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Classical algorithms are often not effective for solving nonconvex optimization prob-
lems where local minima are separated by high barriers. In this paper, we explore pos-
sible quantum speedups for nonconvex optimization by leveraging the global effect of
quantum tunneling. Specifically, we introduce a quantum algorithm termed the quan-
tum tunneling walk (QTW) and apply it to nonconvex problems where local minima
are approximately global minima. We show that QTW achieves quantum speedup over
classical stochastic gradient descents (SGD) when the barriers between different local
minima are high but thin and the minima are flat. Based on this observation, we con-
struct a specific double-well landscape, where classical algorithms cannot efficiently hit
one target well knowing the other well but QTW can when given proper initial states
near the known well. Finally, we corroborate our findings with numerical experiments.

1 Introduction
Nonconvex optimization plays a central role in machine learning because the training of many
modern machine learning models, especially those from deep learning, requires optimization of non-
convex loss functions. Among algorithms for solving nonconvex optimization problems, stochastic
gradient descent (SGD) and its variants, such as Adam Kingma and Ba (2015), Adagrad Duchi
et al. (2011), etc., are widely used in practice. In theory, their provable guarantee has been studied
from various perspectives.

In this paper, we adopt the perspective of studying gradient descents via the analysis of their be-
havior in continuous-time limits as differential equations, following a recent line of work in Su et al.
(2016); Wibisono et al. (2016); Jordan (2018); Shi et al. (2021). In particular, let f : Rd → R be the
objective function constructed via all data. The SGD xk+1 = xk−s∇̃f(xk) with learning rate s and
estimated gradient, ∇̃f , evaluated from a mini-batch can be modeled by xk+1 = xk−s∇f(xk)−sξk
with normally distributed noise ξk (this is also known as the unadjusted Langevin dynamics). In
the continuous-time limit, we can obtain a learning-rate-dependent stochastic differential equation
(SDE), approximating the discrete algorithm:

dx = −∇f(x)dt+
√
sdW, (1)

where W is a standard Brownian motion. Such approach enjoys clear intuition from physics. In
particular, Eq. (1) is essentially a non-equilibrium thermodynamic process: gradient descent pro-
vides driving forces, the stochastic term serves as thermal motions, and a combination of these two
ingredients enables convergence to the thermal distribution, also known as the Gibbs distribution.
A systematic study of Eq. (1) was conducted in a recent work by Shi et al. (2020). See more details
in Section 2.2.
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Nevertheless, algorithms based on gradient descents also have limitations because they only
have access to local information about the function, which suffers from fundamental difficulties
when facing landscapes with intricate local structures such as vanishing gradient Hochreiter (1998),
nonsmoothness Kornowski and Shamir (2021), negative curvature Criscitiello and Boumal (2021),
etc. In terms of optimization, we are mostly interested in points with zero gradients, and they can
be categorized as saddle points, local optima, and global optima. It is known that variants of SGD
can escape from saddle points Ge et al. (2015); Jin et al. (2017); Allen-Zhu and Li (2018); Fang
et al. (2018, 2019); Jin et al. (2021); Zhang and Li (2021), but one of the most prominent issues
in nonconvex optimization is to escape from local minima and reach global minima. Up to now,
theoretical guarantee of escaping from local minima by SGD has only been known for some special
nonconvex functions Kleinberg et al. (2018). In general, SGD has to climb through high barriers
in landscapes to reach global minima, and this is typically intractable using only gradients that
descend the function. In all, fundamentally different ideas, especially those that explores beyond
local information, are expected to derive better algorithms for nonconvex optimization in general.

This paper aims to study nonconvex optimization via dynamics from quantum mechanics, which
can leverage global information about a function f : Rd → R. The fundamental rule in quantum
mechanics is the Schrödinger Equation:1

i
∂

∂t
Φ =

(
−h2∆ + f(x)

)
Φ, (2)

where i is the imaginary unit, h is defined as the quantum learning rate, ∆ =
∑d
j=1

∂2

∂x2
j
is the

Laplacian, and Φ(t, x) : R × Rd → C is a quantum wave function satisfying
∫
Rd |Φ(t, x)|2dx = 1

for any t. Measuring the wave function at time t, |Φ(t, x)|2 is the probability density of finding
the particle at position x. In Eq. (2), the time evolution of wave functions is governed by the
Hamiltonian2 H := −h2∆ + f , where −h2∆ corresponds to the classical kinetic energy and f the
potential energy.

In sharp contrast to classical particles, quantum wave functions can tunnel through high poten-
tial barriers with significant probability, and this is formally known as quantum tunneling. Take a
one-dimensional double-well potential f : R→ R in Figure 1 as an example, the goal is to move from
the local minimum x− in the left region to the local minimum x+ in the right region. Classically,
the SDE in (1) has to climb through the barrier with height Hf , and it can take exp(Θ(Hf/s))
time to reach x+ (see Section 3.4 of Shi et al. (2020)).

Quantumly, we denote Φ−(x) and Φ+(x) to be the ground state (i.e., the eigenstate corresponds
to the smallest eigenvalue) of the left and the right region, respectively. These states Φ±(x) are
localized near x±, respectively. We let the wave function be initialized at Φ−(x), i.e., Φ(0, x) =
Φ−(x). Under proper conditions, two eigenfunctions with eigenvalues E0 and E1 of H = −h2∆+f
can be represented by superposition states

Φ0(x) := (Φ+(x) + Φ−(x))/
√

2, (3)
Φ1(x) := (Φ+(x)− Φ−(x))/

√
2, (4)

respectively. Note that Φ0(x) and Φ1(x) are not localized because they have probability 1/2 of
reaching both x+ and x−. Specifically, given Φ(0, x) = Φ−(x) = (Φ0(x) + Φ1(x))/

√
2, and because

the dynamics of the Schrödinger equation (2) is Φ(t, x) = e−iHtΦ(0, x), we have

Φ(t, x) = (e−iE0tΦ0(x) + e−iE1tΦ1(x))/
√

2. (5)

As a result, after time t where |E0 − E1|t = π, we have Φ(t, x) ∝ Φ+(x) localized near x+.
Intuitively, this can be viewed as global evolution and superposition of quantum states, which is
capable of acquiring global information of the function f and explains why for various choices of f ,
this quantum evolution time t is much shorter than the classical counterpart by SDE which only
takes gradients locally.

1The standard Schrödinger Equation in quantum mechanics is typically written as i~ ∂
∂t

Φ =
(
− ~2

2m∆ + f(x)
)

Φ.

In this paper, we use the form in (2) by setting the Planck constant ~ = 1 and h = ~/
√

2m which is a variable. See
also Section 2.3.

2In this paper, we refer Hamiltonian to either the total energy of a system or the operator corresponding to the
total energy of the system, depending on the context.
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Figure 1: An example of quantum tunneling in a double-well optimization function.

It is a natural intuition to design quantum algorithms using quantum tunneling. Previously,
Finnila et al. (1994); Muthukrishnan et al. (2016); Crosson and Harrow (2016); Baldassi and
Zecchina (2018) studied the phenomenon of quantum tunneling in quantum annealing algorithms
Finnila et al. (1994); Farhi et al. (2001). However, most of these results studied Boolean functions,
which is essentially different from continuous optimization. In addition, quantum annealing focused
on ground state preparation instead of the dynamics for quantum tunneling. Up to now, it is in
general unclear when we can design quantum algorithms for optimization by adopting quantum
tunneling. Therefore, we ask:

Question 1.1. On what kind of landscapes can we design algorithms efficiently using quantum
tunneling?

To answer this question, we need to figure out specifications of the quantum algorithm, such
as the initialization of the quantum wave packet, the landscape’s parameters, the measurement
strategy, etc.

The next question is to understand the advantage of quantum algorithms based on quantum
tunneling. A main reason of studying quantum computing is because it can solve various prob-
lems with significant speedup compared to classical state-of-the-art algorithms. In optimization,
prior quantum algorithms have been devoted to semidefinite programs Brandão and Svore (2017);
Apeldoorn et al. (2017); Apeldoorn and Gilyén (2019); Brandão et al. (2019), convex optimiza-
tion Apeldoorn et al. (2020); Chakrabarti et al. (2020), escaping from saddle points Zhang et al.
(2021a), polynomial optimization Rebentrost et al. (2019); Li et al. (2021a), finding negative cur-
vature directions Zhang et al. (2019), etc., but quantum algorithms for nonconvex optimization
with provable guarantee in general is widely open as far as we know. Here we ask:

Question 1.2. When do algorithms based on quantum tunneling give rise to quantum speedups?

Contributions. We systematically study quantum algorithms based on quantum tunneling for
a wide range of nonconvex optimization problems. Throughout the paper, we consider benign non-
convex landscapes where local minima are (approximately) global minima. We point out that many
common nonconvex optimization problems indeed yield objective functions satisfying such benign
behaviors, such as tensor decomposition Ge et al. (2015); Ge and Ma (2020), matrix completion Ge
et al. (2016); Ma et al. (2018), and dictionary learning Qu et al. (2019), etc. In general, nonconvex
problems with discrete symmetry satisfy this assumption, see the surveys by Ma (2021); Zhang
et al. (2021b).

In this paper, we demonstrate the power of quantum computing for the following main problem:

Main Problem. On a landscape whose local minima are (approximately) global minima, starting
from one local minimum, find all local minima with similar function values or find a certain target
minimum.

Such a problem is crucial for understanding the generalization property of nonconvex land-
scapes, and in general it also sheds light on nonconvex optimization. First, local minima with
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similar function values can have dramatically different generalization performance (see Section
6.2.3 of Sun (2019)), and solving this Main Problem can be viewed as a subsequent step of op-
timization for finding the minimum which generalizes the best. Second, Main Problem implies
the mode connectivity of landscapes, which has been applied to understanding the loss surfaces of
various machine learning models including neural networks both empirically Draxler et al. (2018);
Garipov et al. (2018) and theoretically Kuditipudi et al. (2019); Nguyen (2019); Shevchenko and
Mondelli (2020). Third, nonconvex landscapes where the Main Problem can be efficiently solved
can also lead to efficient Monte Carlo sampling, which can be even faster than optimization Ma
et al. (2019); Talwar (2019).

Landscapes whose local minima are (approximately) global significantly facilitate quantum
tunneling. Roughly speaking, since the total energy during our quantum evolution (2) is conserved,
quantum tunneling can only efficiently send a state from one minimum to another minimum with
similar values. As a conclusion, if the quantum wave function is initialized near a local minimum,
we can focus on quantum tunneling between the local ground state of each well, i.e., the tunneling
of the particle from the bottom of a well to that of another well. To avoid complicated discussions
on the value of the quantum learning rate h, we further restrict ourselves to functions whose local
minima are global, which would not provide less intuition. Now, an answer to Question 1.1 can be
given as follows:

Theorem 1.1 (Quantum tunneling walks, informal). On landscapes whose local minima are global
minima, we have an algorithm called quantum tunneling walks (QTW) which initiates the simu-
lation of Eq. (2) from the local ground state at a minimum, and measures the position at a time
which is chosen uniformly from [0, τ ]. To solve the Main Problem we can take

τ = O(poly(N)/∆E), (6)

where N is the number of global minima and ∆E is the minimal spectral gap of the Hamiltonian
restricted in a low-energy subspace. For sufficiently small h, we have

∆E =
√
h(b+O(h))e−

S0
h , (7)

where b, S0 > 0 are constants that depend only on f .

Formal description of the QTW can be found in Section 3.2. Here we highlight two important
properties of QTW: Quantum mixing time and quantum hitting time.

Quantum mixing time (Lemma 3.1 in Section 3.3). Since quantum evolutions are unitary, QTW
never converges, a fundamental distinction from SGD. Therefore, to study the mixing properties
of QTW, we follow quantum walk literature Childs et al. (2003) by employing the measurement
strategy, where we measure at t uniformly chosen from [0, τ ]. The measured results obey a dis-
tribution which is a function of τ , and when τ → +∞, the distribution tends to its limit, µQTW.
Quantum mixing time is the minimal τ enabling us to sample from µQTW up to some small error.
Alternatively speaking, the mixing time evaluates how fast the distribution yielded by QTW con-
verges. We prove that µQTW concentrates near minima, so that sampling from µQTW repeatedly
can give positions of all minima. In addition, µQTW gives the upper bound on τ in (6).

Quantum hitting time (Lemma 3.5 in Section 3.4). Hitting time is the duration it takes to hit a
target region (usually a neighborhood of some minimum). Quantum hitting time is the minimum
evolution time needed for hitting the region of interest once. Despite this straightforward intuition,
the formal definition of quantum hitting time is very different from that of classical hitting time.
Intuitively, repeatedly sampling from µQTW can ensure the hitting of neighborhoods of particular
minima, and thus we can use the mixing time to bound the hitting time. In short, to solve the
Main Problem, we bound the quantum mixing and hitting time to obtain Theorem 1.1.

The minimal spectral gap ∆E in Theorem 1.1 is calculated in Appendix A.2.3. The quantity
S0 is called the minimal Agmon distance between different wells, formally defined in Definition 2.5,
which is related to both the height and width of potential barriers. The smaller h is, the closer
the measured results are to the minima (i.e., the more accurate QTW is), but the longer evolution
time the Schrödinger equation takes.

As an application of Theorem 1.1 and a justification of the practicability of QTW, we show
how to use QTW to solve the orthogonal tensor decomposition problem. This problem asks to
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Figure 2: Flowchart of the Main Message.

find all orthogonal components of a tensor. After transforming into a single optimization problem
Comon et al. (2009); Hyvarinen (1999), the aim is to find all global minima. We present below a
bound on the time cost of QTW on decomposing fourth-order tensors and details can be found in
Section 3.5.

Proposition 1.1 (Tensor decomposition, informal version of Proposition 3.1). Let d be the di-
mension of the components of the fourth-order tensor T ∈ Rd4 satisfying (80), δ be the expected
risk yielded by the limit distribution µQTW, and ε be the maximum error between µQTW and the
actual obtained distribution (quantified by L1 norm). For sufficiently small ε and sufficiently small
δ, the total time Ttot for finding all orthogonal components of T by QTW satisfies

Ttot = O(poly(1/δ, ed, 1/ε))e
(d−1)+oδ(1)

2δ . (8)

Next, we explore the advantages of the quantum tunneling mechanism comparing QTW with
SGD and shown by describing landscapes where QTW outperforms SGD. The time cost for SGD
to converge to global minima is loosely O(1/λs) and

λs = (a+ o(s))e−
2Hf
s (9)

by Shi et al. (2020). Here, s is the step size or learning rate of SGD. The constants a > 0 and
Hf > 0 depend only on f . Interestingly, running time of QTW and that of SGD have similar form.
In (7) and (9), there are exponential terms eS0/h and e2Hf/s, respectively. Intuitively, the quantity
Hf is the characteristic height of potential barriers, and the quantity S0 depends on not only the
height but also the width of potential barriers. For the one-dimensional example in Figure 1,

Hf = max
ξ∈[x−,x+]

f(ξ), S0 =
∫ x+

x−

√
f(ξ)dξ. (10)

(Proof details are given in Section 3.1.) Other terms in the bounds, poly(N)/∆E and 1/λs, are
referred to as polynomial coefficients. We make the following comparisons:

• Regarding the exponential terms S0 and Hf , tall barriers means that Hf is large, whereas if
the barriers are thin enough, S0 can still be small. This is consistent with the long-standing
intuition that tall and thin barriers are easy for tunneling but difficult for climbing Crosson
and Harrow (2016).

• Regarding the polynomial coefficients, they are mainly influenced by the distribution or
relative positions of the wells. We observe that a symmetric distribution of wells, which can
make (the local ground state in) any one well interacts with (the local ground states in) other
wells, may reduce the running time of QTW but has no explicit impact on SGD.

• Flatness of wells is another important factor that influences the running time of both QTW
and SGD. We propose standards for comparison (see Section 4.1), which studies their running
time when reaching the same accuracy δ. Same to the effect of h, a smaller learning rate s
permits more accurate outputs but makes SGD more time consuming. For sufficiently flat
minima, h is larger than s, leading to a smaller running time for QTW.

In summary, we illustrate above observations in Figure 2 and conclude the following:
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Figure 3: Sketch of the function in Theorem 1.2. The left figure explains the construction in the domain and
the right figure plots the landscape of a two-dimensional example.

Main Message (Advantages of the quantum tunneling mechanism, a summary of Section 4.1
and Section 4.2). On landscapes whose local minima are global minima, QTW outperforms SGD
on solving the Main Problem if barriers of the landscape f is high but thin, wells are distributed
symmetrically, and global minima are flat.

Remark 1.1. As is indicated above, we compare the costs of QTW and SGD under the same
accuracy δ. We introduce two definitions of accuracy in Section 4.1: Standard 4.1 concerns the
expected risk, and Standard 4.2 concerns the expected distance to some minima. Mathematically,
Standard 4.1 and Standard 4.2 establish a relationship between the quantum and classical learning
rates h and s, respectively, enabling direct comparisons.

Having introduced the general performance of the quantum tunneling walk, we further inves-
tigate Question 1.2 on some specific scenarios of the Main Problem. We focus on comparison
between query complexities, namely the classical query complexity to local information and the
quantum query complexity to the evaluation oracle3

Uf (|x〉 ⊗ |z〉) = |x〉 ⊗ |f(x) + z〉 ∀x ∈ Rd, z ∈ R. (11)

This is the standard assumption in existing literature on quantum optimization algorithms Apel-
doorn et al. (2020); Chakrabarti et al. (2020); Zhang et al. (2021a). Different from classical queries
that only learn local information of the landscape of f , quantum evaluation queries are essentially
nonlocal as they can extract information of f at different locations in superposition. Based on this
fundamental difference, we are able to prove that QTW can solve a variant of the Main Problem
with exponentially fewer queries than any classical counterparts:

Theorem 1.2. For any dimension d, there exists a landscape f : Rd → R such that its local
minima are global minima, and on which, with high probability, QTW can hit the neighborhood of
an unknown global minimum from the local ground state associated to a known minimum using
queries polynomial in d, while no classical algorithm knowing the same minimum can hit the same
target region with queries subexponential in d.

Details of Theorem 1.2 are presented in Section 4.3. Following similar idea to Jin et al. (2018),
our construction relies on locally non-informative regions. Main structures of the constructed
landscape are illustrated in Figure 3, which has two global minima. W− andW+ are two symmetric
wells containing one global minimum respectively, Bv is a plateau connecting W− and W+, and
other places form a much higher plateau. The regionW+ is our target. We show that the landscape
satisfies the following properties:

3Query complexity of QTW is directly linked to the evolution time, in particular, evolving QTW for time t needs
Õ(t) queries to Uf (see details in Appendix B.1). As a result, it suffices to analyze the evolution time of QTW.
Nevertheless, we state the query complexities for direct comparison.
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• Sv, which is a band {x | x ∈ B, |x · v| ≤ w} with w a constant and v a unit vector, occupies
dominating measure in the ball B.

• In Sv, local queries (see Definition 2.1) do not reveal information about the direction v.

• Local queries outside B do not reveal information about the region inside B.

Restricted in the ball B, the first two properties make classical algorithms intractable to escape from
Sv and thus cannot hit W+ efficiently. The last property ensures that, without being restricted in
B, classical algorithms are still unable to hit W+ efficiently. See Section 4.3.1 for details.

Nevertheless, quantum tunneling can be efficient if we carefully design the function values and
the parameter h. The design of the parameters should establish the following main conditions (See
Section 4.3.2 for details):

• The wave function always concentrates in W− or W+.

• The quantum learning rate h is small such that our theory based on semi-classical analysis
is valid.

• Quantum tunneling from W− to W+ is always easy (can happen within time polynomial in
d).

Organization. Section 2 introduces our assumptions and problem settings, both classical and
quantum. In Section 3, we explore QTW in details and state the formal version of Theorem 1.1.
This includes a one-dimensional example, the formal definition of QTW, the mixing and hitting
time of QTW, and the example on tensor decomposition (Proposition 1.1). Section 4 covers
detailed quantum-classical comparisons. First, we introduce fair criteria of the comparison. Second,
we illustrate the advantages of quantum tunneling and give a detailed view of our Main Message.
Third, we prove Theorem 1.2. We corroborate our findings with numerical experiments in Section 5.
At last, the paper is concluded with discussions in Section 6.

2 Preliminaries
2.1 Notations
Throughout this paper, the space we consider is either Rd or a d-dimensional smooth compact
Riemannian manifold denoted M . Bold lower-case letters x, y,. . . , are used to denote vectors.
If there is no ambiguity, we use normal lower-case letters, x, y,. . . , to denote these vectors for
simplicity. Depending on the context, dx may refer to either line differential or volume differential.
We use Ajj′ to denote the element of the matrix A at of row j and column j′. Conversely, given all
matrix elements Ajj′ , we use the notation (Ajj′) to denote the matrix. Unless otherwise specified,
‖ · ‖ is used to denote the `2 norm of vectors, spectral norm of matrices, and L2 norm of functions.
Similarly, ‖ · ‖1 is used to denote the `1 norm of vectors and L1 norm of functions.

For a function f , ∇f and ∇2f denote the gradient vector and Hessian matrix, respectively.
∆ :=

∑d
j=1

∂2

∂x2
j
is the Laplacian operator. C∞(Rd) is the set of all functions f : Rd → R that are

continuous and differentiable up to any order. Notations about upper and lower bounds, O(·), o(·),
Ω(·), and Θ(·), follow common definitions. We also write f � g if f = o(g), and f ∼ g if f = Θ(g).
The Õ notation omits poly-logarithmic terms, namely, Õ(f) := O(fpoly(log f)) (in this paper, log
denotes the logarithm with base 2 and ln denotes the natural logarithm with base e). We write
f = O(g∞) if

∀N > 0, f/gN → 0 (g → 0). (12)

Throughout the paper, we write f ≈ g if

f(x) = g + o(g) (13)

when g 6= 0. When g → 0, f → 0 means f = o(1) or, to stress the dependence, f = og(1).
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For quantum mechanics, we use the Dirac notation throughout the paper. Quantum states
are vectors from a Hilbert space with unit norm. Let |φ〉 denote a state vector, and 〈φ| = (|φ〉)†
denote the dual vector that equals to its conjugate transpose. The inner product of two states can
be written as 〈ψ|φ〉. In the coordinate representation, for each x ∈ Rd we have the wave function
φ(x) := 〈x|φ〉, where |x〉 denotes the state localized at x. More basics on quantum mechanics and
quantum computing can be found in standard textbooks, for instance Nielsen and Chuang (2010).

2.2 Classical preparations
Classical algorithms only have access to local information about the objective function at different
sites, which is formalized as follows:

Definition 2.1 (Algorithms based on local queries). Denote a sequence of points and corresponding
queries with size T by {xi, q(xi)}Ti=1, where each q(xi) can include the function value and arbitrary
order derivatives (if exist). Algorithms based on local queries are those which determine the jth
point xj by {xi, q(xi)}j−1

i=1 .

As an example, the classical algorithm SGD can be mathematically described by

Definition 2.2 (Discrete model of SGD). Given a function f(x), starting from an initial point
x0, discrete SGD iterations are modeled by the following:

xk+1 = xk − s∇f(xk)− sξk, (14)

where s is the learning rate and ξk is the noise term at the kth step.

The local information in SGD is gradients. Since s is small, define time tk = ks, the points {xk}
can be approximated by points on a smooth curve {X(tk)}. The curve, which can be regarded as
the continuous-time limit of discrete SGD, is determined by a learning-rate-dependent stochastic
differential equation (lr-dependent SDE):

Definition 2.3 (SDE approximation of SGD).

dx = −∇f(x)dt+
√
sdW, (15)

where W is a standard Brownian motion.

The solution of (15), X(t), is a stochastic process whose probability density ρSGD(t, ·) evolves
according to the Fokker–Planck–Smoluchowski equation

∂ρSGD

∂t
= ∇ · (ρSGD∇f) + s

2∆ρSGD. (16)

The validity of this SDE approximation has been discussed and verified in previous literature
Kushner and Yin (2003); Chaudhari and Soatto (2018); Shi et al. (2020); Li et al. (2021b).

The results used in the present paper about SGD are based on analyses on (15). For SGD, we
consider an objective function f in Rd and assume the following:

Assumption 2.1 (Confining condition Markowich and Villani (1999); Pavliotis (2014)). The ob-
jective function f ∈ C∞(Rd) should satisfy lim‖x‖→+∞ f(x) = +∞, and ∀s > 0, exp(−2f/s) is
integrable: ∫

Rd
e−

2f(x)
s dx <∞. (17)

Assumption 2.2 (Villani condition Villani (2009)). The following equation holds for all s > 0:

‖∇f(x)‖2 − s∆f(x)→∞ (‖x‖ → ∞). (18)

Assumption 2.3 (Morse function). For any critical point x of f (i.e., ∇f(x) = 0), the Hessian
matrix ∇2f(x) is nondegenerate (i.e., all the eigenvalues of the Hessian are nonzero).
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Remark 2.1 (Justification of assumptions). Assumption 2.1 is mild, essentially requiring that
the function grows sufficiently rapidly when x is far from the origin. Adding `2 regularization
term to the objective function, or equivalently, employing weight decay in the SGD update can
make the condition satisfied. Assumption 2.2, giving discrete spectrum of Witten-Laplacian (23),
demands that the gradient has a sufficiently large squared norm compared with the Laplacian of the
function. Some loss functions used for training neural networks might not satisfy this condition.
However, the Villani condition is not stringent in practice since the SGD iterations are bounded
while this condition essentially concerns about the function at infinity. Assumption 2.3 is made for
calculations in spectrum analysis, which is generally not restrictive.

Under Assumption 2.1, Eq. (16) admits a unique invariant Gibbs distribution

µSGD(x) := e−
2f(x)
s∫

Rd e
− 2f(x)

s dx
. (19)

Definition 2.4. A measurable function g belongs to L2(µ−1
SGD), if

‖g‖µ−1
SGD

:=
(∫

Rd
g2µ−1

SGD(x)dx
) 1

2
< +∞. (20)

Under such measure, we have:

Lemma 2.1 (Lemma 2.2 and 5.2 of Shi et al. (2020)). Under Assumption 2.1, if the initial distri-
bution ρSGD(0, ·) ∈ L2(µ−1

SGD), the lr-dependent SDE (15) admits a weak solution whose probability
density

ρSGD(t, ·) ∈ C1([0,+∞), L2(µ−1
SGD)), (21)

is the unique solution to (16) and ρSGD(t, ·)→ µSGD (t→∞).
If we set ψSGD(t, ·) := ρSGD(t, ·)/√µSGD ∈ L2(Rd), Eq. (16) is equivalent to

s
∂ψSGD

∂t
= −

∆s
f

2 ψSGD, (22)

where ∆s
f is called the Witten-Laplacian, more specifically,

∆s
f := −s2∆ + ‖∇f‖2 − s∆f. (23)

Let δs,1 be the smallest non-zero eigenvalue of ∆s
f , the following convergence guarantee for SGD

holds:

Proposition 2.1 (Part of Theorem 2.8 in Michel (2019) and Lemma 5.5 in Shi et al. (2020)).
Under Assumption 2.1, 2.2, and 2.3, for sufficiently small s,

‖ρSGD(t, ·)− µSGD‖µ−1
SGD
≤ e−

δs,1
2s t‖ρSGD(0, ·)− µSGD‖µ−1

SGD
, (24)

where the smallest positive eigenvalues of the Witten-Laplacian ∆s
f associated with f satisfies

δs,1 = s(γ1 + o(s))e−
2Hf
s . (25)

Here, Hf and γ1 are constants depending only on the function f .
Corollary 2.1. Assume the assumptions of Proposition 2.1 are satisfied, for sufficiently small s
and any ε > 0, if

t >
2s
δs,1

ln
‖ρSGD(0, ·)− µSGD‖µ−1

SGD

ε
, (26)

then

‖ρSGD(t, ·)− µSGD‖µ−1
SGD

< ε. (27)

That is, the convergence time of SGD is loosely O(s/δs,1) whose magnitude is largely related
to Hf . The constant Hf is called the Morse saddle barrier, characterizing the largest height of
barriers. Rigorous results about eigenvalues of the Witten-Laplacian are reviewed in Appendix A.1.
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2.3 Quantum preparations
Our quantum algorithmic method essentially relies on the simulation of the Schrödinger equation:

i
∂

∂t
|Φ(t)〉 = H |Φ(t)〉 , (28)

where i is the imaginary unit, ~ is the Planck constant, and H is the Hamiltonian. Physically, we
simulate a particle moving under a potential function f . Then, in the coordinate representation,
the Schrödinger equation is specified:

i~
∂

∂t
Φ =

(
− ~2

2m∆ + f(x)
)

Φ. (29)

Throughout this paper, we set h = ~/
√

2m. The spectrum of the Hamiltonian will highly depends
on the variable h. More interestingly, by comparing (22) and (28), h plays a similar role to that
of the learning rate s. Thus we refer to h as the quantum learning rate. In the reality, ~ is a fixed
constant. However, since we are simulating quantum evolution by quantum computers, proper
rescaling the simulation can equivalently be seen as varying the value of ~. The value of ~ affects
the evolution time needed. However, rescaling ~ has no impact on quantum query complexity.
Therefore, in this paper, ~ is an unimportant constant, i.e., ~ = 1.

As is introduced, we consider quantum tunneling from the bottom of a well to that of another
well, in other words, tunneling between local ground states. A local ground state of a well is the
local eigenstate of the well with minimum eigenvalue. Technically, several kinds of local eigenstates
are defined (see Definition A.7, Definition A.8, and Definition A.10 in Appendix A.2.3). Despite
of the number of definitions, different kinds of local eigenstates are close to each other and share
the same intuition: eigenstates of the Hamiltonian restricted in regions only contain one well.
For convenience, if no otherwise specified, local eigenstates stand for orthonormalized eigenstates
defined by Definition A.10. Actually, there are also tunneling effects between local excited states.
However, excited states are difficult to approximate accurately for general landscapes. Besides,
due to interference, tunneling effects between different local excited states may cancel each other
out. We restrict our attention to tunneling between local ground states in order to obtain explicit
results along with a clear physical picture.

Two local ground states can interact strongly with each other only if the difference between
their energies is small relative to h Helffer (1988) (see also discussions after Proposition A.4 in
Appendix A.2.3). In other words, this requires the function values between two local minima to
be close and there is little resonance between the first (local) excited state in one well and the
(local) ground state of the other Rastelli (2012); Schmidt et al. (1991). Therefore, our algorithms
based on tunneling between local ground states are essentially restricted on landscapes where local
minima are approximately global minima. Note that we can always find small enough h to make
two local ground states nonresonant, if the corresponding local minima are not exactly equal. As
a result, to avoid more complicated restrictions on h, without loss of generality we assume that
local minima are global minima, and they all have function value 0. More precisely:

Assumption 2.4. The smooth objective function f : Rd → R satisfies

0 = min f < lim inf
‖x‖→∞

f, (30)

namely, there exists a radius r such that inf‖x‖>r f > min f . In addition, f has finite number of
local minima, and they can be decomposed as follows:

f−1(0) = U1 ∪ U2 . . . ∪ UN , (31)

Uj = {xj} is a point, ∇f(xj) = 0, and ∇2f(xj) > 0 for j = 1, . . . , N. (32)

Each Uj is called a well.

This assumption will not affect the explicit forms of convergence time or present less physical
insights. To further characterize the distance on such landscapes, an important geometric tool we
use is the Agmon distance.
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Definition 2.5 (Agmon distance). Under Assumption 2.4, the Agmon distance d(x, y) is defined
as

d(x, y) := inf
γ

∫
γ

√
f(x)dx, (33)

where γ denotes pairwise C1 paths connecting x and y. For a set U , d(x, U) = d(U, x) :=
infy∈U d(x, y). And for two sets U1 and U2, d(U1, U2) = infx∈U1,y∈U2 d(x, y).

The minimal Agmon distance between wells are defined as

S0 := min
j 6=k

d(Uj , Uk). (34)

We only consider resonant wells by assuming the following for simplicity:

Assumption 2.5. The energy (eigenvalue) difference between any two local ground states are of
the order O(h∞). In addition, for any well Uj, there exists another well Uk (k 6= j) such that
d(Uj , Uk) = S0.

At last, to obtain explicit results we demand that

Assumption 2.6. There are a finite number of paths of the Agmon length S0 connecting Uj and
Uk if d(Uj , Uk) = S0.

Remark 2.2 (Physical meaning of Assumption 2.6). Agmon distance serves as an “action" in
dynamics. By the principle of least action, the paths with Agmon length S0 will be real trajectories
of the particle (wave) in classical limit. If there are infinite possible trajectories between two
points, either the two points will be indeed the same, or the problem can be reduced to one in a
lower-dimensional space.

Assumption 2.4, 2.5, and 2.6 informally present Assumption A.5, A.6, and A.7 in Appendix A.2
which pay more efforts in rigorous descriptions of “wells", “local ground states", etc. Under As-
sumption 2.4, 2.5, and 2.6, we state the main results of Appendix A.2 as follows. For sufficiently
small h, the orthonormalized local ground states |ej〉 , j = 1, . . . , N almost localize near the wells
Uj , j = 1, . . . , N , respectively. The space F spanned by {|ej〉 : j = 1, . . . , N} is exactly a low-
energy invariant subspace of the Hamiltonian H. In other words, in the low-energy space F , the
particle walks between wells by quantum tunneling. The Hamiltonian restricted in F , i.e., H|F ,
determines the strength of the quantum tunneling effect and is called the interaction matrix. To
explore H|F , we use the WKB method to estimate local ground states (Appendix A.2.1). Any local
ground state function decays exponentially with respect to the Agmon distance to its correspond-
ing well (Appendix A.2.2). Consequently, the tunneling effects would decay exponentially with
respect to S0. Having captured theses properties, Appendix A.2.3 can give explicit estimations
about H|F , namely, Proposition A.5, Proposition A.6 (with N+ = N), and Theorem A.1.

Finally, we restate a more formal version of our Main Problem:

Main Problem (restated). Given an objective function f that satisfies Assumption 2.4, 2.5,
and 2.6, starting from one local minimum, find all local minima or find a certain target minimum.

We make the following remarks for clarification:

Remark 2.3. Assumptions in Section 2.2 and Section 2.3 are not contradictory. When considering
SGD, we naturally add to the Main Problem (restated) that the assumptions in Section 2.2 should
also be satisfied.

Remark 2.4. The assumption of starting from one local minimum enables quantum algorithms to
prepare a local ground state, or more generally, a state largely in the aforementioned subspace F .

Remark 2.5. Because finding a precise global minimum is impractical in general, it suffices to
find points sufficiently close to the minima of interest. Later in Section 4.1, we use two different
measures of accuracy: 1. the function value difference; and 2. the distance to one of the minimum.
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3 Quantum Tunneling Walks
In this section, we present full details of the quantum tunneling walk (QTW). We begin with
a one-dimensional example in Section 3.1, and then in Section 3.2 we formally define QTW. In
Section 3.3 and Section 3.4, we study the mixing and hitting time of QTW, respectively. As an
example, we give full details of applying QTW to tensor decomposition in Section 3.5.

3.1 A one-dimensional example
We start the introduction of the quantum algorithm QTW with a one-dimensional example which
quantifies the intuitions provided in Section 1. Section 3.1 also serves as a map connecting each
step of the analysis to the needed mathematical tools. Later sections can be seen as generalizing
results here for high dimensional and multi-well cases. General descriptions and results begin at
Section 3.2.

Consider the potential f(x) in Figure 1, which has two global minima, x± = ±a. For simplicity,
we take

f(x) = 1
2ω

2(x+ a)2, x ≤ −ε, (35)

where ε is a small number. In this way, the potential satisfies that min f = 0, and f(x) is quadratic
near minima. Besides, the symmetry of wells demands f(x) = f(−x). The f(x) for x ∈ [−ε, ε] can
always be made to be smooth.

Near the two minima, ±a, whose local harmonic frequencies are ω, we can solve the Schrödinger
equation locally and get two local ground states, Φ±(x). For instance, around −a, if we set
y = x+ a, the local ground state is determined by

HΦ−(x) = ε0Φ−(x), H = −h2 d2

d2y
+ 1

2ω
2y2, (36)

where ε0 = hω/
√

2. Physically, the demand of localization is equivalent to ε0 � f(0), indicating
that the particle nearly cannot pass through the energy barrier. Concrete mathematical definitions
and discussions on local ground states can be found in Appendix A.2.2.

From a high-level perspective, the main idea of the present paper is to unite the interaction or
tunneling between local ground states to realize algorithmic speedups. As we want to investigate
the evolution of states, we need to determine the relationship between local ground states and the
eigenstates of the Hamiltonian H. We set the eigenstates of H as |n〉 , n = 0, 1, . . . with energies
E0 ≤ E1 ≤ · · · , respectively (i.e., |0〉 is the global ground state, |1〉 is the first excited state, etc.).
The overlap of states Φ± is small (namely, 〈Φ+|Φ−〉 ≈ 0), as they are local and separated by a high
barrier. Denote the subspace spanned by Φ− and Φ+ as E , and that spanned by |0〉 and |1〉 as F .
Both E and F are 2-dimensional and contains states with low energies. It is intuitive that E ≈ F
(which is guaranteed by Proposition A.3). For the one-dimensional case, we just take E = F for
simplicity. In this way, we can represent |0〉 and |1〉 by |Φ±〉 in the following general way:

|0〉 = cos θ |Φ−〉+ sin θ |Φ+〉 , (37)
|1〉 = sin θ |Φ−〉 − cos θ |Φ+〉 . (38)

Restricted in the subspace F , the two-level system Hamiltonian can be written as

H|F =
(

ε− −ν
−ν ε+

)
, under basis {|Φ−〉 , |Φ+〉}, (39)

H|F =
(
E0 0
0 E1

)
, under basis {|0〉 , |1〉}, (40)

where ν is called the tunneling amplitude, measuring the interaction between wells. Because the
f(x) we choose is symmetric, ε− = ε+ = ε0 = hω/

√
2. Therefore, we have θ = π/4 and the energy

gap ∆E := E1 − E0 = 2ν. We will refer to this Hamiltonian restricted in subspace F as the
interaction matrix, indicating that H|F characterizes the interaction between wells.

In our setting, we can begin at a local minimum, where the local ground state is easy to
prepare (see justifications in Appendix B.2). Without loss of generality, let us begin the quantum
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simulation at the state Φ−, namely, setting |Φ(0)〉 = |Φ−〉. After evolution of time t, the state
becomes

|Φ(t)〉 = e−iHt |Φ(0)〉 = 1√
2

(e−iE0t |0〉+e−iE1t |1〉) ∝ cos(∆Et/2) |Φ−〉+ i sin(∆Et/2) |Φ+〉 . (41)

And the probabilities of finding the particle in the right and left wells are give by

P±(t) = | 〈Φ±|Φ(t)〉 |2 = 1∓ cos(∆Et)
2 . (42)

The energy gap ∆E is also called the Rabi oscillation frequency, suggesting that the particle
oscillates between the two wells periodically. Our aim is to pass through the barrier and find other
local minima (for the case here, is to find the other local minimum). Since for small h, the local
state |Φ+〉 distributes in a very convex region near the right local minimum, it suffice to solve our
problem by measuring the position of state |Φ(t)〉 when P+(t) is large. However, we may not be
able to know ∆E precisely in advance. So, we will apply the method of quantum walks: evolving
system for time t which is chosen randomly from [0, τ ], and then measuring the position Childs
et al. (2003). The resulted distribution is

ρQTW(τ, x) ≈ | 〈x|Φ−〉 |2
∫ τ

0
P−(t)dt

τ
+ | 〈x|Φ+〉 |2

∫ τ

0
P+(t)dt

τ
, (43)

where QTW denotes quantum tunneling walk. Define p−→±(τ) =
∫ τ

0 P±(t)dt
τ , which is the prob-

abilities of finding the right and left local ground states, respectively. Since | 〈x|Φ−〉 |2 is small for
x near +a, the probability of finding the particle near +a is determined by∫

right well
ρQTW(τ, x)dx ≈

∫
right well

dx| 〈x|Φ+〉 |2p−→+ ≈ p−→+. (44)

Therefore, it suffice to study properties of p−→±. In the present case,

p−→± = 1
2

(
1∓ sin(∆Eτ)

∆Eτ

)
, (45)

which will converge when τ →∞. This fact ensures that we can find the right local minimum +a
with a probability larger than some constant after evolving the system for enough long time.

Starting from |Φ−〉, the hitting time for the right well is

Thit(Φ+|Φ−) = inf
τ>0

τ

p−→+(τ) . (46)

Since the probability for successful tunneling in one trial is p−→+(τ), we can repeat trials for
1/p−→+(τ) times to secure one success and the total evolution time is τ/p−→+(τ). For sufficiently
small ε � 1, if 1

∆Eτ ≤ ε, we can get p−→+(τ) ≥ 1
2 (1 − ε). Therefore, the hitting time can be

bounded by O( 1
∆Eε ).

As is going to be shown later, if we want to find all local minima, the mixing time would be a
better quantifier. The limiting distribution is

µQTW(x) := lim
τ→∞

ρQTW(τ, x) ≈ | 〈x|Φ−〉 |2p−→− + | 〈x|Φ+〉 |2p−→+. (47)

The mixing time measures how fast the distribution ρQTW(τ, x) converges to µQTW(x). We define
Tmix as the ε-close mixing time which satisfies

Tmix = inf
‖ρQTW(τ,·)−µQTW(·)‖1≤ε

τ. (48)

Because ‖ρQTW(τ, ·)−µQTW(·)‖1 ≤ O( 1
∆Eτ ), we have ‖ρQTW(τ, ·)−µQTW(·)‖1 ≤ ε if τ = Ω( 1

∆Eε ).
Therefore, Tmix could be bounded: Tmix = O( 1

∆Eε ).
For simulating a time-independent Hamiltonian, the number of queries needed are roughly

proportional to the total evolution time (as demonstrated in Section 2.3 or see details in Ap-
pendix B.1). The major task left is to calculate the energy gap ∆E, get different evolution times
and compare them with classical results.
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As is specified in Appendix A.2.3, 0 is the boundary of the two wells and the tunneling amplitude
ν can be given by

ν = h2(Φ−(0)Φ′+(0)− Φ′−(0)Φ+(0)). (49)

To obtain an explicit result, we need to use the WKB approximation of the local ground states
(Appendix A.2.1):

Φ−(x) ≈ 1
h1/4 a0(x)e−

1
h

∫ x
−a

√
f(ξ)dξ

, Φ+(x) = Φ−(−x), (50)

where a0(x) is given by

a0(x) =
(

ω√
2π

)1/4
e
− 1

2

∫ x
−a

( f
′(ξ)

2f(ξ)−
ω√
2f

)dξ
, (51)

which is determined by the transport equation (Eq. (152)) in Appendix A.2.1) and the normaliza-
tion condition. Substituting (50) and (51) to (49), we get

ν = 2

√
hωf(0)√

2π
eC [1 +O(h)]e−

S0
h , (52)

where the constants C and S0 are given by

C =
∫ a

0

( ω√
2f(ξ)

− 1
a− ξ

)
dξ, S0 =

∫ a

−a

√
f(ξ)dξ. (53)

Note that if f(x) is quadratic, the factor C will be zero, indicating that C measures the deviation
of the landscape from being quadratic. The quantity S0 is called the Agmon distance between two
the local minima (see Appendix A.2.2). Since we assumed by (35) that f(x) is almost quadratic,
we have f(0) ≈ 1

2ω
2a2 and

ν ≈ hω

√√
2ωa2

hπ
e−

S0
h . (54)

As discussed above, the mixing time and hitting time could be bounded by the following charac-
teristic time

Tc = 1
∆E = 1

2ν ≈
√
π

2aω
√√

2ωh
e

1
h

∫ a
−a

√
2f(ξ)dξ

. (55)

Next, we need to find how long it takes for SGD to escape from the left local minimum.
Discrete-time SGD with a small learning rate s can be approximated by a learning-rate dependent
stochastic differential equation (lr-dependent SDE) Shi et al. (2020):

dX = −∇f(X)dt+
√
sdW, (56)

whereW is a standard Brownian motion. Before hitting 0, the SDE is almost an Ornstein–Uhlenbeck
process:

dX = −ω2(X + a)dt+
√
sdW. (57)

The expected time for the Ornstein–Uhlenbeck process to first hit 0 is

ET0 ≈
√
πs

aω3 e
2Hf
s , (58)

where Hf is called the Morse saddle barrier and equals to f(0)− f(−a) ≈ 1
2ω

2a2 in our case.
Although ET0 is not a precise classical counterpart of either quantum mixing or hitting time,

it is heuristic to compare ET0 with Tc which can both reflect the time to escape from the left
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well. The forms of ET0 and Tc are very similar. Two major differences can be observed: 1. the
exponential term in ET0 is determined by the height of the barrier, while that in Tc is related to
an integral of

√
f ; 2. Tc ∝ 1/ω3/2 but ET0 ∝ 1/ω3, indicating that the flatness of the wells affects

differently on quantum and classical methods. We will show that for landscapes with multiple
wells, the distribution of wells is also an important factor. In general, QTW could be faster than
SGD if the barriers between local minima are high but thin, each well is close to many other wells,
and wells are flat.

The above comparison is intuitive but not rigorous. Two important technical details for com-
parison are needed for quantitative discussions. It is shown in Section 2.3 that a super-polynomial
separation between evolution time of QTW and SGD gives rise to a super-polynomial separation
between quantum and classical queries for QTW and SGD, respectively. Therefore, it suffice to
compare the evolution time, especially the exponential term eS0/h and e2Hf/s. The second problem
is that h and s are not two constants but variables. The evolution times cannot be quantitatively
compared if h and s are independent. In Section 4.1, we develop two natural standards to make
fair comparisons between QTW and SGD, which specifies h and s.

3.2 Definition of quantum tunneling walks
We now formally describe the model of a quantum tunneling walk (QTW) on a general objective
function f(x) satisfying assumptions in Section 2.3. The wells are denoted by Uj = {xj} (j =
1, . . . , N). Let |j〉 be the corresponding orthonormalized local ground state of Uj . It is ensured
that {|j〉 : j = 1, . . . , N} spans a low energy subspace, F , of the Hamiltonian H = −h2∆ + f(x).

If one has information about one well Uj and its neighborhood, the construction of the local
ground state should be easy which can be close to |j〉 or at least be almost in the subspace F . We
assume the initial state Φ(0) to be in F . The evolution is determined by the Schrödinger equation,

i
d
dt 〈x|Φ(t)〉 = 〈x|H |Φ(t)〉 , (59)

where | 〈x|Φ(t)〉 |2 is the probability distribution of finding the walker at x. The Schrödinger
equation indicates the phenomenon of quantum tunneling since it can be rewritten as

i
d
dt 〈j|Φ(t)〉 =

∑
j′

〈j|H|F |j′〉 〈j′|Φ(t)〉 , for any j = 1, . . . , N, (60)

given that |Φ(0)〉 is in the subspace F . Here, (〈j|H|F |j′〉) is called as the interaction matrix and
is calculated by Proposition A.5 and A.6. Once we get 〈j|Φ(t)〉 and 〈x|j〉 for all j, we can obtain
the probability distribution | 〈x|Φ(t)〉 |2. The overlap 〈x|j〉 is invariant with respect to t. So, we
may focus on (60) to investigate the time evolution.

As is shown by (60), restricted in the low energy subspace F , the quantum evolution is similar
to that of a quantum walk on a graph. The wells correspond to vertices of the graph, and the
quantum tunneling effects between wells determine the graph connectivity. QTW walks among
different wells by quantum tunneling, helping to find all other local minima.

Finally, according to Lemma B.2 in Appendix B.1, the quantum query complexity of simulating
the Schrödinger equation is directly linked to the evolution time t and is bounded by

O

(
‖f‖L∞(Ω)t

log(‖f‖L∞(Ω)t/ε)
log log(‖f‖L∞(Ω)t/ε)

)
, (61)

where Ω is a large region containing all minima of interest and ε is the precision quantified by
the L2 norm between the target and the obtained wave functions. Loosely speaking, we need
Õ(t) quantum queries if the evolution time is t. For SGD, the number of queries needed is at
least Ω(t/s) for time t. Thus, as long as there is a super-polynomial separation between QTW
and SGD evolution time, there is a super-polynomial separation between quantum queries and
classical queries for QTW and SGD, respectively. Conclusions on speedups are essentially based
on comparisons of query complexity. However, based on this relationship between evolution time
and query complexity, we can focus on comparisons of time.
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To sum up, QTW is quantum simulation with the system Hamiltonian being H = −h2∆+f(x)
and the initial state being in a low energy subspace of H, where f(x) is the potential function of
a type of benign landscapes (Assumption 2.4, 2.5, and 2.6). QTW can be efficiently implemented
on quantum computers.

3.3 Mixing time
For a given landscape f(x), the complexity of Hamiltonian simulation mainly depends on the
evolution time (see Appendix B.1). In this section, we focus on the evolution time needed for
fulfilling the tasks of finding all minima. Since quantum evolutions are unitary, different from
SGD, QTW never converges. In this case, after running QTW for some time t, we measure the
position of the walker. Similar to the quantum walks in Childs et al. (2003), the evolution time
t can be chosen uniformly in [0, τ ]. Later, we will prove that under sufficiently large τ , QTW
can find other wells with probability larger than some constant. Note that there can be better
strategies to determine the time for measurement t than uniformly sampling from an interval [0, τ ]
Atia and Chakraborty (2021). For simplicity, we only analyze the original strategy of Childs et al.
(2003) in the present paper.

As is mentioned earlier, we initialize at a state |Φ(0)〉 ∈ F . In later sections, we may specify
|Φ(0)〉 to be one of the local ground states. Let the spectral decomposition of H|F to be H|F =∑N
k=1Ek |Ek〉 〈Ek|. Simulating the system for a time t chosen uniformly in [0, τ ], one can obtain

the probability density of finding the walker at x4

ρQTW(τ, x) := 1
τ

∫ τ

0
dt|〈x|e−iH|F t |Φ(0)〉 |2

=
∑

Ek=Ek′

〈x|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |x〉

+
∑

Ek 6=Ek′

1− e−i(Ek−Ek′ )τ

i(Ek − Ek′)τ
〈x|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |x〉. (62)

The time-averaged probability density leads to a limiting distribution when τ →∞:

µQTW :=
∑

Ek=Ek′

〈x|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |x〉. (63)

With the strategy of measuring at t randomly chosen from [0, τ ], QTW can output a distribution
ρQTW(τ, x) with limit. Such a process is regarded as mixing. Quantum mixing time evaluates how
fast ρQTW(τ, x) converges to µQTW(x), and is rigorously defined as:

Definition 3.1 (Mixing time of QTW). Tmix is called the ε-close mixing time, iff for any τ ≥ Tmix,
we have

‖ρQTW(τ, ·)− µQTW(·)‖1 ≤ ε. (64)

The following lemma provides a general bound for the QTW mixing time whose proof is post-
poned to Appendix C.1.1.

Lemma 3.1 (Upper bound for QTW mixing time). The condition (64) can be satisfied if

τ ≥ 2
ε

∑
Ek 6=Ek′

| 〈Ek|Φ(0)〉 〈Φ(0)|Ek′〉 |
|Ek − Ek′ |

[1 + (N − 1)|O(h∞)|], (65)

and this implies

Tmix = O

(
1
ε

∑
Ek 6=Ek′

| 〈Ek|Φ(0)〉 〈Φ(0)|Ek′〉 |
|Ek − Ek′ |

[1 + (N − 1)|O(h∞)|]
)

≤ O
(

N

ε∆E [1 + (N − 1)|O(h∞)|]
)
, (66)

4The distribution ρQTW(τ, x) depends on the initial state |Φ(0)〉. A more rigorous notation is ρQTW(τ, x|Φ(0)).
When there is no confusion, we omit the initial state for simplicity.
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where ∆E := minEk 6=Ek′ |Ek − Ek′ | is referred to as the minimal gap of H|F .
The term O(h∞) in (66) originates from integrals

∫
| 〈x|j〉 〈j′|x〉 |dx, j 6= j′. Intuitively, states

|j〉 and |j′〉 localize in different wells, such that 〈x|j〉 〈j′|x〉 is exponentially small with respect to
h for any x. Lemma 3.1 highlights the dependence of the mixing time on the initial state |Φ(0)〉
and the eigenvalue gaps of H|F . Concrete examples will be given in Section 4, where we further
illustrate (66) and compare QTW with SGD.

As is mentioned, (60) indicates a quantum walk: a well Uj can be seen as a vertex of a graph
and H|F implies graph connectivity (interaction between wells) similar to the graph Laplacian.
The connection between QTW and quantum walks is helpful to simplify the physical picture of
QTW. However, we also address the difference between quantum walks and QTW. For quantum
walks, we only consider the probabilities of finding the walker at vertices, that is,5

p(τ, j) := 1
τ

∫ τ

0
dt|〈j|e−iH|F t|Φ(0)〉|2

=
∑

Ek=Ek′

〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉

+
∑

Ek 6=Ek′

1− e−i(Ek−Ek′ )τ

i(Ek − Ek′)τ
〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉. (67)

When τ →∞, p(τ, j) also converges to a limit

p(∞, j) :=
∑

Ek=Ek′

〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉. (68)

Following results, Lemma 3.2 and Lemma 3.3, show the connection and difference between QTW
and quantum walks in a more quantitative way (detailed proofs can be found in Appendix C.1.2
and Appendix C.1.3).

Lemma 3.2 (Limit distributions). Limit distributions of the QTW and the quantum walk satisfy
the following:

µQTW(x) =
∑
j

p(∞, j)|〈x|j〉|2 +O(h∞). (69)

Definition 3.2 (Mixing time of quantum walks Chakraborty et al. (2020)). tmix is called the
ε-close mixing time of the quantum walk, iff for any τ ≥ tmix,

N∑
j=1
|p(τ, j)− p(∞, j)| ≤ ε. (70)

Lemma 3.3 (Upper bound for the mixing time of quantum walks). The condition (70) is satisfied
if

τ ≥ 2
ε

∑
Ek 6=Ek′

| 〈Ek|Φ(0)〉 〈Φ(0)|Ek′〉 |
|Ek − Ek′ |

, (71)

and we have

tmix = O

(
1
ε

∑
Ek 6=Ek′

| 〈Ek|Φ(0)〉 〈Φ(0)|Ek′〉 |
|Ek − Ek′ |

)
≤ O

(
N

ε∆E

)
. (72)

By Lemma 3.2 and the comparison of Lemma 3.1 and Lemma 3.3, we know that for sufficiently
small h, which indicates that local ground states localize sufficiently near their respective wells,
QTW can be well characterized by a quantum walk. On a higher level of speaking, QTW generalizes
quantum walks from walking on discrete graphs to propagating on continuous functions. And QTW
may enable new phenomenons not shown in quantum walks when states |j〉 are poorly localized
near Uj . On the other hand, QTW under proper conditions can be used to implement quantum
walks.

5Similar to ρ(τ, x), the probability p(τ, j) depends on the initial state |Φ(0)〉 and a more rigorous notation is
p(τ, j|Φ(0)). When there is no confusion, we omit the initial state for simplicity.
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3.4 Hitting time
If we aim at finding one particular well (the one with global minimum or the one with the best
generalization properties), hitting time instead of mixing time should be of interest. Classically,
the hitting time is the expected time required to find some target region or point. For quantum
algorithms, we cannot output the position of the walker at all times and the system state would
be destroyed by measuring its position. Thus, the definition of the hitting time for quantum
algorithms is slightly different. We first see how previous literature defines the quantum walk
hitting time:

Definition 3.3 (Hitting time for quantum walks Atia and Chakraborty (2021)). Consider a quan-
tum walk governed by (60). Let the state |j〉 be the one of interest. Then, starting from the initial
state |Φ(0)〉, the hitting time of the quantum walk is defined as follows:

thit(j) := inf
τ>0

τ

p(τ, j) . (73)

To understand this definition, we first refer to the process, evolving the system for time t
uniformly chosen from [0, τ ], as one trial. Using one trial, the probability of getting |j〉 is p(τ, j).
So, repeating the trials for 1/p(τ, j) times guarantees to hit |j〉 with high probability. In this case,
the total evolution time needed is bounded by τ/p(τ, j). In the same spirit, we can define and
bound the QTW hitting time as follows:

Definition 3.4 (Hitting time of QTW). For QTW governed by (60), let the open and C2-bounded
region Ω be the region of interest. Then, starting from the initial state |Φ(0)〉, the Ω-hitting time
of QTW is defined as follows:

Thit(Ω) := inf
τ>0

τ∫
Ω ρQTW(τ, x)dx

. (74)

Basic results about the hitting time (Lemma 3.4 and Lemma 3.5) are present as follows. The
proof of Lemma 3.5 is in Appendix C.2.1 and that of Lemma 3.5 is in Appendix C.2.2.

Lemma 3.4 (Upper bound of the quantum walk hitting time). The probability of finding |j〉 can
be bounded as follows

p(τ, j) ≥ p(∞, j)−
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉|

≥ p(∞, j)− 2
∆Eτ . (75)

As a result, for any ε < p(∞, j), setting τε = 2/∆Eε, we have

thit(j) ≤
τε

p(τε, j)
⇒ thit(j) = O

(
1/∆Eε

p(∞, j)− ε

)
. (76)

If ε in (76) is small enough, τε = 2/∆Eε permits a good mixing and we may write

thit(j) = O

(
1

p(∞, j)∆Eε

)
, (77)

which suggests we are using the mixing time to bound the hitting time.

Lemma 3.5 (Upper bound of the QTW hitting time). Consider an bounded open set Ωj containing
only one well Uj,6 we have∫

Ωj
ρQTW(τ, x)dx ≥

∫
Ωj
µQTW(x)dx− 2

∆Eτ (1 + |O(h∞)|)

= p(∞, j) +O(h∞)− 2
∆Eτ (1 + |O(h∞)|). (78)

6To be rigorous, satisfy (213) in Appendix A.2.3.
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For any ε <
∫

Ωj µQTW(x)dx, let τε = 2(1 + |O(h∞)|)/∆Eε, we have

Thit(Ωj) ≤
τε∫

Ωj ρQTW(τε, x)dx
⇒ Thit(Ωj) = O

(
1

∆Eε
1 + |O(h∞)|∫

Ωj µQTW(x)dx− ε

)
. (79)

The upper bounds we have obtained on mixing and hitting time are still not explicit, as H|F
is not given. Next, we establish relationships between an objective landscape, the corresponding
interaction matrix H|F , and the time cost of the QTW algorithm. This is a main task of the
present paper. In later sections, we figure out major geometric properties that affect H|F on
specific landscapes.

3.5 Application: Tensor decomposition
After giving the definition of QTW and studying its mixing and hitting time, now we use QTW to
solve a practical problem, orthogonal tensor decomposition, which is a central problem in learning
many latent variable models Anandkumar et al. (2014). Specifically, we consider a fourth-order
tensor T ∈ Rd4

that has orthogonal decomposition:

T =
d∑
i=1

a⊗4
j , (80)

where the components {aj} form an orthonormal basis of a d-dimensional space (a>j aj = δij). The
goal of orthogonal tensor decomposition is to find all components {aj}.

Following previous popular methods Comon et al. (2009); Hyvarinen (1999), we try to find all
components by a single optimization problem. Concretely, we consider the following landscape
Frieze et al. (1996):7

f(u) = 1− T (u, u, u, u) = 1−
d∑
i=1

(u>aj)4, ‖u‖22 = 1. (81)

Without loss of generality, we work in the coordinate system specified by {aj}dj=1. In particular,
let u =

∑d
j xjaj and x = (x1, . . . , xd), we obtain f(x) = 1 −

∑d
i=1 x

4
i . Later, we also use aj to

denote the vector (0, . . . , 1, . . . , 0) where the only nonzero coordinate with value 1 appears in the
jth entry. f(x) has 2d local minima ±a1, . . .±ad uniformly distributed on the d-dimensional sphere
Sd−1.8 Therefore, finding all the minima solves the orthogonal tensor decomposition problem.

The problem of tensor decomposition has notable symmetries. As a result, the objective func-
tion f (81) is nonconvex, and we can apply QTW to such a landscape. We can use the pair
α = (j, πα) to denote the local minima and corresponding wells, where j = j(α) (i.e. j(·) is a func-
tion) refers to aj and πα ∈ {±1} specifies whether it is +aj or −aj . Figure 4 shows the landscape
f for d = 3, where some minima are labeled. The local ground state of the well (j, πα) is denoted
by |j, πα〉. In the basis {|1,+〉, . . . , |d,+〉, |1,−〉, . . . , |d,−〉} which spans a low-energy subspace F ,
the interaction matrix modulus an exponential error has the form

H|F =



µ w · · · w 0 w · · · w

w µ
. . .

... w 0
. . .

...
...

. . . . . . w
...

. . . . . . w
w · · · w µ w · · · w 0
0 w · · · w µ w · · · w

w 0
. . .

... w µ
. . .

...
...

. . . . . . w
...

. . . . . . w
w · · · w 0 w · · · w µ


. (82)

7The original objective function used in previous papers including Frieze et al. (1996) is T (u, u, u, u). The function
in (81) is designed such that min f = 0.

8Here, we need to consider quantum simulation on the manifold Sd−1 which should cost the same quantum
queries as quantum simulation on Rd under the same evolution time (see discussions in Appendix B.1).
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Figure 4: The landscape given by (81) for dimension d = 3: local minima a1, a2, and −a3 are highlighted by
red points (•) and corresponding labels α = (j(α), πα) are shown.

Here the quantity µ stands for the energy of local ground states, and w is the tunneling amplitude
quantifying the interactions between wells. To understand (82), for any j, imagine a sphere where
(j,+) is the north pole and (j,−) the south pole, then for j′ 6= j, (j′,±) are evenly distributed
on the equator. The energy of all local ground states are the same because of the symmetry. So,
diagonal elements of H|F are all µ. The interactions between (j,+) and (j′,±) for all j′ 6= j should
be the same as well. However, the interaction between (j,+) and (j,−) is exponentially weaker
due to the longer distance between (j,+) and (j,−). As a result, we write 〈j,+|H|F |j,−〉 = 0
modulus an exponential error and all other off-diagonal elements as w.

As is demonstrated in previous sections, the time cost of QTW highly depends on spectral
gaps of H|F . The following lemma studies eigenstates and eigenvalues of H|F (see proof in Ap-
pendix C.3.1).

Lemma 3.6. The eigenstates and corresponding eigenvalues of H|F in (82) are given by

|Ek〉 = 1√
2d

∑
j

ei
2π
d kj(|j,+〉+ |j,−〉), k = 1, . . . , d (83)

|Ek〉 = 1√
2

(|k − d,+〉 − |k − d,−〉), k = d+ 1, . . . , 2d (84)

where

Ek = µ− 2w, k = 1, . . . , d− 1 (85)
Ed = µ+ 2w(d− 1), (86)
Ek = µ, k = d+ 1, . . . , 2d. (87)

Evolving the system for at least the mixing time, the measured results would be subject to the
limit distribution µQTW. Since µQTW would concentrate near all minima, we are able to find all
components. Combined with results of Section 3.3, we can get the mixing time of the QTW as
follows (the proof is postponed to Appendix C.3.2):

Lemma 3.7. For the landscape (81), starting from a local ground state |α〉, the distribution
ρQTW(τ, x) converges to the limiting distribution µQTW obeying the following relation:

‖ρQTW − µQTW‖L1(Sd−1) ≤
1
|w|τ

(Θ(1/2) +O(h∞)). (88)

The ε-close mixing time is subsequently bounded as

Tmix = O

(
1
|w|ε

(1 +O(h∞))
)
. (89)
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To determine the total evolution time for finding all components {aj} (i.e., all global minima),
we need to calculate

∫
Ωβ µQTWdx, where Ωβ is an open set containing the minimum β. According

to Lemma 3.5,
∫

Ωβ µQTWdx is the probability of finding the particle in a neighborhood of πβaj(β)

and can be captured by the probability of finding the system at the state |β〉. Starting from a
local state |α〉, the probability of hitting |β〉 is given by the following lemma and the proof can be
found in Appendix C.3.3.

Lemma 3.8. Initiating at a local state |α〉 where α = (j(α), πα), after simulating for a time t which
is chosen uniformly from [0, τ ], τ → ∞, the limiting distribution represented by the probability of
tunneling to a local state |β〉 is given by

p(∞, β|α) =
{ 1

2d2 , j(α) 6= j(β),
1
2 −

(d−1)
2d2 , j(α) = j(β).

(90)

Note that the two minima ±aj are equivalent, representing one component. Thus, starting from
|α〉, we are able to find a component different from ±aj(α) if the measured result is in a well β where
j(β) 6= j(α). We can define the probability for a successful trial as psuc =

∑
j(β)6=j(α) p(∞, β|α) =

d−1
d2 . That is, evolving for time Tmix as described by Lemma 3.7, we are able to approximately
sample from the limiting distribution µQTW and then get to another component with probability
near psuc. The number of trials needed for finding another component is approximately 1/psuc.
And the time needed for finding another component from a known component is approximately
Tmix/psuc. Repeating the procedure of looking for one component that is different from a known
one, we can obtain all orthogonal components with total time9

Ttot = O(d log d)Tmix/psuc = Õ(d2) 1
ε|w|

. (91)

To determine the time specifically, it remains to determine 1/|w| which depends exponentially on
d and h. We can obtain:

Lemma 3.9. For sufficiently small h, the tunneling amplitude w in the interaction matrix (82)
satisfies

w = −
√
h(C1C

d−1
2 +O(h))e−

√
2

2h , (92)

where C1 and C2 are constants depending only on the landscape and are independent of the dimen-
sion d.

The proof of Lemma 3.9 is in Appendix C.3.4. It is intuitive to see from Lemma 3.9 that the
smaller h is, the longer time it takes to find all components. However, small h permits more accurate
measurement results. A successful tunneling means we can find a point near a new component,
but this point may not be the actual minimum. We add a constraint that the expected risk is δ
(i.e., Ex∼µQTWf(x) − min f = δ). Subsequently, h can be bounded using δ and we can have the
following proposition:

Proposition 3.1. For sufficiently small ε (such that the measured positions nearly obey µQTW)
and sufficiently small expected risk δ (such that h can be estimated by δ and Lemma 3.9 is valid),
we have h =

√
2δ/(d− 1 + oδ(1)) and the total time for finding all orthogonal components of T in

(80) by QTW satisfies

Ttot = O(poly(1/δ, ed, 1/ε))e
(d−1)+oδ(1)

2δ . (93)

Remark 3.1. The strategy we adopt here, which is equivalent to repeating sampling from µQTW,
is straightforward but may not be the optimal one under the framework of QTW. In other words,
Proposition 3.1 provides a general upper bound on the total evolution time needed. However, the
term e

√
2

2h which gives the term e
d−1
2δ +oδ(1) in (93) describes essential difficulty for tunneling through

a barrier and would not disappear as long as we use quantum tunneling.

9The term O(d log d) appears because our procedure is equivalent to the Coupon Collector’s Problem.
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To sum up, we provide a scenario that QTW can be used to solve orthogonal tensor decompo-
sition problems. For a practical landscape, the spectrum of the interaction matrix and the mixing
time of QTW is explicitly calculated. Running QTW for some time (bounded by the mixing time)
repeatedly, we can sample points from a distribution near the limiting distribution and find all
tensor components, and an upper bound on the total running time for QTW is derived.

4 Comparison Between Quantum Tunneling Walks and Classical Algo-
rithms

In this section, we use comparisons between QTW and SGD to explain the advantages of quantum
tunneling, resulting in our Main Message. Because of distinctions between quantum and classical
algorithms, preparations (i.e., standards for comparisons) in Section 4.1 are needed before specific
comparisons in Section 4.2. Having such general understanding of QTW, in Section 4.3, we further
make use of the fact that quantum evolution is essentially global but classical algorithms rely on
local queries, so that a hitting problem cannot be solved efficiently by classical algorithms can be
tackled by QTW within polynomial queries when given reasonable initial states.

4.1 Criteria of fair comparison
Through out Section 4, we adopt assumptions in both Section 2.2 and Section 2.3 for the objective
landscape f(x) of interest. We still use Uj = {xj} (j = 1, . . . , N) to denote the wells and |j〉 the
corresponding orthonormalized local ground states. The interaction matrix is H|F , where H =
−h2∆ + f(x) is the Hamiltonian and F the low energy subspace spanned by {|j〉 : j = 1, . . . , N}.

As shown in Section 3.1, the hitting time of SGD is determined by the landscape and an
adjustable learning rate s. Similarly, we can also adjust h in Hamiltonian simulation. Therefore,
we need to determine the relationship between h and s for the comparison between the time cost
of QTW and SGD.

Note that both QTW and SGD have limit distributions, namely, µQTW and µSGD, respectively
(see Section 2.2 and Lemma 3.2 for details). If h (or s) becomes smaller, µQTW (µSGD) will
concentrate more closely to global minima, giving more accurate outputs, whereas it would take
more time for the QTW (SGD) to converge. Comparing the running time without specifying
accuracy is not fair.

In order to establish an relationship between h and s, as well as to compare QTW and SGD
fairly, we specify some kind of accuracy of the limit distributions. The two variables, h and s,
will be solved from the demand of accuracy. Hence, the time cost of different algorithms are only
related to the accuracy, the dimension, and some geometric properties of the landscapes.

There are different measures of accuracy we can choose depending on the tasks faced. Here,
we introduce two kinds of measures along with the corresponding standards of comparison.

Standard 4.1 (Risk accuracy). Let µQTW be the limit distribution of QTW, and µSGD the invari-
ant Gibbs distribution of SGD. Two distributions are demanded to be δ-risk-accurate:

Ex∼µQTWf(x)−min f = Ex∼µSGDf(x)−min f = δ. (94)

Standard 4.1 ensures that two limit distributions yield the same expected risk. Then, it is natu-
ral to compare how fast QTW and SGD would converge. The algorithm spending less time is more
efficient on finding any one global minimum. Sometimes, the task is to find some target minima
or one special minimum. In this case, using risk accuracy cannot emphasize the particularity of
the minima of interest and we may need the following standard:

Standard 4.2 (Distance accuracy). Let µQTW be the limit distribution of QTW, and µSGD be
the invariant Gibbs distribution of SGD. The minima of interest are xjk , k = 1, . . . ,m, jk ∈
{1, . . . , N}. Let D(·, ·) be any distance function. Two distributions are demanded to be δ-distance-
accurate with respect to xjk and D(·, ·):

Ex∼µQTW

∑
k

D(x, xjk) = Ex∼µSGD

∑
k

D(x, xjk) = δ. (95)
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Conditions (94) and (95) can specify h and s. To see this, we first study the expected risk for
quadratic functions:

Lemma 4.1. Assume the objective function f : Rd → R is quadratic and

f(0) = 0, ∇f(0) = 0, ∇2f(0) > 0, (96)

where the last inequality means the Hessian ∇2f(0) is positive definite. Then, we have

Ex∼µQTWf(x) =
√

2h
4 tr

√
∇2f(0), Ex∼µSGDf(x) = sd

4 . (97)

Lemma 4.1 calculates the expected risks for a landscape with only one minimum whose proof
is in Appendix D.1.1. For landscapes with multiple minima, the limit distributions concentrate
near the global minima and the objective function in a small neighborhood of any minimum can
be approximated by a quadratic function based on the assumptions. Hence, we can obtain the
following general estimations (the proof is postponed to Appendix D.1.2).

Lemma 4.2. If δ is sufficiently small and the objective function f : Rd → R satisfies assumptions
in Section 2.2 and Section 2.3, then Standard 4.1 gives

h = δ
√

2
4
∑N
j=1 p(∞, j)tr

(√
∇2f(xj)

)
+ oδ(1)

, (98)

s = δ
d
4 (1 + oδ(1))

. (99)

That is, we establish a relationship between h and s by Standard 4.1. Similarly, for Standard 4.2,
we can have the following result:

Lemma 4.3. Assume the objective function f : Rd → R is quadratic and

f(0) = 0, ∇f(0) = 0, ∇2f(0) > 0, (100)

where the last inequality means the Hessian ∇2f(0) is positive definite. We choose the distance
function D(x, y) := ‖x− y‖22, ∀x, y ∈ Rd. Then, we have

Ex∼µQTWD(x, 0) =
√

2h
2 tr(∇2f(0))−1/2; (101)

Ex∼µSGDD(x, 0) = s

2tr(∇2f(0))−1. (102)

The proof of Lemma 4.3 is shown in Appendix D.1.3. Similar to the process from Lemma 4.1
to Lemma 4.2, Lemma 4.3 may be generalized to general landscapes. However, the generalization
of Lemma 4.3 is quite complicated as the distance function and the wells of interest are arbitrary.
So, we stop at Lemma 4.3. Regardless of different standards, Lemma 4.2 and Lemma 4.3 present
some similar intuition: the dependence of h on the flatness of wells are different from that of s,
which is going to be shown in the following section as a source of quantum speedups.10

4.2 Illustrating advantages of quantum tunneling
In this subsection, we compare QTW with SGD for several special landscapes. The goal is to
explore geometric properties of the landscapes that affect relative efficiencies of QTW and SGD.
Heuristically, the comparison reveals when quantum tunneling can be faster than thermal climbing
(climbing over barriers between minima by stochastic motions), which are the two mechanisms
behind QTW and many classical algorithms.

For simplicity, we focus on the following kind of landscapes:

Definition 4.1 (One-dimensional partially periodic functions). A function f : R→ R is partially
periodic if it satisfies the assumptions in Section 2.2 and Section 2.3, and all minima {xj : j =
1, . . . , N} are in a bounded interval which is a period of f .
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Figure 5: A one-dimensional partially periodic function.

A sketch of functions in Definition 4.1 is shown in Figure 5. Neglect an exponentially small
error and note the symmetry of the one-dimensional partially periodic function f , the interaction
matrix under {|j〉 : j = 1, . . . , N} should be given by

H|F =



µ w
w µ w

w µ w
. . . . . . . . .

w µ w
w µ


, (103)

where µ is the energy of one local ground state and w quantifies the tunneling effect between two
adjacent wells. Eigenstates and eigenvalues of H|F can be given by the following lemma.

Lemma 4.4. The eigenstates and corresponding eigenvalues of the Hamiltonian (103) are given
by

|Ek〉 =
√

2
N + 1

N∑
j=1

sin
( jkπ

N + 1
)
|j〉 , k = 1, 2, . . . , N ; (104)

Ek = µ+ 2w cos kπ

N + 1 , k = 1, 2, . . . , N. (105)

To describe w in detail, as shown in Figure 5, we introduce new notations {x•j : j = 1, . . . , N}
and {x◦j : j = 1, . . . , N − 1} to denote minima and saddle points, respectively. A more general
labeling of local minima and saddle points can be found in Appendix A.1. The Morse saddle barrier
reflecting height of the barrier in the present case can be given by Hf = f(x◦1)− f(x•1).

Using results in Appendix A.2.3, we have:

Lemma 4.5 (Tunneling amplitude). The tunneling amplitude for the one-dimensional partially
periodic function f is given by

w = −2

√
hf ′′(x•1)Hf√

2π
e

∫ x◦1
x•1

(
√

f′′(x•1)
2f(ξ) −

1
ξ−x•1

)dξ
e−

S0
h , where S0 =

∫ x•2

x•1

√
f(ξ)dξ. (106)

Now, we can obtain the spectrum of H|F explicitly, and proceed by using Lemma 3.1 to get
the quantum mixing time.

Lemma 4.6 (Quantum mixing time). Staring from one local ground state of one minimum, the
ε-close mixing time of QTW is given by

TQTW
mix = O

(
N3

ε|w|
[1 + (N − 1)|O(h∞)|]

)
= O(poly(N, 1/h, 1/ε))e

S0
h . (107)

10Here, we use the Hessian matrix of f at minima to quantify the concept “flatness".

Accepted in Quantum 2023-05-12, click title to verify. Published under CC-BY 4.0. 24



-5 -3 -1 1 3 5 7

x

0

0.2

0.4

0.6

0.8

f(
x

)

Example 1

Example 2

Example 3

Figure 6: The landscapes in Example 4.1, Example 4.2, and Example 4.3 (corresponding to Example 1, 2, and
3 in the figure, respectively) for illustrating the comparison between QTW and SGD.

Regarding SGD, we use the results introduced in Section 2.2 to estimate the classical mixing
time. First,

Lemma 4.7 (Exponential decay constant). In Proposition 2.1, let λ = δs,1/2s we have

λ =
(√

f ′′(x◦)f ′′(x•)
2π + o(s)

)
e−

2Hf
s . (108)

Then, by Corollary 2.1, the following lemma holds.

Lemma 4.8 (Classical mixing time). Let T SGD
mix be the SGD ε-close mixing time which is the

minimum time enabling ‖ρSGD(t, ·)− µSGD‖µ−1
SGD

< ε, we have

T SGD
mix = O

(
1
λ

ln
‖ρ(0, ·)− µSGD(·)‖µ−1

SGD

ε

)
= O(poly(1/s, ln(1/ε)))e

2Hf
s . (109)

Later, we do not focus on the dependence of the mixing time on ε, as the norms (L1 norm for
QTW and L2(µ−1

SGD) for SGD) used to capture convergence are different.11 The dominant terms

affecting running time of QTW and SGD are e
S0
h and e

2Hf
s .

Lemma 4.9 (Comparison on one-dimensional periodic landscapes). Under Standard 4.1, let QTW
and SGD be both δ-accurate. For sufficiently small δ, the QTW mixing time and SGD mixing time
are dominated by

LTQTW
mix := e

√
2S0f′′(x•)

4δ and LT SGD
mix := e

Hf
2δ , respectively. (110)

As concrete examples, we present several specific functions to illustrate the advantages of quan-
tum tunneling. Since the function in the region of our interest is periodic, we only need to specify
the function value within one period to construct a concrete example. Without loss of generality,
we set the interval [−a, a+2b] to be one period, where [−a, a] is called the well region and [a, a+2b]
the barrier region. The constructed landscape in [−a, a+ 2b] is given by

f(x) =
{ 1

2kx
2 x ∈ [−a, a],

1
2πσ2 exp

(
− (x−a−b)2

σ2

)
+ 1

2ka
2 − ε x ∈ (a, a+ 2b].

(111)

Here, to reduce free parameters, we make f(x) differentiable at a, the boundary of the well, and
the barrier, such that

b = σ

√
ln 1

2πσ2ε
, k = 2ε

aσ

√
ln 1

2πσ2ε
. (112)

11In terms of ε, the same argument in Atia and Chakraborty (2021) but with evolution time t of QTW chosen as a
sum of some random variables instead of chosen uniformly in an interval, TQTW

mix can also achieve ln(1/ε) dependence
instead of 1/ε.
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Remark 4.1. Note that the function in (111) is not smooth. We need to use the mollifier function
mr (see detials in Appendix D.3) to smooth it such that assumptions in Section 2.2 and Section 2.3
are satisfied. Note that if r → 0, the smoothed function will tend to be f , following results can be
seen as arbitrarily accurate for a smooth function arbitrarily close to (111).

By giving specific a, σ, and ε in (111), we can design landscapes with different properties.
Detailed variables, discussions and comparisons are given below.

Example 4.1 (Critical case). For (111), we set a = 5.0, σ = 1.0 and ε = 0.15, and obtain
b ≈ 0.243 and k ≈ 0.0146 by (112).

Example 4.2 (Flatness of minima). For (111), we set a = 5.0, σ = 1.0 and ε = 0.009, and obtain
b ≈ 1.69 and k ≈ 0.00610 by (112).

Example 4.3 (Sharpness of barriers). For (111), we set a = 5.0, σ = 0.5 and ε = 0.0088, and
obtain b ≈ 1.03 and k ≈ 0.0146 by (112).

Figure 6 explicitly shows the shapes of above examples. The barrier region in Example 4.1 is
small and most of the function in one period is quadratic, which is similar to the case introduced
in Section 3.1. The Morse saddle barrier Hf of Example 4.2 is approximately equal to that of
Example 4.1, whereas, in Example 4.2, the well is more flat and the barrier is thicker. Example 4.3
has almost the same well as Example 4.1 but is equipped with a much higher barrier.

We call Example 4.1 as the critical case because QTW and SGD perform nearly the same on
it in terms of the leading terms LTQTW

mix and LT SGD
mix :

Lemma 4.10. Example 4.1 satisfies b� a and 1
2ka

2 ≈ Hf . For such a landscape, we have

lnLTQTW
mix = Hf

2δ [1 + 2b/a+ o(b/a)] + o(δ), (113)

lnLT SGD
mix = Hf

2δ (1 + o(δ)). (114)

QTW mixes faster on both Example 4.2 and Example 4.3 for sufficiently small δ. Specifically,
we have

Lemma 4.11. For Example 4.2 and Example 4.3, the following holds

lnLTQTW
mix <

k

4δ a
2 + k

2δ ab+
√

2k
4δ + o(δ), (115)

lnLT SGD
mix = 1

4πσ2δ
+ k

4δ a
2 − ε

2δ + o(δ). (116)

Substituting the parameters, it is true for both Example 4.2 and Example 4.3 that

k

4a
2 + k

2ab+
√

2k
4 <

1
4πσ2 + k

4a
2 − ε

2 . (117)

Comparing to the critical case Example 4.1, Example 4.2 has a thicker barrier, which increases
S0 and causes difficulty for QTW. However, QTW can perform better in Example 4.2. This is
mainly due to the more flat well of Example 4.2. Recall that by Standard 4.1, to ensure δ-risk-
accuracy, h and s should be

h = δ
√

2k
4 + oδ(1)

and s = δ
1
4 (1 + oδ(1))

, (118)

respectively. That is, under the same risk accuracy, h can be much larger than s if the well is
flat (k is small), making tunneling easier. Note that there is a trade-off between accuracy and
time cost: smaller h (or s) ensures high accuracy but make tunneling effects (or thermal diffusion)
weaker; conversely, larger h (or s) permits faster tunneling (or diffusion) but yields inaccurate
results. Discussions on quantum tunneling effects usually focus on properties of the barrier. In the
present study, since we aim to find global minima, the precision of results obtained is one important
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concern. Therefore, the flatness of wells, which affects differently on the accuracy of QTW and
SGD, is a crucial property determining the runtime of QTW and SGD. Loosely speaking, QTW
is faster than SGD on landscapes with flat wells.

Example 4.3 adheres to the intuition that quantum tunneling is efficient on functions with
tall and thin barriers. The wells of Example 4.3 are almost the same as those of the critical
case Example 4.1. QTW can be faster in Example 4.3 because we add a sharp barrier between
wells. By Lemma 4.8, a high barrier (i.e., large Hf ) would significantly hinder thermal climbing.
However, the tall barrier is sufficiently thin, such that S0 = 2

∫ a+b
0

√
f(x)dx can still be small and

by Lemma 4.6, the tunneling effect would be strong.
Moreover, in high dimensions, the distribution of wells can be very different from being on a

line. As shown in Appendix D.4, distribution of wells can largely affect the dependence of time
on N . However, such relation between the distribution of wells and running time is not explicitly
shown for SGD. Therefore, the distribution of wells can also be a factor of quantum speedups.

In summary, we can conclude our Main Message.

4.3 Efficient quantum tunneling for solving a classically difficult hitting problem
The above examples compare QTW driven by quantum tunneling with SGD. In this section, an
exponential separation in terms of query complexity between QTW given initial states and classical
algorithms knowing one well will be shown for a specific hitting problem on a constructed landscape.

The landscape f(x) we construct lives in Rd. We use ‖ · ‖ to denote the `2 norm of vectors,
namely, ‖x‖ =

√
x · x. Let B(x, r) denote a d-dimensional ball centered at x with radius r. A

special direction v is randomly chosen from the d-dimensional unit sphere. We define two regions
W− = B(0, a) and W+ = B(2bv, a) with b ≥ a. Let R be sufficiently large s.t. W−,W+ ⊂ B(0, R).
We denote the region {x | x ∈ B(0, R), |x ·v| ≤ w} by Sv, where w will be chosen from [

√
3a/2, 0).

We denote

Bv := {x | w < x · v < 2b− w,
√
‖x‖2 − (x · v)2 <

√
a2 − w2,x /∈W− ∪W+}. (119)

Figure 3 illustrates positions of the newly defined regions. The constructed function f is given by

f(x) =


1
2ω

2‖x‖2, x ∈W−,
1
2ω

2‖x− 2bv‖2, x ∈W+,

H1, x ∈ Bv,

H2, otherwise.

(120)

Here, we define H0 = 1
2ω

2a2 and demand that 0 < H0 ∼ H1 � H2.

Remark 4.2. The landscape f in (120) is not smooth and should be smoothed to be Fr with the
help of a mollifier function mr (see details in Appendix D.3) such that assumptions in Section 2.3
can be satisfied. Because when r → 0, Fr → fr, we can always find sufficiently small r to make
the following conclusions based on f valid for Fr.

There are two global minima, 0 and 2bv, of the function f . Given that we know 0 is a
minimum, our goal is to find the other one. To avoid complicated justifications, we deal with a
simpler problem:

Problem 4.1. For the f in (120), given that we only know 0 is a global minimum, find any point
in W+.

4.3.1 Classical lower bound

Due to the concentration of measure, for any point x ∈ B(0, R), the probability of x ∈ Sv is given
by

P (x ∈ Sv) ≥ 1−O
(
e−

dw2
2R2
)
. (121)
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Figure 7: Estimating the area of a spherical cap.

Intuitively, restricted in B(0, R), any classical algorithm cannot escape from Sv efficiently. In Rd,
queries out of B(0, R) provide no information about the landscape inside B(0, R) and are unable
to help to escape from Sv. Therefore, classical algorithms cannot solve Problem 4.1 efficiently with
or without being constrained in B(0, R). To rigorously prove above intuitions, we first introduce a
mathematical result indicating (121):

Lemma 4.12 (Measure concentration for the sphere). Let Sd−1 = {x : ‖x‖ = 1} be the unit
sphere in Rd. Let Cap(ε) denote the spherical cap of height ε above the origin (see the left part of
Figure 7). We have

Area(Cap(ε))
Area(Sd−1) ≤ e

−dε2/2. (122)

The estimation details are presented in Appendix D.2.1. Subsequently, it is readily to have (see
details in Appendix D.2.2):

Lemma 4.13. For any randomly chosen point x ∈ B(0, R), the probability of x /∈ Sv is P (x /∈
Sv) ≤ 2e−

dw2
2R2 .

Recall that w ∈ [a/2, a) and R are independent of d, the measure of the region in B(0, R) and
outside Sv is exponentially small with respect to the dimension d. By Definition 2.1, classical
algorithms depend on an adaptive sequence of points. we now need to demonstrate that it is
difficult for the points to hit regions beyond Sv.

Lemma 4.14. For any classical algorithm (see Definition 2.1), after running T times, we get a
sequence of points and corresponding queries {xi, q(xi)}Ti=1. Restricted in B(0, R), as long as any
q(xi) (x ∈ Sv) is independent of v, the probability P (∃t ≤ T : xt /∈ Sv) ≤ 2Te−

dw2
2R2 .

We prove Lemma 4.14 in Appendix D.2.3. Now, we can prove that if the number of points and
queries is small, with high probability, any classical algorithm cannot escape from Sv. Rigorously,
we have

Proposition 4.1 (Classical lower bound). Any classical algorithm (Definition 2.1) will fail, with
high probability, to solve Problem 4.1 given only o(e

dw2
4R2 ) local queries with or without being re-

stricted in B(0, R).

The proof sketch of Proposition 4.1 goes as follows (see proof details in Appendix D.2.4). By
Lemma 4.14, it suffices to demonstrate that restricted in the ball B, classical algorithms cannot
escape from W− and hit W+ efficiently. The left thing is to show that queries outside B(0, R)
provide no information about B(0, R). And thus, without being restricted in B(0, R), classical
algorithms still cannot hit W+ by subexponential queries with high probability.

4.3.2 Quantum upper bound

We now focus on the time needed for quantum tunneling to solve Problem 4.1. The landscape
(120) satisfies Assumption A.6

0 = min f < lim
‖x‖→∞

f = H2, f−1(0) = {0} ∪ {2bv}, (123)
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where U− := {0} and U+ := {2bv} are called as wells by definition. The neighborhoods of the
two wells are quadratic, enabling the wells and corresponding local ground states to satisfy (207)
and (208). Moreover, due to the symmetry of the function (120), the local ground states are also
symmetric. Therefore, Assumption A.5 can be satisfied. To use Assumption A.6, we only need to
verify the conditions in Assumption A.7, leading to the following lemma.

Lemma 4.15. There exists a unique Agmon geodesic, denoted γ−+ : R→ Rd, which links U− and
U+:

γ−+(s) = sv, s ∈ [0, 2b]. (124)
And the Agmon distance S0 := d(U−, U+) is

S0 =
∫ 1/2

−1/2

√
f(γ−+(s))ds = 1√

2
ωa2 + 2(b− a)

√
H1. (125)

The calculation details of Lemma 4.15 are presented in Appendix D.2.5. We are now ready to
calculate the interaction matrix explicitly (see details in Appendix D.2.6):

Lemma 4.16. Under the two orthonormalized local ground states, The interaction matrix is of
the form

P =
(
µ ν
ν µ

)
, (126)

and the next-to-leading order formula of w is given by

ν = −
√

2h
π

√
H1(
√

2ω)d
(4
√
H1/b)d−1 exp

(
−S0

h
+ ωd(b− a)√

2H1
− 2d ln b

a

)
. (127)

Using the explicit tunneling amplitude, we can estimate the time needed for quantum tunneling.

Proposition 4.2 (Quantum upper bound). For any dimension d, we can always choose appro-
priate h, ω, a, b, H1, H2, and w satisfying previous restrictions, such that, given the local ground
state associated to W− under the choosing h as initial state, QTW can solve Problem 4.1 with high
probability 1−(1−C)n using only nO(poly(d)) queries, where 0 < C < 1 is a constant independent
of d.
Remark 4.3. In Proposition 4.2, the constant C can be understood as the probability of successful
hitting in one trial and n the number of trails. To reach a high probability of success, say 99%, the
number of trials needed, M , enabling 1− (1− C)M ≥ 99%, is a constant independent of d. Since
one trial needs only one initial state, only a constant number of copies (e.g., M copies) of the local
ground state are needed.

The proof of Proposition 4.2 is postponed to Appendix D.2.7 which is explained briefly as
follows. We take all the adjustable parameters as functions of d and discuss the evolution time as
a function of d. First, we have h = Θ(1/d) for sufficiently large d, which can eliminate the negative
effects of measure concentration brought by increasing dimension, and on the other hand we prove
that our theory on quantum tunneling walks is still valid. Thus, the quantum wave distributes near
W− or W+, and the limit distribution µQTW permits a probability of finding the particle in W+
larger than some constant independent of d. Then, based on the results of semi-classical analysis,
we can tune the function values in W−, W+, and Bv such that the time needed for tunneling is a
polynomial of d. As a result, the last three conditions at the end of Section 1 can be satisfied, and
the first and third conditions suggest that with high probability, QTW can hit W+ with queries
polynomial in d. Finally, given the fact that we can use Õ(t) quantum queries to evolve QTW for
time t, with high probability QTW can hit W+ with queries polynomial in d.

Combining the results of Proposition 4.2 and Proposition 4.1, we can obtain Theorem 1.2,
which is restated in a more rigorous way as follows.

Theorem 4.1. For any dimension d, there exists a landscape with the form (120) such that with
a high probability 1 − (1 − A)n, QTW can solve Problem 4.1 with nO(poly(d)) queries given the
local ground state associated to U−, but with a high probability 1 − e−dB, no classical algorithm
(Definition 2.1) can solve the same problem for the same landscape f with o(edB) queries, where
0 < A < 1 and B > 0 are two constants independent of d.
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4.3.3 The significance of proper initial states

The hardness of Problem 4.1 can be abstracted as that of finding an exponentially small cone on
a landscape which is isotropic outside the special cone.12 There can be exponentially many such
cones disjoint with each other. Therefore, it can be proved that by solving Problem 4.1 in Rd, we
can solve an unstructured search problem with a size exponential in d.

To show this, we first introduce unstructured search. Say, we are given N data points, only
one of which is assigned the value 1 and all other points are assigned a value 0. The goal is to find
the point assigned 1 with an oracle outputting the assigned value of the input point. Intuitively,
each data point can be mapped to a unique cone in Rd and the point assigned 1 should correspond
to the cone containing Bv and W+. In this case, solving Problem 4.1 can lead to the data point
we want to find. Precisely speaking, if there is a quantum algorithm that can solve Problem 4.1
with queries polynomial in d, it can solve an unstructured search whose size N is exponential in
d within queries polynomial in d. That is, we can solve an N -size unstructured search within
O(poly(logN)) queries with the help of the efficient algorithm for Problem 4.1.

However, it is well known that quantum algorithms have a query complexity lower bound
Ω(
√
N) in solving unstructured search with N data points Bennett et al. (1997). Therefore, we

can conclude

Proposition 4.3. No quantum algorithm can solve Problem 4.1 within queries polynomial in d.

We prove Proposition 4.3 and related claims rigorously in Appendix D.2.8. It seems that Propo-
sition 4.3 contradicts with Proposition 4.2. But there is actually no paradox as in Proposition 4.2
QTW does not solve Problem 4.1 faithfully. The local ground state |Φ−〉 associated to U− under
proper quantum learning rate h is given to QTW as prior knowledge. To establish polynomial
decay tunneling effect, the state |Φ−〉 has non-vanishing probability (maybe an inverse polyno-
mial of d) in W+. The state |Φ−〉 indicates a lot about the special direction v for QTW, such
that what QTW does cannot be equivalent to unstructured search. Indeed, by the same spirit of
Proposition 4.3, the state |Φ−〉 cannot be prepared within polynomial queries, or we can reach W+
efficiently by measuring |Φ−〉 repeatedly.

We admit that Theorem 4.1 requires the initial quantum state. Note that QTW only uses M
copies of the local ground state |Φ−〉 to hit W+ with high probability in polynomial time, where
M is a number independent of d. If the possibility of learning about v from sampling tends to 0
when d → ∞, which is likely to be true, the expected queries needed by classical algorithms to
hit W+ cannot be subexponential in d. In this case, we have an exponential quantum-classical
separation in evaluation queries even classical algorithms are given a constant number of samples
from the initial distribution | 〈x|Φ−〉 |2. Essentially, this is because no classical evolution can make
good use of the samples of the initial state.

5 Numerical Experiments
We conduct numerical experiments to examine our theory. All results and plots are obtained
by simulations on a classical computer (Dual-Core Intel Core i5 Processor, 16GB memory) via
MATLAB 2020b. Details of all numerical settings can be found in Appendix E. And code is
avaliable at https://github.com/liuyz0/Quantum-tunneling.

QTW is simulated by solving the Schrödinger equation by numerical methods, and SGD is
performed with first-order queries and the noise of each step follows the standard Gaussian distri-
bution.

Quantum-classical comparisons. To corroborate our Main Message, we numerically study the
performance of QTW and SGD on concrete examples (see details in Appendix E.1). The quantum
learning rate h and the classical learning rate s are determined under Standard 4.1 which equalizes
expected risks yielded by QTW and SGD.

12Specifically, this cone is a region associated to the special direction v, {x : x ·v/‖x‖ < C} for some constant C,
which contains the parts Bv and W+.
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Figure 8: Quantum-classical comparison between SGD and QTW on three landscapes. Example 1 is the critical
case where the exponential terms in QTW and SGD evolution time are equal for sufficiently small accuracy δ.
Example 2 has flatter minima but similar barriers compared to Example 1, enabling QTW to be faster. Example
3 possesses the same flatness of minima as Example 1 but is equipped with sharp but thin barriers, enabling
larger quantum speedups. We take τ = 288, 800, 600 in the three examples, respectively.

The task is to hit a target neighborhood of one minimum beginning at another designated
minimum. In Figure 8, results on classical and quantum hitting time are shown. We examine
QTW and SGD on three landscapes, Example 1, 2, and 3 in Figure 8 which correspond to concrete
functions given by Example 4.1, Example 4.2, and Example 4.3 in Section 4.2, respectively. We
conduct 1000 experiments for QTW and SGD on each example. For QTW, we use an experiment
to denote a process repeating trials until successfully hitting, where each trial initiates QTW once
and measures the position at t randomly chosen from [0, τ ]. For SGD, an experiment begins at
a designated minimum and stops until SGD hits the target region. The evolution time of an
experiment is the sum of evolution time of the trials the experiment contains.

We use TQTW
hit and T SGD

hit to denote the evolution time of one experiment for QTW and SGD,
respectively. In Figure 8, the histograms compare TQTW

hit with T SGD
hit /10, and all presented examples

demonstrate that QTW is faster. The number of quantum queries is approximately Õ(‖f‖∞TQTW
hit )

and the number of classical queries is Ω(T SGD
hit /s). In addition, in the three examples ‖f‖∞ ≤ 0.85

and s < 0.2, and quantum advantage exists in terms of query complexity.
This result matches our theory at large. For Example 1, we make direct comparison between

the exponential terms eS0/h and e2Hf/s, and to remove the coefficients in front of them, we divide
T SGD

hit by 10 such that T SGD
hit /10 has similar distribution t TQTW

hit for Example 1. In this way, we
observe that whether T SGD

hit /10 is relatively larger than TQTW
hit is determined only by eS0/h and

e2Hf/s.
For Example 2, TQTW

hit is not much smaller than T SGD
hit /10, which is not completely coherent

with our theory. This result can be explained as that for Example 2, the quantum learning rate
h is not small enough such that the initial state prepared does not well stay near a low energy
subspace. Experiments on Example 2 suggest that higher energy may not be able to help quantum
tunneling to run faster.

For Example 3, the h chosen is small enough (see details in Appendix E.1) such that a significant
quantum speedup is achieved as expected. In Figure 8, T SGD

hit /10 is even several orders of magnitude
larger than TQTW

hit .

Dimension dependence. Due to the limitations of solving the Schrödinger equation on classical
computers, QTW is simulated only in low dimensions (i.e., d = 1 and d = 2). Here we examine
Theorem 1.2 by testing SGD and its the classical lower bound.

The classical lower bound in Theorem 1.2 ensures that for any s, SGD cannot cannot escape
from Sv with subexponential queries with high probability. Based on the constructed landscape
with parameters specified in Appendix E.2, we test SGD with different learning rates (s ∈ [0.1, 1]) in
various dimensions (d ∈ [15, 95]). For each dimension and each s, 1000 experiments are conducted.
The number of steps spent to escaping from Sv in one experiment is denoted as Qesc. Here, we
present the relationship between average Qesc and the dimension d in Figure 9 (more details are
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deferred to Appendix E.2).
For each fixed learning rate s, we observe that with the increase of d, the average Qesc remains

constant initially and then increase exponentially with respect to d. Increasing s yields a smaller
initial constant but larger exponential rate. Nevertheless, for all s, Qesc eventually increases
exponentially with respect to d (the triangle in Figure 9 shows the slope 1/256 corresponding
to the exponential function ed/256 which is a lower bound of the average Qesc), supporting our
prediction.

Dependence on the quantum learning rate. In QTW, the quantum learning rate h is one of
the most important variables. Theorem 1.1 gives a general relationship between h and the evolution
time of QTW. We further test the relationship on the landscape constructed in Theorem 1.2
(dimension d = 2) with specified parameters given in Appendix E.3. Since the landscape has two
symmetric wells, the time for tunneling from one well to the other, Thalf , is explicitly linked to ∆E
(i.e., Thalf = π/∆E). On this concrete landscape, ∆E can be predicted, giving that

lnThalf = S0

h
− 1

2 ln h+ Cf , (128)

where Cf is a constant depending on f and can be explicitly calculated. Starting from one well,
we stop when the probability of finding the other well exceeds 90% and record the evolution time
as Thalf . Experiments on Thalf is shown in Figure 10. The results match our theory except a
constant difference between the predicted and experimental lnThalf , indicating the correctness of
S0
h −

1
2 ln h. The constant difference emerges because we stop evolution when the probability of

tunneling exceeds 90%, while theoretical Thalf takes the time when the probability is nearly 100%.
To conclude, several aspects of the present theory are well supported by numerical experiments.

6 Discussion
In this paper, we explore quantum speedups for nonconvex optimization by quantum tunneling. In
particular, we introduce the quantum tunneling walk (QTW) and apply it to nonconvex problems
where local minima are approximately global minima. We show that QTW achieves quantum
speedup over classical stochastic gradient descents (SGD) when the barriers between different local
minima are high but thin and the minima are flat. Moreover, we construct a specific nonconvex
landscape where QTW given proper initial states is exponentially faster than classical algorithms
taking local queries for hitting the neighborhood of a target global minimum. Finally, we conduct
numerical experiments to corroborate our theoretical results.

We expect our results to have further impacts both in physics and optimization. In optimization
theory, previous work has studied several physics-motivated optimization algorithms, including
Nesterov’s momentum method Su et al. (2016); Wibisono et al. (2016); Shi et al. (2021), stochastic
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gradient descents Shi et al. (2020), symplectic optimization Betancourt et al. (2018); Jordan (2018),
etc. We believe that our work can further inspire the design of optimization algorithms with physics
intuitions. From theory to practice, in this work we analyzed the performance of QTW on tensor
decomposition, and we expect QTW to also have decent performance on other practical problems
with benign landscapes.

In quantum computing, on the one hand, previous work on continuous optimization only stud-
ies convex optimization Apeldoorn et al. (2020); Chakrabarti et al. (2020) or local properties such
as escaping from saddle points Zhang et al. (2021a), and our work significantly extends the range
of problems which quantum computers can efficiently solve to global problems in nonconvex op-
timization. On the other hand, we point out that QTW has the potential to be implemented
on near-term quantum computers. In fact, current quantum computers have implemented both
quantum simulation Arute et al. (2020); Ebadi et al. (2021) and quantum walks Tang et al. (2018);
Gong et al. (2021) to decent scales. We deem QTW as a potential proposal for demonstrating
quantum advantages in near term.

Our paper also leaves several technical questions for future investigation:

• What is the performance of QTW on more general landscapes? For instance, a wide range of
deep neural networks Kawaguchi et al. (2019) has some (but probably not all) local minima
which are approximately global. Future work on weakening the assumptions on landscapes
for QTW is preferred.

• Are there more examples with exponential quantum-classical separation? Our construction
leverages a special kind of locally non-informative landscapes, and exponential quantum-
classical separation can potentially be observed on other landscapes, such as nonsmooth
landscapes and landscapes with negative curvature.

• QTW simulates the Schrödinger equation whose potential is set to be the optimization func-
tion, and this QTW can be efficiently simulated on quantum computers. In general, are there
better PDEs which are more efficient for optimization and can still be efficiently simulated
on quantum computers?
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A Auxiliary Mathematical Tools on Spectrum Properties of Operators
In this section, we introduce necessary mathematical tools on spectrum properties of operators. In
Appendix A.1, we introduce the eigenvalues of the Witten-Laplacian operator. In Appendix A.2,
we cover spectrum properties of the Schrödinger operator, including the WKB approximation, the
Agmon distance and decay of eigenfunctions, and the interaction matrix of quantum tunneling.

A.1 Eigenvalues of the Witten-Laplacian
Section 2.2 shows that the discrete algorithm SGD can be analyzed by a lr-dependent SDE (15).
And the rate of convergence is bounded by the smallest non-zero eigenvalue of a Witten-Laplacian
(see Proposition 2.1). We present, in the following, a geometric connection between the function
f and the spectrum of the Witten-Laplacian ∆s

f defined by (23).
The objective function is assumed to satisfy assumptions of Section 2.2. First, we need to find

a special type of saddle points at the top of barriers separating wells. To this end, we define:

Definition A.1 (Index-1 saddle points). A critical point x (i.e., ∇f(x) = 0) is an index-1 saddle
point, if the Hessian at x, ∇2f(x), has exactly one negative eigenvalue.

The index-1 saddle points being the bottlenecks of paths connecting two local minima are what
we want. Intuitively, for going from one local minimum to another, function values of such saddle
points characterizes the smallest height needing climbed over. Let Kv := {x ∈ Rd : f(x) < v}
be the sublevel set at level v. For any index-1 saddle point x, if r is sufficiently small, the set
Kf(x) ∩ {y : ‖y − x‖ < x} can be partitioned into two connected components, say C1(x, r) and
C2(x, r). With the help of the notations, we can formally define:

Definition A.2 (Index-1 separating saddle points or SSPs). An index-1 saddle point x is said to
be an index-1 separating saddle point (SSP), if for sufficiently small r, C1(x, r) and C2(x, r) are
contained in different connected components of the sublevel set Kf(x).

Next, we aim to relate function values of SSPs and local minima to the eigenvalues of ∆s
f .

Let X ◦ and X • be the sets of SSPs and local minima, respectively. For distinguishing, we also
use superscripts ◦ and • to denote SSPs and local minima, respectively, that is, x◦ ∈ X ◦ and
x• ∈ X •. The number of critical points are finite for a Morse function satisfying both the confining
and the Villani conditions. Therefore, let n◦ and n• denote numbers of SSPs and local minima,
respectively. A standard labeling of SSPs and local minima would establish a correspondence
between the two kinds of critical points and then help to rigorously define the heights of barriers.
Denote the set of function values of SSPs by f(X ◦), say the cardinality of this set is I, we can
write f(X ◦) = {v1, v2, . . . , vI} and, without loss of generality, +∞ = v0 > v1 > v2 > · · · > vI . Use
the values {vj : j = 1, . . . , I}, we can define certain connected components of sublevel sets.

Definition A.3 (Critical component). A connected component E of the sublevel set Kv for some
v ∈ f(X ◦) is called a critical component if either ∂E ∩ X ◦ 6= ∅ or E = Rd.

Obviously, v0 = ∞ corresponds to the critical component E = Rd. The labeling of SSPs and
local minima goes as follows Hérau et al. (2011); Shi et al. (2020):

• Step 1. Let E0
1 := Rd. Choose the (one)13 global minimum in E0

1 to be denoted by x•0.
Define the set X •0 := {x•0}.

• Step 2. Let E1
j for j = 1, 2, . . . ,m1 be the critical components of the sublevel set Kv1 . The

labeling should obey that x•0 ∈ E1
m1

. We select x•1,j (j = 1, 2, . . . ,m1 − 1) to be the (one)
global minimum of f restricted in E1

j . Then, define X •1 := {x•1,1, . . . , x•1,m1−1}.

• Step 3. For l = 2, . . . , I, let Elj where j = 1, . . . ,ml be the critical components of the sublevel
set Kvl . We can always order the critical components such that there exists a an integer

13If there are multiple global minima, choose one of them. Choosing different global minimum will result in
different labeling.
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kl ≤ ml and  kl⋃
j=1

Elj

⋂(
l−1⋃
`=0
X •`

)
= ∅, (129)

Elj
⋂(

l−1⋃
`=0
X •`

)
6= ∅, ∀j = kl + 1, . . . ,ml. (130)

Label the (one) global minimum of f restricted in Elj by x•l,j and then define X •l := {x•l,1, . . . , x•l,kl}.
It can be shown that all local minima of f in Rd are labeled by this procedure.

• Step 4. Choose the (one) point in E1
1 ∩X ◦ whose function value is the largest among E1

1 ∩X ◦
to be x◦1,1. Subsequently, the point x◦1,j (j = 2, . . . , k1) is chosen from points with the largest
function value in

E1
j

⋂(
X ◦
∖ ⋃
ν<j

{x◦1,ν}
)
. (131)

For l = 2, . . . , I, the point x◦l,j (j = 1, . . . , kl) is chosen from points with the largest function
value in

Elj
⋂(
X ◦
∖ ⋃
µ≤l,ν<j

{x◦µ,ν}
)
. (132)

It can be proved that X ◦ =
⋃
µ,ν{x◦µ,ν}.

As shown in the labeling process, we can relate any local minimum x•l,j to a SSP x◦l,j . Note
that there is no SSP corresponds to the point x•0, the number of local minima is always larger than
that of SPPs, namely, n◦ = n• − 1.

According to the above correspondence relation, we can relabel the SSPs and local minima by
renaming the pair (x◦l,j , x•l,j) as x◦` , x

•
` for some ` = 1, 2, . . . , n◦, such that

f(x◦1)− f(x•1) ≥ V (x◦2)− f(x•2) ≥ · · · ≥ f(x◦n◦)− f(x•n◦). (133)

Define x◦0 =∞ corresponding to the (a) global minimum x•0, we have f(x◦0)− f(x•0) = +∞.
Note that the labels of SSPs and local minima may not be unique following the above labeling

procedure. Hence, the correspondence between SSPs and local minima is not unique. However, the
uniqueness of function values can be maintained. More precisely, regardless of different labeling
results on critical points, we can always obtain unique pairs (f(x◦` ), x•` ) obeying

+∞ = f(x◦0)− f(x•0) > f(x◦1)− f(x•1) ≥ f(x◦2)− f(x•2) ≥ · · · ≥ f(x◦n◦)− f(x•n◦). (134)

The values f(x◦` ) − f(x•` ) are heights of barriers. We can now readily introduce the following
fundamental result:

Proposition A.1 (Theorem 2.8 in Michel (2019)). Under assumptions of Section 2.2, there exists
s > 0 such that for any s ∈ (0, s0], the first n◦ smallest positive eigenvalues of the Witten-Laplacian
∆s
f satisfy

δs,` = s(γ` + o(s))e−
2Hf,`
s , (135)

where f(x◦` )−f(x•` ) ≤ Hf,` ≤ f(x◦1)−f(x•0) for ` = 1, 2, . . . , n◦. The constants Hf,` and γ` depend
only on the function f .

To gain further insights, especially intuitions on γ`, we may add a stronger assumption that is
beneficial to explicit analysis:
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Assumption A.1 (Hypothesis 5.1 in Hérau et al. (2011)). For every critical component Elj intro-
duced in the labeling process, we we assume that

• There is only one global minimum of f(x) restricted in Elj.

• If Elj ∩ X ◦ 6= ∅, there is a unique SSP x◦l,j such that f(x◦l,j) = maxx∈El
j
∩X◦ f(x). In

particular, Elj ∩ Kf(x◦
l,j

) is the union of two distinct critical components.

Then, Proposition A.1 can be specified as

Proposition A.2 (Theorem 1.2 in Hérau et al. (2011)). Assume the assumptions of Section 2.2
and Assumption A.1 are satisfied, there exists s0 > 0 such that for any s ∈ (0, s0], the smallest n◦
non-zero eigenvalues of the Witten-Laplacian ∆s

V associated with f satisfy

δs,` = s(γ` + o(s))e−
2(f(x◦

`
)−f(•

`
))

s , (136)

for ` = 1, 2, . . . , n◦, where

γ` = |η(x◦` )|
π

(
det(∇2f(x•` ))
−det(∇2f(x◦` ))

) 1
2

, (137)

and η(x◦` ) is the unique negative eigenvalue of ∇2f(x◦` ).

Under Assumption A.1, we see that Hf,` in Proposition A.1 can be specified as f(x◦` )− f(x•` ).
The constants Hf,` can be intuitively regarded as the heights of barriers, among which, in partic-
ular, Hf,1 is the largest one. Thus, Hf,1 should take the longest time for SGD to climbe over and
can be used to bound the mixing time. We formally define the Morse saddle barrier as

Definition A.4 (Morse saddle barrier). Under assumptions of Section 2.2, we call Hf := Hf,1
(see Proposition A.1) as the Morse saddle barrier, which can be specified as f(x◦1) − f(x•1) if
Assumption A.1 is also satisfied.

Obviously, the smallest positive eigenvalue of the Witten-Laplacian ∆s
f satisfy δs,1 = s(γ1 +

o(s))e−
2Hf
s , leading to Proposition 2.1, the proposition bounding the convergence rate of SGD.

A.2 Tunneling Effect of the Schrödinger Operator
In this section, we introduce necessary mathematical tools from Refs. Helffer (1988); Dimassi and
Sjöstrand (1999) to study the Schrödinger operator of the form

P = −h2∆ + f(x). (138)

We restrict our discussions on the d-dimensional C∞ Riemannian complete manifold M (M = Rd
or M is compact), and all results are obtained in the semi-classical limit referring to small h.

A.2.1 WKB approximation

WKB approximation is a method to approximately solve differential equations. We mainly use the
WKB method to estimate local eigenfunctions. For the Schrödinger equation (138), it is accurate
if the potential f is quadratic and the equation constitutes a harmonic oscillator, i.e.,

Ph = −h2∆ + 1
2

d∑
j=1

ω2
jx

2
j . (139)

For the operator − d2

dx2 + x2, the first eigenfunction is

u0 = 1
π1/4 e

− x2
2 , (140)
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whose eigenvalue is 1. For each j ∈ N, the (j + 1)th eigenfunction is given by

uj = Cj

(
− d

dx + x

)j
e−

x2
2 ≡ pj(x)e− x

2
2 (141)

with eigenvalue (2j + 1). Here, Cj is a constant chosen to normalize uj and pj(x) is a polynomial
with degree j. Define α = (α1, . . . , αd) ∈ Nd, and ‖α‖1 =

∑d
j αj . For the operator P1 (i.e., h = 1),

we have eigenfunctions

uα(x) =
∏d
j ω

1/4
j pαj (ω

1/2
j xj/21/4)

2d/8
e
−

∑d

j
ωjx

2
j

2
√

2 , (142)

whose corresponding eigenvalues are
∑
j ωj(2αj + 1)/

√
2. Note that

Ph = −h2
d∑
i=1

∂2

∂x2
i

+ 1
2

d∑
j=1

ω2
jx

2
j = h

−h d∑
i=1

∂2

∂x2
i

+ 1
2

d∑
j=1

ω2
j

x2
j

h

 = h

− d∑
i=1

∂2

∂y2
i

+ 1
2

d∑
j=1

ω2
j y

2
j


(143)

where yj = xj/
√
h, the eigenfunctions and corresponding eigenvalues of Ph should be given by

uα(x, h) =
∏
j ω

1/4
j pαj (ω

1/2
j xj/h

1/221/4)
2d/8hd/4

e
−

∑d

j=1
ωjx

2
j

2
√

2h =
∏
j ω

1/4
j pαj (ω

1/2
j xj/h

1/2)
hd/4

e−

∑d

j=1
ωjx

2
j

2h ,

(144)

and

λα(h) = h

d∑
j=1

ωj(2αj + 1)/
√

2 = h

d∑
j=1

ωj(αj + 1/2). (145)

The eigenfunction uα(x, h) can be written in the form uα(x, h) = h−d/4aα(x, h)e−ϕ(x)/h, where
we have ϕ =

∑d
j=1 ωjx

2
j/2
√

2. To understand ϕ(x), first recall that any wave function should be
proportional to a term eiϕ̂(x)/h. For plane waves, ϕ̂(x) = p · x with p being the momentum of
the wave. It is generally true that ∇ϕ̂(x) can be seen as momentum. The function ϕ̂(x) is then
determined by the basic law “kinetic energy = total energy − potential energy", where |ϕ̂(x)|2
represents the kinetic energy. For classical forbidden regions (total energy < potential energy), the
function ϕ̂(x) becomes imaginary. That is, in this case, eiϕ̂(x)/h no longer describes the change
of wave phase, but the exponential decay of the wave amplitude. For uα(x, h) in (144), we have
ϕ̂(x) = iϕ(x), total energy = 0, and potential energy = f(x), leading to

‖∇ϕ(x)‖2 = f(x), (146)

which is true for ϕ =
∑d
j=1 ωjx

2
j/2
√

2. Eq. (146) is also known as the eikonal equation in optics. For

the local ground state, α = 0, and the function a0(x, h) is a constant: a0(x, h) =
∏
j ω

1/4
j /(

√
2π)d/4.

From now on, we study the local ground state near a local minimum of a general f(x). We
assume that the original point 0 is a local minimum, and the landscape f(x) has the following
property:

Assumption A.2.

f(0) = 0, ∇f(0) = 0, ∇2f(0) > 0, lim
|x|→∞

f(x) > 0 (147)

where ∇2f(0) is the Hessian of f at 0.
We further specify ∇2f(0) as

∇2f(0) =


ω2

1
ω2

2
. . .

ω2
d

 , ωj > 0. (148)
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The WKB construction aims to find the eigenfunctions with the form h−d/4a(x, h)e−ϕ/h. That
is, we approximate the local ground state starting from a harmonic oscillator. For general cases,
a(x, h) is not a constant. The main result we need is the following lemma:

Lemma A.1 (Theorem 2.3.1 of Helffer (1988)). Under Assumption A.2, we can find a function
ϕ(x), a formal series

E(h) =
∞∑
j=1

Ejh
j , (149)

and a formal symbol defined in a neighborhood of 0

a(x, h) =
∞∑
j=0

aj(x)hj , (150)

s.t. E1 =
∑d
j=1 ωj/

√
2 and

(Ph − E(h))(a(x, h)e−ϕ(x)/h) = O(h∞)e−ϕ(x)/h, (151)

where Ph = −h2∆ + f(x).

To be more specific, the function ϕ is given by the equation ‖∇ϕ(x)‖2 = f(x) following the
same intuition of (146). Let ϕ0 =

∑d
j=1 ωjx

2
j/2
√

2, clearly we have ϕ(x)− ϕ0(x) = O(‖x‖3) near
0. To make the coefficient of h in both sides of (151) equal, we have the first transport equation

2∇ϕ · ∇a0 + (∆ϕ− E1)a0 = 0. (152)

To be consistent with the results of quadratic potentials, we choose the initial condition

a0(0) =
∏
j ω

1/4
j

(
√

2π)d/4
. (153)

If we look at the equality of the coefficients of h2 in (151),

2∇ϕ · ∇a1 + (∆ϕ− E1)a1 = −∆a0 + E2a0. (154)

The initial condition is a1(0) = 0. We can determine E2 by

E2 = ∆a0(0)
a0(0) . (155)

Following this procedure, all other coefficients can be obtained recursively.

A.2.2 The Agmon distance and decay of eigenfunctions

The Agmon distance generalizes the function ϕ(x) in Lemma A.1 which characterizes the expo-
nential decay of eigenfunctions. For a given value E, we are interested in the eigenvalues of the
Schrödinger operator P in a neighborhood of E.

Assumption A.3. The potential should satisfy minx∈M f(x) < lim|x|→∞ f(x) in the caseM = Rd,
or minx∈M f(x) exists in the case M is compact.

In the semi-classical limit, E is very small and close to min f . Formally, we demand min f ≤ E
for compact M and min f ≤ E < lim|x|→∞ f for M = Rd.

Definition A.5. The Agmon metric is defined as

ds2 := (V − f)+dx2, (156)

where dx2 is the Riemannian metric in the manifold M , and a+ := max{0, a} for any a.
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A natural distance d(x, y) associated to the Agmon metric can be defined for x, y ∈M as

d(x, y) = inf
γ

∫
γ

√
(V − f)+dx. (157)

Here γ denotes piecewise C1 paths connecting x and y. For a set U , we can also define d(x, U) =
infy∈U d(x, y). The following properties can be verified:

|d(x, y)− d(z, y)| ≤ d(x, z), x, y, z ∈M, (158)

|∇xd(x, y)|2 ≤ (f(x)− E)+. (159)

As is mentioned, we have

Lemma A.2. Under Assumption A.2 and E = 0,

d(0, x) = ϕ(x), (160)

in a neighbor of 0. The function ϕ(x) is defined in Lemma A.1.

Before computing the interaction between wells, we should first understand the behavior of
local eigenfunctions near one well. We assume for the remainder of Appendix A.2.2 that

U = {x | x ∈M,f(x) ≤ E} (161)

is compact, whose diameter is 0 under the Agmon distance. The set U is defined as a well. Note
that the definitions of the Agmon distance and wells all depend on the choice of E.

Local eigenstates can be rigorously specified as the eigenstates of the Dirichlet realization of P
near one well. Let Ω be some bounded open set containing U .

Definition A.6. The Dirichlet realization of the Schrödinger operator, PΩ is defined as the re-
striction of P on the domain H1

0 (Ω) ∩H2(Ω). Here, Hk(Ω) denotes the classical Sobolev space of
order k and H1

0 is the closure of C∞0 (Ω̊) in H1.

let uh be an eigenfunction of P with eigenvalue E+λ(h) (λ(h)+ → 0, h→ 0). We assume h is
in J , a subset of (0, h0], (for some h0 > 0) and 0 belongs to the closure of J . Then, the function
ed(x,U)/huh and its gradient can be well controlled:

Lemma A.3 (Proposition 3.3.1 in Helffer (1988)). For every ε > 0, there exists small enough h
depending on ε s.t.

‖∇(ed(x,U)/huh)‖L2(Ω) + ‖ed(x,U)/huh‖L2(Ω) ≤ Cεeε/h. (162)

The proof of Lemma A.3 uses the following mathematical result:

Lemma A.4 (Lithner-Agmon estimation, Theorem 1.1 of Helffer and Sjöstrand (1984) or Propo-
sition 6.1 of Dimassi and Sjöstrand (1999)). Let M be a C∞ Riemannian complete manifold and
Ω ⊂M be bounded with C2-boundary. Let f ∈ C(Ω;R) and φ a real valued Lipschitz function on Ω.
Then, the gradient ∇φ is well defined in L∞(Ω) as the almost everywhere limit of ∇(χε ∗φ), when
ε→ 0, where χε(x) = 1

εnχ(xε ) ∈ C∞0 (B(0, ε)) is a standard mollifier (This definition of gradient is
generally valid and aims to include the case of Rd). For every u ∈ C2(Ω) satisfying u|∂Ω = 0, we
have

h2
∫

Ω
‖∇(eφ/hu(x))‖2xdx+

∫
Ω

(f(x)− ‖∇φ(x)‖2x)e2φ/h|u|2dx = Re
∫

Ω
e2φ/hPu(x)u(x)dx. (163)

where dx is the Riemannian volume and ‖ · ‖x is the norm in TxM .

The proof of Lemma A.4 is mainly based on the Green formula. Namely, for any C2(Ω)-function
f satisfying f |∂Ω = 0, ∫

Ω
‖∇f‖2xdx = −

∫
Ω

∆ffdx. (164)

Now, we turn back to the proof of Lemma A.3:
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Proof of Lemma A.3. Choose ε > 0 and use the identity in Lemma A.4 with f replaced by f −
(E + λ(h)), φ(x) = (1− δ)d(x, U), u replaced by uh, and P = −h2∆ + f − (E + λ(h)):

h2
∫

Ω
|∇(eφ/huh(x))|2dx+

∫
Ω

(f(x)− E − λ(h)− |∇φ(x)|2)e2φ/h|uh|2dx = 0. (165)

Here, δ will be chosen to be small depending on ε. Let

Ω+
δ = {x | x ∈ Ω, f(x) ≥ E + δ}, (166)

Ω−δ = {x | x ∈ Ω, f(x) < E + δ}, (167)

we have

h2
∫

Ω
|∇(eφ/huh(x))|2dx+

∫
Ω+
δ

(f(x)− E − λ(h)− |∇φ(x)|2)e2φ/h|uh|2dx

≤ sup
x∈Ω−

δ

|f(x)− E − λ(h)− |∇φ(x)|2|
∫

Ω−
δ

e2φ/h|uh|2dx. (168)

We restrict 0 ≤ δ ≤ 1 not to be large, and then could find some C independent of h and δ, s.t.

h2
∫

Ω
|∇(eφ/huh(x))|2dx+

∫
Ω+
δ

(f(x)− E − λ(h)− |∇φ(x)|2)e2φ/h|uh|2dx ≤ C
∫

Ω−
δ

e2φ/h|uh|2dx.

(169)

Use the inequality (159), we have on Ω+
δ that

f(x)− E − λ(h)− |∇φ(x)|2 ≥ (1− (1− δ)2)(f − E)− λ(h)+ ≥ δ2(2− δ)− λ(h)+. (170)

We choose h ∈ (0, h(δ)] where h(δ) is determined by

sup
h∈(0,h(δ)]

λ(h) ≤ δ2. (171)

Since δ will be controlled by ε, h depends on ε. Then, we obtain

h2
∫

Ω
|∇(eφ/huh(x))|2dx+ δ2

∫
Ω+
δ

e2φ/h|uh|2dx ≤ C
∫

Ω−
δ

e2φ/h|uh|2dx (172)

and

h2
∫

Ω
|∇(eφ/huh(x))|2dx+ δ2

∫
Ω
e2φ/h|uh|2dx ≤ (C + 1)

∫
Ω−
δ

e2φ/h|uh|2dx ≤ (C + 1)e
2 sup

x∈Ω−
δ

φ(x)/h
.

(173)

Define k(δ) = supx∈Ω−
δ
φ(x), it is clear that k(δ)→ 0, (δ → 0). Now, we should replace eφ/huh(x)

by ed(x,U)/huh(x). Observe that

h2
∫

Ω
|∇(ed(x,U)/huh(x))|2dx = h2

∫
Ω
|∇(eδd(x,U)/heφ/huh)|2dx (174)

Let K denote the maximum of d(x, U) in Ω, we can get

h2
∫

Ω
|∇(ed(x,U)/huh(x))|2dx ≤ h2e2δK/h

∫
Ω
|∇(eφ/huh)|2dx+ δ2 sup

x∈Ω
|f − E|e2δK/h

∫
Ω
e2φ/h|uh|2dx

(175)

which leads to

h2
∫

Ω
|∇(ed(x,U)/huh(x))|2dx+ δ2

∫
Ω
e2d(x,U)/h|uh|2dx ≤ (1 + C)(1 + sup

x∈Ω
|f − E|)e2Kδ+k(δ)

h .

(176)

At last, we choose δ s.t. Kδ + k(δ) ≤ ε and we can get (162).
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The above lemma leads to an intuitive result: the L2 norm of uh concentrates in a local well.
More specifically, we have

Corollary A.1. For each open neighborhood V of U in Ω,

‖uh‖L2(V) = 1 +O(e−ε/h), for ε > 0. (177)

A.2.3 Interaction matrix

The main idea of this subsection is that, modulo an exponentially small error, the spectrum of
the Schrödinger operator in some interval I(h) is the same as the spectrum of the direct sum
of one-well Dirichlet realizations in I(h). In other words, low energy local eigenfunctions span a
subspace close to that spanned by some low energy global eigenfunctions. And then, P restricted
in the low energy subspace can be expressed as a matrix, which will be called the interaction
matrix under the approximate local eigenstates. The off-diagonal elements of the interaction
matrix characterizes tunneling effects between local eigenstates of different wells. We aim to
calculate the interaction matrix explicitly. Technically, four important results will be introduced:
Proposition A.3 ensures that we can use local eigenstates to approximately span a low energy
subspace; Proposition A.4 gives the most general formula of the interaction matrix; Proposition A.5
improve Proposition A.4 with a stronger assumption; and finally Proposition A.6 provides explicitly
tunneling effects between local ground states which we can use in the main text.

Assumption A.4. Without loss of generality, we will take E = 0 and the potential should satisfy

min f ≤ 0 < lim
|x|→∞

f, (178)

where 0 < lim|x|→∞ f for M = Rd. The region V −1((−∞, 0]) can be decomposed as

V −1((−∞, 0]) = U1 ∪ U2 . . . ∪ UN , (179)

where Uj are disjoint and compact. Each set Uj is called as a well.

Define S0 as the minimal distance between the different wells:

S0 = min
j 6=k

d(Uj , Uk) = min
j 6=k

inf
xj∈Uj ,
xk∈Uk

d(xj , xk). (180)

To find the local eigenstates, we need to associate to each well a Dirichlet problem in an open
set Mj containing Uj . For a small value η > 0, let B(Uj , η) = {x ∈ M |d(x, Uj) ≤ η}. The open
set Mj is then defined as

M
(η)
j = M\ ∪k 6=j B(Uk, η), (181)

if M is compact. For M = Rd,

M
(η)
j = (Rd\ ∪k 6=j B(Uk, η)) ∩ B̊(Uj , S), (182)

where S > 2S0 is large, and for a set B, B̊ means the interior of B. We simply use Mj to denote
M

(η)
j when there is no ambiguation, but keep in mind that everything depends on η.
Let PMj

denote the Dirichlet realization of P in Mj (Definition A.6). Consider a subset J ⊂
(0, h0] s.t. 0 is an accumulation point of J , we set the interval I(h) to be

I(h) = [α(h), β(h)] (h ∈ J), (183)

and I(h)→ {0} when h→ 0. Let a(h) to be a function of h ∈ J , and

| log a(h)| = o(1/h). (184)

Definition A.7 (Local eigenvalues and eigenstates). The eigenvalues of PMj
in I(h) are µj,1, µj,2, . . . , µj,mj

whose corresponding orthonormal eigenstates (local eigenstates) are φj,1, φj,2, . . . , φj,mj .
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It is clear to use α = (j, k), 1 ≤ k ≤ mj to denote the states in different wells and put j(α) = j
to know which well the α state is in.

If η is large, the state φα may have a large overlap with local eigenstates in other wells. We
modify φα in the following way.

Definition A.8 (Local eigenstates with cut-offs). Let θj be a C∞ function, Suppθj ⊂ B(Uj , 2η),
and θj = 1 in B(Uj , 3η/2). Then, we can define χj = 1 −

∑
k 6=j θk (for compact M) or χj =

(1 −
∑
k 6=j θk)χjS where SuppχjS ⊂ B(Uj , S) and χjS = 1 in B(Uj , S − η) (for M = Rd). The

modified local eigenfunctions are

ψα = χj(α)φα. (185)

For the cases where η is small compared to S0, ψα and φα are nearly the same thing.
The following result ensures that we can use local eigenstates to approximately span a low

energy subspace of P .

Proposition A.3 (Theorem 4.2.1 in Helffer (1988), Proposition 6.7 in Dimassi and Sjöstrand
(1999)). Let Ej be the subspace spanned by ψj,k (k = 1, 2, . . . ,mj), E =

⊕
j Ej, and F the subspace

spanned by eigenstates of P whose eigenvalues are in I(h), h ∈ J . Suppose that for h ∈ J , P
and PMj

(∀j) have no eigenvalue in
(
α(h) − 2a(h), α(h)

)
∪
(
β(h), β(h) + 2a(h)

)
. Then, we have

dimE = dimF for sufficiently small h. Equivalently, there exists a bijection b from σ(P ) ∩ I(h)
onto (

⋃
j σ(PMj ))∩I(h). And for every c < S0−2η, we have b(λ)−λ = O(e−c/h), λ ∈ σ(P )∩I(h).

The problem now is to compute the matrix P|F in a convenient basis. This basis is heavily
related to the local eigenstates, s.t. the off-diagonal entries can capture tunneling effects. Let πF
be the orthogonal projection onto F , we introduce

vα = πFψα. (186)

By Proposition A.3, we can get

vα − ψα = Ô(e−S0/h) in L2(M). (187)

Here the Ô notation is defined as:

Definition A.9. For any function f , f = Ô(e−S0/h) means that for any ε > 0, there exists η0 > 0
s.t. for 0 < η < η0, f = O(e−S0/h+ε/h).

Note that

〈vα|vβ〉 = 〈ψα|ψβ〉 − 〈vα − ψα|vβ − ψβ〉 , (188)

we have

〈vα|vβ〉 = 〈ψα|ψβ〉+ Ô(e−2S0/h). (189)

By the definition of ψα and the decay of φα, it can be estimated that

〈ψα|ψβ〉 =


1 + Ô(e−2S0/h), α = β,

Ô(e−2S0/h), α 6= β, j(α) = j(β),
Ô(e−S0/h), α 6= β, j(α) 6= j(β),

(190)

We define rα by

Pψα = µαψα + rα, (191)

obtaining that rα = Ô(e−S0/h) in L2(M). These estimations lead to

〈vα|P |vβ〉 = 〈ψα|P |ψβ〉+ Ô(e−2S0/h). (192)
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Using the fact that P is self-adjoint, we have

〈ψα|P |ψβ〉 = µα + µβ
2 〈ψα|ψβ〉+ 1

2(〈rα|ψβ〉+ 〈ψα|rβ〉). (193)

Equation (191) gives that rα = [P, χj(α)]φα and then

〈ψα|rβ〉 = h2
∫
χj(α)(φβ∇φα − φα∇φβ) · ∇χj(β)dx+ h2

∫
∇χj(β) · ∇χj(α)φβφαdx

= h2
∫
χj(α)(φβ∇φα − φα∇φβ) · ∇χj(β)dx+ Ô(e−2S0/h). (194)

Define the matrix T as

Tαβ =
{

0, α = β,
〈ψα|ψβ〉 , α 6= β.

(195)

The matrix (〈vα|P |vβ〉) can be given by

(〈vα|P |vβ〉) = diag(µα) + 1
2Tdiag(µα) + 1

2diag(µα)T + (Ŵαβ) + Ô(e−2S0/h), (196)

where

Ŵαβ = 1
2(Wαβ +Wβα), (197)

and

Wαβ = h2
∫
χj(α)(φβ∇φα − φα∇φβ) · ∇χj(β)dx. (198)

It is more natural to compute the matrix of P|F in an orthonormal basis.

Definition A.10 (Orthonormalized local eigenstates). Let Ξ = (〈vα|vβ〉), the following basis is
orthonormal in F ,

eα :=
∑
β

vβ(Ξ−1/2)βα. (199)

The states ψα and eα are defined for rigorous and general discussions. In practice, when we
choose sufficiently small η and h, φα, ψα, and eα would be the same.

The matrix of P|F with respect to {eα} is

Ξ−1/2(〈vα|P |vβ〉)Ξ−1/2. (200)

It is easy to verify that Ξ−1/2 = I − T/2 + Ô(e−2S0/h), giving the matrix (200) as

diag(µα) + (Ŵαβ) + Ô(e−2S0/h). (201)

To summarize, we obtain a very general result:

Proposition A.4 (Theorem 4.3.1 of Helffer (1988)). The matrix of P|F in the basis {eα} is given
by

diag(µα) + (Ŵαβ) + Ô(e−2S0/h), (202)

where Ŵαβ is specified by (197) and (198).

The left task is to compute Wαβ explicitly. We can easily know from (198) that

Wαβ =
{
Ô(e−2S0/h), j(α) = j(β),
Ô(e−S0/h), j(α) 6= j(β).

(203)
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Those Wαβ when j(α) 6= j(β) characterize quantum tunneling which are our focuses now. Let
us discuss first when tunneling effects can be neglected. For two local eigenstates φ1 and φ2 in
different wells whose corresponding eigenvalues are µ1 and µ2, respectively, if

∃ε0 (0 < ε0 < S0) s.t. |µ1 − µ2| ≥ e−ε0/h, (204)

the tunneling effect between the two states would not affect much and we may say the two states
are non-resonant (see Helffer and Sjöstrand (1985) for more rigorous explanations). Intuitively,
we may understand the fact through energy conservation. Initiating a system at the state φ1, the
evolution governed by the Schrödinger equation keeps the total energy unchanged which is µ1.
If |µ2 − µ1| is large, the system state can not overlap much with φ2. The problem of tunneling
appears when |µ2 − µ1| is exponentially small for the order eS0/h. Thus, we may only consider
Wαβ for those α, β satisfying the following assumption:

Assumption A.5.
µα − µβ = O(h∞)e−

S0
h , (205)

φα = O(h−N0ed(x,Uj(α))/h), (206)

where N0 ∈ N is a constant.

A sufficient condition to get (206) is that Uj(α) is a point and

min f = f(Uj(α)) = 0, ∇f(Uj(α)) = 0, ∇2f(Uj(α)) ≥ 0, (207)

µα ∈ [0, C0h], for some C0 > 0. (208)

Under Assumption A.5, first note that

Wαβ = O(h∞)e−S0/h, if j(α) = j(β) ∨ d(Uj(α), Uj(β)) > S0, (209)

which is negligible as the principal terms are of the order h−νe−S0/h for some µ > 0. The remained
case to consider is

j(α) 6= j(β) ∧ d(Uj(α), Uj(β)) = S0. (210)

For simplicity, we introduce ' as

a ' b ⇐⇒ a− b = O(h∞)eS0/h. (211)

In order to calculate the integration, we need to introduce some geometry settings. Let E(a)

be an elliptic region, namely,

E(a) = {x ∈ Rd, d(Uj(α)) + d(Uj(β)) ≤ S0 + a}. (212)

The integration (198) for x /∈ E(a) gives a contribution ' 0. So later we can only consider
integration near E(a). The parameter a is chosen to be sufficiently small so that E(a) ⊂ Mj(α) ∪
Mj(β) and there is no other wells in E(a). Then, there will always exist such an open set Ω with
smooth boundary satisfying

Uj(α) ⊂ Ω, Uj(β) ∩ Ω = ∅, E(a) ∩ Ω ⊂Mj(α), E
(a) ∩ Ω{ ⊂Mj(β). (213)

Let Γ = ∂Ω∩E(a), which is compact inMj(α)∩Mj(β). Then, we make E(2a) satisfy the properties
as well by choosing proper a. To simplify the calculation, we introduce χE(a) ∈ C∞0 (M) which
equal to 1 in E(a) and has support in E(2a). The following relations hold

SuppχE(a) ∩ Ω ⊂Mj(α), SuppχE(a) ∩ Ω{ ⊂Mj(β) (214)
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Figure 11: Illustration of the geometric relations in Eq. (213).

Therefore, we know χj(α) = 1 on SuppχE(a) ∩ Ω and χj(β) = 1 on SuppχE(a) ∩ Ω{, leading to the
second ' in the following equation:

Wαβ ' h2
∫
χE(a)χj(α)(φβ∇φα − φα∇φβ) · ∇χj(β)dx (215)

' h2
∫

Ω
χE(a)(φβ∇φα − φα∇φβ) · ∇χj(β)dx. (216)

Use the Green formula, we have

Wαβ ' h2
∫
∂Ω
χE(a)χj(β)(φβ∇φα−φα∇φβ) ·(−n)dSΓ−h2

∫
Ω
∇·(χE(a)(φβ∇φα−φα∇φβ))χj(β)dx,

(217)
where n is the unit normal on ∂Ω riented into Ω and dSΓ is the induced measure on ∂Ω. With
Assumption A.5, the second term in the right hand side of (217) is of O(h∞e−S0/h), which means

Wαβ ' h2
∫

Γ

(
φα
∂φβ
∂n
− φβ

∂φα
∂n

)
dSΓ. (218)

And, we can have:

Proposition A.5 (Theorem 4.3.4 of Helffer (1988)). By adding Assumption A.5, Proposition A.4
can be improved to the following: the matrix P|F in the basis {eα} is given by

diag(µα) + W̃αβ +O(h∞)eS0/h, (219)

with

W̃αβ =
{

h2 ∫
Γ

(
φα

∂φβ
∂n − φβ

∂φα
∂n

)
dSΓ, if d(Uj(α), Uj(β)) = S0,

0, otherwise.
(220)

Now, we just need the knowledge of φα in a neighborhood of Γ to get the explicit form of P|F .
WKB method in Appendix A.2.1 can be used to estimate φα in the bottom (local ground states),
whose validity is secured by

Assumption A.6.
0 = min f < lim

|x|→∞
f, (221)

f−1(0) = U1 ∪ U2 . . . ∪ UN , (222)

Uj = xj is a point, and ∇2V (xj) > 0 for j = 1, . . . , N. (223)

That is, local minima are global minima. We choose I(h) to be small enough such that there is a
integerN+ and for j = 1, . . . , N+, PMj has exactly one eigenvalue in I(h) but for j = N++1, . . . , N ,
PMj has no eigenvalue near I(h). Resonance happens between wells {xj} for j = 1, . . . , N+. We
now just have to compute W̃jk for j 6= k, d(xj , xk) = S0 and j, k ∈ {1, 2, . . . , N+}.
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We know from Lemma A.1 that the local eigenstates have the form

φj(x) = h−d/4a(j)(x)e−d(x,xj)/h, (224)

and satisfy
(P − E(j))φj(x) = O(h∞)e−d(x,xj)/h. (225)

In the semi-classical analysis, the function a(j)(x) can be expanded as

a(j)(x) ≈
∞∑
k=0

a
(j)
k (x)hk. (226)

Insert this form to (220), we have

W̃jk = −h1−d/2
∫

Γjk

[
a(j)a(k)

(∂d(x, xk)
∂n

− ∂d(x, xj)
∂n

)
+O(h)

]
e−

djk(x)
h dSΓjk , (227)

where djk(x) = d(x, xj) + d(x, xk).

Assumption A.7. There are a finite number of geodesics γ(l)
jk of length S0 joining xj and xk, where

l ∈ Λjk is the index denoting which geodesic it is. Let Γ(l)
jk ⊂ Ω{

j ∩ Ωk be a smooth hypersurface
intersecting γ(l)

jk such that there would be a point x(l)
jk ∈ γ

(l)
jk ∩ Ωj ∩ Ωk being the only point in

Γ(l)
jk ∩ γ

(l)
jk .

Proposition A.6 (Theorem 4.4.6 and 4.4.7 in Helffer (1988)). For j, k ∈ {1, 2, . . . , N+} and
d(xj , xk) = S0, there is a constant C > 0 such that

1
C
h1/2 ≤ −W̃jke

S0/h ≤ Ch1−d/2. (228)

More specifically, we have
W̃jk = −h1/2(

∑
m

b
(m)
jk hm)e−S0/h, (229)

with

b
(0)
jk = 2(2π)

d−1
2
∑
l∈Λjk

√√√√√ f(x(l)
jk )

det
(
∇2djk(x(l)

jk )
)a(j)

0 (x(l)
jk )a(k)

0 (x(l)
jk ). (230)

Proof. We would use the semi-classical hypothesis to calculate the leading term of (227). Note
that only regions near x(l)jk , l ∈ Λjk have contribution to the leading term:

W̃jk = −h1−d/2e−
S0
h

∑
l∈Λjk

∫
Bl(h)

[
a

(j)
0 (x(l)

jk )a(k)
0 (x(l)

jk )
(∂d(x, xk)

∂n
− ∂d(x, xj)

∂n

)
+O(h)

]
e−

djk(x)−S0
h dSΓjk ,

(231)

where Bl(h) ⊂ Γjk is a neighborhood of x(l)
jk . We can set Bl(h)→ {x(l)

jk}, (h→ 0). Recall that x(l)
jk

is a minimum of djk(x) in Γjk, in the neighborhood of x(l)
jk , we have

e−
djk(x)−S0

h = e−
X>∇2djk(x(l)

jk
)X

2h + h.o.t, (232)

where X = {x1, . . . , xd−1} is the local coordinate of Γjk centered in x(l)
jk and h.o.t denotes higher

order terms. Examine the integral near x(l)
jk :∫

Bl(h)

(∂d(x, xk)
∂n

− ∂d(x, xj)
∂n

)
e−

djk(x)−S0
h dSΓjk =

∫
2
√
f(x(l)

jk )e−
X>∇2djk(x(l)

jk
)X

2h dx1 · · · dxd−1 + h.o.t

= 2
√
f(x(l)

jk )

√√√√ (2πh)d−1

det
(
∇2djk(x(l)

jk )
) + h.o.t. (233)
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So that we have

W̃jk = −h1/2e−
S0
h

∑
l∈Λjk

2(2π)
d−1

2 a
(j)
0 (x(l)

jk )a(k)
0 (x(l)

jk )

√√√√√ f(x(l)
jk )

det
(
∇2djk(x(l)

jk )
) + h.o.t. (234)

Theorem A.1 (Energy gap). Assume the assumptions for Proposition A.6 are satisfied and N+ =
N . The minimal energy gap ∆E of P|F , i.e., the minimal absolute difference between unequal
eigenvalues of P|F , is given by ∆E =

√
h(b + O(h))e−

S0
h where b > 0 is a constant that depends

only on the potential f .

Proof. Because of Proposition A.5, we have now

P|F = diag(µj) + (W̃ij) +O(h∞)eS0/h. (235)

According to Proposition A.6, W̃ij is of the form −h1/2(bij +O(h))e−S0/h, where bij depends only
on i, j, and the potential f . By Assumption A.5, |µj − µi| = O(h∞)e−S0/h, so we have

P|F = diag(µ)− h1/2(bij +O(h))e−S0/h +O(h∞)eS0/h, (236)

where µ is chosen to be one µj . The eigenvalues of P|F should be of the form

Ej = µ+ h1/2(bj +O(h))e−S0/h +O(h∞)eS0/h, (237)

where bj are constants depending only on f and j. Therefore, we have the energy gap ∆E =
minEj 6=Ei |Ej − Ei| as

∆E = h1/2(b+O(h))e−S0/h +O(h∞)eS0/h = h1/2(b+O(h))e−S0/h, (238)

where b is a constant only related to f .

B Auxiliary Algorithmic Techniques for Quantum Tunneling Walks
In this section, we introduce two quantum algorithmic techniques that are necessary for obtaining
our results. One is quantum simulation of the Schrödinger equation (Appendix B.1), and the other
is initial state preparation (Appendix B.2).

B.1 Quantum Simulation of the Schrödinger Equation
The Schrödinger equation we want to simulate is

i
∂

∂t
Φ = (−h2∆ + f(x))Φ. (239)

We regard the simulation of (239) as solving this special partial differential equation (PDE) by
quantum algorithms. Following Costa et al. (2019); Zhang et al. (2021a), we work in Rd and use
the finite difference method which discretizes the space into grids with side-length a. In this way,
any function φ can be viewed as a vector and the Hamiltonian H = −h2∆ + f becomes a matrix.
For instance, in the one-dimensional case, φj is the function value of φ on the jth grid which forms
a vector, −h2∆ is discretized to be −h

2

a2L where L is the Laplacian matrix of the graph of the grids
(whose off-diagonal entries are −1 for connected grids and zero otherwise, and diagonal entries are
the degree of the grids), giving

(∆φ)j ≈
1
a2 (Lφ)j = φj+1 − 2φj + φj−1

a2 , (240)
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and f in the Hamiltonian H is discretized to be a matrix whose jth diagonal entry is the value of f
at the jth grid. Here the approximation ≈ follows the definition in Eq. (13) and the LHS and RHS
of (240) is equal under the limit a→ 0. The step of discretization would bring errors which can be
controlled by making a smaller. For convenience, we define A := −h

2

a2Lk, where Lk is the Laplacian
matrix associated to the kth order finite difference method Childs et al. (2021), and define B the
diagonal matrix discretizing f . We use the matrix Ĥ := A + B to model the Hamiltonian of the
Schrödinger equation under discretization. To simulate the time evolution governed by Ĥ, we use
the following result:

Lemma B.1 (Lemma 6 in Low and Wiebe (2019)). Let A,B ∈ Cn×n be two time-independent
Hermitian matrices such that ‖A‖ ≤ αA and ‖B‖ ≤ αB. Then, the time evolution operator
e−i(A+B)t can be approximated up to error ε with

O

(
αBt

log(αBt/ε)
log log(αBt/ε)

)
(241)

quires to the unitary oracle OB.

Remark B.1. The ε in Lemma B.1 originally denotes the error bound quantified by the spectral
norm. Namely, let Tt be the real operator obtained, the error ‖Tt− e−i(A+B)t‖ ≤ ε. For any initial
state |Φ(0)〉, |Φ(t)〉 = e−i(A+B)t |Φ(0)〉 is the state we want to prepare and |Φ̃(t)〉 = Tt |Φ(0)〉 the
state we can prepare. Nevertheless, It is straightforward to have ‖Φ̃(t)− Φ(t)‖ ≤ ε, which implies
ε that can be understood as the error under `2 norm.

Remark B.2. Note the Lemma 6 in Low and Wiebe (2019) gives the number of queries to the
oracle HAM-T. Because the construction of HAM-T only needs one query to OB, Lemma B.1
follows. Moreover, if we specify B as the diagonal matrix discretizing the objective function f , one
quantum query to OB can be implemented by one query to the quantum evaluation oracle Uf given
by (11).

Classical and quantum methods approximating (239) need to discretize the time. The time
step ∆t for classical methods to maintain convergence is of the order 1/‖Ĥ‖. Therefore, steps or
queries needed for evolving a time t is about t/∆t ∼ t‖Ĥ‖. The term ‖Ĥ‖ can be understood as
the maximum energy, indicating that simulating higher energy states accurately costs more. This
intuition is partially true for quantum simulation. By simulating the Hamiltonian in the interaction
picture, the query complexity of Lemma B.1 depends on the maximum potential energy instead of
the maximum energy because ‖B‖ ≤ ‖f‖∞. With Lemma B.1 on simulating Ĥ, we now determine
the number of queries needed to simulate H.

Lemma B.2 (Slightly modified version from Lemma 2 in Zhang et al. (2021a)). Let f : Rd → R
be bounded in a domain Ω ⊂ Rd, consider the Schrödinger equation (239) restricted in the domain
Ω with periodic boundary condition or Dirichlet boundary condition (value of the wave function
vanishes at the boundary).14 Having the quantum evaluation oracle Uf in (11) and an initial state
adapting to the boundary condition at t = 0, the evolution of (239) for time t can be simulated up
to L2 norm error ε using

O

(
‖f‖L∞(Ω)t

log(‖f‖L∞(Ω)t/ε)
log log(‖f‖L∞(Ω)t/ε)

)
(242)

queries to Uf .

Proof of Lemma B.2. There are two sources that producing error: the first comes from discretizing
the spatial domain (approximating the Hamiltonian H by the matrix Ĥ) and the second comes
from simulating the Hamiltonian matrix Ĥ with the help of Lemma B.1.

14The set Ω should be appropriate such that the Schrödinger equation is solvable. For the purpose of optimization,
Ω should be sufficiently large to contain all minima of interest, and the wave function can hardly hit the boundary
∂Ω. For consistency in mathematics, the initial state should be in H1

0 (Ω)∩H2(Ω) (see Definition A.6) if we use the
Dirichlet boundary condition.
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Let the initial wave function be Φ(0, x) and the accurate wave function after time t be Φ(t, x) =
e−iHtΦ(0, x). By discretization, let {xj}j∈I be the grid points where I is the set of index, we then
obtain a vector Φ̂(0) whose jth entry is the value Φ(0, xj). Denote the vector Φ̂(t) = e−iĤtΦ̂(0),15

we can rebuild a function Φ̂∨(t, x) by setting the function value on the jth grid (a hypercube with
side-length a) to be the jth entry of Φ̂(t). By setting 1/a = poly(d)poly(log(2/ε)), it can be made
that ‖Φ̂∨(t, ·) − Φ(t, x)‖L2(Ω) ≤ ε/2 Childs et al. (2021). Since ‖B‖ ≤ ‖f‖L∞(Ω), Lemma B.1
permits an operator Tt simulating e−iĤt with

Q(t, ε) = O

(
‖f‖L∞(Ω)t

log(2‖f‖L∞(Ω)t/ε)
log log(2‖f‖L∞(Ω)t/ε)

)
(243)

queries to OB , such that ‖Φ̃(t) − Φ̂(t)‖ ≤ ε/2 where Φ̃(t) := TtΦ̂(0) (see Remark B.1). Similar
to rebuilding Φ̂∨(t, x) from the vector Φ̂(t), we can rebuild a function Φ̃∨(t, x) from Φ̃(t) and
‖Φ̃(t) − Φ̂(t)‖ ≤ ε/2 is equivalent to ‖Φ̃∨(t, ·) − Φ̂∨(t, ·)‖L2(Ω) ≤ ε/2. Finally, by the triangle
inequality,

‖Φ̃∨(t, ·)− Φ(t, ·)‖L2(Ω) ≤ ‖Φ̃∨(t, ·)− Φ̂∨(t, ·)‖L2(Ω) + ‖Φ̂∨(t, ·)− Φ(t, x)‖L2(Ω) ≤ ε. (244)

In the present case, a query to OB can be implemneted by one query to the quantum evaluation
oracle Uf (Remark B.2). Note that

log(2‖f‖L∞(Ω)t/ε)
log log(2‖f‖L∞(Ω)t/ε)

≤
1 + log(‖f‖L∞(Ω)t/ε)
log log(‖f‖L∞(Ω)t/ε)

≤
2 log(‖f‖L∞(Ω)t/ε)

log log(‖f‖L∞(Ω)t/ε)
, (245)

we can also write

Q(t, ε) = O

(
‖f‖L∞(Ω)t

log(‖f‖L∞(Ω)t/ε)
log log(‖f‖L∞(Ω)t/ε)

)
. (246)

In summary, using Q(t, ε) queries to Uf , we are able to obtain a wave function Φ̃∨(t, x) close to
the actual solution Φ(t, x) up to error ε, which completes the proof.

Remark B.3. The discretization method introduced indicates that every grid is a hypercube with
side-length a. If the boundary Ω is curved, grids fitting the boundary and the boundary condition
can be irregular. In this case, discretization of the Laplacian, or equivalently the form of the matrix
A, will be different. We clarify that Lemma B.2 is still true for irregular grids since grids do not
affect the fact that ‖B‖ ≤ ‖f‖L∞(Ω).

Up to now, we introduce quantum simulation in Rd or more precisely, a subset Ω of Rd.
We further claim that for smooth (compact) manifolds that can be embedded in Rd, the query
complexity presented in Lemma B.2 should still be valid. On such manifolds, say M , we can use
discretization methods in Rd to approximate the discretization in M . Note that the Laplacian
should be replaced by the Laplace–Beltrami operator, adding difficulties for construct the matrix
A. However, since A does not affect query complexity and B will always be a diagonal matrix
and ‖B‖ ≤ ‖f‖L∞(M), the form of (242) should be the same. In general, quantum simulation on
manifolds are interesting topics, deserving further studies.

Note that Lemma B.1 we use bound the error of states by bounding the error of operators. This
may not provide the possible minimal queries needed if the initial state is in a low energy subspace
which is exactly the case for QTW. Quantum simulation in a low energy subspace intuitively lowers
the query complexity bound Şahinoğlu and Somma (2021), indicating larger speedups of QTW.

15The boundary condition can be satisfied by setting some entries at the edge of the matrix A in Ĥ as 0 or
1/∆x2, which is a standard process in solving differential equations by finite difference methods and can be found
in extensive classical literature.
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B.2 Initial State Preparation
QTW is a quantum simulation algorithm making use of quantum tunneling. To fulfill the tunneling
phenomenon, not only should the potential function f(x) satisfy some assumptions (as is presented
in Section 2.3), but also the initial state should be in a low-energy subspace. For completeness, we
introduce in this appendix possible ways for preparing initial states under different scenarios.

For a landscape f(x) satisfying assumptions in Section 2.3, Proposition A.3 in Appendix A.2.3
guarantees that for sufficiently small h, local eigenstates with cut-offs (see Definition A.8) can
span a space E that is close to F , a low-energy subspace of the Hamiltonian H = −h2∆ + f .
Moreover, orthonormalized local eigenstates (see Definition A.10) can span the space F . Note
that we only consider tunneling between local ground states, hence the above claim implies that
orthonormalized local ground states can span the space F . Assumption 2.4 supposes that there
are N global minima (wells) of interest. Therefore, we can label the minima by j ∈ {1, . . . , N} and
denote the orthonormalized local ground state corresponding to the jth minima by |j〉. Let |Ej〉
(j = 1, 2, . . .) be eigenstates of H with eigenvalues Ej , respectively. Mathematically, we can write

F = span{|j〉}Nj=1 = span{|Ej〉}Nj=1. (247)

The goal is to prepare a state (nearly) in the subspace F such that QTW can be initiated.
First, we explore a simple scenario where we have previous knowledge of one minimum.

Local ground state preparation. With the knowledge of one minimum, say the jth one, an
efficient way of state preparation is to prepare or approximate the local ground state corresponding
to the jth minimum. In practice, |j〉 has no explicit form and we need to prepare the original local
ground state |φj〉 (see Definition A.7). Restating Definition A.7 in the present case, Mj (rigorously
given by (181)) is a bounded region that contains only the jth minimum and |φj〉 is the ground
state of HMj

which is the Dirichlet realization of H in Mj (see Definition A.6). Regardless of the
rigorous mathematical definition, the function φj = 〈x|φj〉 : Mj → C could be understood as the
function φ satisfying (−h2∆ + f)φ = Eφ and φ|∂Mj

= 0 whose E is the smallest.
One way to prepare (approximate) |φj〉 is through adiabatic quantum computing restricted

in Mj (some set Ωj ⊂ Mj). Adiabatic quantum computing presents such a picture, for a time-
dependent Hamiltonian H(t), if the initial state ψ(0) is the ground state of H(0) and H(t) changes
sufficiently slow, the system will approximately stay at the ground state of H(t) at t. For the
purpose of preparing ground state of HMj (HΩj ), we can let H(0) be some known Hamiltonian
and let H(T ) = HMj (HΩj ). Sufficiently slowly changing H(t) is equivalent to a sufficiently large
T . Let G(t) be the fundamental gap of H(t), i.e., the difference between the second smallest and
smallest eigenvalues of H(t), time for state preparation can be bounded as follows.

Lemma B.3 (Informal quantum adiabatic theorem Duan (2020)). Let φ(t) be be the unit eigenstate
of H(t) and 〈∂tφ(t)|φ(t)〉 = 0. Simulating the time dependent Hamiltonian H(t) when ψ(0) = φ(0),
we can obtain ψ(T ) such that ‖ψ(T )− φ(t)‖ ≤ ε if

T ≥ 1
ε

(
4‖∂tH‖+ 2‖∂ttH‖

G2
m

+ 20‖∂tH‖2

G3
m

)
, (248)

where Gm = inf0≤t≤T G(t).

Intuitively, the time cost is bounded by the inverse of the minimal fundamental gap. For
simplicity, we study HΩj for small convex Ωj where f|Ωj is also weakly convex. The ground state
of HΩj can be close to that of HMj if h is small. By Andrews and Clutterbuck (2011), fundamental
gaps of Hamiltonians restricted in Ωj is Ω(h2/D2) where D is the diameter of Ωj . As is shown by
Theorem 1.1, time cost of QTW is dominated by 1/∆E where ∆E = O(e−S0/h) = O(h∞) is also
an energy gap. Therefore, for small h that ensuring tunneling and high accuracy, 1/∆E is much
larger than the inverse of any fundamental gaps of Hamiltonians restricted in Ωj , giving that local
ground state preparation is much easier than QTW.

Classical methods could also help to prepare local ground states. Still given the jth minimum
xj , we can use classical sampling to learn the Hessian matrix at xj , ∇2f(xj). Then, we can directly
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put the following wave function centered at xj .

φ(x) =
(

det
√
∇2f(xj)

)1/4
(
√

2πh)d/4
e
−

(x−xj)>
√
∇2f(xj)(x−xj)

2
√

2h . (249)

Note that if f is quadratic, the φ(x) in (249) will be the ground state precisely. Using the ground
state under quadratic landscape to approximate the actual ground state is actually the idea of
WKB approximation in Appendix A.2.1. The smaller h is, the more accurate the approximation
of (249) can be. In addition, Gaussian wave packets can be efficiently sampled on quantum com-
puters Kitaev and Webb (2008); Rattew et al. (2021). It is still true that QTW takes more time
than initial state preparation.

Local ground state preparation is convenient because it suffices to focus on a neighborhood of
one minimum. However, it also has drawback as we cannot ensure that the state we obtain is in
F . Detailed error estimation is needed in future work.16

General initial state preparation. Next, we consider the general scenario where we do not
have any priori knowledge on any minimum.

A straightforward way is to use classical algorithms (e.g., SGD) or quantum algorithms to find
one minimum first and then apply above procedure of preparing local ground states. Besides, we
present a new idea that can directly yield a state near the subspace F . The method is based
on a generalized version of the quantum adiabatic theorem. Define GF := EN+1 − EN as the
fundamental gap of space F . The proof of Lemma B.3 suggests that as long as the total time T is
long enough respective to the inverse of the fundamental gap of space F , the system can always
be near the space F . See also Boixo and Somma (2010). The state |EN+1〉 is orthogonal to F as
F = span{Ej}Nj=1. Hence, |EN+1〉 is at least a superposition of local first excited states such that
GF has a similar value to the gap between local ground energy and local first excited energy. Then,
for any landscape f satisfying assumptions in Section 2.3, we can prepare states in the low-energy
subspace F with time ∼ poly(1/GF ).

In summary, we provide several ways of preparing the desired initial states under different
conditions. In principle, discussions on initial state preparation also suggest potential hybrid
quantum-classical algorithms and potential quantum simulation algorithms containing both adia-
batic quantum computing and QTW, which are of independent interest.

C Technical Details for Quantum Tunneling Walks
C.1 Details of quantum mixing time
C.1.1 Proof of Lemma 3.1

Lemma 3.1 aims to bound the minimum time τ enabling ‖ρQTW(τ, x)− µQTW(x)‖1 ≤ ε (i.e., the
mixing time).

16To be specific, |j〉 is in F but we cannot prepare; what we can approximately prepare is |φj〉. Definition A.7,
Definition A.8, and Definition A.10 together give an estimation that 〈x| j〉 = φj +O(e−S0/h).
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Proof. Straightforward calculations yield

‖ρQTW(τ, x)− µQTW(x)‖1 =
∫ ∣∣∣∣∣∣

∑
Ek 6=Ek′

1− e−i(Ek−Ek′ )τ

i(Ek − Ek′)τ
〈x|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |x〉

∣∣∣∣∣∣dx
(250)

≤
∫ ∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈x|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |x〉|dx (251)

≤
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

∑
j,j′

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j′〉|

×
∫
| 〈x|j〉 〈j′|x〉 |dx. (252)

Because of Assumption 2.4 in Section 2 which can lead to Assumption A.5, for j 6= j′, we have

〈x|j〉〈j′|x〉 = O(h−N
′
e−

d(xj,x)+d(x
j′ ,x)

h ) ≤ O(h−N
′
e−

S0
h ) = O(h∞), (253)

where N ′ > 0 is some constant. Therefore,∫
|〈x|j〉〈j′|x〉|dx =

{
1, j = j′,
O(h∞), j 6= j′.

(254)

By the Cauchy-Schwarz inequality,

|〈j|Ek〉〈Ek′ |j′〉| ≤
1
2(|〈j|Ek〉|2 + |〈Ek′ |j′〉|2), (255)

such that,

‖ρQTW(τ, x)− µQTW(x)‖1 ≤
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

∑
j,j′

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j′〉|

×
∫
| 〈x|j〉 〈j′|x〉 |dx (256)

≤
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

∑
j,j′

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|
1
2(|〈j|Ek〉|2 + |〈Ek′ |j′〉|2)

×
∫
| 〈x|j〉 〈j′|x〉 |dx. (257)

Splitting the sum on j and j′, we have

‖ρQTW(τ, x)− µQTW(x)‖1 ≤
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

n∑
j=1
|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|

1
2(|〈j|Ek〉|2 + |〈Ek′ |j〉|2)

+
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

∑
j 6=j′
|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|

1
2(|〈j|Ek〉|2 + |〈Ek′ |j′〉|2)|O(h∞)|

(258)

≤
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|

+
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|(N − 1)|O(h∞)| (259)

=
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|[1 + (N − 1)|O(h∞)|].

(260)
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One of the sufficient conditions to obtain (64) is that

τ ≥ 2
ε

∑
Ek 6=Ek′

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|
|Ek − Ek′ |

[1 + (N − 1)|O(h∞)|]. (261)

Since the mixing time is the minimum τ for (64) to be valid, an upper bound of the mixing time
is given by the above equation. In other words,

Tmix = O

(
1
ε

∑
Ek 6=Ek′

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|
|Ek − Ek′ |

[1 + (N − 1)|O(h∞)|]
)

(262)

Note the definition of ∆E and use the Cauchy-Schwarz inequality, we have∑
Ek 6=Ek′

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|
|Ek − Ek′ |

≤ 1
∆E

∑
Ek 6=Ek′

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|

≤ 1
∆E

∑
k,k′

1
2(|〈Ek|Φ(0)〉|2 + |〈Φ(0)|Ek′〉|2) = N

∆E , (263)

which complete the proof of Lemma 3.1.

C.1.2 Proof of Lemma 3.2

Lemma 3.2 reveals the relation between probabilities p(∞, j) for j = 1, . . . , N and the limit distri-
bution µQTW.

Proof. We further estimate µQTW as follows

µQTW(x) =
∑
j,j′

∑
Ek=Ek′

〈x|j〉〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j′〉〈j′|x〉

=
∑
j

∑
Ek=Ek′

|〈x|j〉|2〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉

+
∑
j 6=j′

∑
Ek=Ek′

〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j′〉〈j′|x〉〈x|j〉

=
∑
j

p(∞, j)|〈x|j〉|2 +O(h∞), (264)

where the last equality uses (253) and

p(∞, j) =
∑

Ek=Ek′

〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉. (265)

Because |〈x|j〉|2 is the position distribution of the state |j〉, µQTW can be roughly seen as a weighted
sum of the distributions of local states when h is small enough, which is intuitive.

C.1.3 Proof of Lemma 3.3

Lemma 3.3 bounds the mixing time of quantum walks whose evolution is governed by the interaction
matrix of QTW.

Proof. By the definition of p(τ, j), we have

N∑
j=1
|p(τ, j)− p(∞, j)| =

N∑
j=1

∣∣∣∣∣∣
∑

Ek 6=Ek′

1− e−i(Ek−Ek′ )τ

i(Ek − Ek′)τ
〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉

∣∣∣∣∣∣
≤

N∑
j=1

∑
Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉|. (266)

Accepted in Quantum 2023-05-12, click title to verify. Published under CC-BY 4.0. 59



The Cauchy-Schwarz inequality gives

|〈j|Ek〉〈Ek′ |j〉| ≤
1
2(|〈j|Ek〉|2 + |〈Ek′ |j〉|2), (267)

and then,
N∑
j=1
|p(τ, j)− p(∞, j)| ≤

∑
Ek 6=Ek′

N∑
j=1

2
|Ek − Ek′ |τ

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|
1
2(|〈j|Ek〉|2 + |〈Ek′ |j〉|2)

=
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|. (268)

The condition (70) is satisfied if

τ ≥ 2
ε

∑
Ek 6=Ek′

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|
|Ek − Ek′ |

, (269)

Therefore, an upper bound of the quantum walk mixing time tmix is
2
ε

∑
Ek 6=Ek′

|〈Ek|Φ(0)〉〈Φ(0)|Ek′〉|
|Ek − Ek′ |

≤ 2N
ε∆E . (270)

The last inequality uses (263), which finishes the proof.

C.2 Details of quantum hitting time
C.2.1 Proof of Lemma 3.4

We introduce by Lemma 3.4 the typical upper bound of hitting time for quantum walks Childs
et al. (2003).

Proof. The definition of p(τ, j) gives

|p(τ, j)− p(∞, j)| =

∣∣∣∣∣∣
∑

Ek 6=Ek′

1− e−i(Ek−Ek′ )τ

i(Ek − Ek′)τ
〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉

∣∣∣∣∣∣
≤

∑
Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉|, (271)

which naturally leads to

p(τ, j) ≥ p(∞, j)−
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉|. (272)

The second term of the right hand side of the above equation can be bounded as∑
Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉|

≤ 2
∆Eτ

∑
Ek,Ek′

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉| (273)

≤ 1
∆Eτ

∑
Ek,Ek′

(|〈j|Ek〉〈Ek′ |j〉|2 + |〈Φ(0)|Ek′〉〈Ek|Φ(0)〉|2) = 2
∆Eτ . (274)

Here, the second inequality uses the Cauchy-Schwarz inequality. Therefore, we have p(τ, j) ≥
p(∞, j) − 2/∆Eτ . Because thit(j) is defined as the lower bound of τ/p(τ, j) for all τ > 0. Define
τε = 2/∆Eε for ε < p(∞, j), we must have

thit(j) ≤
τε

p(τε, j)
≤ 2/∆Eε
p(∞, j)− ε . (275)
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C.2.2 Proof of Lemma 3.5

For QTW, the hitting time is estimated by Lemma 3.5 similar to Lemma 3.4.

Proof. We first estimate the quantity
∫

Ωj ρQTW(τ, x)dx:∣∣ ∫
Ωj

(ρQTW(τ, x)− µQTW(x))dx
∣∣ ≤ ∫

Ωj

∑
Ek 6=Ek′

2
|Ek − Ek′ |τ

|〈x|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |x〉|dx

(276)

≤
∑

Ek 6=Ek′

2
|Ek − Ek′ |τ

∑
l,j′

|〈l|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j′〉|

×
∫

Ωj
| 〈x| l〉 〈j′|x〉 |dx. (277)

Note that Assumption A.5 is satisfied as assumed, for l 6= j′, we have

〈x|l〉〈j′|x〉 = O(h−N
′
e−

d(xj,x)+d(x
j′ ,x)

h ) ≤ O(h−N
′
e−

S0
h ) = O(h∞), (278)

where N ′ > 0 is some constant. Then, it is readily to have∣∣ ∫
Ωj

(ρQTW(τ, x)− µQTW(x))dx
∣∣ ≤ 2

∆Eτ
[ ∑
Ek 6=Ek′

∑
l

|〈l|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |l〉|

×
∫

Ωj
| 〈x| l〉 〈l|x〉 |dx+ |O(h∞)|

]
. (279)

According to Corollary A.1, the integrals
∫

Ωj | 〈x|j〉 〈j|x〉 |dx = 1+O(h∞) and ∀l 6= j,
∫

Ωl | 〈x| l〉 〈l|x〉 |dx =
O(h∞), which can yield∣∣ ∫

Ωj
(ρQTW(τ, x)− µQTW(x))dx

∣∣ ≤ 2
∆Eτ

[ ∑
Ek 6=Ek′

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉|+ |O(h∞)|
]
.

(280)

Apply the Cauchy-Schwarz inequality, we have∑
Ek 6=Ek′

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉| ≤
∑

Ek,Ek′

|〈j|Ek〉〈Ek|Φ(0)〉〈Φ(0)|Ek′〉〈Ek′ |j〉| (281)

≤ 1
2
∑

Ek,Ek′

(|〈j|Ek〉〈Ek′ |j〉|2 + |〈Φ(0)|Ek′〉〈Ek|Φ(0)〉|2) = 1,

(282)

and then ∣∣ ∫
Ωj

(ρQTW(τ, x)− µQTW(x))dx
∣∣ ≤ 2

∆Eτ (1 + |O(h∞)|). (283)

So,
∫

Ωj ρQTW(τ, x)dx can be bounded as∫
Ωj
ρQTW(τ, x)dx ≥

∫
Ωj
µQTW(x)dx− 2

∆Eτ (1 + |O(h∞)|). (284)

Use Corollary A.1 again, we get
∫

Ωj µQTW(x)dx = p(∞, j) + O(∞) which completes the proof of
(78).

Because Thit(Ωj) is the lower bound of τ/
∫

Ωj ρQTW(τ, x)dx for all τ > 0. Given that τε =
2(1+|O(h∞)|)/∆Eε (the term O(h∞) should be the same as that in (283)) for ε <

∫
Ωj µQTW(x)dx,

we must have

Thit(Ωj) ≤
τε∫

Ωj ρQTW(τ, x)dx
≤ 2

∆Eε
1 + |O(h∞)|∫

Ωj µQTW(x)dx− ε
. (285)

Accepted in Quantum 2023-05-12, click title to verify. Published under CC-BY 4.0. 61



C.3 Details about tensor decomposition
C.3.1 Proof of Lemma 3.6

Lemma 3.6 explores the eigenstates and eigenvalues of H|F given by (82).To prove Lemma 3.6, we
first study a simpler matrix.

Lemma C.1. Consider matrices of the following form:

A =


µ w · · · w

w µ w
...

... w
. . . w

w · · · w µ

 . (286)

The eigenvalues are
E1 = · · · = En−1 = µ− w, En = µ+ (n− 1)w, (287)

And the corresponding eigenstates can be given by

|Ek〉 = 1√
n

∑
j

ei
2π
n kj |j〉, (288)

Lemma C.1 can be easily verified. To prove it, we use the standard way: eigenvalues are
solved from det(EiI − A) = 0, and then a orthonormal set of eigenstates can be solve from
(EiI −A) |Ei〉 = 0. Now, we turn to the proof of Lemma 3.6:

Proof of Lemma 3.6. By symmetry, we first introduce the new basis,

|j, S〉 = 1√
2

(|j,+〉+ |j,−〉),

|j, A〉 = 1√
2

(|j,+〉 − |j,−〉). (289)

Here, S and A refer to symmetric and anti-symmetric, respectively. In the basis {|1, S〉, . . . , |d, S〉,
|1, A〉, . . . , |d,A〉}, H|F should be changed to

µ 2w · · · 2w

2w µ
. . .

...
...

. . . . . . 2w
2w · · · 2w µ

µ
µ

. . .
µ


, (290)

where the upper left block is d× d and is of the case described by Lemma C.1. So, we know that
d eigenstates of H|F is given by

|Ek〉 = 1√
d

∑
j

ei
2π
d kj |j, S〉, k = 1, . . . , d (291)

And the corresponding eigenvalues are

E1 = · · · = Ed−1 = µ− 2w, Ed = µ+ 2w(n− 1). (292)

Clearly, |j, A〉, (j = 1, . . . , d) form the left d eigenstates with the eigenvalue µ.
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C.3.2 Proof of Lemma 3.7

Lemma 3.7 estimates the mixing time of QTW on the landscape (82).

Proof. First recall that

ρQTW − µQTW =
∑

Ek 6=Ek′

1− e−i(Ek−Ek′ )τ

i(Ek − Ek′)τ/
〈x|Ek〉〈Ek|α〉〈α|Ek′〉〈Ek′ |x〉

=
∑
β

∑
Ek 6=Ek′

1− e−i(Ek−Ek′ )τ

i(Ek − Ek′)τ
〈β|Ek〉〈Ek|α〉〈α|Ek′〉〈Ek′ |β〉|〈x|β〉|2 + 1

wτ
O(h∞)e−

S0
h

=
∑
β

∑
k′∈{1,...,d−1}

1− e−i(2dw)τ

i2dwτ 〈β|Ed〉〈Ed|α〉〈α|Ek′〉〈Ek′ |β〉|〈x|β〉|2 + c.c.

+
∑
β

∑
k∈{d+1,...,2d}
k′∈{1,...,d−1}

1− e−i(2w)τ

i2wτ 〈β|Ek〉〈Ek|α〉〈α|Ek′〉〈Ek′ |β〉|〈x|β〉|2 + c.c.

+
∑
β

∑
k′∈{d+1,...,2d}

1− e−i(2(d−1)w)τ

i2(d− 1)wτ 〈β|Ed〉〈Ed|α〉〈α|Ek′〉〈Ek′ |β〉|〈x|β〉|2 + c.c.

+ 1
wτ

O(h∞)e−
S0
h . (293)

Here, the second equality is true because

〈x|µ〉〈ν|z〉 ∝ e−
dx,πµaj(µ)+dx,πνaj(ν)

h ≤ e−
S0
h , (294)

and the third equality uses the fact

f(Ek, Ek′ , α, β) = f(Ek′ , Ek, α, β)∗, (295)

where
f(Ek, Ek′ , α, β) ≡ 1− e−i(Ek−Ek′ )τ

i(Ek − Ek′)τ
〈β|Ek〉〈Ek|α〉〈α|Ek′〉〈Ek′ |β〉|〈x|β〉|2. (296)

and c.c. denote “complex conjugate." Now, we calculate different terms separately using Lemma 3.6:

∑
k′∈{1,...,d−1}

f(Ed, E′k, α, β) =
∑

k′∈{1,...,d−1}

1− e−i(2dw)τ

i2dwτ
1

(2d)2 e
i 2π
d k
′(j(α)−j(β))|〈x|β〉|2

=
{

1−e−i2dwτ
i2dwτ

d−1
(2d)2 |〈x|β〉|2, j(α) = j(β),

e−i2dwτ−1
i2dwτ

1
(2d)2 |〈x|β〉|2, j(α) 6= j(β),

(297)

∑
k∈{d+1,...,2d}
k′∈{1,...,d−1}

f(Ek, E′k, α, β) =
∑

k∈{d+1,...,2d}
k′∈{1,...,d−1}

1− e−i2wτ

i2wτ
παπβδj(α),j(β)δj(α),k−d

4d ei
2π
d k
′(j(α)−j(β))|〈x|β〉|2

= δj(α),j(β)
1− e−i2wτ

i2wτ παπβ
d− 1

4d |〈x|β〉|
2, (298)

∑
k′∈{d+1,...,2d}

f(Ed, E′k, α, β) =
∑

k′∈{1,...,d−1}

1− e−i2(d−1)wτ

i2(d− 1)wτ
1
4dδj(α),j(β)δj(α),k′−dπαπβ |〈x|β〉|2

= 1− e−i2(d−1)wτ

i2(d− 1)wτ
1
4dδj(α),j(β)παπβ |〈x|β〉|2. (299)
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Substituting the above results in (293) gives

ρQTW − µQTW =
∑

j(β)6=j(α)

− sin(2dwτ)
dwτ

1
(2d)2 |〈x|β〉|

2 +
∑

j(β)=j(α)

sin(2dwτ)
dwτ

d− 1
(2d)2 |〈x|β〉|

2

+ sin(2wτ)
wτ

d− 1
4d (|〈x|j(α), πα〉|2 − |〈x|j(α),−πα〉|2)

+ sin(2(d− 1)wτ)
(d− 1)wτ

1
4d (|〈x|j(α), πα〉|2 − |〈x|j(α),−πα〉|2) + 1

wτ
O(h∞)e−

S0
h .

(300)

The 1-norm here refers in particular to the integral on Sd−1, i.e., ‖ · ‖1 =
∫
Sd−1 | · |dx. We use dx

to denote the volume element of Sd−1 induced from Rd. As sin(·) ≤ 1, it is easily estimated from
(300) that

|ρQTW − µQTW| ≤
∑

j(β) 6=j(α)

1
d|w|τ

1
(2d)2 |〈x|β〉|

2 +
∑

j(β)=j(α)

1
d|w|τ

d− 1
(2d)2 |〈x|β〉|

2

+ 1
|w|τ

d− 1
4d (|〈x|j(α), πα〉|2 + |〈x|j(α),−πα〉|2)

+ 1
(d− 1)|w|τ

1
4d (|〈x|j(α), πα〉|2 + |〈x|j(α),−πα〉|2) + 1

|w|τ
O(h∞)e−

S0
h , (301)

Note that for any β,
∫
Sd−1 |〈x|β〉|2dx = 1, so we can obtain

‖ρQTW − µQTW‖1 ≤
1
|w|τ

(d− 1
d3 + d− 1

2d + 1
2d(d− 1) +O(h∞)

)
, (302)

which gives (88).

C.3.3 Proof of Lemma 3.8

Proof.

p(∞, β|α) =
∑

Ek=Ek′

〈β|Ek〉〈Ek|α〉〈α|Ek′〉〈Ek′ |β〉

=
∑

k,k′∈{1,...,d−1}

+
∑

k=k′=d
+

∑
k,k′∈{d+1,...,2d}

〈β|Ek〉〈Ek|α〉〈α|Ek′〉〈Ek′ |β〉 (303)

Apply the results from Lemma 3.6, we have∑
k,k′∈{1,...,d−1}

〈β|Ek〉〈Ek|α〉〈α|Ek′〉〈Ek′ |β〉 =
∑

k,k′∈{1,...,d−1}

1
(2d)2 e

i 2π
d [(j(α)−j(β))(k′−k)]

=
{

(d−1)2

(2d)2 , j(α) = j(β),
1

(2d)2 , j(α) 6= j(β),
(304)

〈β|Ed〉〈Ed|α〉〈α|Ed〉〈Ed|β〉 = 1
(2d)2 , (305)

∑
k,k′∈{d+1,...,2d}

〈β|Ek〉〈Ek|α〉〈α|Ek′〉〈Ek′ |β〉 =
∑

k,k′∈{d+1,...,2d}

1
4δk−d,j(α)δk−d,j(β)δk′−d,j(α)δk′−d,j(β)

=
∑

k,k′∈{d+1,...,2d}

1
4δk,k

′δj(α),j(β)δk−d,j(α)

=
{ 1

4 , j(α) = j(β),
0, j(α) 6= j(β), (306)

which complete the proof.
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C.3.4 Proof of Lemma 3.9

The proof of Lemma 3.9 makes use of Proposition A.6. So, we should first study the Agmon
geodesics and Agmon distances between minima. The following Lemma and Corollary give the
explicit value of the shortest Agmon distance S0 = minα6=β d(α, β) whose proof indicates there is
at most one geodesic with the Agmon length S0 linking two different minima.

Lemma C.2. Constrained on Sd−1, for two wells α 6= β,

d(παaj(α), πβaj(β)) =
{ √

2, j(α) = j(β),√
2/2, j(α) 6= j(β), (307)

where, d(·, ·) refers to the Agmon distance (see Definition 2.5 or Appendix A.2.2 for more details).

Corollary C.1. S0 =
√

2/2.

Proof of Lemma C.2. First, we prove that for j(α) 6= j(β), there exists an Agmon geodesic link-
ing local minima παaj(α) and πβaj(β) which is in the plane spanned by aj(α) and aj(β). Also,
this geodesic will also pass through −παaj(α), joining ±παaj(α). Because {aj} symmetrically dis-
tribute on Sd−1 and are orthonormal, the proof can be completed if we prove there exists such a
geodesic between a1 and a2. We work in the coordinate ψµ = {ψ1, . . . , ψd−1} which can represent
{x1, . . . , xd}, the coordinate in Rd, as follows:

x1 = cosψ1

x2 = sinψ1 cosψ2

x3 = sinψ1 sinψ2 cosψ3

· · ·
xd−1 = sinψ1 sinψ2 · · · sinψd−2 cosψd−1

xd = sinψ1 sinψ2 · · · sinψd−2 sinψd−1, (308)

where, ψµ ∈ [0, π]× [0, π]× · · · × [0, π]× [0, 2π]. The objective function f(x) = 1−
∑
i(xi)4 can be

rewritten as

f(ψµ) = 1− cos4 ψ1 − sin4 ψ1 cos4 ψ2 − · · · − sin4 ψ1 sin4 ψ2 · · · sin4 ψd−2 sin4 ψd−1. (309)

The metric of Sd−1, which is induced by the Euclidean metric of Rd, is given by

dx2 = (dψ1)2 + sin2 ψ1(dψ2)2 + sin2 ψ1 sin2 ψ2(dψ3)2 + · · ·+
d−2∏
ν=1

sin2 ψν(dψd−1)2, (310)

or equivalently,

gµν =


1

sin2 ψ1

sin2 ψ1 sin2 ψ2

. . . ∏d−2
k=1 sin2 ψk

 (311)

with dx2 = gµνdψµdψν . Through out this proof, we use Einstein’s summation convention. The
Agmon metric is given by ds2 = V dx2, indicating that

ds2 = Gµνdψµdψν , Gµν = fgµν . (312)

A geodesic is also a curve which can be described by a real parameter (i.e., ψµ = ψµ(τ), τ ∈ R).
Geodesics associated to the Agmon metric should satisfy geodesic equations:

d2ψµ

dτ2 + Γµρσ
dψρ

dτ
dψσ

dτ = 0, (313)
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where Γµρσ are the Christoffel symbols associated to the Agmon metric. For Gµν , which is a diagonal
metric, the Christoffel symbols are given by

Γλµν = 0

Γλµµ = −1
2(Gλλ)−1∂λGµµ

Γλλµ = ∂µ
(

ln
√
|Gλλ|

)
Γλλλ = ∂λ

(
ln
√
|Gλλ|

)
, (314)

where, in these expressions, µ 6= ν 6= λ, and repeated indices are not summed over. Recall that
Γλµν = Γλνµ, all the Christoffel symbols have been given by the upper four identities. In the plane
spanned by a1 and a2, we can have ψk = 0 (k ≥ 2), which satisfies (313) for µ ≥ 2 naturally. And
for µ = 1, (313) reduces to

d2ψ1

dτ2 + 2 sin 4ψ1

1− cos 4ψ1

(
dψ1

dτ

)2

= 0. (315)

Let y = dψ1

dτ , we have

dy
dτ = − 2 sin 4ψ1

1− cos 4ψ1 y
2 ⇒ d

(
1
y

)
= 2 sin 4ψ1

1− cos 4ψ1 dτ

⇒ d
dψ1

(
dτ

dψ1

)
= 2 sin 4ψ1

1− cos 4ψ1
dτ

dψ1

⇒
(

dτ
dψ1

)/√
1− cos 4ψ1 = const. (316)

Given initial conditions, this ordinary differential equation clearly has a solution. Here, we set τ
to be the Agmon length of the curve and τ = 0 when ψ1 = 0. Then, the solution is given by

τ =
∫ ψ1

0

1
2
√

1− cos 4ψdψ ≡ γ(ψ1). (317)

So, we prove the existence of a geodesic which can be described by

ψ1 = γ−1(τ), ψk = 0 (k ≥ 2). (318)

This geodesic associated to the Agmon metric is the intersection of Sd−1 and the plane spanned
by a1 and a2, which is an one-dimensional circle, namely, a geodesic associated to the metric gµν
(shown in Figure 12). We can easily see that the shorter Agmon geodesic linking a1 and a2 in the
plane spanned by a1 and a2 has the Agmon length γ(π/2). And, there are two paths with identical
Agmon length γ(π) joining a1 and −a1 which are Agmon geodesics. The integrals of the Agmon
lengths are given by

γ(π/2) =
∫ π/2

0

1
2
√

1− cos 4ψdψ

= 2
∫ π/4

0

1
2
√

1− cos 4ψdψ

= 2
∫ 2

0

1
8

1√
2− t

dt (let t = 1− cos 4ψ)

= −1
2
√

2− t|20 =
√

2
2 , (319)

γ(π) = 2γ(π/2) =
√

2. (320)

Recall that d(·, ·) is the Agmon distance between two points or sets. From now on, we will
prove that for j(α) 6= j(β), d(παaj(α), πβaj(β)) =

√
2/2, and for any α, d(παaj(α),−παaj(α)) =

√
2.
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Figure 12: Sketch of the geodesic associated to the Agmon metric in the plane spanned by a1 and a2: red point
refers to a1, blue point a2, green point −a1, and the purple point the separating saddle point (see Definition A.2)
between a1 and a2, respectively.

Because of the landscape symmetry, we only need to prove that d(a1, a2) =
√

2/2 and d(a1,−a1) =√
2, which is equivalent to say that the Agmon geodesic described by (318) with 0 ≤ τ ≤

√
2/2

(0 ≤ τ ≤
√

2) is the shortest joining a1 and a2 (a1 and −a1).
First note that for

∑
i(xi)2 = 1 or

∑d
i=2(xi)2 = 1− (x1)2, equivalently,

∑
i

(xi)4 = (x1)4 +
d∑
i=2

(xi)4 ≤ (x1)4 + (1− (x1)2)2. (321)

Therefore,

f(ψµ) = f(ψ1, ψ2, · · · , ψd) = 1−
∑
i

(xi)4 ≥ 1− (x1)4 − (1− (x1)2)2 = f(ψ1, 0, · · · , 0), (322)

where the coordinates ψµ and xν obey the transformation relation (308). For any curve whose
parameter is τ , we have

dx =
√
gµν

∂ψµ

∂τ

∂ψν

∂τ
dτ. (323)

And if the parameter τ can be set to be ψ1,

dx =

√
gµν

∂ψµ

∂ψ1
∂ψν

∂ψ1 dψ1 =

√√√√∑
i

gii

(
∂ψi

∂ψ1

)2
dψ1 ≥

√
g11

(
∂ψ1

∂ψ1

)2
dψ1 = dψ1. (324)

For any curve C with finite length that can be described by ψ1 (i.e., ψµ = ψµ(ψ1) and ψ1 ∈ [a, b]),
we can conclude that∫

C

√
fdx =

∫ b

a

√
fgµν

∂ψµ

∂ψ1
∂ψν

∂ψ1 dψ1 ≥
∫ b

a

√
f(ψ1, 0, · · · , 0)dψ1 = γ(b)− γ(a). (325)

Let ψi = li(τ) (0 ≤ τ ≤Ml) be an arbitrary smooth path joining a1 and a2 (τ = 0 and τ = Ml

correspond to a1 and a2, respectively). If this path can be described by ψ1 (i.e., ψ1 = l1(τ) is a
bijection and ψi = li((l1)−1(ψ1)) (0 ≤ ψ1 ≤ π/2)), the Agmon length between a1 and a2 along
this path is given by

l(a1, a2) ≡
∫ Ml

0

√
fgµν

∂ψµ

∂τ

∂ψν

∂τ
dτ =

∫ π/2

0

√
fgµν

∂ψµ

∂ψ1
∂ψν

∂ψ1 dψ1 ≥ γ(π/2). (326)

However, if ψ1 = l1(τ) is not a bijection, or there is no one-to-one correspondence between ψ1 and
the points in the path, the second equality in the above equation will be invalid. In this case, we
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should restrict the domain on D =
⋃
i[τ
−
i , τ

+
i ] ⊂ [0,Ml] (τ+

i ≤ τ+
i+1) such that l1 : D → [0, π/2] is

a bijection and [0,Ml]−D is a zero measure set, which can always be done as the path is smooth.
Then, we have

l(a1, a2) ≥
∑
i

∫ τ+
i

τ−
i

√
fgµν

∂ψµ

∂τ

∂ψν

∂τ
dτ

=
∑
i

∫ l1(τ+
i

)

l1(τ−
i

)

√
fgµν

∂ψµ

∂ψ1
∂ψν

∂ψ1 dψ1

≥
∑
i

[γ(l1(τ+
i ))− γ(l1(τ−i ))] = γ(π/2). (327)

To sum up, for paths joining a1 and a2, γ(π/2) is the shortest Agmon length, and thus, the
Agmon distance between a1 and a2. For the same reason (325), γ(π) can be proved to be the
Agmon distance between a1 and −a1 (more specifically, the proof is the above paragraph with a2
and π/2 replaced by −a1 and π, respectively), which completes the proof of Lemma C.2.

Now, we are able to prove Lemma 3.9 as follows.

Proof of Lemma 3.9. Because of the symmetry, we can calculate w focusing on the interaction
between a1 and a2. The point on the geodesic (see Figure 12) separating the two wells containing
a1 and a2 should be x◦12 := (a1 + a2)/

√
2 which is also a saddle point. Restate Proposition A.6 in

the present case, we have

w = −
√
h(b+O(h))e−

S0
h , (328)

where

b = 2(2π)
d−2

2

√
1/2

det′∇2(d(x◦12, a1) + d(x◦12, a2))
a

(1)
0 (x◦12)a(2)

0 (x◦12), (329)

and a(1)
0 (x◦12) = a

(2)
0 (x◦12) (due to the symmetry) are factions in the WKB estimation.

We first evaluate the function a(1)
0 (x). The initial condition (153) should be

a
(1)
0 (a1) =

(
det
√
∇2f(a1)

(
√

2π)d−1

) 1
4

. (330)

The transport equation (152) in this case should be

2∇d(x, a1) · ∇a(1)
0 (x) + (∆d(x, a1)− µ)a(1)

0 (x) = 0. (331)

Note that all the differential operator ∇ here adapts to the manifold Sd−1. Because Sd−1 can be
embedded in Rd, we may use the differential operator ∇Rd to calculate the Hessian matrix ∇2f(a1):

∇2f(a1) = Pa⊥1
[∇2

Rdf(a1)− (∇f(a1))>a1I]Pa⊥1
, (332)

where I is the identity matrix in Rd, Pa⊥1
= I − a1a

>
1 is the orthogonal projector onto the tan-

gent space Ta1Sd−1, ∇2
Rdf(a1) is the Hessian matrix in Rd, and (∇f(a1))>a1I reflects the cur-

vature of the sphere. Under the coordinate {a2, a3, . . . , ad} which can also be seen as a local
orthonormal coordinate of Ta1Sd−1, we can explicitly write ∇2f(a1) = diag(4, . . . 4). So, we have
det
√
∇2f(a1) = 2d−1. To get x◦12, we should use the transport equation. For any point x on the

geodesic linking a1 and a2, in the tangent space TxSd−1, we set ∂
∂x1 to be the tangent vector of

the geodesic. Then, because of the symmetry,

∇d(x, a1) · ∇a(1)
0 (x) = ∂d(x, a1)

∂x1
∂a

(1)
0 (x)
∂x1 . (333)
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Similarly, ∆d(x, a1) should be of the form

∆d(x, a1) = f1(x) + (d− 2)f2(x), (334)

for some functions f1 and f2. For sufficiently small h, the energy of the ground state µ should be

µ = htr
√
∇2f(a1) ∝ (d− 1). (335)

At last, the transport equation restricted on the geodesic linking a1 and a2 can be changed to

∂a
(1)
0 (x(τ))
∂τ

= (d− 1)f3(τ)a(1)
0 (x(τ)), (336)

for some function f3(τ). Here, τ is the parameter of the geodesic. In this way, we know

ln a
(1)
0 (x◦12)
a

(1)
0 (a1)

∝ d− 1, (337)

and the coefficient is independent of d. As a result, we know that ln a(1)
0 (x◦12) ∝ d − 1 and the

coefficient is independent of d.
Note that although d(x, a1) + d(x, a2)) is a complicated function, it is symmetric in the d− 2-

dimension subspace of Tx◦12
Sd−1 which is orthogonal to the tangent vector of the geodesic linking a1

and s2. Thus, we claim that, similar to the Hessian matrix of f , ∇2(d(x, a1) + d(x, a2))) has d− 2
entries of the same value which are independent of d. This fact give that ln det′∇2(d(x◦12, a1) +
d(x◦12, a2)) ∝ d− 2.

Combining all the results above, we find that b is of the form C1C
d−1
2 where C1 and C2 are two

constants independent of d.
Given that S0 =

√
2/2, we can have

w = −
√
h(C1C

d−1
2 +O(h))e−

√
2

2h (338)

as expected.

C.3.5 Proof of Proposition 3.1

Proposition 3.1 presents a general upper bound for the total time needed for finding all orthogonal
components by QTW. Constrain on the expected risk, Ex∼µQTWf(x) = δ, control the accuracy of
QTW and will give h.

Proof. We first estimate the expected risk, Ex∼µQTWf(x). For sufficiently small h, µQTW localizes
near minima. So, only regions near minima can contribute to the integral

Ex∼µQTWf(x) =
∫
Sd−1

f(x)µQTW(x)dx. (339)

Namely,

Ex∼µQTWf(x) =
∑
α

∫
Ωα
f(x)µQTW(x)dx+O(h∞), (340)

where Ωα is a small neighborhood of the minima labeled by α. The term O(h∞) appears because
µQTW is a mixing of | 〈x|β〉 |2 which decay exponentially with respect to d(x, β)/h (or, apply
Corollary A.1). Still, we choose h to be enough small, such that Ωα can be seen as a subset of Rd.
Then, with the same Gaussian integral in Lemma 4.2, we have

h = δ
√

2
4
∑
β p(∞, β|α)tr

(√
∇2f(β)

)
+ oδ(1)

= δ
√

2
4 tr

(√
∇2f(a1)

)
+ oδ(1)

. (341)

Here, ∇ should still be the differential operator adapted to the sphere manifold and the second
equality is valid because ∇2f(β) should be the same regardless of β. As is calculated in the proof
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of Lemma 3.9, the matrix form of
√
∇2f(a1) can be diag(2, . . . , 2). Thus, tr

√
∇2f(a1) = 2(d− 1),

which gives

h = δ
√

2
2 (d− 1) + oδ(1)

. (342)

Substituting this result in w and note the relationship between Ttot and w in (91), we have

Ttot = Õ(d2) 1
ε(
√
δC1C

d−1
2 +O(δ))

e
d−1+oδ(1)

2δ . (343)

Note that C2 should be less 1 as the tunneling effect w would not increase exponentially with
respect to d, for small δ, we can have

Ttot = O(poly(1/δ, ed, 1/ε))e
d−1+oδ(1)

2δ , (344)

which completes the proof.

D Technical Details for Quantum-Classical Comparisons
D.1 Details of comparison standards
D.1.1 Proof of Lemma 4.1

In Lemma 4.1, we estimate the expected risk yielded by QTW and SGD for a quadratic function.

Proof. Firstly, as there is only one (local) minimum, µQTW is the distribution of the ground state
|E0〉, namely,

µQTW = |〈x|E0〉|2 =
(

det
√
∇2f(0)

)1/2
(
√

2πh)d/2
e
− x
>√∇2f(0)x√

2h (345)

Let {xi} be a coordinate where ∇2f(0) is a diagonal matrix denoted by diag(λ1, .., λd). For
simplicity, set ωi =

√
λi, Ex∼µQTWf(x) is then given by

Ex∼µQTWf(x) =
∫ (

∏
i ωi)1/2

(
√

2πh)d/2
e
−

∑
i
ωix

2
i√

2h
1
2
∑
i

λix
2
idx1 · · · dxd

= 1
2

(
∏
i ωi)1/2

(
√

2πh)d/2
∑
j

λj

∫
e
−

∑
i
ωix

2
i√

2h x2
jdx1 · · · dxd

=
√

2h
4
∑
j

ωj , (346)

where the last equality uses the facts ∫ ∞
−∞

e−ax
2
dx =

√
π

a
, (347)

∫ ∞
−∞

x2e−ax
2
dx = 1

2

√
π

a3 . (348)

Similarly, we have ∫
e
−2f
s dx =

∫
e
−
∑

i
λix

2
i

s dx1 · · · dxd = (πs)d/2√∏
i λi

, (349)

and ∫
e
−2f
s f(x)dx = 1

2
∑
j

λj

∫
e
−
∑

i
λix

2
i

s x2
jdx1 · · · dxd = sd

4
(πs)d/2√∏

i λi
, (350)

which complete the proof.
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D.1.2 Proof of Lemma 4.2

With the help of Lemma 4.1, Lemma 4.2 captures h and s by Standard 4.1 for general landscapes
satisfying assumptions in Section 2.2 and Section 2.3. Note that in Section 4.1, normal lower-case
letters, x, y,. . . , are used to denote vectors without ambiguity. However, in the proof, we will
use coordinates and components. Therefore, bold lower-case letters x, y,. . . , are used to denote
vectors or points in Rd.

Proof. For a general landscape f satisfying assumptions in Section 2.2 and Section 2.3, we can find
a sufficiently large but bounded set Ω containing all the minima {xj : j = 1, . . . , N}. First recall
Lemma 3.2 which gives

µQTW(x) =
∑
j

p(∞, j)|〈x|j〉|2 +O(h∞), (351)

where p(∞, j) is the probability of finding the system at state |j〉 for τ →∞. Every local ground
state decreases exponentially with respect to 1/h out of Ω, giving that∫

Rd\Ω
µQTW(x)dx = O(h∞). (352)

In the region Ω, we first study the integral near one minima xj . Without loss of generality,
we can translate the coordinate to {xk, k = 1, . . . , d} such that xj = 0. By properly rescaling the
coordinate, we can find a coordinate {yk : k = 1, . . . , d} and let y = (y1, y2, . . . , yd)> such that√
∇2

yf(0) = I where I is the d × d identity matrix. Under the coordinate {yk : k = 1, . . . , d},
we can always find a fixed ball Ωj only containing one minimum xj = 0 and for any y ∈ Ωj ,
∇2

yf(y) > 0 (because f is smooth). The local ground state satisfies

|〈y|j〉|2 = 1
(
√

2πh)d/2
(1 +O(‖y‖))e−

y>y+O(‖y‖3)√
2h , (353)

by WKB approximation, and the function can be rewritten as

f(y) = 1
2y>

√
∇2

xf(0)y +O(‖y‖3). (354)

Then, we define a hypercube Ω(h)
j whose edge length (under the coordinate of y) is Θ(h5/12).

Evaluate the integral:∫
Ω(h)
j

f(x)|〈x|j〉|2dx =
∫

Ω(h)
j

f(y)|〈y|j〉|2dy (355)

= 1
2

∫
Ω(h)
j

1 +O(h5/12)
(
√

2πh)d/2
e
− y>y√

2h (1 +O(h1/4))(y>
√
∇2

xf(0)y +O(h5/4))dy

(356)

= 1
2

∫
Ω(h)
j

1
(
√

2πh)d/2
e
− y>y√

2h (y>
√
∇2

xf(0)y)dy + o(h). (357)

= 1
2

∫
Ω(h)
j

(
det
√
∇2

xf(0)
)1/2

(
√

2πh)d/2
e
− x>

√
∇2f(0)x√
2h (x>∇2

xf(0)x)dx + o(h) (358)

=
√

2h
4 tr

√
∇2

xf(xj) + o(h). (359)

The last equality is valid because h5/12 �
√
h for small h and

√
h is the scale of the standard

deviation of the Gaussian distribution. Calculations of the last integral in can be seen in the proof
of Lemma 4.1. Define fj = maxx∈Ωj f(x), we have∫

Ωj\Ω(h)
j

f(x)|〈x|j〉|2dx ≤
∫

Ωj\Ω(h)
j

fj |〈x|j〉|2dx = O(h∞). (360)
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The last equality relies on two facts: Ωj is a bounded region and
√
h = o(h5/12). The first fact

ensures that the difference between |〈x|j〉|2 and the Gaussian distribution can be bounded by
multiplying some constant, and the second fact make the integral of the Gaussian distribution be
of O(h∞). We now have ∫

Ωj
f(x)|〈x|j〉|2dx =

√
2h
4 tr

√
∇2

xf(xj) + o(h). (361)

In the region Ω\Ωj , f is bounded and by Corollary A.1, the integral of distributions of local ground
states should be of O(h∞). Therefore, we claim that

∫
Ω\Ωj µQTWfdx = O(h∞).

Combine all the results above, we can have

Ex∼µQTWf(x) =
N∑
j=1

√
2h
4 tr

√
∇2

xf(xj) + o(h). (362)

By setting Ex∼µQTWf(x) = δ,

h = δ
√

2
4
∑N
j=1 p(∞, j)tr

√
∇2

xf(xj) + oh(1)
. (363)

And because for sufficiently small h, we have h ∝ δ from the above equation, the term oh(1) in the
above equation can be replaced by oδ(1), giving (98).

For µSGD, we still begin with a large region Ω containing all the minima {xj : j = 1, . . . , N}.
Note that

µSGD(x) = e−
2f(x)
s∫

Rd e
− 2f(x)

s dx
, (364)

we first evaluate ∫
Rd\Ω

µSGD(x)f(x)dx =

∫
Rd\Ω e

− 2f(x)
s f(x)dx∫

Rd e
− 2f(x)

s dx
. (365)

Without loss of generality, we set f(∂Ω) = {C} and f(x) ≤ C for x ∈ Ω. Define g = max(f−C, 0),
we have ∫

Rd\Ω e
− 2f(x)

s f(x)dx∫
Rd e

− 2f(x)
s dx

=
e−

2C
s

∫
Rd\Ω e

− 2g(x)
s g(x)dx

e−
2C
s

∫
Rd e

− 2(f(x)−C)
s dx

(366)

=
∫
Rd e

− 2g(x)
s g(x)dx∫

Rd e
− 2g

s dx +
∫

Ω(e−
2(f(x)−C)

s − 1)dx
. (367)

Note that Ig(s) :=
∫
Rd e

− 2g(x)
s g(x)dx decreases when s decreases. Let Ω′ := {x | f(x) ≤ C/2}, we

have ∫
Ω

(e−
2(f(x)−C)

s − 1)dx ≥
∫

Ω′
(e−

2(f(x)−C)
s − 1)dx (368)

≥
∫

Ω′
(eCs − 1)dx = (eCs − 1)Volume(Ω′). (369)

Therefore, ∫
Rd e

− 2g(x)
s g(x)dx∫

Rd e
− 2g

s dx +
∫

Ω(e−
2(f(x)−C)

s − 1)dx
≤ Ig(s)

(eCs − 1)Volume(Ω′)
= O(s∞). (370)
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That is, ∫
Rd\Ω

µSGD(x)f(x)dx = O(s∞). (371)

Now, we consider the small neighborhood Ωj only containing one minimum xj . Similar to
the quantum case, we let xj = 0 and introduce a rescaled coordinate {yk, k = 1, . . . , d} and
y = (y1, . . . , yd)> such that ∇2

yf(0) = I. Also define the hypercube Ωsj with edge length (under
the coordinate of y) Θ(s5/12), apply the same argument as the quantum case, we have∫

Ωs
j

e−
2f
s dx = (πs)d/2√

det∇2
xf(0)

(1 +O(s1/4)) = (πs)d/2√
det∇2

xf(0)
(1 + os(1)), (372)

∫
Ωs
j

e−
2f
s fdx = sd

4
(πs)d/2√

det∇2
xf(0)

(1 + os(1)), (373)

∫
Ωj\Ωsj

e−
2f
s dx = O(s∞) (374)

∫
Ωj\Ωsj

e−
2f
s fdx = O(s∞). (375)

In the region Ω\(
⋃N
j=1 Ωj), f is bounded from below and both the integrals of e−

2f
s and e−

2f
s f

should be of O(s∞).
Finally, we can obtain that

Ex∼µSGDf(x) =
∫
Rd
µSGD(x)f(x)dx =

∫
Rd e

− 2f(x)
s f(x)dx∫

Rd e
− 2f(x)

s dx
=

sd
4 (1 + os(1))
1 +O(s∞) +O(s∞)

= sd

4 (1 + os(1)), (376)

and then

s = δ
d
4 (1 + os(1))

. (377)

Since s ∝ δ for small δ or s, we can replace os(1) in the above equation to oδ(1).
The two equations in Lemma 4.2 are obtained finishing the proof.

D.1.3 Proof of Lemma 4.3

We estimate the expected distances from the minimum and establish an asymptotic relation be-
tween h and s by Standard 4.2 in Lemma 4.3.

Proof. Note that

µQTW =
(

det
√
∇2f(0)

)1/2
(
√

2πh)d/2
e
− x
>√∇2f(0)x√

2h (378)

We choose {xi} be a coordinate where ∇2f(0) is a diagonal matrix denoted by diag(λ1, .., λd).
Define ωi =

√
λi, Ex∼µQTWD(x, 0) is then given by

Ex∼µQTWD(x, 0) =
∫ (

∏
i ωi)1/2

(
√

2πh)d/2
e
−

∑
i
ωix

2
i√

2h
∑
i

x2
idx1 · · · dxd

=
√

2h
2
∑
j

1
ωj
, (379)
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where the last equality uses the facts ∫ ∞
−∞

e−ax
2
dx =

√
π

a
, (380)

∫ ∞
−∞

x2e−ax
2
dx = 1

2

√
π

a3 . (381)

Still use the above two Gaussian integrals, we have∫
e
−2f
s dx =

∫
e
−
∑

i
λix

2
i

s dx1 · · · dxd = (πs)d/2√∏
i λi

, (382)

and ∫
e
−2f
s D(x, 0)dx =

∑
j

∫
e
−
∑

i
λix

2
i

s x2
jdx1 · · · dxd = s

2
(πs)d/2√∏

i λi

∑
i

1
λi
, (383)

which can readily give Lemma 4.3.

D.2 Details about the exponential quantum speedup
D.2.1 Proof of Lemma 4.12

Proof. As shown in Figure 7, we use Cone(ε) to denote the spherical cone subtended at one end
by Cap(ε). Let Bd be the d-dimensional unit ball, Cone(ε) can be enclosed in a ball with radius√

1− ε2. Therefore,

Area(Cap(ε))
Area(Sd−1) = Volume(Cone(ε))

Volume(Bd) ≤ Volume(
√

1− ε2Bd)
Volume(Bd) = (1− ε2)d/2 ≤ e−dε

2/2. (384)

D.2.2 Proof of Lemma 4.13

Proof.

P (x /∈ Sv) = P (x ∈ B(0, R), |x · v| ≤ w) (385)
= P (y ∈ B(0, 1), |y · v| ≤ w/R) where y = x/R (386)
≤ P (z ∈ Sd−1, |z · v| ≤ w/R) (387)

= 2Area(Cap(w/R))
Area(Sd−1) ≤ 2e−

dw2
2R2 . (388)

D.2.3 Proof of Lemma 4.14

Proof. For the algorithm, the point xi it queried is fixed while the direction v is unknown. Define
Ci = {v ∈ Sd−1 : |xi · v| > w}, we have v /∈ Ci ⇐⇒ xi ∈ Sv. Similar to Lemma 4.13,

Area(Ci)
Area(Sd−1) = 2Area(Cap(w/‖x1‖))

Area(Sd−1) ≤ 2Area(Cap(w/R))
Area(Sd−1) ≤ 2e−

dw2
2R2 . (389)

Now, we need to relate the area ratios to the probability we want to calculate. Firstly, examine the
term P (xt ∈ Sv | ∀τ < t : xτ ∈ Sv). Given that {∀τ < t : xτ ∈ Sv}, we know v ∈ Sd−1 − ∪t−1

i=1Ci.
Because ∀τ < t, q(xτ ) is independent of v conditioned on {∀τ < t : xτ ∈ Sv}, we have no
information about v except v ∈ Sd−1 − ∪t−1

i=1Ci when determining xt. In this case, v should be
uniformly distributed over Sd−1 − ∪t−1

i=1Ci, and we have

P (xt ∈ Sv | ∀τ < t : xτ ∈ Sv) = Area(Sd−1 − ∪ti=1Ci)
Area(Sd−1 − ∪t−1

i=1Ci)
. (390)
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By the product rule, we can get

P (∀t ≤ T : xt ∈ Sv) =
T∏
t=1

P (xt ∈ Sv | ∀τ < t : xτ ∈ Sv) = Area(Sd−1 − ∪Ti=1Ci)
Area(Sd−1) , (391)

which leads to

P (∃t ≤ T : xt /∈ Sv) = 1− P (∀t ≤ T : xt ∈ Sv) (392)

= Area(∪Ti=1Ci)
Area(Sd−1) ≤

∑
i

Area(Ci)
Area(Sd−1) ≤ 2Te−

dw2
2R2 . (393)

D.2.4 Proof of Proposition 4.1

Proof. On the condition that x ∈ Sv,

f(x) =
{

1
2ω

2‖x‖2, ‖x‖ ≤ a
H2, ‖x‖ > a,

(394)

which is independent of v. Any local query q(x) is then independent of v.
By Lemma 4.14, restricted in B(0, R), for any classical algorithm with only T = o(e

dw2
4R2 ) local

queries,

P (∃t ≤ T : xt /∈ Sv) ≤ 2Te−
dw2
2R2 ≤ e−

dw2
4R2 . (395)

Because W+ ∩ Sv = ∅, with high probability, namely, 1 − e−
dw2
4R2 , any classical algorithm cannot

land in W+.
Next, we consider Problem 4.1 in Rd. Let F = Rd\B(0, R) and Uv = B(0, R)\Sv. The

probabilities P (x1 ∈ Uv | x1 ∈ B(0, R)) ≤ 2e−
dw2
2R2 and P (x1 ∈ Uv | x1 ∈ F ) = 0, such that

P (∀t ≤ T : xt /∈ Uv) ≥ 1 − 2Te−
dw2
2R2 is valid for T = 1. Assume that P (∀t ≤ T − 1 : xt /∈ Uv) ≥

1 − 2(T − 1)e−
dw2
2R2 is true. We should examine the term P (xT /∈ Uv | ∀t < T : xt /∈ Uv). Given

that {xT ∈ F}, P (xT /∈ Uv | xT ∈ F, ∀t < T : xt /∈ Uv) = 1. And we have

P (xT /∈ Uv | ∀t < T : xt /∈ Uv) ≥ P (xT /∈ Uv | xT ∈ B(0, R), ∀t < T : xt /∈ Uv). (396)

In the queried T − 1 pints, assume that there are T1 − 1 points in Sv. All other T − T1 points and
queries in F provide no information inside B(0, R) and are independent of v. Therefore,

P (xT /∈ Uv | xT ∈ B(0, R), ∀t < T : xt /∈ Uv) = P (xT1 ∈ Sv | ∀t < T1 : xt ∈ Sv) (397)

= Area(Sd−1 − ∪T1
i=1Ci)

Area(Sd−1 − ∪T1−1
i=1 Ci)

≥ 1− Area(CT1)
Area(Sd−1 − ∪T1−1

i=1 Ci)
(398)

≥ 1− 2e−
dw2
2R2

1− 2(T1 − 1)e−
dw2
2R2
≥ 1− 2e−

dw2
2R2

1− 2(T − 1)e−
dw2
2R2

.

(399)

In the second equality, we use (390) as queries in Sv are independent of v. The second inequality
is deduced from (389). Finally, we have

P (∀t ≤ T : xt /∈ Uv) = P (xT /∈ Uv | ∀t < T : xt /∈ Uv)P (∀t ≤ T − 1 : xt /∈ Uv) ≥ 1− 2Te−
dw2
2R2 .
(400)
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By mathematical induction, P (∀t ≤ T : xt /∈ Uv) ≥ 1 − 2Te−
dw2
2R2 is true for any T ∈ N+. In Rd,

for any classical algorithm given only T = o(e−
dw2
4R2 ) queries, the probability of finding any point

in W+ is given by

P (∃t ≤ T : xt ∈W+) ≤ P (∃t ≤ T : xt ∈ Uv) ≤ 2Te−
dw2
2R2 ≤ e−

dw2
4R2 , (401)

which completes the proof.

D.2.5 Proof of Lemma 4.15

Proof. First, the integral in (125) can be easily verified. We need to prove that 1√
2ωa

2+2(b−a)
√
H1

is the shortest Agmon length of paths linking U− and U+.
Without loss of generality, we choose an orthonormal basis {e1, . . . , ed}, and write any vector

x =
∑
i x

iei. We set e1 = v. Let xi = li(τ) (0 ≤ τ ≤ Ml) be an arbitrary smooth path joining
U− and U+, where τ is the parameter of the curve, li(0) = 0, and li(Ml) = δi12b. If x1 can be the
parameter of this path (i.e., x1 = l1(τ) is a bijection and xi = li((l1)−1(x1)) (0 ≤ x1 ≤ 2b)), the
Agmon length between U− and U+ along this path is given by

l(U−, U+) =
∫ Ml

0

√
fδµν

∂xµ

∂τ

∂xν

∂τ
dτ =

∫ 2b

0

√
fδµν

∂xµ

∂x1
∂xν

∂x1 dx1 (402)

≥
∫ 2b

0

√
f(x1e1)dx1 = 1√

2
ωa2 + 2(b− a)

√
H1. (403)

If ψ1 = l1(τ) is not a bijection the second equality in the above equation will be invalid. In this
case, we should restrict the domain on D =

⋃
i[τ
−
i , τ

+
i ] ⊂ [0,Ml] (τ+

i ≤ τ−i+1) s.t. l1 : D → [0, 2b]
is a bijection and [0,Ml]−D is a zero measure set. Then, we have

l(U−, U+) ≥
∑
i

∫ τ+
i

τ−
i

√
fδµν

∂xµ

∂τ

∂xν

∂τ
dτ (404)

=
∑
i

∫ l1(τ+
i

)

l1(τ−
i

)

√
fδµν

∂xµ

∂x1
∂xν

∂x1 dx1 (405)

≥
∑
i

∫ l1(τ+
i

)

l1(τ−
i

)

√
f(x1e1)dx1 = 1√

2
ωa2 + 2(b− a)

√
H1. (406)

This implies the correctness of (125).
Next, observe that (∂xi/∂x1)2 > 0, if any path xi = li(τ) (0 ≤ τ ≤ Ml) is not the one given

by (124), inequalities in (403) and (406) will be strict. Therefore, we prove that (124) is the only
geodesic linking U− and U+ with the Agmon length S0.

D.2.6 Proof of Lemma 4.16

Proof. Because of the symmetry of the two local ground states, we can naturally have (126).
Since the constructed landscape satisfies assumptions needed for Proposition A.6, we can use
Proposition A.6 to calculate the tunneling amplitude ν directly. By the geometrical symmetry of
the two wells, the special point on the geodesic γ−+ should be bv. The next-to-leading term of ν
is then given by

ν = −h1/22(2π)
d−1

2

√√√√ f(bv)
det′

(
∇2d−+(bv)

)a(−)
0 (bv)a(+)

0 (bv)e−S0/h, (407)

where det′ denotes the usual determinant with the zero mode removed, and a(±)
0 are the leading

terms in the WKB approximations of the local ground states.
Choose an orthonormal basis {e1, . . . , ed} in Rd where e1 = v, we have x =

∑d
i=1 xiei. Since

along the geodesic γ−+, d−+ ≡ S0, we obtain that ∂d−+/∂x1 = 0 and ∂2d−+/∂x
2
1 = 0. That
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is, ∀j, (∇2d−+(bv))ij = 0. Constrained on the hypersurface perpendicular to e1, consider an
infinitesimal δx =

∑d
i=2 δxi and we have

d(bv + δx,0)− d(bv,0) = ‖δx‖
2

b

√
H1 + o(‖δx‖2). (408)

Given that

d(bv + δx,0)− d(bv,0) =
d∑

i,j=2

∂2d(x,0)
∂xi∂xj

∣∣∣∣
x=bv

δxiδxj , (409)

it is readily to get (∇2d(x,0)|x=bv)i,j = δij2
√
H1/b (i, j ≥ 2). Similarly, by symmetry, we can

obtain (∇2d(x, 2bv)|x=bv)i,j = δij2
√
H1/b (i, j ≥ 2). Use the fact d−+(x) = d(x,0) + d(x, 2bv),

we deduce the following

∇2d−+(bv) = diag
(

0, 4
√
H1

b
, . . . ,

4
√
H1

b

)
under the basis {e1, . . . , ed}, (410)

which leads to

det′
(
∇2d−+(bv)

)
= (4

√
H1/b)d−1. (411)

Next, we need to calculate a(±)
0 (bv). Using the symmetry between the two local states, we know

a
(−)
0 (bv) = a

(+)
0 (bv). So, we can only focus on the calculation of a(−)

0 (x), which is the leading term
in WKB approximation of the local ground state of the well U−. By Lemma A.1, a(−)

0 (x) should
satisfy the first transport equation

2∇d(x,0) · ∇a(−)
0 + (∆d(x,0)− E1)a(−)

0 = 0, (412)

where E1 = ωd/
√

2 as the neighborhood of the well is quadratic. On any point x = x1v ∈ γ−+,
the transport equation is reduced to

∇a(−)
0 = 0, x1 ≤ a, (413)

∂a
(−)
0

∂x1
+ d

(
d− 1
x1d

− ω

2
√

2H1

)
a

(−)
0 = 0, a < x1 ≤ b. (414)

With the initial condition a(−)
0 (0) = ( ω√

2π )d/4, a(−)
0 (bv) is determined as

a
(−)
0 (bv) = ( ω√

2π
)d/4 exp

(
ωd(b− a)
2
√

2H1
− d ln b

a

)
. (415)

Substitute the results (411) and (415) into (407), we can get (127), which finished the proof.

D.2.7 Proof of Proposition 4.2

Proof. First of all, H2 is a constant independent of d. We set h to be of the form h = 4δ√
2ωd and

δ ∈ (0, δ0] is bounded where δ0 = O(H0). To understand this setting, we evaluate the energy
of the local ground state |Φ−〉 corresponding to the well U−. Recall that H0 � H2, if δ is small
enough to let |Φ−〉 localize in the quadratic regionW−, the energy of |Φ−〉 should be approximately
htr∇2f(0)/

√
2 = hdω/

√
2 = 2δ � H2. If δ is of the order H0, a conservative estimation is that the

potential energy 〈Φ−| f |Φ−〉 = O(H0) and the kinetic energy is 〈Φ−| − h2∆ |Φ−〉 = O(dh2( 2π
D )2)

where D = Ω(a) can be seen as the diameter of the region where |Φ−〉 is localized. Therefore, the
energy of |Φ−〉 can be always far less than H2, and |Φ−〉 should be localized in the region with low
potential energy W− ∪Bv ∪W+. A more quantitative way of seeing h = 4δ√

2ωd is that this setting
solves the problem associated to measure concentration.
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Together with Lemma 4.15 and Lemma 4.16, we have

ν = −

√
8hH1

√
H1

πb
exp

(
Γ
(H0

δ
,
b

a
,
H0

H1

)
d

)
, (416)

where

Γ(x, y, z) := −1
2x+ (y − 1)

√
z
(
1− x

z

)
− 3

2 ln y − ln
√

2 + 1
4 ln z. (417)

Let |Φ+〉 be the local ground state corresponding to U+. The key to make our analysis on ν valid is
that orthonormalized local ground states |Φ−〉 and |Φ+〉 span the 2-dimensional subspace spanned
by |E0〉 and |E1〉. Here, |E0〉 and |E1〉 are the ground state and the first excited state, respectively.
To be more specific, let E0 and E1 be the energy of |E0〉 and |E1〉, respectively, then

|E0〉 = 1√
2

(|Φ−〉+ |Φ+〉), |E1〉 = 1√
2

(|Φ−〉 − |Φ+〉), (418)

and

E0 = µ+ ν, E1 = µ− ν, (419)

where µ is the energy of |Φ−〉 (or |Φ+〉) and without loss of generality, inner products 〈x|Φ−〉
and 〈x|Φ+〉 are real and positive. Only studying ν, it seems we can let |ν| increase exponentially
with respect to d, but this is infeasible in certain. To make this scenario valid, we should have
|ν| � µ and |ν| � E2 − E1, where E2 is the energy of the second excited state. Next, we show
these constraints can be satisfied while |ν| is not too small. Let µ′ be the energy of the local first
excited states,17 we set |ν′| = µ′ − E2. Then, |ν| � E2 − E1 is equivalent to |ν| + |ν′| � µ′ − µ.
Since g1 := µ′ − µ is the energy gap between the local ground state and local first excited states
which all concentrate near the region W− (or W+),18 its value satisfies g1 = Ω(h2) = Ω(1/poly(d))
Andrews and Clutterbuck (2011). Let g2 = 1/poly(d) be a function of d such that g2 = od(g1), we
further demand that

1√
d

exp
(

Γ
(H0

δ
,
b

a
,
H0

H1

)
d

)
= g2(d), (420)

which gives

Γ
(H0

δ
,
b

a
,
H0

H1

)
= −1

d
ln poly(d)→ 0, (d→∞). (421)

Eq. (421) can always be valid by properly choosing the parameters (H0
δ ,

b
a ,

H0
H1

). If we demand
H1 and b to be two constants independent of d, (H0

δ ,
b
a ,

H0
H1

) are still three free variables. Adding
the restriction (421), there are two free variables in (H0

δ ,
b
a ,

H0
H1

) left and we can obtain |ν| =
od(g1). Although |ν′| which captures tunneling effects between local excited states is difficult to be
calculated explicitly, we claim that |ν′|, as another tunneling amplitude, still depends exponentially
on a function of (H0

δ ,
b
a ,

H0
H1

). Therefore, by the same procedure of restricting |ν|, |ν′| can be set
to be od(g1). Now, there is only one free variable left in (H0

δ ,
b
a ,

H0
H1

). Making use of the left one
free variable, we can demand (H0

δ ,
b
a ,

H0
H1

) to converge to non-zero constants when d→∞. In this
case, a, b, H0, H1, and δ all have limits and previous constraints (independent of determining ν
and ν′) on these variables can be satisfied. Since δ has a non-zero limit, and |ν| = Θ(1/poly(d))
the condition |ν| � µ = Ω(δ) can be satisfied for sufficiently large d.

17In general, there may be many local eigenstates with the same energy µ′. This phenomenon is called the
degeneracy of energy levels.

18Because of the symmetry of W− and W+, it suffices to study one region W− and the conclusion is also true for
W+.
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In the double-well case, initiating QTW from the given local ground state |Φ−〉, Lemma 3.1 can
be simplified. Note that the O(h∞) term in Lemma 3.1 is due to the integral

∫
| 〈Φ−|x〉 〈x|Φ+〉 |dx

which can be re-estimated as∫
| 〈Φ−|x〉 〈x|Φ+〉 |dx ≤

(∫
| 〈Φ−|x〉 |2dx

)1/2(∫
| 〈Φ+|x〉 |2dx

)1/2
= 1. (422)

Thus, for the present case, we can write Tmix = O(1/ε|ν|) = O(poly(d)/ε) (note that ∆E = 2|ν|
here). Under Tmix = O(1/(ε/2)|ν|) = O(1/ε|ν|), we have

‖ρQTW(Tmix, ·)− µQTW(·)‖1 ≤
ε

2 . (423)

Let Φ(t) = e−iHtΦ(0) with the initial state Φ(0). By quantum simulation, we cannot get exactly
the state Φ(t) but an approximation Φ̃(t). Set ρ̃QTW(Tmix, x) =

∫ Tmix
0 | 〈x| Φ̃(t)〉|2dt/Tmix, the

condition

‖Φ̃(t)− Φ(t)‖ ≤ ε

2 (t ≤ Tmix) (424)

gives

‖ρQTW(Tmix, ·)− ρ̃QTW(Tmix, ·)‖1 ≤
ε

2 , (425)

which requires the number of quantum queries to be

O

(
‖f‖L∞t

log(2‖f‖L∞t/ε)
log log(2‖f‖L∞t/ε)

)
= O

(
H2t

log(2H2t/ε)
log log(2H2t/ε)

)
(426)

(see Lemma B.2 in Appendix B.1). After simulating for some time bounded by Tmix, measurements
are equivalent to sampling from ρ̃QTW(Tmix, ·), and we have

‖ρ̃QTW(Tmix, ·)− µQTW(·)‖1 ≤ ε. (427)

Next, we need to analyze µQTW to determine the number of iterations and then the number of
total queries. In our case, the probability of finding the particle at W+ is given by∫
W+

µQTWdx =
∫
W+

[ 12(| 〈x|Φ+〉 |2 + | 〈x|Φ−〉 |2) + 2Re(〈Φ−|Φ(0)〉 〈Φ(0)|Φ+〉) 〈Φ−|x〉 〈x|Φ+〉]dx

(428)

≥ 1
2

∫
W+

| 〈x|Φ+〉 |2dx−
∫
W+

| 〈Φ−|x〉 〈x|Φ+〉 |dx. (429)

For x ∈ W+, we have x − 2(x>v)v + 2b ∈ W−, and thus the following holds because of the
symmetry between Φ+ and Φ−:

| 〈Φ−|x〉 |
| 〈Φ+|x〉 |

= | 〈Φ−|x〉 |
| 〈Φ−|x− 2(x>v)v + 2b〉 | , for x ∈W+. (430)

Under previously determined parameters, Φ− and Φ+ concentrate near W− and W+ respectively,
giving |〈Φ−|x〉||〈Φ+|x〉| ≤ 1 for any x ∈ W+. Manipulating the parameters, for example, changing S0/h

to S0/h + C for some constant C > 0 independent of d, 1/ν will be a larger polynomial and the
ratio |〈Φ−|x〉|

|〈Φ−|x−2(x>v)v+2b〉| (x ∈ W+) at least reduces by constant times. So, it can always be done
in making |〈Φ−|x〉||〈Φ+|x〉| ≤

1
4 (x ∈W+) while maintaining 1/ν as a polynomial in d. And we have∫

W+

µQTWdx ≥ 1
4

∫
W+

| 〈x|Φ+〉 |2dx. (431)

Next, we should estimate
∫
W+
| 〈x|Φ+〉 |2dx. Note that

1 =
∫
| 〈x|Φ+〉 |2 = (

∫
Rd\(W−∪Bv∪W+)

+
∫
W−

+
∫
Bv

+
∫
W+

)| 〈x|Φ+〉 |2dx, (432)
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we estimate the integrals separately. The potential energy of |Φ+〉 should be of O(H0), so that∫
Rd\(W−∪Bv∪W+)

H2| 〈x|Φ+〉 |2 = O(H0), (433)

giving that ∫
Rd\(W−∪Bv∪W+)

| 〈x|Φ+〉 |2dx = O(H0/H2). (434)

So, we know (
∫
W−

+
∫
Bv

+
∫
W+

)| 〈x|Φ+〉 |2dx is larger than some constant C1 independent of d.
Because |Φ+〉 is the local ground state corresponding to U+, it concentrates in U+ and promises
that

∫
W+
| 〈x|Φ+〉 |2dx ≥

∫
W−
| 〈x|Φ+〉 |2dx. Note that the volume of Bv is exponentially smaller

than that of W+, that is,

Volume(Bv)
Volume(W+) ≤

(
√

3a/2)d−1Area(Sd−1)(2b− a)
adVolume(Sd) = O(poly(e−d)). (435)

After steps of determining ν and ν′, we still have a free variable, say, H0/H1. We set H0/H1 = 1,
and the energy of a particle restricted in Bv will significantly larger than that restricted in W+.
Therefore, for the local ground state |Φ+〉, we can also have

∫
W+
| 〈x|Φ+〉 |2dx ≥

∫
Bv
| 〈x|Φ+〉 |2dx.

In all,

C1 ≤
(∫

W−

+
∫
Bv

+
∫
W+

)
| 〈x|Φ+〉 |2dx ≤ 3

∫
W+

| 〈x|Φ+〉 |2dx, (436)

and then ∫
W+

µQTWdx ≥ C2, (437)

where C2 := C1/12 is a constant independent of d. Choose ε = C2/2 to be a constant independent
of d, we have∫

W+

ρ̃QTW(Tmix,x)dx ≥
∫
W+

µQTW(x)dx−
∫
W+

|ρ̃QTW(Tmix,x)− µQTW(x)|dx (438)

≥ C2 − ‖ρ̃QTW(Tmix, ·)− µQTW(·)‖1 ≥ C2/2. (439)

Let C3 := C2/2 be also a constant independent of d. After evolving the system for at most Tmix
once the probability of hitting W+ is at least C3. Then, using n interactions which takes a total
time bounded by Ttot = nTmix = nO(poly(d)), 19 the probability of successfully hitting W+ is
psuc ≥ 1 − (1 − C3)n.20 Because of (426) and note that H2 and ε are constants independent of
d, the number of total quantum quires is nÕ(Tmix). Since Tmix is polynomial in d, the number of
total quantum quires needed is polynomial in d.

D.2.8 Proof of Proposition 4.3

Let n be a unit vector, we define the cone Cq(n) as

Cq(n) := {x : x · n/‖x‖ > q}. (440)

For f defined by (120), the regions Bv andW+ can be in a cone Cq(v) for some constant q >
√

3/2.
Suppose there are N directions nj (j = 1, ..., N) such that all Cq(nj) (j = 1, ..., N) are disjoint.

We first show that an unstructured search with datasize N can be solved by solving Problem 4.1.

19Here, ε has been set to be a constant and can be omitted.
20In the proof, we have determined H2, h, H1, H0, a and b; the only remained parameter is w. We demand w to

be a constant independent of d. In this case, as long as h = 4δ/
√

2ωd, the Gaussian integral used in Proposition A.6
which gives Lemma 4.16 is accurate enough for large d, and our conclusion based on Lemma 4.16 is not affected.
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Let the datapoints be labeled by α ∈ {1, ..., N}. In the unstructured search problem, we are given
an oracle O giving O(α) the value assigned to α. Recall that there are only one point is assigned 1
and others are assigned 0. Our goal is to find the only point, say αs, such that O(αs) = 1. Every
point in unstructured search, α, can be made uniquely correspond to a cone Cq(nα).

Let f0 be a function satisfying (120) whose v := n0. Using the oracle O and f0, we can
construct a new function f . If ‖x‖ ≤ a, f(x) = f0(x), For any x > a, first determine whether
x ∈ Cq(nj) for some j. If so, f(x) = f0(R(j, 0)x) for O(j) = 1 and f(x) = H2 for O(j) = 0, where
R(j, 0) is a rotation mapping nj to n0. Otherwise, f(x) = H2. From the above construction, we
know that f satisfies the following properties:

• This f is a function of the form (120) whose v = nαs .

• One query to the function value of f need at most one query to the oracle O.

Therefore, if we can solve Problem 4.1 on this f within queries (to f) polynomial in d, we can have
an algorithm for the N -size unstructured search finding αs within queries (to O) polynomial in d.
With the fact N is exponential in d, assuming Problem 4.1 can be solved within queries polynomial
in d will violate the quantum lower bound for unstructured search, i.e., Ω(

√
N) Bennett et al.

(1997).
Next, to prove Proposition 4.3 by contradiction, we just need to show that N can be exponential

in d. The only constrain on N is that Cq(nj) ∩ Cq(nk) = ∅ for j 6= k, which is equivalent to
‖nj − nk‖ ≥ ε for j 6= k and some ε < 1. The following Lemma provides a desired estimation of
N .

Lemma D.1. There exists a set of N unit vectors in Rd (or N points on Sd−1) such that

• ∀x 6= y in the set, ‖x− y‖ ≥ ε;

• N ≥ ( 1
2ε + 1

2 )d − ( 1
2ε −

1
2 )d.

Proof. Let the set of points be A, we consider an argument that as long as there is a point x
satisfying miny∈A ‖x− y‖ ≥ ε, we add x to A.

If we cannot add any more point to A, the N is possibly the largest. In this case, consider any
point z with 1− ε ≤ ‖z‖ ≤ 1 + ε, there must exists xz ∈ A such that ‖xz − z/‖z‖‖ < ε. Note that
‖z − z/‖z‖‖ < ε, by the triangle inequality, we obtain ‖x − z‖ ≤ 2ε. This means that the balls
{B(x, 2ε) | x ∈ A} cover the region {z : 1− ε ≤ ‖z‖ ≤ 1 + ε}, giving

N(2ε)d ≥ (1 + ε)d − (1− ε)d, (441)

which completes the proof.

D.3 Mollified functions
For any r > 0, let mr : Rd → R to be the mollifier function of width r, which is given by

mr(x) =
{

1
Id

exp
(
− 1

1−‖x/r‖2

)
, x ∈ B(0, r)

0, otherwise,
(442)

where Id is the normalize constant such that
∫
B(0,r)mr(x)dx = 1. The mollification of f by mr(x)

is defined as

Fr(x) := (f ∗mr)(x) =
∫
f(x− y)mr(y)dx. (443)

The mollified functions satisfy the following desired property:

Lemma D.2. Let f : Rd → R and Fr = f ∗ mr, then Fr is infinitely differentiable and Fr →
fr (r → 0).

Lemma D.2 follows from the properties of convolution and the factmr is infinitely differentiable.
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D.4 Distribution of wells
Here we show that in high dimensions, the distribution of wells will affect coefficient of the expo-
nential term eS0/h in the evolution time of QTW. We assume that tunneling amplitude w is the
same and all local ground states have the energy µ. Thus, the only variable is the “distribution".

Let us see the example that the wells form a ring. The interaction matrix can be written as

H|F =



µ w w
w µ w

w µ w
. . . . . . . . .

w µ w
w w µ


. (444)

We have
Ek = 2|w| cos kπ

N + 1 + µ, k = 1, 2, . . . , N. (445)

Therefore, ∑
Ek=Ek′

〈j|Ek〉〈Ek|i〉〈i|Ek′〉〈Ek′ |j〉 =
∑
k

|〈Ek|i〉|2|〈Ek|j〉|2 ≥
1

2N . (446)

The last equality is secured by the fact that

〈Ek|j〉 ∼
1√
N
e−

ikjπ
N+1 . (447)

The energy gap can be calculated as

∆E = 2|w|
(

cos π

N + 1 − cos 2π
N + 1

)
= Ω

(
1
N2

)
|w|. (448)

If we set τ > N
ε∆E for a small constant ε > 0, then

p(τ, j|i) ≥ 1
2N

(
1− 3N

τ∆E

)
≥ 1

2N (1− 3ε) . (449)

And the time for one trial can be

N

ε∆E = O

(
N3

ε

)
1
|w|

. (450)

Repeating trials for 1/p(τ, j|i) times, we can hit the jth well with probability Ω(1), and the total
time can be bounded by

N

ε∆Ep(τ, j|i) = O

(
N4

ε

)
1
|w|

. (451)

Consider the most symmetric case, where the interaction matrix is given by

H|F =


µ w · · · w

w µ w
...

... w
. . . w

w · · · w µ

 . (452)

The eigenvalues are
E1 = · · · = EN−1 = µ− w, EN = µ+ (N − 1)w, (453)

giving the energy gap ∆E = N |w|. The corresponding eigenstates can be given by

|Ek〉 = 1√
N

∑
j

ei
2π
N kj |j〉, (454)
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which gives ∑
Ek=Ek′

〈j|Ek〉〈Ek|i〉〈i|Ek′〉〈Ek′ |j〉 =
{ 2

N2 , i 6= j,

1− 2(N−1)
N2 , i = j,

(455)

and ∑
k

|〈Ek|i〉|2|〈Ek|j〉|2 = 1
N
. (456)

For i 6= j, we will have that

p(τ, j|i) ≥ 2
N2 −

4
τ∆E

N − 1
N2 ≥ 2

N2 (1− 2ε) , (457)

if τ > N
ε∆E where ε is a small constant. The time needed for one trial can be bounded by

N

ε∆E = O(1/ε) 1
|w|

, (458)

which is independent of N . Repeating 1/p(τ, j|i) times, we are able to hit the jth well with high
probability and the total time is bounded by

N

ε∆Ep(τ, j|i) = O(N2/ε) 1
|w|

. (459)

Comparing (459) with (451), the distribution of well can reduce the coefficient before 1/|w|
from O(N4/ε) to O(N2/ε), which is meaningful especially when N is large.

E Full Numerical Experiments
In this appendix, we present detailed numerical results testing our theoretical analysis and demon-
strating our quantum speedup claims. All experiments are performed on a classical computer (with
Dual-Core Intel Core i5 Processor, 16GB memory) using MATLAB 2020b.

In Appendix E.1, we run QTW and SGD on concrete examples provided by Section 4.2. Initial
state preparation is numerically explored and discussed. Subsequently, QTW is implemented
and compared with SGD, demonstrating the power of quantum tunneling as expected by our
theory. In Appendix E.2, classical lower bound proved in Section 4.3 (i.e., Proposition 4.1) is
tested for a specific classical algorithm, SGD. At last, the dependence of QTW running time on
quantum learning rate h is highlighted by a experiment in Appendix E.3, supporting our result,
Theorem 1.1. For experiments involving QTW, we only deal with low-dimensional landscapes due
to the limitation of solving the Schrödinger equation by classical numerical methods.

For numerical integration of the Schrödinger equation, we follow Zhang et al. (2021a) and Gray
and Manolopoulos (1996). We first discretize the space such that the Schrödinger equation is
approximated by a linear system (see Appendix B.1 for details of discretization),

i
dΦ
dt = ĤΦ, (460)

where Ĥ is a matrix approximating the Hamiltonian and Φ is a complex valued vector simulating
the wave function. Then, we write Φ(t) = Q(t) + iP (t) for Q and P being the real and imag-
inary part of Φ, respectively. The discretized Schrödinger equation is equivalent to a separable
Hamiltonian system:

d
dtQ = ĤP,

d
dtP = −ĤQ. (461)

In practice, we use a symplectic leap frog scheme to solve this Hamiltonian system François (2020).
This also has connection to recent literature on symplectic optimization Betancourt et al. (2018);
Jordan (2018).

SGD refers to the iterative algorithm xk+1 = xk − s∇f(xk) − sξk, where f is the objective
function and ξk is the noise of the kth step. Queries to the gradients of f are permitted and ξk is
normally distributed with unit variance.
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Figure 13: Overlap between the local ground state and the low energy subspace F : Example 1, 2, and 3
correspond to Example 4.1, Example 4.2, and Example 4.3, respectively.

E.1 Tests on quantum-classical comparisons
Our first set of experiments are conducted on one-dimensional examples in Section 4.2: the critical
case (Example 4.1), the case stressing flatness of minima (Example 4.2), and the case stressing
sharpness of barriers (Example 4.3). Parameters of the landscapes used in Appendix E.1 are
defined in Section 4.2.

To make the experiments non-trivial and still can be efficiently executed on our computer, we
choose the number of minima N = 3. In solving the discretized Schrödinger equation, we fix the
spatial domain to be Ω = [0, 6a + 4b] and the mesh number to be 512, where a, 3a + 2b, 5a + 4b
are the three minima. The problem to be solved is specified as hitting [4a+ 4b, 6a+ 4b] beginning
at one minimum a.

With the knowledge of one minimum a, we approximate the local ground state corresponding to
a. Let Ω1 be a neighborhood of a, the Hamiltonian restricted in the domain Ω1 is also discretized
as a matrix ĤΩ1 . We solve the eigenvectors of ĤΩ1 and Ĥ in MATLAB. By our theory, the
ideal initial state |Φ(0)〉 prepared should be in the low energy subspace F spanned by the three
eigenstates of Ĥ with smallest eigenvalues, i.e., |Ej〉 , j = 1, 2, 3. Whether the ground state of
ĤΩ1 is nearly in F depends on the quantum learning rate h and the region Ω1. We numerically
discuss error estimation of initial state preparation (local ground state preparation) here as a
supplement to Appendix B.2. To this end, we prepare the ground state of ĤΩ1 for small local
region (i.e., Ω1 = [0, 2a]), middle local region (i.e., Ω1 = [0, 2a + b]), and large local region (i.e.,
Ω1 = [0, 2a+ 2b]) under various h. The probability or overlap of |Φ(0)〉 in F given by

| 〈Φ(0)|E1〉 |2 + | 〈Φ(0)|E2〉 |2 + | 〈Φ(0)|E3〉 |2 (462)

is numerically calculated whose results are shown in Figure 13. For all examples, the larger h is,
the more unlikely the local state prepared Φ(0) is to be in F . For Example 4.1, small, middle,
and large local regions have similar results as b � a in Example 4.1. Comparing Example 4.1
with Example 4.2, a thicker barrier (a larger b) yields lager differences between small, middle, and
large local regions. However, if the barrier is high, as shown by Example 4.3, results for the three
local regions can be close to each other again. This may be accounted for by that wave functions
decay rapidly in the barrier region, [2a, 2a + 2b], and the local ground state concentrate in [0, 2a]
regardless of whether Ω1 = [0, 2a] or [0, 2a+ b] or [a, 2a+ 2b].

Due to the large running time cost of solving the Schrödinger equation on classical computers,21

we simulate QTW for each example choosing one h and one initial state. In practice, preparing the
initial state in a smaller region may be more convenient while producing a larger error. We choose
the small local region for each example to prepare the initial state, and the chosen h for different
examples are shown in Table 1. On the one hand, we need h to be small to obtain an initial state
largely staying in F . On the other hand, h should not be too small, such that the running time is
tractable on classical computers. As shown in Table 1, all chosen h manage to make at least 90%
of the initial state be in F .

Having obtained h and the prepared initial state Φ(0) for each example, we need to determine
the time τ for QTW. Recall that the evolution time of one QTW trial, t, is uniformly chosen from

21In this section, we use running time to refer to the actual time spent by our classical computer to solve the
problem, and we use evolution time to denote the time variable in simulating QTW and SGD.
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Example 4.1 Example 4.2 Example 4.3
h 0.8 0.8 1.0

Overlap ≈ 0.95 ≈ 0.90 ≈ 0.95

Table 1: Choices of h for different examples. Overlap denotes the overlap of the initial state prepared in the
small local region with the subspace F .

0 10 20 30

X

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

u
ti

o
n

0

0.05

0.1

0.15

0.2

O
b

je
ct

iv
e 

fu
n
ct

io
n

t =0

0 10 20 30

X

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

u
ti

o
n

0

0.05

0.1

0.15

0.2

O
b

je
ct

iv
e 

fu
n
ct

io
n

t =36

0 10 20 30

X

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

u
ti

o
n

0

0.05

0.1

0.15

0.2

O
b

je
ct

iv
e 

fu
n
ct

io
n

t =72

0 10 20 30

X

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

u
ti

o
n

0

0.05

0.1

0.15

0.2

O
b

je
ct

iv
e 

fu
n

ct
io

n

t =108

0 10 20 30

X

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

u
ti

o
n

0

0.05

0.1

0.15

0.2

O
b

je
ct

iv
e 

fu
n

ct
io

n

t =144

0 10 20 30

X

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

u
ti

o
n

0

0.05

0.1

0.15

0.2

O
b

je
ct

iv
e 

fu
n

ct
io

n

t =180

0 10 20 30

X

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

u
ti

o
n

0

0.05

0.1

0.15

0.2

O
b

je
ct

iv
e 

fu
n

ct
io

n

t =216

0 10 20 30

X

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

u
ti

o
n

0

0.05

0.1

0.15

0.2

O
b

je
ct

iv
e 

fu
n

ct
io

n

t =252

0 10 20 30

X

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

u
ti

o
n

0

0.05

0.1

0.15

0.2

O
b

je
ct

iv
e 

fu
n

ct
io

n

t =288

Figure 14: Evolution of the wave function on Example 4.1: the blue line represents the probability distributing
| 〈Φ(t)|x〉 |2 and the red line is the landscape f .

[0, τ ] (see Section 3.2), and we repeat the trials until success. As long as τ is large enough, the
probability of success in one trial will be larger than some constant (see Section 3.3 and Section 3.4).
Practically, we determine τ by testing a geometric series (this is a common trick in randomized
algorithms), i.e., τ = 1, 2, 4, 8, . . . and repeat the experiments for many times. If the success
probability is too small, we just double τ until we reach a value where the success probability is
decent. For simplicity, we discuss and determine τ here by directly observe the evolution of Φ(t).
Figure 14 illustrates a typical quantum tunneling process on the landscape Example 4.1. The time
288 when the wave function concentrates in the target well [4a + ab, 6a + 4b] is defined as the
characteristic time T ?1 for Example 4.1. Similarly, for Example 4.2 and Example 4.3, we can find
the characteristic time T ?2 = 800 and T ?3 = 600, respectively.

Setting τ as the half characteristic time, the characteristic time, and the double characteristic
time, respectively, we repeat our experiments and obtain the average hitting time. Rigorously, we
use an experiment to denote a process repeating trials until successfully hitting [4a+ ab, 6a+ 4b].
A trial initiates the simulation at Φ(0) and measures the position at t randomly chosen from [0, τ ].
The average hitting time means the average total evolution time of different experiments. Results
of average hitting time are presented in Table 2, each of which is obtained from 20 experiments.
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Example 3

Figure 15: Dependence of the SGD hitting time T SGD
hit and the SGD expected risk on the learning rate s. Each

experiment is repeated for 1000 times, the (blue) circles denote the average hitting time, and one error bar
represents the range of the corresponding 1000 data.

Example 4.1 Example 4.2 Example 4.3
τ = T ?/2 (half characteristic time) 655± 648 1372± 953 708± 519
τ = T ? (characteristic time) 409± 259 1184± 561 758± 471
τ = 2T ? (double characteristic time) 759± 489 1623± 1010 1464± 1067

Table 2: Average hitting time obtained from 20 experiments for each τ and each example.

Theoretically, when τ is large enough, the probability of successfully hitting in one trial is near
a constant psuc, so that the number of trials needed in one experiment is also approximately a
constant 1/psuc. The expected time for each trial is τ/2. Thus, for large enough τ , the expected
time of one experiment is approximately τ/psuc ∝ τ . Based on results of Table 2, the characteristic
time T ? is large enough, and is chosen as τ in later experiments.

Having specified the values of h and τ , we conduct 1000 experiments for each example and
study the distribution of hitting time. The statistics of the results are shown in Figure 8.

Next, we proceed by studying the hitting time of SGD. Taking fair comparisons into consider-
ation, we employ Standard 4.1 in Section 4.1 which equalizes the expected risks yielded by SGD
and QTW. The expected risk of QTW is numerically determined by calculating

1
T

∫ T

0

(∫
Ω
f(x)| 〈Φ(t)|x〉 |2dx

)
dt (463)

for T = 1000. The expected risk st t,
∫

Ω f(x)| 〈Φ(t)|x〉 |2dx, oscillates rapidly with respect to time
but converges to a fixed value; see for instance Figure 19 for a one-dimensional case. Thus, we pick
a long enough time T to calculate an expected risk for all time. For Example 4.1, Example 4.2,
and Example 4.3, the expected risks given by (463) are 0.0324 ± 0.0054, 0.0222 ± 0.0051, and
0.0377 ± 0.0070, respectively. Using the Gibbs distribution (19) µSGD for the calculation of the
expected risk ∫

µSGD(x)f(x)dx, (464)

we can plot the relationship between the expected risk and the learning rate s as shown in Figure 15.
For each example, we calculate the hitting time for various s, which is also plotted in Figure 15.

Theoretically, lnT SGD
hit ∼ 2Hf/s with 2Hf being the Morse saddle barrier of f , which agrees well

with the results in Figure 15.
To make the expected risks of QTW and SGD equal, we set learning rates s = 0.1525, s = 0.129,

and s = 0.189 for Example 4.1, Example 4.2, and Example 4.3, respectively. For each example
and corresponding learning rate s, we run SGD for 1000 times and draw the histogram of SGD
hitting time in Figure 8. We use TQTW

hit and T SGD
hit to denote the evolution time of one experiment

for QTW and SGD, respectively. In Figure 8, the histograms compare TQTW
hit with T SGD

hit /10,
and all presented examples demonstrate that QTW is faster. The number of quantum queries is
approximately Õ(‖f‖L∞Ω T

QTW
hit ) and the number of classical queries is Ω(T SGD

hit /s). In addition, in
the three examples ‖f‖L∞Ω ≤ 0.85 and s < 0.2, and quantum advantage exists in terms of query
complexity.
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Figure 16: Distribution of the number of steps Qesc needed to escape Sv: for each s and each d, 1000 samples
are gathered.

This result matches our theory at large. For Example 4.1, we make direct comparison between
the exponential terms eS0/h and e2Hf/s,and to remove the coefficients in front of them, we divide
T SGD

hit by 10 such that T SGD
hit /10 has similar distribution t TQTW

hit for Example 4.1. In this way,
we observe that whether T SGD

hit /10 is relatively larger than TQTW
hit is determined only by eS0/h and

e2Hf/s.
For Example 4.2, TQTW

hit is not much smaller than T SGD
hit /10, which is not completely coherent

with our theory. This result can be explained as that for Example 4.2, the quantum learning rate
h is not small enough such that the initial state prepared does not well stay near a low energy
subspace. Specifically, Table 1 shows that initial states of both Example 4.1 and Example 4.3 are
largely in F (more than 95%), while about 90% of the initial state of Example 4.2 overlaps with
F . Experiments on Example 4.2 suggest that higher energy may not be able to help quantum
tunneling to run faster.

For Example 4.3, significant quantum speedup is achieved as expected. As shown by Figure 8,
T SGD

hit /10 is even several orders of magnitude larger than TQTW
hit .

E.2 Dimension dependence
Here we examine part of Section 4.3 by testing SGD and the classical lower bound.

The classical lower bound in Section 4.3 ensures that for any s, SGD cannot cannot escape
from Sv with subexponential queries with high probability. Based on the constructed landscape
(120) with parameters specified by a = 1, R = 4

√
2a, w = a/2, ω = 0.5, b = 1.4, H1 = H0,

and H2 = 20H0, we test SGD with different learning rates (s ∈ [0.1, 1]) in various dimensions
(d ∈ [15, 95]). For each dimension and each s, 1000 experiments are conducted. The number of
steps spent to escaping from Sv in one experiment is denoted as Qesc.

The distributions of Qesc under different dimensions for s = 1, 0.5, and 0.25 are shown in
Figure 16. With the increase of d, all characterized values of the distribution gradually grows
exponentially in terms of d, supporting our theory.

We also present the relationship between the average Qesc and the dimension d in Figure 9. A
counterintuitive fact is that for a fixed dimension d, SGD with larger s is more difficult to escape Sv,
which needs further explanation. For each fixed learning rate s, we observe that with the increase
of d, the average Qesc remains constant initially and then increase exponentially with respect to
d. Increasing s yields a smaller initial constant but larger exponential rate. Nevertheless, for all
s, Qesc eventually increases exponentially with respect to d. With the prediction in Section 4.3, if
the number of queries is of the order e

dw2
2R2 = ed/256, the probability of escaping Sv will no longer

exponentially small. The lower bound of average Qesc increases larger than ed/256, supporting the
prediction.

E.3 Quantum tunneling and the quantum learning rate h

In QTW, the quantum learning rate h is one of the most important variables. Theorem 1.1 gives a
general relationship between h and the evolution time of QTW. We further test the relationship on
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Figure 17: The relationship between the overlap and h.

the landscape constructed in Section 4.3 (dimension d = 2) with specified parameters given in the
same as Appendix E.2: a = 1, R = 4

√
2a, w = a/2, ω = 0.5, b = 1.4, H1 = H0, and H2 = 20H0.

The Schrödinger equation is solved in the region Ω = {(x, y) : |x| < 4, |y| < 4} and the mesh
number is 399 on each edge.

Since the landscape has two symmetric wells, the time for tunneling from one well to the other,
Thalf , is explicitly linked to ∆E, i.e., Thalf = π/∆E. On this concrete landscape, ∆E can be
predicted using Lemma 4.16 and note that ∆E = 2|ν|, we have

lnThalf = S0

h
− 1

2 ln 2h
π

+ ln π2 −
1
2 ln 2H1ω

2

4
√
H1/b

− 2ω(b− a)√
2H1

+ 4 ln b

a
. (465)

The initial state is prepared in the small region Ω1 = {(x, y) : |x| < 2, |y| < 2}. Varying h, the
overlap between the initial state and the low-energy subspace F is shown in Figure 17. We choose
h ∈ [0.16, 0.28] such that the overlap is approximately in [0.85, 0.95].

Starting from one well, we stop when the probability of finding the other well exceeds 90%
and record the evolution time as Thalf . The probability of finding the other well is numerically
calculated based on ∫

W+

| 〈x|Φ(t)〉 |2dx. (466)

For h = 0.2, Thalf is approximately 200, and we show the evolution of the wave function in Figure 18.

The expect risk ∫
Ω
f(x)| 〈x|Φ(t)〉 |2dx (467)

with respect to time is plotted in Figure 19, which oscillates rapidly but maintains to be near
0.065.

Numerical results on Thalf are shown in Figure 10. The results match our theory except a
constant difference between the predicted and experimental lnThalf , indicating the correctness of
lnThalf = S0

h −
1
2 ln h + · · · . The constant difference emerges because we stop evolution when

the probability of tunneling exceeds 90%, while the theoretical Thalf takes the time when the
probability is nearly 100%. Anyway, in studying the dependence of Thalf on h, a constant coefficient
is insignificant.
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Figure 18: Wave function evolution for h = 0.2. The upper part of all the nine figures shows the wave packet
at different time and the lower part is the contour map of the landscape showing W−, Bv, and W+.

Figure 19: Expected risk when h = 0.2 with total running time 200.
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