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Introduction: Attention-deficit/hyperactivity disorder (ADHD) is an impairing 
psychiatric condition with the stimulants, lisdexamfetamine (LDX), and 
methylphenidate (MPH), as the first lines pharmacological treatment.

Methods: We applied a novel in silico method to evaluate virtual LDX (vLDX) and 
vMPH as treatments for ADHD applying quantitative systems pharmacology (QSP) 
models. The objectives were to evaluate the model’s output, considering the model 
characteristics and the information used to build them, to compare both virtual 
drugs’ efficacy mechanisms, and to assess how demographic (age, body mass index, 
and sex) and clinical characteristics may affect vLDX’s and vMPH’s relative efficacies.

Results and Discussion: We molecularly characterized the drugs and pathologies 
based on a bibliographic search, and generated virtual populations of adults 
and children-adolescents totaling 2,600 individuals. For each virtual patient and 
virtual drug, we created physiologically based pharmacokinetic and QSP models 
applying the systems biology-based Therapeutic Performance Mapping System 
technology. The resulting models’ predicted protein activity indicated that both 
virtual drugs modulated ADHD through similar mechanisms, albeit with some 
differences. vMPH induced several general synaptic, neurotransmitter, and nerve 
impulse-related processes, whereas vLDX seemed to modulate neural processes 
more specific to ADHD, such as GABAergic inhibitory synapses and regulation 
of the reward system. While both drugs’ models were linked to an effect over 
neuroinflammation and altered neural viability, vLDX had a significant impact on 
neurotransmitter imbalance and vMPH on circadian system deregulation. Among 
demographic characteristics, age and body mass index affected the efficacy 
of both virtual treatments, although the effect was more marked for vLDX. 
Regarding comorbidities, only depression negatively impacted both virtual drugs’ 
efficacy mechanisms and, while that of vLDX were more affected by the co-
treatment of tic disorders, the efficacy mechanisms of vMPH were disturbed by 
wide-spectrum psychiatric drugs. Our in silico results suggested that both drugs 
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could have similar efficacy mechanisms as ADHD treatment in adult and pediatric 
populations and allowed raising hypotheses for their differential impact in specific 
patient groups, although these results require prospective validation for clinical 
translatability.

KEYWORDS

attention-deficit/hyperactivity disorder, lisdexamfetamine, methylphenidate, 
mathematical modeling, in silico clinical trial

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a psychiatric 
condition well recognized in the pediatric population in which children 
suffer from persistent inattentiveness, hyperactivity, impulsivity, or any 
combination thereof (1). ADHD global prevalence in school-age 
children is estimated at around 7.2% (2) and is generally accepted to 
range from 6 to 10% (3). This disorder often persists into adulthood, 
although its presentation can differ since some symptoms may resolve 
while others endure (3, 4). Notably, comorbid psychiatric disorders are 
present in up to 67% of ADHD pediatric-adolescent patients (5) and 
almost 80% of adults (6–13). ADHD patients can be treated with either 
non-pharmacologic or pharmacologic approaches or combining both 
strategies (14). Drugs to treat ADHD include, but are not limited to, 
stimulants [e.g., lisdexamfetamine (LDX) and methylphenidate 
(MPH)], some of which have extended-release formulations available 
[e.g., osmotic release oral system (OROS) for MPH].

Methylphenidate is recommended as first-line treatment in 
children and adolescents by several ADHD management guidelines 
(15, 16). However, LDX has been found to be superior to OROS-MPH 
in some studies (17–19), although these have mainly been performed 
with indirect designs, such as systematic reviews or post hoc analyzes. 
Two head-to-head studies have compared LDX and OROS-MPH but 
showed important limitations (20, 21). The first study was restricted 
to adolescents (13–17 years old) and excluded those with psychiatric 
comorbidities (20). The second was a phase 3 study of LDX in children 
and adolescents with OROS-MPH as a reference arm but cannot 
be considered a fair head-to-head trial by reason of its design (21). In 
their network comparative metanalysis, Cortese et al. showed that 
amphetamines are the first choice of medication in adults compared 
to methylphenidate (22, 23). Although a pediatric clinical trial 
analyzing LDX and MPH is currently ongoing (21, 24), more studies 
comparing these treatments are needed on the pediatric and adult 
population with ADHD and comorbidities. In silico studies have been 
performed on treatments for ADHD to identify new targets (25) and 
to investigate their mechanisms of action (MoA) at a structural level 
(26). However, none has undertaken a quantitative systems 
pharmacology (QSP) approach to perform a mechanistic comparison 
between two drugs. Besides, in the mental health field, were 
investigations on personalized medicine are scarce, recent studies in 
ADHD have shown how an individualized approach could 
be beneficial for managing these patients (27, 28).

On the other hand, regulatory agencies have encouraged the usage 
of computer modeling and simulation approaches to reduce clinical 
trials time and cost (29). Among these modeling strategies, in silico 
clinical trials (ISCT) provide a platform to test hypotheses on drugs 

and diseases while reducing risks for patients and the use of animal 
models (30). We recently published the methodology to develop a 
mechanistic ISCT using the TPMS technology (with LDX and MPH 
as a proof-of-concept), which was generated through three phases 
comprising (i) the molecular characterization of drugs and pathologies, 
(ii) the generation of a virtual population of 2,600 individuals and the 
creation of physiologically based pharmacokinetic (PBPK) and QSP 
models, and (iii) data analysis with artificial intelligence methods (31).

Herein, we  analyzed the results of this in silico method for 
comparing modeled or virtual LDX and MPH (hereafter abbreviated 
as vLDX and vMPH) as ADHD treatments.

The objective was to evaluate the model’s output, considering the 
models characteristics and the information used to build them, to 
compare both virtual drugs’ mechanisms and to assess how 
demographic (age, body mass index, and sex) and clinical 
(comorbidities) characteristics may affect vLDX’s and vMPH’s relative 
efficacies, by means of the mathematical models generated.

2. Methods

2.1. Study design

In this ISCT, we implemented a double-blind crossover-like design 
simulating a one-year treatment with each drug. The study design, the 
methodology for building the population and QSP patient-specific 
models, and the description of the models herein analyzed have been 
published and extensively described (31). The QSP modeling approach 
encompassed: the generation of virtual randomized populations 
following randomized clinical trials’ characteristics (21, 32, 33) and 
reference population distribution (34, 35), a PBPK modeling approach 
based on a 14-compartment model considering demographical 
variation in drug distribution (age, sex, and morphometric measures) 
(36–39), and a systems biology-based modeling approach using 
Therapeutic Performance Mapping System (TPMS) technology (40), 
which mimics the human pathophysiology at a protein-network level 
using machine learning algorithms to include clinical variation [eight 
virtual patient profiles considering five common ADHD comorbidities, 
alone or in combination: namely depression, anxiety, bipolar disorder, 
tics, and binge eating disorder (BED), and BED + anxiety, 
BED + depression and depression + anxiety; molecular definition of 
each comorbidity can be found in Supplementary Table A] and drug 
mechanisms of action. The method provided virtual patient-specific 
QSP models of virtual drugs (i.e., defined and modeled according to 
information from available literature) that complied with the accuracy 
and quality measurements set for each step (31).
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2.2. Participants and interventions: defining 
virtual ADHD patients and virtual drugs

To define the protein network around the area of interest, 
we performed a bibliographically based molecular characterization of 
the pathology (ADHD) and the drugs, applying the procedure 
described in Gutiérrez-Casares et al. (31), to be used as input for 
TPMS models (40). We defined ADHD as four motives (or biological 
processes) that describe the pathophysiology of the disease: 
neurotransmitter imbalance, neuroinflammation, circadian system 
imbalance, and altered neural viability (31). We only included proteins 
for which a functional role on the disease was reported. We used 
expression data to explore ADHD molecular definition variability in 
Gene Expression Omnibus (GEO) patients, and estimate the 
minimum population size able to distinguish between healthy and 
pathological individuals with a 95% statistical power (31); 71 was set 
as the minimum population size per cohort. Thus, we generated two 
virtual populations of 1,300 adults and 1,300 children-adolescents 
with and without ADHD comorbidities (with at least 100 virtual 
patients per virtual patient profile and 500 virtual patients in the main 
ADHD population without comorbidities; Supplementary Figures A,B 
in the Supplementary material S1).

We created randomized virtual populations as previously 
described (31) using real clinical ADHD trials as references (21, 32, 
33). Briefly, population in terms of demography, clinical description, 
responses to the treatments and clinical trial phase, III in this case, 
were generated as to mimic demographic and patient characteristics 
of previous clinical trials with an inclusion/exclusion criterion with a 
5% tolerance.

We also used standard European demographic population 
information (34, 35) to obtain randomized patient distributions for 
filling missing information from reference trials 
(Supplementary Tables B,C in the Supplementary material S2 for 
patient distribution and comparison to reference population).

We used an optimized ADHD definition based on the TPMS 
tSignal as a proxy of clinical efficacy; this optimization was based on 
adjusting the definition to QSP mechanisms of different ADHD drugs 
and to their clinical performance measured with the ADHD-Rating 
Scale IV (31). Besides, we defined the virtual drugs (vLDX and vMPH) 
by their protein targets (those proteins for which the drug had activity 
either in vitro or in vivo) according to a bibliographical analysis, as 
described in Gutiérrez-Casares et al. (31) (Table 1) and by the drug’s 
concentration curve (31) obtained from adjusting a PBPK model 
(36–39) to reported PK parameters (oral administration; kidney as 
main clearance organ; bioavailability: 96.4% for Elvanse®, 30% for 
Medikinet®, and 32% for Concerta®) and real concentration data 
(51–54). Using this approach, a drug concentration curve per virtual 
patient was obtained considering their individual characteristics 
(weight, height, age, and sex).

2.3. QSP models: outcomes and measures

As previously described (31), through the use of clinical efficacy 
values for various drugs tested in ADHD clinical trials, modeled drug 
concentration curves were used to obtain restrictions on target 
inhibition with ADHD modulation. These restrictions were 
compatible with systems biology-based TPMS models (40) and 

conferred them a quantitative dimension. Thus, we obtained a TPMS-
derived QSP model per each virtual patient and each virtual drug.

The baseline for modeling was set to the initial status of patients 
in the recruitment visit, as described in the corresponding real clinical 
trial. After that, the generated models had the objective of simulating 
the final patient status after being treated by their corresponding 
treatments. We included a threshold criterion for accuracy regarding 
the generated virtual patients’ models. Mathematical solutions with 
low accuracy (>85% of accuracy) were excluded from the final model.

We retrieved the predicted protein activity (ranging from −1 to 1) 
from each QSP model (40). We analyzed these data for each protein 
individually and calculated the tSignal (31, 40), defined as the mean 
predicted protein activity for the ADHD protein set in each model. 
We defined a reverted protein as one whose activation sign in ADHD 
was reverted due to the effect of any of the two studied virtual drugs. 
We considered a protein reverted if the absolute value of its predicted 
protein activity was higher than 0.5. We defined two further categories 
of reverted proteins: differentially reverted proteins were those that 
presented statistical significant differences in their activity values 
between the two drugs (see Statistical analysis section); most strongly 
reverted proteins were those differentially reverted that were also able 
to correctly classify and distinguish the patients’ model-related 
mathematical solutions of the different drugs with 100% accuracy (see 
Statistical analysis section). MoAs (understood as protein paths 
between the model stimulus and response) explaining the mechanistic 
involvement of the most strongly reverted proteins by each drug were 
obtained from TPMS models, as previously described (40, 55). 
We analyzed changes in the tSignal from baseline to compare the 
efficacy in the comorbid branches. Efficacy is shown as a percentage 
of the efficacy achieved in the main ADHD population 
without comorbidities.

2.4. QSP models: sensitivity analysis

To analyze the sensitivity of the virtual drugs’ models for each of 
the protein targets with respect to the model outcome (i.e., ADHD), 
we carried out a stimulus sensitivity analysis. Similar to a local SOBOL 
analysis approach (56), we defined the tSignal of the TPMS models as 
a function of the virtual drugs’ protein targets (model stimulus):

 
tSignal TPMS X for X X X X Xn= ( ) = { }1 2 3, , , ,

 (1)

Where X is the model’s stimulus set, or protein target set, and Xi 
each of the protein targets and the modulation (activation/inhibiton) 
induced by the drug. Then, we evaluated the outcome tSignal variation 
(expressed as a percentage of the tSignal achieved in the model, where 
100% corresponded to the original model and maximal signal 
intensity associated for each target) for different Xi intensities, with 
variations of one target at a time ranging from 0 to 100% of the effect 
of the virtual drug over the target using intervals of 25% variation. 
We  evaluated the model output by measuring the tSignal in the 
optimized-ADHD protein set. This can be expressed as:

 

d tSignal
d X

dTPMS X
d Xi i

( )
( )

=
( )

( )  
(2)
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Additionally, and because the number of virtual drugs’ protein 
targets differed, we also evaluated the ADHD-tSignal variation for 
extended stimulus sets. To that end, the original target protein sets of 
each virtual drug were extended using random proteins from within 
the models. A total of 50 different extended stimulus sets were 
generated at every Xi+j protein addition, until reaching 20 
additions, Xi+20.

These analyses were performed separately for both adult and 
children-adolescent virtual ADHD populations, using a reduced, 
random subset of QSP 1,250 TPMS model associated mathematical 
solutions (5% of the total mathematical solutions for each population).

2.5. Statistical analysis

We used descriptive statistics [percentage (%) for categorical 
variables and mean ± SD for continuous variables] to describe the 
virtual patient characteristics distribution. We evaluated normality of 
the data using the Jarque-Bera test, and we used parametric tests to 
compare normally distributed data and non-parametric tests for 
non-normal distributions (vLDX vs. vMPH comparison in 
differentially reverted predicted protein activity, and comorbidity and 
co-treatment effect). We  used Wilcoxon rank sum test to define 
differentially reverted proteins, and a previously described data science 
strategy (40) to evaluate their classification potential and identify the 
most strongly reverted proteins. In the comparative impact of 
comorbidities on vLDX and vMPH efficacies over ADHD in adults 
and pediatric-adolescent population, we used Wilcoxon rank sum test 
and categorized results according to statistically significance (<0.05 
and p < 0.001). We evaluated whether the tSignal after co-treatment 
administration was different from the tSignal with vLDX or vMPH 
alone (Student’s T test or Wilcoxon rank sum test) and whether this 
difference was significant when compared to a random drug pool (i.e., 
the drug database DrugBank). We compared data distributions with 
Matlab functions and Python or R packages. For protein predicted 
activity functional evaluation, we used hypergeometric enrichment 
analysis. For all tests, we  adopted the Benjamini-Hochberg false 

discovery rate (FDR) for multi-test correction and set statistical 
significance at FDR <0.05, unless otherwise stated. Artificial 
intelligence methods using a data science strategy (40) were exploited 
to evaluate predicted protein activity as classifiers.

3. Results

3.1. Study of the TPMS-based QSP models 
sensitivity to the drug target sets definition

To evaluate the role of the protein targets for both virtual drugs, 
we applied a sensibility analysis based on a SOBOL strategy, varying 
the modulation of one target at a time from 0 to 100%. Figure 1 shows 
the tSignal in the optimized-ADHD protein results, evaluated on 
adult models’ mathematical solutions and expressed as percentage 
variation from the tSignal when considering the complete protein 
target set. In general, a positive intensity-tSignal dependence was 
observed, leading to lower tSignal than the original models for 
decreasing intensities.

In the case of vLDX, a strong relation of both TAAR1 and DAT 
(or SLC6A3) modulation for high ADHD-tSignal variation 
(reaching >50% variation) was observed, suggesting a relevant role 
of these targets in the vLDX predicted mechanisms to treat 
ADHD. For vMPH, intensity variations in both DAT and HTR1A 
resulted in similar, strong decreased % tSignal with respect to the 
original models.

To evaluate the model robustness regarding the number of 
targets included in the virtual drugs’ definitions, we evaluated the 
influence of using extended protein target sets by adding random 
proteins as targets to measure the effect on the tSignal of ADHD 
models. In both cases, a decrease in % of tSignal for larger target 
sets was detected as new random proteins from the models were 
added to the stimulus virtual drugs, with a slightly more 
pronounced effect for vLDX (Supplementary Figure C in the 
Supplementary material S1).

TABLE 1 Identified protein targets for lisdexamfetamine and methylphenidate (31).

Gene name Protein name Effect* Reference of LDX 
target

Reference of MPH 
target

TAAR1 Trace amine-associated receptor 1 1 (41) -

SLC18A2 Synaptic vesicular amine transporter 

(VMAT2)

-1 (41, 42) -

SLC6A3 Sodium-dependent dopamine 

transporter (DAT)

-1 (42–44) (45–47)

SLC6A2 Sodium-dependent noradrenaline 

transporter (NET)

-1 (42, 44) (45–47)

SLC6A4 Sodium-dependent serotonin 

transporter (SERT)

-1 (42) -

MAOA Amine oxidase (flavin-containing) A -1 (44, 48) -

MAOB Amine oxidase (flavin-containing) B -1 (44, 48) -

HTR1A 5-hydroxytryptamine receptor 1A 1 - (49, 50)

*Effect refers to the drug’s action on the protein, 1 denotes activation of protein function, −1 inhibition of protein function.
LDX, lisdexamfetamine; MPH, methylphenidate.
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3.2. Virtual drugs’ effects on ADHD 
pathophysiology

For the sake of conciseness and given the similarity of the 
results in children-adolescents and adults, figures and tables with 
our results in children-adolescents are available in Supplementary  
material S1, S2.

Enrichment analyses of the proteins reverted by each drug 
were performed to functionally profile vLDX’s and vMPH’s MoA 
models (Figure 2; Supplementary Figure D in the Supplementary 
material S1). Both drugs modulated ADHD-related defective 
synapses involved in learning and behavior processes and 
neuroinflammation and neuroplasticity, including neuronal 
function and ion transport processers, neuronal network 
morphogenesis, hypothalamic–pituitary–adrena0

A) axis, and the immune system. In addition, vMPH activated 
several general synaptic, neurotransmitter, and nerve impulse-related 
processes, suggesting a higher excitatory potential for this drug. On 
the contrary, vLDX seemed to modulate neural processes more 
specific to ADHD, including GABAergic inhibitory synapses and 
regulation of the reward system, as well as a stronger inhibition of 
inflammatory or immune processes. No relevant differences in these 
modulated processes were detected between adults and 
children-adolescents.

3.3. Mechanisms of action of virtual drugs

Virtual LDX strongly modified neurotransmitter imbalance, 
neuroinflammation, and altered neural viability, whereas vMPH had 
a significant impact on circadian system imbalance, as well as on 
neuroinflammation and altered neural viability (Figure 3). In adults, 
the vMPH effect on neuroinflammation and altered neural viability-
related processes was more marked than in children and adolescents. 
However, the efficacy of vLDX in both populations was almost 
identical, although the most modulated motive in adults was 
neuroinflammation and the one in children-adolescents was 

neurotransmitter imbalance. Generally, models of ADHD treatment 
showed a stronger tSignal when treated with vLDX than with vMPH 
(0.25 ± 0.01 vs. 0.13 ± 0.01  in adults, 0.31 ± 0.04 vs. 0.08 ± 0.01  in 
children-adolescents, FDR < 0.01). However, both drugs modulated to 
a certain degree the four ADHD pathophysiological processes 
(Figure  3), except for vLDX over circadian system imbalance in 
children-adolescents.

The mechanisms behind the strongly reverted effectors by each 
drug were explored (Figure 4). vLDX differential mechanisms were 
found to be mediated by the inhibition of the activity of five proteins 
involved in the monoaminergic system: dopamine (DAT1), 
noradrenaline (NET1), and serotonin (SERT) transporters, 
monoamine oxidase (MAO) and, mainly, trace amine-associated 
receptor 1 (TAAR1; Figure 4A). In our models, vLDX agonistic effect 
over TAAR1 activated downstream PKC/PKA. vLDX strongly 
modulated NET1 and FLOT1 by downregulating NET1 and SERT 
through TAAR1-mediated PKC activation. The latter could also 
induce p38 MAPK-mediated inactivation of AKTs. Also, TAAR1-
induced PKA stimulation was predicted to cause the expression of 
BDNF through CREB activation. Furthermore, MAO inhibition in 
inflammatory cells could signal through MAPK3 and NF-KB 
(NFKB1), in turn inducing the expression of anti-inflammatory 
cytokines (e.g., IL2 and IL10).

According to our model, the differential effects of vMPH were 
mediated by the inhibition of DAT1, agonism of the 5-HT1A 
receptor, and subsequent inhibition of circadian clock regulators 
CRY1 and CRY2 (Figure 4B). vMPH affected kinases such as RhoA, 
the AMPK family, and MAPK3 (ERK1) through HTR1A receptor 
agonism and indirect modulation of dopamine 2 (DRD2) receptor by 
dopamine accumulation. On the other hand, DAT1 inhibition led to 
a reduction in MAO activity. vMPH also stimulated the thyroid 
receptor (THRB) expression through MAPK3. Moreover, a 
presynaptic effect over circadian proteins PER1 and PER2 through 
NET blockade was detected in children-adolescents. In children, a 
differential inhibition of NET was observed for vLDX, and a small 
difference, the reinforced inhibition of DAT1 by RhoA, was detected 
for vMPH.

FIGURE 1

% tSignal with respect to reference adult ADHD TPMS models, that is, the relation between the target-intensity-variated (from 0 to 100%) tSignal 
calculation with respect to the original model’s mean tSignal. (A) vLDX; (B) vMPH. Similar results were obtained for the children-adolescent ADHD 
TPMS model solutions results (data not shown). ADHD, attention-deficit/hyperactivity disorder; TPMS, therapeutic performance mapping system; vLDX, 
virtual lisdexamfetamine; and vMPH, virtual methylphenidate.
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3.4. Effects of demographic parameters

According to our models, age did not affect vLDX’s nor vMPH’s 
efficacy in adults (Table 2). However, younger age was associated with 
better efficacy for both treatments in the pediatric-adolescent 
population, albeit more significantly with vLDX (Table 2; Figure 5). 
Body mass index (BMI) seemed to impact negatively on vLDX’s 
efficacy in all the populations (Table 2), but especially in children-
adolescents (Figure 5).

A weak impact of BMI was detected for vMPH in the pediatric-
adolescent population (Figure  5), mainly in children (6–12 years; 
Table 2). This result could be associated with the effects of age on 
efficacy, especially in children with low BMI, since after isolating age 
from BMI variability, age continued to correlate moderately to vMPH’s 
efficacy when BMIs were low, whereas BMI did not maintain its 
moderate correlation when isolating by age (Supplementary Figure F 

in the Supplementary material S1). On the other hand, the impact of 
BMI and age on vLDX’s efficacy seemed to be  independent, as a 
moderate and strong correlation was detected when isolating by either 
age or BMI (Supplementary Figure G in the Supplementary material 
S1). Furthermore, the efficacies of vLDX and vMPH were predicted to 
be greater on adult females than on males, whereas, on children-
adolescents, males seemed to be better respondents to both treatments.

3.5. Effects of comorbidities

In our models, depression negatively impacted both drugs’ 
efficacies, although to a lesser degree on vLDX (Figure 6). BED did not 
affect either the efficacy of vLDX or vMPH, as neither did the 
remaining studied comorbidities (i.e., anxiety, bipolar disorder, and 
tic disorders).

FIGURE 2

ADHD pathophysiology processes modulated (activated or inhibited) by vLDX and vMPH in adults (see Supplementary Figure D in the Supplementary 
material S1 for pediatric-adolescent models). (A) General overview. (B) Neuronal-related processes. ADHD, attention-deficit/hyperactivity disorder; 
AMPA, γ-amino-3-hydroxy-5-methylisoxazole-4-propionic acid; vLDX, virtual lisdexamfetamine; vMPH, virtual methylphenidate.
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3.6. Effects of co-treatments

In adults, our results showed that the co-treatments that affected 
vLDX’s efficacy were those associated with tic disorders management 
(guanfacine, aripiprazole, tiapride, haloperidol, and risperidone). In 
contrast, vMPH’s efficacy seemed to be susceptible to wide-spectrum 
psychiatric drugs used for the treatment of the five studied 
comorbidities (Table  3). Although the impact on efficacy was 
significant (significant difference in the tSignal), this difference was 
not significant compared to a random drug pool. The results were 
similar for the pediatric-adolescent population (Table 4).

4. Discussion

In this ISCT between vLDX and vMPH, our models showed that 
these drugs might present differences in their MoA that could 
influence their efficacies, particularly in patient groups determined by 
demographic and clinical characteristics.

To evaluate the sensitivity of the models to the protein target set 
definition, our stimulus sensitivity analysis showed that, for both 
drugs, two targets had the most impact over ADHD-signal response: 
TAAR1 and DAT in vLDX and DAT and HTR1A in vMPH virtual 
patients. Notably, the slightly higher tSignals observed at lower 
inhibition modulation intensities, in the case of NET, could be due to 

a possible additive effect with other targets that might affect tSignal 
definition. When adding random proteins to the stimulus set, outcome 
response decreased in both cases, pointing toward a target set 
characterization importance rather than protein target set size 
relevance. Therefore, these results indicated that our mathematical 
models were correctly adjusted according to our initial premises.

As reported in previous studies, we found that vLDX and vMPH 
acted upon neuronal functions and synapses (18, 19, 41, 57–73). Also, 
previous reports support our findings on the effect of LDX and MPH 
on the neuroplasticity/neurodegeneration equilibrium (74–78). 
Besides, in our models, vLDX inhibited more strongly 
neuroinflammation than vMPH, in agreement with previous studies 
but in contrast with others (70, 79–86).

Lisdexamfetamine has been described to target critical proteins 
involved in the monoaminergic system: DAT1, NET1, SERT, MAO, 
and the less characterized TAAR1 (87–99), which could mediate its 
activity. DAT is the main regulator of dopaminergic tone in the 
central nervous system and is present in lymphocytes and monocytes/
macrophages (100). Several studies have found that high-affinity 
monoamine neurotransmitter transporters, such as DAT, SERT, and 
NET, are expressed on neuroglia cells (101). Contrary to MPH, LDX 
has been reported as an agonist of TAAR1, an amine receptor known 
to modulate the dopamine pathway, though its role in ADHD 
remains unclear (102, 103). According to our results, this particular 
feature could give vLDX significant benefits toward ADHD response, 

FIGURE 3

Number of protein effectors reverted by vLDX and vMPH classified according to the four pathophysiological processes involved in ADHD (A) in adults 
and (B) in children. ADHD, attention-deficit/hyperactivity disorder; vLDX, virtual lisdexamfetamine; vMPH, virtual methylphenidate.
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while leading to mechanistic differences with vMPH because of the 
role played by TAAR1 in the brain. Its activation results in a decreased 
cell surface expression of DAT1, NET1, and SERT (94–96). In 

addition, amphetamine binding to TAAR1 could reduce the firing 
rate of the dopamine neuron via potassium channels and activate 
PKA and PKC, which could subsequently phosphorylate DAT (104, 

FIGURE 4

Predicted mechanism of action of (A) vLDX and (B) vMPH in ADHD. Supplementary Figure E in the Supplementary material S1 and 
Supplementary Tables D,E in the Supplementary material S2 contain the sources of information found in the scientific literature supporting the 
predicted mechanisms. Created with BioRender.com. ADHD, attention-deficit/hyperactivity disorder; vLDX, virtual lisdexamfetamine; vMPH, virtual 
methylphenidate.
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TABLE 2 Summary of the impact of vLDX and vMPH on demographic characteristics of adults and children-adolescents with ADHD.

Demographic 
characteristics

Children (6–12 years) Adolescents (13–17 years) Adults

vLDX vMPH vLDX vMPH vLDX vMPH

Agea (ρ) Strong (−0.85) Moderate (−0.53) Moderate (−0.58) – – –

BMIa (ρ) Moderate (−0.53) Weak (−0.49) Moderate (−0.67) – Weak (−0.33) –

Sexb – Male Male – Female Female

aCorrelation strength (ρ) calculated using Pearson’s correlation method. False Discovery Rate (FDR) computed as Benjamini-Hochberg corrections for multiple testing. Statistically significant 
correlations were considered when FDR < 0.05 [if not significant, (−) is indicated]. Direction: positive correlation (ρ > 0) meant the higher the parameter result, the higher the efficacy; negative 
correlation (ρ < 0) meant the higher the parameter, the lower the efficacy. Strength: Strong: |ρ| ≥ 0.8; Moderate: 0.8 > |ρ| ≥ 0.5; Low: 0.5 > |ρ| ≥ 0.3; Negligible: |ρ| < 0.3 [not shown (−)].
bCohort displaying the highest efficacy. Calculated through unpaired two-tailed Student’s T test or Wilcoxon rank sum test, depending on the distribution in each cohort. FDR computed as 
Benjamini-Hochberg corrections for multiple testing. Only statistically significant results are shown [FDR < 0.05; if not significant, (−) is indicated].
ADHD, attention-deficit/hyperactivity disorder; BMI, body mass index; vLDX, virtual lisdexamfetamine; and vMPH, virtual methylphenidate.

FIGURE 5

Correlation between ADHD tSignal and age or BMI in the pediatric-adolescent population. (A) ADHD tSignal in vLDX mechanistic models vs. age; 
(B) ADHD tSignal in vMPH mechanistic models vs. age; (C) ADHD tSignal in vLDX vs. BMI; (D) ADHD tSignal in vMPH vs. BMI. ADHD, attention-deficit/
hyperactivity disorder; BMI, body mass index; vLDX, virtual lisdexamfetamine; vMPH, virtual methylphenidate; ρ, Pearson’s correlation coefficient.

https://doi.org/10.3389/fpsyt.2023.939650
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Gutiérrez-Casares et al. 10.3389/fpsyt.2023.939650

Frontiers in Psychiatry 10 frontiersin.org

FIGURE 6

Summary of the comparative impact of comorbidities on vLDX and vMPH efficacies over ADHD in (A) adults and (B) pediatric-adolescent population. 
ADHD, attention-deficit/hyperactivity disorder; BED, binge eating disorder; vLDX, virtual lisdexamfetamine; vMPH, virtual methylphenidate.

TABLE 3 Summary of the comparative impact on vLDX’s and vMPH’s efficacy of drugs commonly used to treat ADHD comorbidities in adults.

Condition Drug vLDX vMPH

Impacta DB referenceb Impacta DB referenceb

Tics

Aripiprazole <0.01 <0.01 - -

Guanfacine <0.01 <0.05 <0.01 -

Haloperidol <0.01 <0.05 - -

Risperidone <0.01 <0.05 - -

Tiapride <0.01 <0.01 - -

Anxiety

Bip. disorder

Depression

Citalopram/

Escitalopram/

Fluvoxamine/Paroxetine

- - <0.01 -

Sertraline - - <0.01 -

Bip. disorder Lithium <0.01 - <0.01 -

Depression

Binge eating

Bip. disorder

Fluoxetine <0.01 - <0.01 -

aCalculated by comparing the tSignal when treating only with the drug of interest or with the drug + co-treatment. Calculated through unpaired two-tailed Student’s T test or Wilcoxon rank 
sum test, depending on the distribution in each cohort.
bCalculated against the distribution of drugs stored in DrugBank.
Bip. Disorder, bipolar disorder; DB, DrugBank; vLDX, virtual lisdexamfetamine; and vMPH, virtual methylphenidate.

https://doi.org/10.3389/fpsyt.2023.939650
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Gutiérrez-Casares et al. 10.3389/fpsyt.2023.939650

Frontiers in Psychiatry 11 frontiersin.org

105). PKA-phosphorylation may cause DAT internalization into the 
presynaptic neuron and cease transport (104), and PKC 
phosphorylation could induce the same effect on DAT or the opposite 
(104). Importantly, amphetamine-stimulated dopamine efflux 
through DAT has been shown to require PKC activation (106). 
Through TAAR1-mediated PKC activation, LDX could be modulating 
more strongly NET1 and FLOT1 than MPH (88, 95, 96, 107). Also, 
LDX action on TAAR1 might induce inactivation of AKTs and 
modulation of the AKT/mTOR pathway with direct implications for 
ADHD (97, 98, 108–111). The TAAR1-mediated stimulation of PKA 
leads to the expression of BDNF, a neurotrophin with an important 
role in ADHD (112, 113). The cAMP signaling pathway has been 
reported to activate CREB through PKA, p38, and MSK1 in NIH 3 T3 
cells (112). Once amphetamine has penetrated the neuronal 
membrane, it could bind to TAAR1 or enter synaptic vesicles through 
the VMAT2 transporter (104, 114). The latter could cause the collapse 
of the vesicular pH gradient and dopamine release into the cytosol 
(114, 115). Our models showed MAO reduced activity due to DAT 
inhibition, which could be  stronger in vLDX due to the TAAR1 
modulation effect on DAT, besides the direct effect of vLDX. MAO 
inhibition could activate MAPK3, involved in neuroinflammation 
through expression-control of anti-inflammatory cytokines (IL-2, 
IL − 10) (99). NFKB1 activation has been reported to downregulate 
MAPK3 in ADHD patients and be more strongly reverted by LDX 
than by MPH (89, 99, 116). Thus, vLDX-derived activation of TAAR1 
reinforced other monoamine-related vLDX effects mediated by 
targets, improving neurotransmitter regulation and affecting other 
relevant processes in ADHD (i.e., neuroplasticity, neuronal survival, 
and neuroinflammation). Additionally, in children-adolescents, the 
inhibition of the NET1 pathway through TAAR1 via RhoA 

modulation could explain the differential inhibition of NET in favor 
of vLDX (90, 117, 118).

The differential mechanism of vMPH strongly inhibited DAT1 and 
circadian clock regulators CRY1 and CRY2 (50, 119–126). These 
mechanisms were modeled to occur, among others, by inhibiting DAT1 
(119) and AMPK signaling following HTR1A agonism (50). DAT1, 
DRD1, and DRD2 have been reported to regulate dopamine and 
physically interact, reciprocally modulating each other’s functions 
presynaptically (120, 127). However, evidence on DRD2 modulation by 
MPH is extensive and different conclusions are reached depending on 
the studied brain regions, possibly because of differences in postsynaptic 
dopamine concentration and DRD distribution and regulation (128). 
The activity of MPH has been postulated to increase the concentration 
of extracellular dopamine via multiple mechanisms, including DAT 
blockade, disinhibition of DRD2 autoreceptors on the presynaptic 
dopaminergic neuron (DRD2 autoreceptors remain inhibited with no 
treatment), and activation of DRD1 receptors on the postsynaptic 
neuron. This results in an amplification of dopamine activity and 
improvement of attentional deficits, cognitive functioning, and motor 
hyperactivity (129). The activation of presynaptic DRD2 after MPH 
administration may induce redistribution of membrane vesicles 
resulting in increased dopamine release (130). However, this activation 
has also been suggested to decrease dopamine release through feedback 
inhibition (128). Besides, inhibiting DAT1 could lead to a reduced 
activity of MAO (131, 132) caused by a decrease in intracellular 
dopamine levels and further activity of MAPK3. Through the 
stimulation of THRB (123, 133), MPH might improve the altered neural 
viability in ADHD. In addition, the MPH-mediated activation of 
HTR1A and DRD2 (and potentially other G-coupled receptors) has 
been shown to potentially have a reinforcing feedback role on the MPH 

TABLE 4 Summary of the comparative impact on vLDX’s and vMPH’s efficacy of drugs commonly used to treat ADHD comorbidities in children-
adolescents.

Condition Drug vLDX vMPH

Impacta DB referenceb Impacta DB referenceb

Tics

Aripiprazole <0.01 <0.01 - -

Guanfacine <0.01 <0.01 <0.01 -

Haloperidol <0.01 <0.01 - -

Risperidone <0.01 <0.01 - -

Tiapride <0.01 <0.01 - -

Anxiety Hydroxyzine <0.01 <0.01 - -

Anxiety

Fluoxetine <0.01 - <0.01 -
Depression

Binge eating

Bip. disorder

Bip. disorder Lithium <0.01 <0.01 <0.01 -

Bip. disorder

Depression

Citalopram/

Escitalopram/

Fluvoxamine/Paroxetine

- - <0.01 -

Sertraline - - <0.01 -

aCalculated by comparing the tSignal when treating only with the drug of interest or with the drug + co-treatment. Calculated through unpaired two-tailed Student’s T test or Wilcoxon rank 
sum test, depending on distribution in each cohort.
bCalculated against the distribution of drugs stored in DrugBank.
Bip. disorder, bipolar disorder; DB, DrugBank; vLDX, virtual lisdexamfetamine; and vMPH, virtual methylphenidate.
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modulation of neurotransmitter imbalance through further regulation 
of DAT1 (119). Other than being directly inhibited by MPH, this 
transporter could also be regulated by the activation of the small GTPase 
RhoA, which allows the internalization of the DAT1 reuptaker (124). 
According to our models, the most differentially modulated mechanism 
by vMPH was the circadian system. CRY1 and CRY2 have been 
implicated in the ADHD-associated dysregulation of the circadian 
system (125) and were modeled to be better stabilized by vMPH than 
vLDX through modulation of AMPK activity (126). In children, the 
mechanisms modeled for vMPH were almost identical to those of adults.

According to our results, demographic characteristics impacted 
vLDX’s and vMPH’s efficacy differently in adult and pediatric-
adolescent populations. In adults, the impact of demographic 
characteristics on ADHD treatments has been poorly studied. Our 
results suggested that only sex, and to a lower extent BMI, seemed to 
have an impact on the efficacies of vLDX and vMPH in adults. In 
children, our models showed that age and BMI could affect both 
virtual drugs’ efficacies, a finding supported by previous reports (134, 
135). This correlation was more notable in vLDX, showing a stronger 
efficacy in the pediatric population (≤12 years old) than in 
adolescents. Given the importance of the BMI-for-age correlation in 
the pediatric-adolescent population (35), we evaluated whether the 
efficacies of vLDX and vMPH varied with age and BMI. While 
changes in vMPH’s efficacy related to BMI seemed to be associated 
with an age effect, vLDX’s efficacy was predicted to be  affected 
independently by age and BMI.

Regarding ADHD psychiatric comorbidities, data from the 
United States population shows that depression is more common in 
adults (8.1%) than in children-adolescents (3.2%), whereas tic 
disorders are more prevalent among the latter (136–138). On the other 
hand, the prevalence of anxiety is similar among children-adolescents 
(7.1%) and adults (6.7%) (138, 139). Although depression affected both 
drugs’ efficacies, the effect was smaller on vLDX than on vMPH. No 
other important effect over the efficacy of ADHD for either drug was 
detected for any of the remaining analyzed comorbidities. In addition, 
we found that the efficacy of vMPH could be altered by a class of drugs 
(selective serotonin reuptake inhibitors) used for a broad range of 
psychiatric disorders, including four out of the five studied 
comorbidities (i.e., anxiety, depression, bipolar disorder, and BED). In 
contrast, only drugs for tic disorders could affect vLDX’s efficacy.

Our models were built on the widest available information (at the 
molecular and clinical level) around patients, disease, and treatments 
and our approach provided reference standards to validate each 
modeling step (31). However, our study was subjected to the intrinsic 
boundaries of ISCT, bearing both limitations and strengths, and its 
results must be  interpreted considering them. First, the models 
described here were built upon the current knowledge of human 
physiology, particularly on the diseases’ and drugs’ definitions, as 
discussed in previous works (31, 40, 55). This implies that our results 
could be affected by missing data, errors, and bias, and some aspects 
could have been overlooked. For instance, to define virtual drugs, 
we applied equivalent search and selection criteria for both drugs 
(31), but we did not control for possible literature bias that might 
affect the information selection and could impact the conclusions. 
Second, stemming from the previously mentioned constraint, our 
models were limited by the inherent restraints of mathematical 
models, which cannot fit 100% of the training data information. 
However, this approach allows obtaining a diversity of biologically 

plausible models mimicking the diversity observed in human 
physiological responses, which could also be considered a strong 
point of the technique (55). This modeled “molecular diversity,” 
together with the patient-specific information included through 
demographic and clinical information, renders this strategy suitable 
to investigate MoA in a diverse group of virtual patients. This, in turn, 
enables the raising of hypotheses toward treatment selection through 
patient segmentation and personalized medicine. Third, our 
modeling methodology considered only the impact of patient-
specific demographic characteristics on the drugs’ absorption, 
distribution, and excretion. However, other consequences of these 
characteristics at the MoA level were not considered, such as the role 
of sex-dependent hormonal differences or age-related 
neurodevelopment and their effects on the drug’s outcome. Fourth 
and last, we used reported information on the clinical effect of the 
studied drugs, but a vast dispersion of values was observed, forcing 
us to average these values for the training process (31). Notably, 
although this was a theoretical study with all the implied restraints of 
such approaches, it could set the ground for generating hypotheses 
and new research to deepen our understanding of the mechanisms 
and differences among these drugs. Nonetheless, pre-clinical and 
clinical validations of the results herein exposed are necessary to 
extend their applicability to clinical practice. All the limitations 
described above applied to both vLDX and vMPH models.

5. Conclusion

Our ISCT, using MoA models of vLDX and vMPH over virtual 
ADHD patients, suggested that LDX and MPH have similar efficacy 
mechanisms and modulate common ADHD pathophysiology processes, 
but could target different disease mechanisms. The models generated 
showed that demographic characteristics could have an effect on these 
drugs’ efficacies, mainly BMI and age in the pediatric population. In 
addition, comorbidities and their treatment could differentially affect the 
mechanisms of both drugs to treat ADHD. Although requiring clinical 
validation, our in silico results raised hypotheses that could be strategic 
for conditioning the experimental design of future clinical or pre-clinical 
studies and pave the way for personalized medicine and drug selection 
by patient profiling.
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