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In this paper we are considering a fluid flows problem that contains two equation of motions and more than two parameters in the 
governing equation of motion. Which is namely Radiative Boundary Layer Flow in Porous Medium due to Exponentially Shrinking 
Permeable Sheet. The parameters are 𝐾 = , 𝑃𝑟 = ,𝑁 =  and ε denote the permeability parameter, Prandtl number, and 
radiation parameter and is the thermal conductivity variation parameter respectively. The governing differential equation can be 
obtained by using similarity variable technique and then the governing equation of motion can be Fuzzified by the help of Zadeh 
extension theorem. The 𝛼 − 𝑐𝑢𝑡 technique is used for the validation of the uncertainty of the equation of the motion. The effect of 
the 𝐾, 𝑃𝑟,𝑁 and ε are discussed with the fuzzified governing equation of motion under fuzzy environment. It is observed none of the 
parameters are directly involved in the occurrence of the uncertainty of the solutions. The uncertainty occurs in the problem is due to 
the assumption and the numerical computation. Finally, the solution is being carried out under fuzzy environment. It is found that the 
increasing values of permeability parameter, the values of both the numbers Skin friction coefficient as well as Nusselt number are 
increases. 
Keywords: Shrinking sheet; Fuzzified; computer codes; 𝛼 − 𝑐𝑢𝑡 
PACS: 44.05 +e, 44.30 +v, 47.10 A- 

1. INTRODUCTION
Flow and heat Transfer in boundary layer flow of viscous fluid due to deforming surface is pivotal in many industrial 

processes cutting across different realms. Specially radiative thermal regime in porous medium has drawn much attention 
recently due to large application in gasification of oil shale waste heat storage in aquifer and many more.   

Vast application of radioactive thermal in porous medium we need to study this class of problems in different ways. 
Due to involvement of nonlinear differential equation, there is no direct process available to solve exactly. Here we 
consider such a mechanical problem for our discussion in which the governing equations of motion can have two non-
linear differential equations of motion (One for velocity profile and another one is for temperature profile) and four 
parameters in the governing equation of motion and one parameter in the boundary conditions. The specific problem is 
Radiative Boundary Layer Flow in Porous Medium due to Exponentially Shrinking permeable Sheet.  

A few relevant research has been presented in recent years (2010 to cont.). Radiative flow of Jeffery fluid with 
variable thermal conductivity in a porous medium was discussed by Elbashbeshy and Emam (2011), Hayat et al. (2012) 
about the effects of radiation and heat transfer over an unsteady stretching surface embedded in a porous medium. Paresh 
Vyas and Nupur Srivastava studied (2016) about the flow past and exponentially shrinking placed at the bottom of fluid 
saturated porous medium taking variable thermal conductivity and radiation using fourth order Runge-kutta scheme 
together with shooting method.  

Here we introduce a new approach of solving of the said problem using fuzzy set theory. In this chapter our objective 
is to find is there any kind of uncertainty involved in the specific problem i.e. Radiative Boundary Layer Flow in Porous 
Medium due to Exponentially Shrinking permeable Sheet using fuzzy environment. For the graphical interpretation we 
developed computer codes for the said problem and represent the parameter’s effect on the uncertainty involved in the 
flow of motion. On the basic concept of fuzzy differential equations Chakraverty et al., (2016) proposed some numerical 
methods for fuzzy fractional differential equations. Hazarika and Bora (2017, 2018) studied about the fuzzification of 
some numerical problems. J. Bora et al (2020) discussed some fluids problems using fuzzy set theory. 

2. FORMULATION OF THE PROBLEM
2.1. Derivation of The Basic Equation

Let us consider the steady 2D boundary layer flow of optical thick viscous Newtonian fluid and associated heat 
transfer over a permeable sheet placed at bottom of the fluid saturated porous medium having permeability of specific 
form. A Cartesian coordinate system is chosen where the x-axis is taken along the sheet and y-axis is normal to it. The 
flow is caused by the sheet shrinking in an exponential fashion. A suction is applied normal to sheet to contain the 
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vorticity. The fluid considered here is without phase change, optically dense, absorbing-emitting radiation but a 
nonscattering medium. The thermal conductivity of the fluid is assumed to vary linearly with temperature. The radiation 
flux in the energy equation is presumed to follow Rosseland approximation. The boundary layer equations for the 
considered setup are  
 + = 0, (1) 

 𝑢 + 𝑣 = 𝜗 − 𝜗   (2) 

 𝜌𝑐 𝑢 + 𝑣 =  𝑘  −  (3) 

With the boundary condition 

At 𝑦 = 0,  𝑢 =  𝑈 𝑥 =  −𝑐𝑒 ,     𝑣 =  𝑉 𝑥 =  −𝑣 𝑒 ,       𝑇 = 𝑇 𝑥 = 𝑇 + 𝑇 𝑒  

and at 
  𝑦 → ∞, 𝑢 → 0, 𝑇 → 𝑇  (4) 

where u, v are the velocity components along x and y directions, respectively, k is the permeability, 𝑐 is the specific heat 
at constant pressure, υ is the kinematic viscosity, ρ is the density, and T, μ, and κ are the temperature, viscosity and thermal 
conductivity of the fluid, respectively. Further, L is the characteristic length, 𝑇 is the variable temperature at the sheet, 𝑇  is the constant reference temperature, and 𝑇  is the constant free stream temperature. 𝑈  and  𝑉  are the shrinking 
velocity of the sheet and mass transfer velocity, respectively, where c > 0 is the shrinking constant and 𝑣  is a constant 
(where 𝑣  < 0 corresponds to mass suction).  
Let us introduce the stream function 𝜓 𝑥,𝑦  as 

 𝑢 = = −   (5) 

Thus equation (5.1) is identically satisfied and the similarity transformation can be written as   

 𝜓 =  √2𝜐𝐿𝑐𝑓(𝜂)𝑒  𝜂 = 𝑦  𝑒 , and 𝜃(𝑥) =  (6) 

On using (5.5) and (6.5) we obtain the expression for velocity component in non-dimensional form as 

 𝑢 = 𝑐𝑓 (𝜂) 𝑒  and 𝑣 = − 𝜂𝑓 (𝜂) + 𝑓(𝜂) 𝑒  (7) 

In order to obtain the similarity solutions, it is assumed that the permeability k of the porous medium takes the 
following form 
 𝑘(𝑥) = 2𝑘 𝑒   (8) 

Where 𝑘   is the reference permeability. 
As in our setup the thermal conductivity of the fluid is assumed to vary with temperature in a linear function as 

 𝑘 = 𝑘  (1+∈ 𝜃)  (9) 

Where ∈ is the thermal conductivity variation parameter. In general, ∈ > 0 for fluids such as water and air, while ∈<0 for 
fluids such as lubrication oils. The radiative heat flux in the energy equation is presumed to follow Rosseland 
approximation and is given by  
 𝑞 = −   (10) 

Where 𝜎  is the Stephan-Boltzmann constant and 𝑘  is the mean absorption constant. It is further assumed that the 
temperature difference within the fluid is sufficiently small sothat 𝑇  may be expressed as a linear function of temperature 
T. This is done by expanding 𝑇  in a Taylor series about 𝑇 and omitting higher-order terms to yield 𝑇 ≅ 4𝑇 𝑇 − 3𝑇  

Thus, the equation of momentum (5.2) and energy (5.3) reduces to the following non dimensional form 

 𝑓 + 𝑓𝑓 − 2𝑓 − = 0  (11) 

 (1+ ) 𝜃 + 𝜖𝜃𝜃 + 𝜖𝜃′ + Pr(𝑓𝜃 − 𝜃𝑓 ) = 0  (12) 

With the boundary conditions 
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 𝜂 → 0: 𝑓 (𝜂) = −1, 𝑓(𝜂) = ⁄ = 𝑆,𝜃(𝜂) = 1, 𝜂 → ∞:𝑓 (𝜂) → 0, 𝜃(𝜂) → 0 (13) 

Where 𝐾 = , 𝑃𝑟 = , 𝑁 =  

Denote the permeability parameter, Prandtl number, and radiation parameter respectively. 
 

2.2. Conversion of The Basic Equation into Fuzzified Form 
Now we Applying Zadeh fuzzy Extension theorem in (5.11-5.12) and (5.13-5.14)  

 𝑓 + 𝑓𝑓 − 2𝑓 − = 0  (15) 

 (1 + ) 𝜃 + 𝜖̂𝜃𝜃 + 𝜖̂𝜃′ + Pr  𝑓𝜃 − 𝜃𝑓 = 0  (16) 

And the boundary condition became as (Fuzzy Environment) 

 �̂� → 0 : 𝑓 (𝜂) = −1, 𝑓(𝜂) = ⁄ = 𝑆,𝜃(𝜂) = 1, (17) 

 �̂� → ∞: 𝑓 (𝜂) → 0,𝜃(𝜂) → 0 (18) 

Considering the Fuzzified (5.15) equations as triangular fuzzy number then the Fuzzified equation became the 
following: [ 𝑓  , 𝑓  , 𝑓 ] + [ 𝑓,𝑓 ,𝑓] [𝑓 ,𝑓 ,𝑓 ] − 2 𝑓 ,𝑓 , 𝑓 − 

[ , , ][ ,    , ]  = [0, 0, 0] 
Using fuzzy arithmetic we have, ⇒  [ 𝑓 , 𝑓 , 𝑓 ] + [min𝑇, 𝑇 , max𝑇 ] - 2𝑓 , 2𝑓 , 2𝑓 − [min𝑺,  𝑺 , max𝑺] = [0, 0, 0] ⇒ [ 𝑓 + min𝑇, 𝑓 + 𝑇 , 𝑓 + max𝑇 ] − 2𝑓 + min𝑺 , 2𝑓 + 𝑺 , 2𝑓 + max𝑺 =       [0, 0, 0] ⇒ [ 𝑓 + min𝑇 − (2𝑓 + max𝑺), 𝑓 + 𝑇 − (2𝑓 + 𝑺 ), 𝑓 + max𝑇 − (2𝑓 + min𝑺) ] =  [0, 0, 0] 
Thus, we have, 

 𝑓 + min𝑇 − 2𝑓 + max𝑺 = 0 (19) 

 𝑓 + 𝑇 − 2𝑓 + 𝑆 = 0. (20) 

 𝑓 + max𝑇 − 2𝑓 + min𝑺 = 0 (21) 

Where 𝑺 =  , , ,  and 𝑺 =  

𝑇 = 𝑓𝑓 ,𝑓𝑓 ,𝑓𝑓 ,𝑓𝑓′′, and 𝑇 = 𝑓𝑓′′ 
Similarly considering the Fuzzified (5.16) equations as triangular fuzzy number then the Fuzzified equation 

became the following:  1 + , 1 + , 1 +  [ 𝜃 ,𝜃 ,𝜃 ] + ∈,∈,∈ 𝜃,𝜃,𝜃 [𝜃 ,𝜃 ,𝜃 ] + ∈,∈,∈  [ 𝜃  ,𝜃  ,𝜃  ] + [ 𝑃𝑟,𝑃𝑟,  𝑃𝑟] 
{  𝑓,𝑓, 𝑓 𝜃′,𝜃′,𝜃′ −  𝑓 ,𝑓 ,𝑓 𝜃,𝜃,𝜃 } = [0, 0, 0] ⇒ [min𝑋,𝑋, max𝑋] + ∈,∈,∈  [min𝑌,  𝑌 , max𝑌] + [min𝑍,  𝑍,𝑚𝑎𝑥 𝑍] +  𝑃𝑟,𝑃𝑟,  𝑃𝑟  {[min𝐴,𝐴, max𝐴] −[min𝐵,𝐵, max𝐵] } = [0, 0, 0] ⇒  [min𝑋,𝑋, max𝑋] + [min𝑌 ,𝑌  , max𝑌 ] +  [min𝑍,  𝑍,𝑚𝑎𝑥 𝑍] +  𝑃𝑟,𝑃𝑟,  𝑃𝑟  [min𝐴 − max𝐵,𝐴 −𝐵, max𝐴 − min𝐵] = [0, 0, 0] ⇒ [min𝑋 + min𝑌 + min𝑍,𝑋 + 𝑌 + 𝑍, max𝑋 + max𝑌 + max𝑍]  + [min𝐴 𝐵 ,𝐴 𝐵 , max𝐴 𝐵 ] = [0, 0, 0] 
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⇒ [min𝑋 + min𝑌 + min𝑍 + min𝐴 𝐵 ,𝑋 + 𝑌 + 𝑍 +  𝐴 𝐵 ,  max𝑋 + max𝑌 + max𝑍 + max𝐴 𝐵 ]  = [0, 0, 0] (22) 
Where𝑋 = 1 +  𝜃′′, 1 + 𝜃′′ , 1 +  𝜃 , 1 +  𝜃′′      and 𝑋 = 1 +  𝜃′′ 𝑌 = 𝜃 𝜃 ,𝜃 𝜃 ,  𝜃𝜃 ,𝜃 𝜃′′,   and  𝑌 =  𝜃𝜃′′

Z=  𝜖 𝜃 ,  𝜖 𝜃 , 𝜖 𝜃 , 𝜖 𝜃   and 𝑍 =  𝜖𝜃𝑌 = ∈ min𝑌 ,∈ min𝑌 ,∈ max𝑌 ,∈ max𝑌,  and   𝑌 = ∈ 𝑌 𝐴 = 𝑓 𝜃 ,  𝑓 𝜃 ,𝑓𝜃 ,𝑓 𝜃′,    and  𝐴 =  𝑓𝜃′𝐵 =  𝑓  𝜃,  𝑓 𝜃,𝑓  𝜃,𝑓′ 𝜃,    and 𝐵 = 𝑓′𝜃 𝐴 𝐵 = Pr  (min𝐴 − max𝐵) ,  Pr  (max𝐴 − min𝐵) ,   Pr  (min𝐴 − max𝐵) ,   Pr  (max𝐴 − min𝐵) ,  𝐴 𝐵 =𝑃𝑟  (𝐴 − 𝐵), 
Now we can re-write the equation (5.22) as follows min𝑋 + min𝑌 + min𝑍 + min𝐴 𝐵 = 0 (23)𝑋 + 𝑌 + 𝑍 + 𝐴 𝐵 = 0, (24) max𝑋 + max𝑌 + max𝑍 + max𝐴 𝐵 = 0, (25)

Similarly if we convert the boundary condition into Fuzzified form then a new system of equation will arise as follows  𝑓 + min𝑇 − 2𝑓 + max𝑺 = 0 min𝑋 + min𝑌 + min𝑍 + min𝐴 𝐵 = 0 

With the boundary conditions 𝜂 → 0 : 𝑓′(𝜂) =  −1, 𝑓(𝜂) = ⁄ = 𝑆,  𝜃(𝜂) = 1, 𝜂 → ∞: 𝑓′(𝜂) → 0,𝜃(𝜂) → 0 (26)𝑓 + 𝑇 − 2𝑓 + 𝑆 = 0 𝑋 + 𝑌 + 𝑍 + 𝐴 𝐵 = 0,

With the boundary conditions 𝜂 → 0 : 𝑓 (𝜂) = −1, 𝑓(𝜂) = ⁄ = 𝑆,𝜃(𝜂) = 1, 𝜂 → ∞: 𝑓 (𝜂) → 0, 𝜃(𝜂) → 0 (27)𝑓 + max𝑇 − 2𝑓 + min𝑺 = 0   max𝑋 + max𝑌 + max𝑍 + max𝐴 𝐵 = 0 

With the boundary conditions 𝜂 → 0 : 𝑓 (𝜂) = −1, 𝑓(𝜂) = ⁄ = 𝑆, 𝜃(𝜂) = 1, 𝜂 → ∞: 𝑓 (𝜂) → 0,𝜃(𝜂) → 0 (28)

3. Definition of Skin Friction 𝑪𝒇 and Nusselt Number   𝑵𝒖𝒙
The physical quantities of principal interest are the skin friction coefficient 𝐶   and the local Nusselt number  𝑁𝑢 , 

which are defined as 𝑅𝑒 / 𝐶 =𝑓′′(0) and       𝑅𝑒 / 𝑁𝑢 = −𝜃′(0) 

Where 𝑅𝑒 = ( )   is the local Reynolds number. 

4. Result and Discussion
The system of equations (26-28), the fuzzified equations of motion with fuzzified boundary conditions are solved 

numerically by using finite difference scheme. The discretized fuzzified equations are solved using an iterative method 
based on Gauss Seidel iterative method by developing suitable codes in python. 
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The numerical computations carried out for different sets of values of the parameters entering into the problem have 
been depicted through graphs and tables. Result is obtained for different values for the parameter 𝑠 = 1,𝐾 = .25, ∈= .1,𝑃𝑟 = 0.7  and for different 𝛼 − 𝑐𝑢𝑡 of the fuzzified system of equations (26-28) 

In each of the following graphs the blue curve is the solution for the right values of the of the fuzzified velocity 
profile, green curve is the solution for the mid values of the fuzzified velocity profile which is same as the crisp velocity 
profile and blue curve is the solution for the right values of the of the Fuzzified velocity profile. 

The Figure (1-3) exhibits the Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 = 0.3,0.6,0.9, and 𝐾 = 0.25,𝑛 =0.5 ,𝑃𝑟 = 0.7 ,∈= 0.1, 𝑠 = 1. It is observed from the graph that there is a deflection on the curve in the right solution of 
the temperature profile as compare to the left solution of the temperature profile from the mid value solution (i.e. crisp 
solution). Which is the indication of the uncertainty involved in the temperature profile. 

  
Figure 1. Fuzzified Temperature profile for 𝛼 −𝑐𝑢𝑡,𝑤𝑖𝑡ℎ 𝛼 = 0.3, 𝑠 = 1,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

Figure 2. Fuzzified Temperature profile for 𝛼 −𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼=0.6, 𝑠 = 1,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

 

Figure 3. Fuzzified Temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 = 0.9, 𝑠 = 1,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

Figure (4-7) are the fuzzified temperature profiles for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 = 0.5  and different values of the parameters 𝑠 = 1 𝑎𝑛𝑑 2,𝐾 = 0.25 𝑎𝑛𝑑 0.5,𝑃𝑟 = 0.7 𝑎𝑛𝑑 1.1 , 𝜀 = 0.1 𝑎𝑛𝑑 0.3. 
It is observed from the Figures that there is no significant deflection of right solution as compare to left solution 

from the mid value solution (Crisp solution). Which is due to the changes of these parameter are not the cause of the 
uncertainty involved in the solution of the temperature profile. 

  
Figure 4. Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝒔 = 𝟏 𝒂𝒏𝒅 𝟐,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 
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Figure 5. Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1,𝑲 =.𝟐𝟓 𝒂𝒏𝒅 𝟎.𝟓,∈= .1,𝑃𝑟 = 0.7 

Figure 6. Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1,𝐾 = .25,∈= 𝟎.𝟏 𝒂𝒏𝒅 𝟎.𝟑,𝑃𝑟 = 0.7 

Figure 7. Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1,𝐾 = .25, ∈= .1,𝑷𝒓 = 𝟎.𝟕𝒂𝒏𝒅 𝟏.𝟏 

Figure (7-9) represent the crisp velocity profile for different values of 𝑠,∈ 𝑎𝑛𝑑 𝑃𝑟. It is observed in Figure 7 that 
with the increasing values of suction parameter 𝑠 the velocity decrease. Whereas velocity decreases with increase of 𝑃𝑟 
in Figure 8. It is found that the pattern of the flows is almost similar in the temperature profile for the changes of the 
parameter. Also, we see that 𝜃(𝑛) decay with the increase of 𝑃𝑟. Whereas 𝜃(𝑛) increases with increasing value of ∈ in 
Figure 9. 

As the parameter changes are not affect in the uncertainty of the solution of the temperature profile so we are 
discussed the effect of the parameter in Crisp Solution i.e., 𝛼 − 𝑐𝑢𝑡 = 1. 

Figure (10) is the Fuzzified velocity profile for 𝛼 − 𝑐𝑢𝑡  𝑤𝑖𝑡ℎ 𝛼 = 0.5, and 𝐾 = 0.25, 𝑛 = 0.5 , 𝑃𝑟 = 0.7, ∈= 0.1,𝑠 = 1. It is observed from the graph that there is a deflection on the curve in the right solution of the velocity profile 
(Green curve) as compare to the left solution of the velocity profile (Light yellow curve) from the mid value solution i.e. 
crisp solution (Violet curve). Which is the indication of the uncertainty involved in the solution of the velocity profile. 
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Figure 7. Crips Temperature profile for  ∈= 0.1 (𝑏𝑙𝑢𝑒), 0.5 (𝑂𝑟𝑎𝑛𝑔𝑒), 0.9 (𝐺𝑟𝑒𝑒𝑛), 1.2 (𝐵𝑟𝑜𝑤𝑛)  𝑎𝑛𝑑  𝑠 = 1,𝐾 = .25,𝑃𝑟 = 0.7 

Figure 8. Crips Temperature profile for 𝒔 = 1(𝐵𝑙𝑢𝑒), 3 (𝐺𝑟𝑒𝑒𝑛), 5 (𝑂𝑟𝑎𝑛𝑔𝑒)  𝑎𝑛𝑑  𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

  

Figure 9. Crips Temperature profile for 𝑷𝒓 = 21.7 (𝐿𝑖𝑔ℎ𝑡 𝑃𝑖𝑛𝑘), 17( 𝑑𝑎𝑟𝑘 𝑏𝑟𝑜𝑤𝑛),  13.7(𝑉𝑖𝑜𝑙𝑒𝑡), 10.7(𝑏𝑟𝑜𝑤𝑛), .7(𝐺𝑟𝑒𝑒𝑛),4.7(𝑂𝑟𝑎𝑛𝑔𝑒),0.7(𝐵𝑙𝑢𝑒) 
and 𝑠 = 1, 𝐾 = .25, ∈= .1 

Figure 10. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ  𝛼 =0.5, 𝑠 = 1,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

Fig (11-14) are the fuzzified velocity profiles for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 = 0.5 and different values of the parameters 
s = 1 and 2, 𝐾 = 0.25 𝑎𝑛𝑑 0.5,𝑃𝑟 = 0.7 𝑎𝑛𝑑 1 , 𝜀 = 0.1 𝑎𝑛𝑑 0.5. It is observed from the Figures that there are no 
significant deflections of right solution as compare to left solution from the mid value solution ( Crisp solution ). This is 
due to the changes of these parameter are not the cause of the uncertainty involved in the solution of the velocity profile. 

As the parameter changes are not affect in the uncertainty of the solution of the velocity profile so we are discussed 
the effect of the parameter in Crisp Solution i.e.  𝛼 − 𝑐𝑢𝑡 = 1. 

  

Figure 11. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 𝟏 𝒂𝒏𝒅 𝟐,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 
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Figure 12. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1,𝐾 = .25 𝑎𝑛𝑑 0.5,∈= .1,𝑃𝑟 = 0.7 

Figure 13. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1, 𝐾 = 0.25,∈= 0.1  𝑎𝑛𝑑  0.5, 𝑃𝑟 = 0.7 

Figure 14. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ  𝛼 = 0.5,  𝑠 = 1, 𝐾 = 0.25, ∈ = .1, 𝑃𝑟 = 0.7 𝑎𝑛𝑑 1 

Figure (15) represent the crisp velocity profile for the different values of the parameter ∈ and fix value of the 
parameter = 0.25, 𝑠 = 1 𝑎𝑛𝑑  𝑃𝑟 = 0.7 . It is observed that with the increasing value of ∈ the velocity profile decreases. 

Again Figure (16) represents the crisp velocity profile for the different values of the parameter 𝑠 and fix value of the 
parameter 𝐾 = 0.25, ∈= 0.1 𝑎𝑛𝑑  𝑃𝑟 = 0.7 respectively. It is observed that with the increasing value of 𝑠 the velocity 
profile also increases.  

It is observed from the graphs of the crisp velocity profile in Fig. (15-16) that the solution shows the occurrence of 
reverse flow. The occurrence of the sharp point in the back flow this is due to the numerical difficulties as the numbers 
of subdivision are less in number. If we increase the number of divisions to as large extend time complicity arise in the 
fuzzified solution but the curve would be smooth. 
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Figure 15. Crips Velocity profile for ∈= 0.1(𝑉𝑖𝑜𝑙𝑒𝑡), 0.5(𝑦𝑒𝑙𝑙𝑜𝑤), 1(𝑝𝑖𝑛𝑘) 𝑎𝑛𝑑 𝑠 = 1,𝐾 = .25,𝑃𝑟 = 0.7 

Figure 16. Crips Velocity profile for 𝑠 = 9(𝐵𝑙𝑢𝑒), 5(𝐺𝑟𝑒𝑒𝑛), 1(𝑂𝑟𝑎𝑛𝑔𝑒) 𝑎𝑛𝑑 𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

 
5. Comparison of Skin Friction Coefficient 𝑪𝒇 and Local Nusselt Number 𝑵𝒖𝒙 

The two important parameters in fluid flow problem are the skin friction coefficient 𝐶  and local nusselt number 𝑁𝑢  we 
have computed these two parameters for different values of the Permiability parameter which are given in the following Table. 
Table 

Permiability 
Parameter 

𝐶  𝑁𝑢  
Crips Fuzzified Crisp Fuzzified 

10 0.264853 0.243849 -2.13187057 -2.00200567 
20 0.265152 0.244158 -2.13187043 -2.0020055 
30 0.265251 0.244261 -2.13187038 -2.00200544 
40 0.265301 0.244313 -2.13187036 -2.00200541 

It is observed from the table that with the increasing values of permeability parameter the values of the Skin friction 
coefficient increases. Similarly with the increasing values of permeability parameter the values of Nusselt number also 
increases. The results are well agreed with those of crisp values. The effect of fuzzification is also observed from the 
above Table. 

 
6. Conclusion 

In this chapter, the Radiative boundary layer flow in Porous medium due to exponentially shrinking steady MHD 
stagnation point flow due to shrinking permeable sheet has been theoretically considered under fuzzy environment. The 
effect of suction parameter, velocity ration parameter, Prandlt number on the flow and heat transfer have been studied 
under fuzzy environment. The numerical results have been obtained by developing computer codes on PYTHON. Thus, 
we conclude the followings from the above discussion: 

(1) The involvement of uncertainty in the equation of motion of this problem. 
(2)  None of the parameters are directly involved in the occurrence of the uncertainty of the solutions. The 

uncertainty occurs in the problem is due to the assumption and the numerical computation. 
(3) The crisp solution of velocity profile as well as temperature profile and the fuzzified velocity profile as well as 

temperature profile are in good agreements. The flow pattern for both the case velocity profile as well as 
Temperature profile are almost similar for different values of parameters. 

(4) With the increasing values of permeability parameter, the values of both the numbers Skin friction coefficient 
as well as Nusselt number are increases. 

(5) The effect of fuzzification is observed in the values of the physical quantities of the Skin friction coefficient 𝐶  
and local Nusselt number  𝑁𝑢 . 
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ЧИСЛОВЕ РІШЕННЯ ТЕЧІЇ РАДІАЦІЙНОГО ПРИКОРДОННОГО ШАРУ В ПОРИСТОМУ СЕРЕДОВИЩІ
ЧЕРЕЗ ЕКСПОНЕНЦІАЛЬНО ЗТИСНУТИЙ ПРОНИКНИЙ ШАР В НЕЧІТКИХ УМОВАХ 

Амір Бархойa, Г.К. Хазарікаb, Хрішикеш Баруахa, Пранджал Бораc 
aКоледж Дуліаджана, Дуліаджан, Асам, Індія 

bУніверситет Дібругарх, Дібругарх, Ассам, Індія 
cD.R. Коледж, Гологхат, Асам, Індія 

У цій статті розглянуто задачу про течії рідини, яка містить два рівняння руху та більше двох параметрів у визначальному 
рівнянні руху. Це саме радіаційний потік прикордонного шару в пористому середовищі через проникний лист, що 
експоненційно стискається. Параметри рівняння 𝐾 = , 𝑃𝑟 = ,𝑁 = , ε означають відповідно параметр проникності, 
число Прандтля, параметр випромінювання та параметр варіації теплопровідності. Основне диференціальне рівняння може 
бути отримане з використанням методу змінних подібності, а потім основне рівняння руху може бути fuzzified за допомогою 
теореми розширення Заде. Метод α-зрізу використовується для перевірки невизначеності рівняння руху. Обговорюється 
вплив K, Pr, N та ε з нечітким керуючим рівнянням руху в нечіткому середовищі. Знайдено, що жоден із параметрів не бере 
безпосередньої участі у виникненні невизначеності рішень. Невизначеність виникає через припущення та чисельний 
розрахунок. Нарешті, рішення виконано у нечіткому середовищі. Встановлено, що зі збільшенням значення параметра 
проникності зростають значення обох чисел: коефіцієнта поверхневого тертя, а також числа Нуссельта. 
Ключові слова: термозбіжний лист; нечіткість; комп'ютерні коди; α-зріз 




