are calculated as follows:

st � σ Uxt +Wst−1 + bs( ) (5)
ot � softmax Vst + bo( ) (6)

where: xt denotes the input at moment t; σ denotes the activation
function;U, W, and V denote the weights of the input, hidden, and
output layers, respectively; bs, bo denote the hidden and output layer bias
parameters, respectively.

When the input sequence is too long, the later features cannot obtain
the earlier features, leading to the Long Term Dependency problem. As
the number of gradients increases, the gradient disappearance problem
will occur. The problem of gradient disappearance is that the weights w
are hardly updated, so it is difficult to find a suitable weightw, tomap the
relationship between the input and output values.

3.2.2 LSTM
LSTM is a derivative algorithm of RNN, which can obtain better

analysis in longer sequences. The most important improvement to the
LSTM is the inclusion of cell states, i.e., the inclusion of the LSTMCELL,

which passes the hidden and cell states of the previous moment to the
next moment through input gates, output gates and forgetting gates.

LSTM controls the discard or addition of information through a
“gate” structure that allows selective passage of information, thus
achieving forgetting or remembering. A single LSTM unit has three
gates, namely, forget gate, input gate and output gate. The cell
structure is shown in Figure 6.

The role of the forgetting gate is to forget the scaling of the
information at the previous moment ct-1, which is one of the key
factors for the network to have the memory function. Eq. 7 is the
formula of the forgetting gate. σ denotes the sigmoid function;Wf is
the weight of the forgetting gate, ht-1 denotes the output of the unit at
the previous moment; xt denotes the input at the current moment; bf
denotes the bias parameter of the forgetting gate.

ft � σ Wf · ht−1, xt[ ] + bf( ) (7)

The input gate combines the output information of the previous
moment with the input information of the current moment to update
the cell state. Eq. 8 is the input gate and Eq. 9 is the current learned
state. Combining the forgetting gate and the input gate, the cell state at
the current moment is the sum of the decay of ct-1 and c̃t, represented
by Eq. 10. Wi and bi denote the weights and biases of the input gate;
Wc and bcwhen denote the weights and biases of the current cell state;
tanh denotes the hyperbolic tangent activation function.

it � σ Wi · ht−1, xt[ ] + bi( ) (8)
~ct � tanh Wc · ht−1, xt[ ] + bc( ) (9)

ct � ftct−1 + it~ct (10)
The output gate calculates the output of the current moment

based on the current latest state ct, the previous moment cell output
ht-1, and the current moment input xt. The final output value of the
LSTM model is jointly determined by the output gate and the
current moment cell state. Eq. 11 is the output gate, and Eq. 12
is the final output value of the model. Wo and bo are the weight and
bias parameters of the output gate, respectively.

FIGURE 5
Cell structure of RNN.

FIGURE 6
Cell structure of LSTM.

FIGURE 7
LSTM steam consumption prediction model.
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FIGURE 8
ARIMA prediction results.

FIGURE 9
LSTM Prediction results.

FIGURE 10
LSTM prediction results of March 3.
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ot � σ Wo ht−1, xt[ ] + bo( ) (11)
ht � ot*tanh ct( ) (12)

In this paper, LSTM predicts the steam consumption based on
the data of previous n days. The structure of the LSTM network
model is shown in Figure 7.

At time t, the input to the LSTM prediction model is the historically
predicted steam consumption. where the input is the historical steam
consumption at time t, which can be expressed as Input = {Ht,d-n }, and
the model output at time t can be expressed as Output = ht,d.

3.3 Experimental comparison

3.3.1 Predicted steam consumption per minute
The dataset was selected as steam consumption per minute from

January 2 to 9 January 2021, and the first 70% was used as the
training set, the second 20% as the test set, and the last 10% as the
validation set.

In this paper, the feature variable is steam consumption, so the
number of neuron nodes is set to 1. The number of hidden layersN is
adjusted according to the experimental method, and in this paper,
single-layer, two-layer and three-layer LSTM neural networks are
built, and the optimal number of layers 3 that makes the best
experimental results is selected. The number of neurons in the
hidden layer was set to 32 by comparing the results for different
values. The number of neurons in the output layer is determined by
the target variable and is set to 1.

After training, the number of single training samples batch_size was
set to 16; the time step time step was 10; the number of iterations epochs
was 140; the dropout to prevent overfitting was 0.2; the loss function
was the mean square error; the learning rate was 0.0001; the activation
function was the relu function; and the Adam optimizer was set.

The trained model was used to predict future steam
consumption. The predicted values obtained based on

ARIMA are shown in Figure 8. It can be seen that the
predicted trend is relatively smooth, with steam consumption
at around 0.65 tons per minute, and future trends can be
predicted better.

The prediction results based on LSTM are shown in Figures 9,
10, 11, from which it can be seen that the predicted values of the
LSTM model are very close to the measured values and the fit
is good.

A comparison of the evaluation indicators of the models is
shown in Table 1.

From the table, it can be seen that the coefficients of
determination for the models are: R2

LSTM � 0.9928,
R2
ARIMA � 0.6910, where the coefficient of determination of

the LSTM model is closer to 1, and the model fit better with
the measured values. And the error evaluation index of LSTM
model is lower than that of ARIMA, indicating that the accuracy
of the LSTM model is higher.

3.3.2 Hourly steam consumption forecast
Steam usage from January to September 2021 was used as the

training data. The dataset was downsampled at an hourly
sampling frequency, with a total of 6546 rows and 2 columns.
6546 rows refer to 6546 h, and the first column in 1 column is the
average steam usage at the current time point, and the second
column is the actual hourly average steam consumption data at
the next time point, which is used as the label set in this
experiment. In this experiment, the data set is used as the

FIGURE 11
LSTM prediction results of March 24.

TABLE 1 Evaluation indexes of two models.

Model MAE MSE RMSE MAPE R2

LSTM 0.0059 0.0386 0.0062 0.0125 0.9928

ARIMA 0.0255 0.0016 0.0401 0.0050 0.6910
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training data set according to the first 6378 h of data and the last
168 h of the last 7 days as the test data set. x_train is the feature
data of the first 6378 rows of the feature set, and y_train is the
data of the first 6378 rows of the label set. x_test is the feature data
of the last 168 rows of the feature set, and y_test is the data of the
last 168 rows of the label set. Test is the sample data collected for
the last 168 rows of the label set.

After experiments, the specific parameters are set as follows:
DropOut is 20%, i.e., 20% of the network nodes are randomly
dropped, the learning rate is set to 0.005, the model selects
“Adam” optimizer to process the learning rate, and “Mean_
squared_error” is selected as the loss function. error” as the
loss function. According to the experimental effect, the

training batch is set to 16 and the number of iterations is set
to 100.

The trained model is used to predict the hourly steam usage for
a particular day in the following period. The test values were
selected from the hourly steam usage data for September 23-
26 September 2021. The predicted results are shown in Figures
12, 13, 14, 15.

As seen from the result, the trend of the predicted value is
consistent with the measured value. It further proves that LSTM can
better predict the trend of data changes for longer time periods.

Experiments have shown that ARIMA tends to predict more
accurate results for data with a clear trend in the series, while LSTM
tends to do better on unstable time series with more stationary

FIGURE 12
LSTM prediction results of September 23.

FIGURE 13
LSTM prediction results of September 24.
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components. LSTM shows better performance in predicting
unstable time series.

4 Summary

Cogeneration plants provide a centralized heat supply method that
improves energy efficiency and reduces carbon emissions. In order to
provide companies with accurate heat demand to guide production,
accurate analysis and forecasting are required. Due to the strong internal
correlation, long lag time and non-linear characteristics of heat load, it is
difficult for traditional forecasting methods to capture the trend of data
changes. Therefore, this paper takes the industrial steam consumption of

a paper manufacturer as an example to study the characteristics of heat
load consumption and explore a suitable heat load predictionmodel. The
steam consumption prediction models are established based on ARIMA
model and LSTM neural network, respectively.

The prediction was performed in minutes and hours,
respectively. The results show that ARIMA tends to predict more
accurate results on the data when there is a clear trend in the series,
while LSTM tends to do better on unstable time series with more
stationary components. Its prediction means has a significant
improvement compared with traditional machine learning
methods, and with the increase of data volume, the method
shows its good robustness and the timeliness and accuracy of
prediction results. The LSTM neural network has a greater

FIGURE 14
LSTM prediction results of September 25.

FIGURE 15
LSTM prediction results of September 26.
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advantage in this steam consumption load prediction, and can meet
the needs of heat load prediction. Thus, it can achieve energy saving
and emission reduction, improve efficiency and improve the service
quality of heat supply.

In this paper, only steam consumption data has been selected as
features. Future research could improve the selection of features, take
into account factors such as flow rate, pressure and temperature,
explore the influence of environmental factors on steam consumption,
select a more comprehensive set of influencing factors, and improve
the deep learning algorithm, thus improving the accuracy of steam
consumption prediction.
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