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 Uncertainty is an important factor in the decision-making process. Hesitant Pythagorean fuzzy 
sets (HPFS), a combination of Pythagorean and hesitant fuzzy sets, proved as a significant tool 
to handle uncertainty. Well-defined operational laws and attribute weights play an important role 
in decision-making. Thus, the paper aims to develop new Trigonometric Operational Laws, a 
weight determination method, and a novel score function for group decision-making (GDM) 
problems in the HPF environment. The approach is presented in three phases. The first phase 
defines new operational laws with sine trigonometric function incorporating its special properties 
like periodicity, symmetricity, and restricted range hence compared with previously defined 
aggregation operators they are more likely to satisfy the decision maker preferences. Properties 
of trigonometric operational laws (TOL) are studied and various aggregation operators are 
defined. To measure the relationship between arguments, the operators are combined with the 
Generalized Heronian Mean operator. The flexibility of operators is increased by the use of a 
real parameter λ to express the risk preference of experts. The second phase defines a novel 
weight determination method, which separately considers the membership and non-membership 
degrees hence reducing the information loss and the third phase conquers the shortcomings of 
previously defined score functions by defining a novel score function in HPFS. To further 
increase the flexibility of defined operators they are extended in the environment with unknown 
or incomplete attribute weights. The effectiveness of the GDM model is verified with the help 
of a supplier selection problem. A detailed comparative analysis demonstrates the superiority, 
and sensitivity analysis verifies the stability of the proposed approach. 

.by the authors; licensee Growing Science, Canada 3220©  

Keywords: 
Trigonometric operational laws 
(TOL)  
Hesitant Pythagorean fuzzy sets 
Generalized heronian mean 
(GHM)  
Aggregation operators  
Score function 

 

 

 

 

1. Introduction 

The fuzzy set theory came into existence by the great efforts of (Zadeh, 1965) to manage uncertainties that remain in the 
real world. Then there were some extensions of the fuzzy sets. The Intuitionistic fuzzy set (IFS) (Atanassov 1986) is one of 
the extensions of fuzzy sets characterized by a degree of membership and non-membership between 0 and 1, so it deals with 
uncertainty very accurately. IFS limits the sum of membership and non-membership to 1. Interval-valued IFS (IVIFS) 
(Atanassov 1989) is an extension of IFS, categorized by a membership function and non-membership function, which are 
intervals instead of real numbers. Some aggregation operators (Xu, 2007; Xu et al., 2006; Garg, 2016; Garg, 2017; Gou et 
al., 2017) are the intuitionistic fuzzy weighted geometric (IFWG) operator, the intuitionistic fuzzy ordered weighted 
geometric (IFOWG) operator, and the intuitionistic fuzzy hybrid geometric (IFHG) operator have been projected and 
employed to solve decision-making problems. However, the total membership and non-membership degree may not be 
limited to 1. For example, if a person gives some priority to an object like 0.7 and a non-priority degree like 0.4 then 0.7+0.4 
= 1.1 >1. Therefore, IFS was not eligible to handle this situation. Due to this problem, there was a need for extension and 
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hence the concept of Pythagorean fuzzy sets emerged (Yager et al., 2013). PFS tries to solve the problem by giving the 
place of total condition to the sum of squares because this helps the attainable area to grow (Yager, 2013). It can be seen as 
0.72+0.42 < 1.  Researchers have given many aggregation operators based on PFS (Rahman et al., 2016; Garg, 2017, Lu et 
al., 2017). 
 
After effective application of PFS, it has been extended to interval-valued PFS (IVPFS) (Zhang, 2016). Numerous weighted 
average and weighted geometric aggregation operators for the IVPFSs (Rahman et al., 2020) have been established for 
resolving the decision-making complications. Then (Garg 2019) came out with some new logarithm operational laws (LOL) 
for the Pythagorean fuzzy sets with real number base λ and operators constructed on these rules. Though, in terms of the 
information measure concepts, several measures such as novel accuracy function (Garg, 2016), correlation coefficient 
(Garg, 2016), improved accuracy function (Garg, 2017), and improved score function (Garg, 2017) have been defined under 
the PFS and IVPFS environment and applied to explain the decision-making problems. 
 
There can be environments where the involvement degree is neither a single value nor an interval, but a set of possible 
values. Because of this idea, another extension of fuzzy sets came into existence known as hesitant fuzzy sets (HFS) (Torra 
2010). In HFS the membership degree can own a set of distinct values lying among [0,1]. To combine various HFSs, specific 
sorts of hesitant aggregation operators have been evolved by (Xia & Xu, 2011; Zhu et al., 2012) and had been implemented 
in fixing the decision-making problems. Later on, (Zhu et al., 2012) extended the HFSs to dual HFSs (DHFSs), which 
contain two sets of characteristic functions whose degrees sum is less than one. (Wang et al., 2014) offered some weighted 
averaging and geometric aggregation operators under the DHFSs environment. 
 
HFSs and DHFSs have been extensively used by researchers, but they are effective only for those cases in which their 
corresponding membership degrees sum is less than one. Though, within the actual world, the choice makers may deliver 
their preferences, in the form of a discrete set, which won’t fulfill their conditions. Therefore, these sets are extended to 
form hesitant Pythagorean fuzzy sets (HPFS), which are a grouping of HFS and PFS. Afterward, many aggregation operators 
for HPFS have been described. (Lu et al., 2017) established some Hamacher aggregation operators which include the 
hesitant Pythagorean fuzzy Hamacher weighted average operator, and hesitant Pythagorean fuzzy Hamacher weighted 
geometric operator. (Khan et al., 2017) projected maximizing deviation technique for HPFNs where facts about attribute 
weights were inadequate. (Garg, 2018) defined some weighted and geometric aggregation operators for HPFS. Tang et al. 
(2019) defined some dual hesitant Pythagorean fuzzy Heronian mean aggregation operators such as the dual hesitant 
Pythagorean fuzzy generalized weighted Heronian mean (DHPFGWHM) operator and the dual hesitant Pythagorean fuzzy 
generalized geometric weighted Heronian mean (DHPFGGWHM) operator. Yang et al. (2019) developed some hesitant 
Pythagorean fuzzy interaction weighted Bonferroni mean (HPFIWBM) operator, and the hesitant Pythagorean fuzzy 
interaction weighted geometric Bonferroni mean (HPFIWGBM) aggregation operator.  
 
Later, (Garg 2020) defined the aggregation operators based on some new kind of processes such as neutrality. Wang et al. 
(2021) proposed the idea of interactive aggregation operators for Pythagorean fuzzy sets in decision-making problems. 
(Rahman et al., 2019) developed some generalized Einstein aggregation operators for PFNs. Akram et al. (2020) defined 
Dombi operators for dealing with the decision-making problems in Pythagorean fuzzy environment. (Sarkar et al. 2021) 
defined the Archimedean aggregation operators based on Maclaurin symmetric mean for aggregating HPFE in decision-
making problems. Senapati et al. (2022) defined Aczel-Alsina aggregation operators for PFS.  
 
Supplier selection has been recognized as a crucial factor for determining a company’s reputation and success in extremely 
competitive markets. Supplier selection requires the evaluation of suppliers based on conflicting attributes and thus can be 
regarded as an MCDM problem (Vasiljevic et al., 2018). MCDM methods are widely accepted to solve supplier selection 
problems. Since real-life include ambiguity in decisions, fuzzy MCDM methods (Memari et al., 2019) have attracted 
researchers for solving supplier selection problem. Luthra et al. (2017) used AHP and VIKOR, Baneian et al. (2018) 
employed fuzzy grey relational analysis (GRA), Sen et al. (2018) used intuitionistic fuzzy TOPSIS, (Chen et al., 2020) 
employed DEMATEL and TOPSIS, (Stevic et al., 2020) presented a new methodology MARCOS, Sobhanallahi et al. 
(2020) considered a fuzzy multi-objective model, Tsai et al. (2021) employed fuzzy DEA, for solving supplier selection 
problem. Yu et al. (2022) integrates stochastic and fuzzy programming to solve multi-objective optimization models for 
green supply chain management. Khan et al. (2021) employs HFS, cumulative prospect theory, and VIKOR to find solutions 
for multi-tier supply chains.  The Ordinal Priority approach (OPA) has also been employed by researchers, (Mahmoudi et 
al., 2021, 2022, 2022) employed Grey OPA, and fuzzy OPA for supplier selection problems. The study incorporates a novel 
approach in which ambiguity is dealt using sine trigonometric function based operational laws considering the risk 
preferences of decision makers to efficiently handle the supplier selection problems in HPF environment. 
 
In MCDM problems the weights of attributes play a very important role and during early studies, the easiest way to 
determine the attribute weights was to take equal weights (Wang et al., 2009). But the final ranking depends on the weights 
of attributes hence taking equal weights was never an appropriate option (Ginevicius 2011). During further studies, many 
new weight determination methods were formed which were classified into subjective, objective, and hybrid methods. In 
subjective methods, weights depend completely on the DM’s preferences like the SMART method (Zardari et al., 2015). In 
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objective methods weights depend on the data in the decision matrix like the ENTROPY method, CRITIC method etc. (Wu 
et al., 2020). Yingming (1997) defined weight determination method based on maximum deviations. Hybrid methods 
contain a combination of both (Delice et al., 2020; Freeman & Chen, 2015; Du et al., 2020).  
 
The score function helps in ranking the fuzzy sets, to select the better alternative among given by assigning a score value to 
the alternatives. Various score functions for the HPFS have been defined in the past (Zhu et al., 2012; Khan et al., 2017) 
but there exist situations where they are unable to rank the alternatives due to similar value of score function or gave an 
unreasonable ranking of alternatives. Thus, defining new score functions to overcome the shortcomings of previously 
defined functions has attracted many researchers. 
 
It can be noted that in all the operators defined above operational laws perform a very important role. Various new 
operational laws can be defined considering different functions. Thus, inspired by the above discussed works, the motive 
of the study is to define new operational laws based on sine trigonometric function carrying special properties like 
periodicity, symmetricity, and restricted range, hence compared with previously defined aggregation operators they are 
more likely to satisfy the decision maker preferences, along with the novel weight determination method and score function 
to provide a complete algorithm for GDM in HPF environment. 

Thus, keeping all the mentioned points in mind, the primary objectives of the study are- 

1. To develop new sine trigonometric operational laws for HPFS.  
2. To form the aggregation operators based on the defined operational laws. 
3. To study the properties of defined operators. 
4. To effectively consider the relationship between arguments.  
5. To define a z-score measure for determining attribute weights. 
6. To define a novel score function to conquer the shortcomings of previously defined score functions in the 

HPF environment. 
7. To develop an effective algorithm for dealing with MAGDM problems using the proposed operators in the 

HPF environment. 
8. To depict the effectiveness of the proposed algorithm using the supplier selection problem. 

The rest of the paper is as follows: Section 2 contains a basic definition and properties of hesitant Pythagorean fuzzy sets. 
In section 3 the multi-attribute group decision-making model is established by defining the operational laws, aggregation 
operators, weight determination method and score function in the HPF environment. Section 4 applies the proposed 
approach to supplier selection problem. Section 5 gives the comparative analysis and discussions. Section 6 contains the 
experimental evaluations. The paper ends with some conclusions in Section 7. 
 
2.    Preliminaries 

This section consists of some basic definitions related to HPFS on the universal set X.  
   
Definition 2.1. (Garg 2018) A HPFS “D” on X is defined as  
 

D = {< x, h(x), g(x)> | x Є X} 
 
where h(x) and g(x) denote the membership and non-membership degrees of the element x Є X to the set D, respectively, 
following the conditions 0 ≤ γ , 𝜂 ≤ 1 and 0 ≤ (γ+)2 , (𝜂+)2 ≤ 1 where γ Є h(x), 𝜂 Є g(x), γ + = max 𝛾( )  and 𝜂 + 
Є max 𝜂( )  for all x Є X. Thus, the HPFS can be denoted by the pair d = (h, g).  
 
Definition 2.2. (Garg 2018) The complement of a non-empty HPFE d = (h; g), is defined as- 
 

dc =  

⎩⎪⎨
⎪⎧ 𝜂, 𝛾∈ , ∈           𝑖𝑓𝑔 ≠ 𝜙,ℎ ≠ 𝜙1 − 𝛾2,𝜙∈     𝑖𝑓𝑔 = 𝜙,ℎ ≠ 𝜙  𝜙, 1 − 𝜂2   ∈ 𝑖𝑓𝑔 ≠ 𝜙, ℎ = 𝜙   

 
Definition 2.3. (Garg 2018) For any three HPFEs d = (h, g), d1 = (h1, g1), and d2 = (h2, g2), the basic operations are: 
 
1.   d1 ⊕ d2 = {h1⊕g1, h2⊕g2} =  𝛾12 + 𝛾22 − 𝛾1𝛾2 , 𝜂1𝜂2∈ , ∈ , ∈ , ∈    

2.   d1 ⊗ d2 = {h1⊗g1, h2⊗g2} =  𝛾1𝛾2 , 𝜂12 + 𝜂22 − 𝜂1𝜂2∈ , ∈ , ∈ , ∈    
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3.  λ d = 1− (1 − 𝛾2)𝜆, 𝜂𝜆∈ , ∈         

4.  d λ = 𝛾𝜆, 1 − (1 − 𝜂2)𝜆∈ , ∈         

where λ > 0 is a real number. 

Definition 2.4. (Garg 2018) Let d1 = (h1, g1) and d2 = (h2, g2) be any two HPFEs, then the score and accuracy function of di 
(i = 1, 2) are given as: 

S(di) = ∑𝛾2 / ∗ ℎ𝑖 -  ∑𝜂2 / ∗ 𝑔𝑖 (1) 
 

H(di) = ∑𝛾2 / ∗ ℎ𝑖  +  ∑𝜂2 / ∗ 𝑔𝑖 (2) 

where *hi and *gi are the numbers of the elements in hi and gi, respectively. 

     (1) If S(d1) > S(d2), then d1 is superior to d2, i.e., d1 > d2; 
     (2) If S(d1) = S(d2), then 
           (a) If H(d1) > H(d2), then d1 is superior to d2, i.e., d1 > d2. 
           (b) If H(d1) = H(d2), then d1 is equivalent to d2, i.e., d1 ~ d2. 

Definition 2.5. (Tang et al. 2019) The Heronian Mean Operator: Let bi (i = 1, 2, …., n) be a group of non-negative real 
numbers. Then, the Heronian mean (HM) operator can be defined as: 

  HM (b1, b2….bn) = ( ) ∑ ∑ (𝑏𝑖𝑏𝑗)                                    (3) 
  
Definition 2.6. (Tang et al., 2019) Assume that bi (i = 1, 2, ……, n) are a group of nonnegative real numbers and m, n > 0. 
Then, the GHM operator can be defined as: 

GHM (b1, b2….bn) = ( )∑ ∑ 𝑏𝑖  𝑏𝑗 ( ) (4) 

When m = n = 1/2, the GHM operator will reduce to the Heronian mean (HM) operator. Thus, the HM operator is a 
special case of the GHM operator. 
 
3.   A MAGDM model based on trigonometric aggregation operators 

This section, introduces a MAGDM model based on new Trigonometric aggregation operators for the HPFNs. The flow 
chart of the model is shown in Fig. 1 and all the abbreviations used in the paper are listed in the form of table in appendix 
A. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Flowchart of proposed MAGDM approach 

Formulate the decision-making problem 

Collect opinion of decision makers in form of decision matrix 

Normalize the decision matrices 

Aggregate the matrices by any of the defined operators in Eqs. (8), (12), (16), (18) 

Convert the aggregated HPF matrix into PF matrix 

Determine the attribute weights using Eq. (23) 

Compute the final value of alternative using defined operators 

Rank the alternatives using score function in Eq. (28) 
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3.1.   Trigonometric Operational Laws (TOLs)  

Definition 3.1.1.   Let X be a non-empty set and D = {< x, h(x), g(x)> | x Є X} be a HPFS, we define TOL of HPFS as- sin 𝜆𝐷 = {x, 1 − sin 𝜆 (1 − 𝛾2) , sin 𝜆𝜂  | 𝑥 Є 𝑋}                                       (5) 

where, 0 ≤ λ ≤ 90  

it is clearly seen that sin 𝜆𝐷 is also a HPFS. 

Proof:  we assume  sin 𝜆𝐷 = (hD , 𝑔𝐷), so we need to show that 0 ≤ γD , 𝜂𝐷 ≤ 1 and 0 ≤ (γD+)2 , (𝜂𝐷+)2 ≤ 1 

since D is a HPFS we have 0 ≤ γ , 𝜂 ≤ 1 and 0 ≤ (γ+)2 , (𝜂+)2 ≤ 1 

now since 0 ≤ γ ≤ 1 ⇒ 0 ≤ γ2≤ 1 ⇒  0 ≤ (1 − 𝛾2) ≤ 1 ⇒   0 ≤ 𝜆 (1 − 𝛾2) ≤ 90   

so, 0 ≤ sin 𝜆 (1 − 𝛾2) ≤ 90 ⇒  0 ≤ 1 −  sin 𝜆 (1 − 𝛾2) ≤ 1  ⇒ 0 ≤ γD  ≤ 1 

in a similar way, since 0 ≤  𝜂 ≤ 1  ⇒  0 ≤  𝜆𝜂 ≤ 90     

so, 0 ≤ sin 𝜆𝜂 ≤ 1 ⇒  0 ≤ sin 𝜆𝜂 ≤ 1  ⇒ 0 ≤ 𝜂𝐷 ≤ 1 

finally, 0 ≤ (γD+)2 , (𝜂𝐷+)2 = 1 −  sin 𝜆 (1 − γD + 2) + sin 𝜆 𝜂𝐷 +  ≤  1 −  sin 𝜆 𝜂𝐷 +  + sin 𝜆 𝜂𝐷 +  = 1 

hence, sin 𝜆𝐷 is also a HPFS. 

 
 Definition 3.1.2.  Let d = (h, g) be a HPFN then  sin 𝜆𝐷 =   1 − sin 𝜆 (1 − 𝛾2) , sin 𝜆𝜂 ∈ , ∈                         0 ≤  𝜆 ≤ 90                 (6) 

 sin 𝜆𝐷 is a trigonometric operator and the value of sin 𝜆𝐷 is called as trigonometric HPFN (THPFN). 

  Now we will discuss some basic properties of THPFN based on TOL. 

Theorem 3.1.1.    Let d1 = (h1, g1) and d2 = (h2, g2) be any two HPFEs, then 

a) sin 𝜆 d1  ⊕  sin 𝜆 d2   =   sin 𝜆 d2  ⊕  sin 𝜆 d1   
b) sin 𝜆 d1  ⊗  sin 𝜆 d2   =   sin 𝜆 d2  ⊗ sin 𝜆 d1   
c) (sin 𝜆 d1  ⊕  sin 𝜆 d2)  ⊕  sin 𝜆 d3   =   sin 𝜆 d1  ⊕  ( sin 𝜆 d2   ⊕  sin 𝜆 d3) 
d) (sin 𝜆 d1  ⊗  sin 𝜆 d2)  ⊗  sin 𝜆 d3   =   sin 𝜆 d1  ⊗  ( sin 𝜆 d2   ⊗  sin 𝜆 d3) 

 
Proof:  Straight forward from definition 3.1.2 
Theorem 3.1.2.    Let d1 = (h1, g1) and d2 = (h2, g2) be any two HPFEs, and k, k1, k2 > 0 be three real numbers then 

a) k ( sin 𝜆 d1  ⊕  sin 𝜆 d2)   =   k  sin 𝜆 d1 ⊕  k  sin 𝜆 d2 
b) (sin 𝜆 d1  ⊗  sin 𝜆 d2) k   =   sin 𝜆 d1 

k
 ⊗  sin 𝜆 d2

k 
c) k1  sin 𝜆 d1 ⊕  k2  sin 𝜆 d1   = (k1+ k2) sin 𝜆 d1 
d) (sin 𝜆 d1) k1 ⊗  (sin 𝜆 d1) k2 = (sin 𝜆 d1) k1+ k2 
e) ((sin 𝜆 d1) k1) k2 = (sin 𝜆 d1) k1 k2 

Theorem 3.1.3.     Let d = (h, g) be a HPFN and 0 ≤ λ1 ≤ λ2 ≤ 1, then sin 𝜆1 d  ≥  sin 𝜆2 d 

Theorem 3.1.4.    Let d1 = (h1, g1) and d2 = (h2, g2) be any two HPFEs, and 0 ≤ λ ≤ 90, such that γ1 Є h1 ≤ γ2 Є h2, 

  𝜂1 Є g1≥ 𝜂2 Є g2 i.e., d1≤ d2 then   sin 𝜆 d1 ≤  sin 𝜆 d2 

Proof:  proof of theorem 3.1.2, 3.1.3 and 3.1.4 is specified in appendix B. 

3.2.   Aggregation operators  

Based on TOL of HPFNs we define following weighted and geometric aggregation operators. 

Definition 3.2.1.   Let di = (hi, gi) (i=1,2,3…n) be the collection of HPFNs and 0 ≤ λi ≤ 90 then THPFWA: 𝛺 → 𝛺 is 
defined as-  

 THPFWA (d1, d2 …… dn) = 𝜔 sin 𝜆1  𝑑1 ⊕   𝜔 sin 𝜆2  𝑑2. . . . . . . .⊕   𝜔 sin 𝜆𝑛  𝑑n                        (7) 

where 𝜔 = (𝜔 ,𝜔 ⋯𝜔 )  be weight vector with 𝜔 ≥ 0 and ∑ 𝜔  = 1 
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Theorem 3.2.1.   For the collection of HPFNs di = (hi, gi) (i=1,2,3…n) the aggregated value by using definition 3.2.1 is still 
a HPFN and is given by- 

THPFWA (d1, d2 …… dn) =  
⎩⎪⎨
⎪⎧ 1 − sin λi 1 − 𝛾𝑖2 , (sin λi𝜂𝑖) ⎭⎪⎬

⎪⎫
, ……  , , …..  (8) 

 

Proof: It can be proved by mathematical induction on n. Since for each i di = (hi, gi) is a HPFE which implies that  

0 ≤ γ , 𝜂 ≤ 1 and 0 ≤ (γ+)2 , (𝜂+)2 ≤ 1 where γ Є h(x), 𝜂 Є g(x), 𝛾  = max 𝛾}( )  and 𝜂 = max 𝜂}( ) . 

Then the following steps of mathematical induction have been followed.  

Step.1. When n=2, d1 = (h1, g1) and d2 = (h2, g2) thus by operations of HPFS  

 𝜔  sin λ1 d1 =  (sin λ1 (1 − 𝛾12) )𝜔 , sin λ1𝜂1𝜔  ∈ , ∈  

𝜔  sin λ2 d2 =  (sin λ2 (1 − 𝛾22) )𝜔 , sin λ2𝜂2𝜔  ∈ , ∈  

THPFWA (d1, d2) = 𝜔  sin λ1  𝑑1 ⊕ 𝜔  sin λ2  𝑑2 = 1 − sin λ1 1 − 𝛾12  + 1 − sin λ2 1 − 𝛾22  − 1 − sin λ1 1 − 𝛾12  . (1, , ,− sin λ2 1 − 𝛾22  ) , (sin λ1𝜂1) . (sin λ2𝜂2)  
   = 1− sin λi 1 − 𝛾𝑖2 , (sin λi𝜂𝑖), , , .  

Hence the result is true for n=2  

Step.2.  Assume the result is true for n=k  
THPFWA (d1, d2 …… dk) =  

⎩⎪⎨
⎪⎧
⎩⎨
⎧ 1 − sin λi 1 − 𝛾𝑖2 ⎭⎬

⎫ , (sin λi𝜂𝑖) ⎭⎪⎬
⎪⎫

, ……  , , …..  

Step.3. When n=k+1 we have  

THPFWA (d1, d2 …… dk+1) = THPFWA (d1, d2 …… dk) ⊕𝜔 sin 𝜆  𝑑  
=  1 − sin λi 1 − 𝛾𝑖2 , (sin λi𝜂𝑖), ……  , , …..  ⊕ 

      (sin 𝜆 (1 − 𝛾𝑘 + 12) )𝜔 , sin 𝜆𝜂𝑘 + 1𝜔  ∈ , ∈  

=  ⎩⎪⎨
⎪⎧
⎩⎨
⎧ 1 − sin λi 1 − 𝛾𝑖2 ⎭⎬

⎫ , (sin λi𝜂𝑖) ⎭⎪⎬
⎪⎫

, ……  , , …..  

Thus, the result holds for n=k+1 also, hence by mathematical induction theorem 3.2.1 holds for every n. 

Next to show that the aggregated value by THPFWA is again a HPFE we assume that  
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THPFWA (d1, d2 …… dn) = ⋃ 𝛾 , 𝜂 }  where 𝛾 =  1 − sin λi 1 − 𝛾𝑖2  𝑎𝑛𝑑  
𝜂 =  (sin λi𝜂𝑖)   then we need to show that 0≤ 𝛾 ≤ 1 , 0≤ 𝜂 ≤ 1 and  𝛾 2 + 𝜂 2 ≤ 1 

   Since each di = (hi, gi) is a HPFE which implies that 0 ≤ γi , 𝜂𝑖 ≤ 1 and 0 ≤ (γi)2 +(𝜂𝑖)2 ≤ 1 where γi Є hi, 𝜂𝑖 Є gi 

Therefore 0 ≤ 1 − (γi)2  ≤ 1 ⇒ 0 ≤ 1 − 𝛾𝑖2 ≤ 1 ⇒ 0 ≤ λi 1 − 𝛾𝑖2 ≤ 90 

thus, 0 ≤ sin λi 1 − 𝛾𝑖2 ≤ 1 and for 𝜔 ≥ 0 we have 0 ≤ (sin λi 1 − 𝛾𝑖2) 𝜔  ≤ 1 

⇒ 0 ≤ 1− sin λi 1 − 𝛾𝑖2   ≤ 1 ⇒ 0≤ 𝛾 ≤ 1 

Similarly, 0 ≤ (sin λi𝜂𝑖)    ≤ 1 ⇒ 0≤ 𝜂 ≤ 1 

Finally, 𝛾 2 + 𝜂 2 = 1 − sin λi 1 − 𝛾𝑖2 + ∏ sin λi 𝜂𝑖  ≤ 1 −∏ sin λi 𝜂𝑖 + ∏ sin λi 𝜂𝑖  = 1  

From 0 ≤ (γi)2 +(𝜂𝑖)2 ≤ 1 we have (𝜂𝑖)2  ≤ 1 - (γi)2 ⇒ 𝜂𝑖 ≤ 1 −  (γi)2   
     ⇒ sin 𝜂𝑖 ≤ sin 1 −  (γi)2  ⇒  ∏ sin λi 𝜂𝑖 ≤ sin λi 1 − 𝛾𝑖2  

      Hence, the aggregated value by THPFWA is again a HPFE. 

    Example 3.2.1. Consider two HPFEs d1 = {{0.5}, {0.6}} and d1 = {{0.3}, {0.6, 0.7}}. Consider the importance  
    of these elements as 𝜔 = (0.6, 0.4) and 𝜆 = 𝜆 = 30. Then by using eq. (7) we have: 

THPFWA (𝑑1,𝑑2)  = ⎩⎪⎨
⎪⎧
⎩⎨
⎧ 1 − sin λi 1 − 𝛾𝑖2 ⎭⎬

⎫ , (sin λi𝜂𝑖) ⎭⎪⎬
⎪⎫

, , ,  

= 1 − sin 𝜆 √1− 0.5 . ∗ sin 𝜆 √1− 0.3 .
, sin 0.6𝜆 ⋅ ∗ sin 0.6𝜆 ⋅ , sin 0.6𝜆 ⋅ ∗ sin 0.7𝜆 ⋅

 

= √1 − 0 ⋅ 60926 × 0 ⋅ 74481 , 0 ⋅ 70296 × 0 ⋅ 79059, 0.70296 × 0.81437} 

= {{0.73906}, {0.55575, 0.57247}} 

The THPFWA operator has the following properties. 

Property 3.2.1. If all HPFNs are equal i.e., if di = (hi, gi) = d then THPFWA (d1, d2 …… dn) = sin 𝜆 d   Property 3.2.2.   If di = (hi, gi) (i=1, 2, …. n), d+ = 〈maxjℎ𝑗, minj𝑔𝑗〉 and d- = 〈minjℎ𝑗, maxj𝑔𝑗〉  be HPFNs then    

                                                   sin 𝜆 d- ≤ THPFWA (d1, d2 …… dn) ≤ sin 𝜆 d+ 

Property 3.2.3.     Let di = (hi, gi) and di
*

 = (hi
*, gi

*) (i=1, 2, …. n) be two collections of HPFNs. If 𝛾 ≤ 𝛾∗ and 

 𝜂 ≥ 𝜂∗, then THPFWA (d1, d2 …… dn) ≤ THPFWA (d1
*

, d2
*

 …… dn
*) 

    Proof:   proof of property 3.2.1, 3.2.2 and 3.2.3 is specified in appendix C. 

Definition 3.2.2.     Let di = (hi, gi) (i=1,2,3…n) be the collection of HPFNs and 0 ≤ λ ≤ 90 then Trigonometric  

HPFN ordered weighted averaging operator THPFOWA: 𝛺 → 𝛺 is defined as: 

THPFOWA (d1, d2 …… dn) = 𝜔 sin 𝜆 ( )  𝑑 ( )  ⊕   𝜔 sin 𝜆 ( ) 𝑑 ( ) . . . . . . . .⊕   𝜔 sin 𝜆 ( ) 𝑑 ( ) (9) 

where 𝜔 = (𝜔 ,𝜔 ⋯𝜔 )  be weight vector with 𝜔 ≥ 0 and ∑ 𝜔  = 1, and σ is the permutation of (1, 2……n) such 
that 𝑑 ( ) ≥  𝑑 ( )  for i = 2, 3…, n. 

Theorem 3.2.2.   For the collection of HPFNs di = (hi, gi) (i=1,2,3…n) the aggregated value by using definition 3.2.2 is 
still a HPFN and is given by- 
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THPFOWA (d1, d2 …… dn) =  
⎩⎪⎨
⎪⎧ 1− sin 𝜆 ( ) 1 − 𝛾𝜎(𝑖)2 , (sin 𝜆 ( )𝜂𝜎(𝑖)) ⎭⎪⎬

⎪⎫
( ) ( ), ( ) ( )  (10) 

Proof: Proof of this theorem is similar to theorem 3.2.1. 

Definition 3.2.3.  Let di = (hi, gi) (i=1,2,3…n) be the collection of HPFNs and 0 ≤ λi ≤ 90 then Trigonometric HPFN 
weighted geometric operator THPFWG: 𝛺 → 𝛺 is defined as: 

THPFWG (d1, d2 …… dn) = (sin λ1  𝑑1) 𝜔  ⊗   (sin λ2  𝑑2) 𝜔 … … .⊗   (sin λn  𝑑n) 𝜔                      (11) 

 

where 𝜔 = (𝜔 ,𝜔 ⋯𝜔 )  be weight vector with 𝜔 ≥ 0 and ∑ 𝜔  = 1 

Theorem 3.2.3.   For the collection of HPFNs di = (hi, gi) (i=1,2,3…n) the aggregated value by using definition 3.2.3 is 
still a HPFN and is given by- 

THPFWG (d1, d2 …… dn) =  
⎩⎪⎨
⎪⎧ 1 − sin λi 1 − 𝛾𝑖2 𝜔 , 1 − (1 − sin λi𝜂𝑖)𝜔 ⎭⎪⎬

⎪⎫
, ……  , , …..  (12) 

Proof: Proof of this theorem is similar to theorem 3.2.1. 

Definition 3.2.4.     Let di = (hi, gi) (i=1,2,3…n) be the collection of HPFNs and 0 ≤ λ ≤ 90 then Trigonometric  

HPFN ordered weighted geometric operator THPFOWG: 𝛺 → 𝛺 is defined as: 

THPFOWG (d1, d2 …… dn) = sin 𝜆 ( )  𝑑 ( )𝜔  ⊕   sin 𝜆 ( ) 𝑑 ( )𝜔  . . . . . . . .⊕   sin 𝜆 ( ) 𝑑 ( )𝜔  (13) 

where 𝜔 = (𝜔 ,𝜔 ⋯𝜔 )  be weight vector with 𝜔 ≥ 0 and ∑ 𝜔  = 1, and σ is the permutation of (1, 2……n) such 
that 𝑑 ( ) ≥  𝑑 ( )  for i = 2, 3…, n. 

 
Theorem 3.2.4.   For the collection of HPFNs di = (hi, gi) (i=1,2,3…n) the aggregated value by using definition 3.2.4 is 
still a HPFN and is given by- 

THPFOWG (d1, d2 …… dn) =  
⎩⎪⎨
⎪⎧ 1 − sin 𝜆 ( ) 1 − 𝛾𝜎(𝑖)2 𝜔 , 1 − (1 − sin 𝜆 ( )𝜂𝜎(𝑖))𝜔 ⎭⎪⎬

⎪⎫
( ) ( ), ( ) ( )  

 

(14) 

Proof: Proof of this theorem is similar to theorem 3.2.1. 

As similar to THPFWA operator, the THPFOWA, THPFOWG, and THPFWG operators also holds the same properties. 

 
3.3.    Trigonometric Hesitant Pythagorean Fuzzy Heronian Mean Operators 

This section combines the above defined operators with the GHM operator to measure the relationship between arguments. 

Definition 3.3.1.   Let di = (hi, gi) (i=1,2,3…n) be the collection of HPFNs and 0 ≤ λ ≤ 90 then Trigonometric HPFN 
Generalized heronian weighted averaging operator THPFGHWA: 𝛺 → 𝛺 is defined as: 

THPFGHWA (d1, d2 …… dn) = ( ) ⊕ ⊕ (𝜔 sin λi  𝑑i) ⊗ 𝜔 sin λi  𝑑j ( ) (15) 

where 𝜔 = (𝜔 ,𝜔 ⋯𝜔 )  be weight vector with 𝜔 ≥ 0 and ∑ 𝜔  = 1 

Theorem 3.3.1.   For the collection of HPFNs di = (hi, gi) (i=1,2,3…n) the aggregated value by using definition 3.3.1 is 
still a HPFN and is given by- 
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THPFGHWA (d1, d2 …… dn) = 

⎩⎪⎪
⎨⎪
⎪⎧ 1 −∏ 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚. 1 − sin λj 1 − 𝛾𝑗2 𝜔 𝑛 ( ), ( ) ,

1 − 1 −∏ 1 − (1 − (sin λi𝜂𝑖)𝜔  )𝑚. 1 − (sin λj𝜂𝑗)𝜔 𝑛 ( ), ( ) ⎭⎪⎪
⎬⎪
⎪⎫

, , ,  

(16) 

Proof:   𝜔  sin λi di =  (sin 𝜆 (1 − 𝛾𝑖2) )𝜔 , sin 𝜆𝜂𝑖𝜔  ∈ , ∈  

 𝜔  sin λj dj =  (sin 𝜆 (1 − 𝛾𝑗2) )𝜔 , sin 𝜆𝜂𝑗𝜔  ∈ , ∈  

(𝜔  sin λi  𝑑i)  =  (sin 𝜆 (1 − 𝛾𝑖2) )𝜔 , 1 − (1 − sin 𝜆𝜂𝑖𝜔 )  ∈ , ∈  

(𝜔  sin λj  𝑑j)  =  (sin 𝜆 (1 − 𝛾𝑗2) )𝜔 , 1 − (1 − sin 𝜆𝜂𝑗𝜔 )  ∈ , ∈  (𝜔 sin λi  𝑑i) ⊗ 𝜔 sin λj  𝑑j  = 1 − ((sin λi (1 − 𝛾𝑖2) )𝜔 . 1 − ((sin λj (1 − 𝛾𝑗2) )𝜔 ,1 − (1 − sin λi𝜂𝑖𝜔 ) . (1 − sin λj𝜂𝑗𝜔 ), , ,  

⊕ ⊕ (𝜔 sin λi  𝑑i) ⊗ 𝜔 sin λj  𝑑j  = 

⎩⎪⎨
⎪⎧ 1 −∏ 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚. 1 − sin λj 1 − 𝛾𝑗2 𝜔 𝑛, ,∏ 1 − (1 − (sin λi𝜂𝑖)𝜔  )𝑚. 1 − (sin λj𝜂𝑗)𝜔  𝑛, ⎭⎪⎬

⎪⎫, , ,  

( ) ⊕ ⊕ (𝜔 sin λi  𝑑i) ⊗ 𝜔 sin λj  𝑑j  = 

⎩⎪⎨
⎪⎧ 1 −∏ 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚. 1 − sin λj 1 − 𝛾𝑗2 𝜔 𝑛 ( ), ,

∏ 1 − (1 − (sin λi𝜂𝑖)𝜔  )𝑚. 1 − (sin λj𝜂𝑗)𝜔  𝑛, ( ) ⎭⎪⎬
⎪⎫, , ,  

THPFGHWA (d1, d2 …… dn) = ( ) ⊕ ⊕ (𝜔 sin λi  𝑑i) ⊗ 𝜔 sin λj  𝑑j ( )  =  

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧
⎩⎪⎨
⎪⎧ 1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚. 1 − sin λj 1 − 𝛾𝑗2 𝜔 𝑛 ( ),

( )

⎭⎪⎬
⎪⎫ ,

⎩⎪⎨
⎪⎧ 1 − 1 − 1 − (1 − (sin λi𝜂𝑖)𝜔  )𝑚. 1 − (sin λj𝜂𝑗)𝜔 𝑛 ( ),

( )

⎭⎪⎬
⎪⎫

⎭⎪⎪⎪
⎪⎬
⎪⎪⎪⎪
⎫

, , ,  

Definition 3.3.2.   Let di = (hi, gi) (i=1,2,3…n) be the collection of HPFNs and 0 ≤ λi ≤ 90 then Trigonometric HPFN 
Generalized heronian weighted geometric operator THPFGHWG: 𝛺 → 𝛺 is defined as  

 

THPFGHWG (d1, d2 …… dn) = ( ) ⊗ ⊗ 𝑚(sin λi  𝑑i) ⊕𝑛(sin λj  𝑑j) ( ) (17) 
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where 𝜔 = (𝜔 ,𝜔 ⋯𝜔 )  be weight vector with 𝜔 ≥ 0 and ∑ 𝜔  = 1 

Theorem 3.3.2.   For the collection of HPFNs di = (hi, gi) (i=1,2,3…n) the aggregated value by using definition 3.3.2 is 
still a HPFN and is given by- 

   THPFGHWG (d1, d2 …… dn) = 

⎩⎪⎪
⎨⎪
⎪⎧ 1 − 1 −∏ 1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚. 1 − 1 − sin λj 1 − 𝛾𝑗2 𝜔 𝑛, ( ) ( ) ,

1 −∏ 1 − 1 − (1 − sin λi𝜂𝑖)𝜔 }𝑚. 1 − (1 − sin λj𝜂𝑗)𝜔 𝑛, ( ) ( ) ⎭⎪⎪
⎬⎪
⎪⎫

, , ,  

(18) 

Proof:  ( sin λi  𝑑i)  = 1 − (sin λi (1 − 𝛾𝑖2) , 1 − (1 − sin λj𝜂𝑖)𝜔  ∈ , ∈  

             ( sin λj  𝑑j)  = 1 − (sin λi (1 − 𝛾𝑗2) , 1 − (1 − sin λj𝜂𝑗)𝜔  ∈ , ∈  

𝑚. ( sin λi  𝑑i)  =  1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚 , 1 − (1 − sin λj𝜂𝑖)𝜔  ∈ , ∈  

 𝑛. ( sin λj  𝑑j) =  1 − 1 − 1 − sin λi 1 − 𝛾𝑗2 𝜔 𝑛 , 1 − (1 − sin λj𝜂𝑗)𝜔  ∈ , ∈  

𝑚(sin λi  𝑑i) ⊕𝑛(sin λj  𝑑j)  =  

⎩⎪⎨
⎪⎧ 1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚. 1 − 1 − sin λj 1 − 𝛾𝑗2 𝜔 𝑛 ,

1 − (1 − sin λi𝜂𝑖)𝜔 }𝑚. 1 − (1 − sin λj𝜂𝑗)𝜔 𝑛 ⎭⎪⎬
⎪⎫

, , ,  

⊗ ⊗ 𝑚(sin λi  𝑑i) ⊕𝑛(sin λj  𝑑j)    =   

⎩⎪⎪
⎨⎪
⎪⎧ 1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚. 1 − 1 − sin λj 1 − 𝛾𝑗2 𝜔 𝑛, ,

1 − 1 − 1 − (1 − sin λi𝜂𝑖)𝜔 }𝑚. 1 − (1 − sin λj𝜂𝑗)𝜔 𝑛, ⎭⎪⎪
⎬⎪
⎪⎫

, , ,  

⊗ ⊗ 𝑚(sin λi  𝑑i) ⊕𝑛(sin λj  𝑑j) ( ) =  

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧
⎩⎪⎨
⎪⎧ 1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚. 1 − 1 − sin λj 1 − 𝛾𝑗2 𝜔 𝑛,

( )
⎭⎪⎬
⎪⎫ ,

⎩⎪⎨
⎪⎧ 1 − 1 − 1 − (1 − sin λi𝜂𝑖)𝜔 }𝑚. 1 − (1 − sin λj𝜂𝑗)𝜔 𝑛,

( )
⎭⎪⎬
⎪⎫

⎭⎪⎪
⎪⎬
⎪⎪⎪
⎫

, , ,  

THPFGHWG (d1, d2 …… dn) = ( ) ⊗ ⊗ 𝑚(sin λi  𝑑i) ⊕𝑛(sin λj  𝑑j) ( ) =  
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⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧
⎩⎪⎨
⎪⎧ 1 − 1 − 1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 𝑚. 1 − 1 − sin λj 1 − 𝛾𝑗2 𝜔 𝑛,

( ) ( )

⎭⎪⎬
⎪⎫ ,

⎩⎪⎨
⎪⎧
⎣⎢⎢⎢
⎡ 1 − 1 − 1 − (1 − sin λi𝜂𝑖)𝜔 }𝑚. 1 − (1 − sin λj𝜂𝑗)𝜔 𝑛,

( )
⎦⎥⎥⎥
⎤( )

⎭⎪⎬
⎪⎫

⎭⎪⎪
⎪⎪⎬
⎪⎪⎪⎪
⎫

, , ,  

Consider the case of incomplete weight information where the criteria weights are in the form of intervals like wi = [a,b] 
where a<b and a, b Є [0,1]. To deal with such situations the THPFGHWA and THPFGHWG are extended to handle 
incomplete weight information. 

Definition 3.3.3.   Let di = (hi, gi) (i=1,2,3…n) be the collection of HPFNs and 0 ≤ λi ≤ 90 then Trigonometric HPFN  

Generalized heronian interval weighted averaging operator THPFGHIWA: 𝛺 → 𝛺 is defined as  

    THPFGHIWA (d1, d2 …… dn) = 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧⎩⎪⎨
⎪⎧ 1 −∏ 1 − 1 − sin λi 1 − 𝛾𝑖2 √ 𝑚. 1 − sin λj 1 − 𝛾𝑗2 𝑛 ( ),

( )

⎭⎪⎬
⎪⎫ ,

1 − 1 −∏ 1 − 1 − (sin λi𝜂𝑖)√ 𝑚. 1 − (sin λj𝜂𝑗) 𝑛 ( ), ( ) ⎭⎪⎪⎪
⎬⎪
⎪⎪⎫

, , ,  

(19) 

Here criteria weights are given as wi = [ai, bi] with ai<bi and ai, bi Є [0,1]. 

Definition 3.3.4.   Let di = (hi, gi) (i=1,2,3…n) be the collection of HPFNs and 0 ≤ λi ≤ 90 then Trigonometric HPFN  

Generalized heronian interval weighted geometric operator THPFGHIWG: 𝛺 → 𝛺 is defined as  

THPFGHIWG (d1, d2 …… dn) = 

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧
⎩⎪⎨
⎪⎧ 1 − 1 − 1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 √ 𝑚. 1 − 1 − sin λj 1 − 𝛾𝑗2 𝑛,

( ) ( )

⎭⎪⎬
⎪⎫ ,

⎩⎪⎨
⎪⎧
⎣⎢⎢⎢
⎡ 1 − 1 − 1 − (1 − sin λi𝜂𝑖)√ 𝑚. 1 − (1 − sin λj𝜂𝑗) 𝑛,

( )
⎦⎥⎥⎥
⎤( )

⎭⎪⎬
⎪⎫

⎭⎪⎪
⎪⎪⎬
⎪⎪⎪⎪
⎫

, , ,  

(20) 

Here criteria weights are given as wi = [ai, bi] with ai<bi and ai, bi Є [0,1]. 

3.4.   Weight determination method based on z-score 

The weights of criteria have a big impact on the ranking of options throughout the MCDM process, thus choosing the proper 
ones is vital. A criterion with higher variance between alternatives has more weight, according to (Yingming 1997), and 
vice versa. As a result, this section presents a novel z-score-based weight determination approach. The z-score reflects how 
much standard deviations the value deviates from the mean. It aids in the establishment of modifications in criteria for each 
alternative and, as a result, in weighting. To decrease information loss, the choice matrix is turned into a membership and 
non-membership matrix. 

Consider the Pythagorean fuzzy decision matrix as- 
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D =  
𝐴1:𝐴𝑚

C1 ⋯ Cn〈ℎ11,𝑔11〉 ⋯ 〈ℎ1𝑛,𝑔1𝑛〉⋮ ⋱ ⋮〈ℎ𝑚1,𝑔𝑚1〉 ⋯ 〈ℎ𝑚𝑛,𝑔𝑚𝑛〉  

    Separate the matrix into membership matrix and non-membership matrix as- 

M =  
𝐴1:𝐴𝑚

C1 ⋯ Cnℎ11 ⋯ ℎ1𝑛⋮ ⋱ ⋮ℎ𝑚1 ⋯ ℎ𝑚𝑛    and   N =  
𝐴1:𝐴𝑚

C1 ⋯ Cn𝑔11 ⋯ 𝑔1𝑛⋮ ⋱ ⋮𝑔𝑚1 ⋯ 𝑔𝑚𝑛  

      Find the mean and standard deviation of each column as- 𝑢  = ∑   ,    𝜎 =  ∑  , i = 1, 2, ….m, j = 1, 2, …. n (21) 

 then compute the z-score of each value of column as:  𝑧  =    ( ),   𝑧  = ∑ |𝑧 | (22) 

finally, the attribute weights are computed as: 𝜔 = 𝑧∑ 𝑧  (23) 

We get the weights of the membership matrix as 𝜔 = (𝜔 ,𝜔 ⋯𝜔 ) . Similarly, we can get the weights of non-membership 
matrix as 𝑤 = (𝑤 ,𝑤 ⋯𝑤 ) . 

3.5.   New Score function for hesitant Pythagorean fuzzy sets  

Definition 3.5.1. (Garg 2018).  Let di = (hi, gi) be a HPFN, then the score function of di is defined as: 

S(di) = ∑𝛾2 / ∗ ℎ𝑖  -  ∑𝜂2 / ∗ 𝑔𝑖                                                                                (24) 

and the accuracy function as: 

H(di) = ∑𝛾2 / ∗ ℎ𝑖  +  ∑𝜂2 / ∗ 𝑔𝑖                                                       (25) 

where *hi and *gi are the numbers of the elements in hi and gi, respectively. 

Definition 3.5.2. (Khan et al. 2017).  Let di = (hi, gi) be a HPFN, then the score function of di is defined as: 

S(di) =  ∑∗  −  ∑ ∗                                             (26) 

and the accuracy function as: 

H(di) =  ∑ ( )∗  −  ∑ ( ) ∗     (27) 

 

where *hi and *gi are the numbers of the elements in hi and gi, respectively. 

Example.3.5.1.  Let d1 = {{0.2,0.3}, {0.5,0.6}} and d2 = {{0.1/√2, 0.5/√2}, {0.5,0.6}} be two HPFN then according to 
eq. (24)- 

S(d1) = -0.24 and S(d2) = -0.24  

On calculating the accuracy function H(d1) = H(d2) = 0.37 

Hence the score and the accuracy function given by eq. (24) and (25) can’t distinguish between d1 and d2. 

Example.3.5.2.  Let d1 = {{0.3,0.9}, {0.3,0.4,0.5}} and d2 = {{0.3,0.7,0.8}, {0.3,0.5}} be two HPFN then according to 
eq. (26)- 

S(d1) = 0.2 and S(d2) = 0.2 

On calculating the accuracy function H(d1) = H(d2) = 0.2 

Hence the score and the accuracy function given by eq. (26) and (27) can’t distinguish between d1 and d2. 

Definition 3.5.3.  Let di = (hi, gi) be a HPFN, then the novel score function of di is defined as: 
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S(di) = ∑(1 − 𝛾)2 / ∗ ℎ𝑖  +  ∑𝜂2 / ∗ 𝑔𝑖                                                                                 (28) 

where *hi and *gi are the numbers of the elements in hi and gi, respectively. 

The smaller the value of S(di) the superior di is.   

Example.3.5.3.  Consider example 3.5.1 then according to the proposed score function- 

S(d1) = 0.87 and S(d2) = 0.9457 

Hence, d2>d1.  

Consider example 3.5.2 then according to the proposed score function- 

S(d1) = 0.61667 and S(d2) = 0.576667 

Hence, d1>d2.  

 4.   Application of the proposed approach 

In this section we investigate the MAGDM problems based on the proposed approach. 

4.1.   Description of the problem   

In today's highly competitive market, it is impossible for a business to make low-cost, high-quality things without the help 
of suppliers. When it comes to procuring the raw materials needed to support an organization's outputs, supplier selection 
is a common problem. Supplier evaluation and selection are critical choices for manufacturers' profitability, development, 
and survival in today's competitive global economy. Because they require the identification, study, and analysis of a vast 
number of physical factors, such judgements can be difficult to reach. 

Consider a decision‐making problem which consists of “m” different alternatives denoted by (A1, A2 …. Am) that are 
evaluated under the set of “n” different criteria (C1, C2 …. Cn) by “k” decision makers (D1, D2 …. Dk). The weights of these 
criteria are completely unknown and the weight vector of decision makers be denoted by w = (w1, w2…. wk) with 𝑤𝑖,𝜔 ≥0 and ∑ 𝑤  = 1, ∑ 𝜔  = 1.       
4.2.    An algorithm to decision making approach 

Let M1, M2 …. Mk be the normalized decision matrix given by DMs in which preference values are in the form of HPFNs. 
For normalization convert the beneficial criteria into non-beneficial or vice versa by taking complement of HPFNs. 

M1 =  
𝐴1:𝐴𝑚

C1 ⋯ Cn〈ℎ111,𝑔111〉 ⋯ 〈ℎ11𝑛,𝑔11𝑛〉⋮ ⋱ ⋮〈ℎ1𝑚1,𝑔1𝑚1〉 ⋯ 〈ℎ1𝑚𝑛,𝑔1𝑚𝑛〉  

M2 =  
𝐴1:𝐴𝑚

C1 ⋯ Cn〈ℎ211,𝑔211〉 ⋯ 〈ℎ21𝑛,𝑔21𝑛〉⋮ ⋱ ⋮〈ℎ2𝑚1,𝑔2𝑚1〉 ⋯ 〈ℎ2𝑚𝑛,𝑔2𝑚𝑛〉  

Mk =  
𝐴1:𝐴𝑚

C1 ⋯ Cn〈ℎ𝑘11,𝑔𝑘11〉 ⋯ 〈ℎ𝑘1𝑛,𝑔𝑘1𝑛〉⋮ ⋱ ⋮〈ℎ𝑘𝑚1,𝑔𝑘𝑚1〉 ⋯ 〈ℎ𝑘𝑚𝑛,𝑔𝑘𝑚𝑛〉  

               where 〈ℎ𝑘𝑖𝑗,𝑔𝑘𝑖𝑗〉 are HPNs. 

 Step.1.  Aggregate the values for each DM’s by making the use of any above defined operators to form the  
              aggregated matrix D. 

D =  
𝐴1:𝐴𝑚

C1 ⋯ Cn〈ℎ11,𝑔11〉 ⋯ 〈ℎ1𝑛,𝑔1𝑛〉⋮ ⋱ ⋮〈ℎ𝑚1,𝑔𝑚1〉 ⋯ 〈ℎ𝑚𝑛,𝑔𝑚𝑛〉  

Step.2.  Convert the hesitant Pythagorean matrix into Pythagorean fuzzy matrix by taking the average of  
              membership and non-membership degrees. 

Step.3.  Find the weights of the attributes by the z score method defined in eq. (23). 

Step.4.  Aggregate the values for each alternative by making use of above defined operators. 

Step.5.  Calculate the score value of each alternative using score function defined in eq. (28). 

Step.6.  Rank the alternatives in the ascending order of score values. 
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4.3.   Numerical example 

Consider a problem of supplier selection from four suppliers (Z1), (Z2), (Z3), (Z4) constructed on four criteria’s quality 
(K1), price (K2), delivery time (K3), and the service (K4). The weights of three DM’s are given as (0.3,0.2,0.5). Since 
criteria K2, K3 are non-beneficial and K1, K4 are beneficial. For normalization we convert beneficial criteria into non-
beneficial by taking complement. The normalized decision matrix Di = (dij)4*4 for all DM’s is shown in Table 1, 2 and 3 
where dij (i, j = 1,2,3,4) are from HPF environment. 

Table 1  
Hesitant Pythagorean fuzzy decision matrix for DM 1  

 K1 K2 K3 K4 
Z1 {{0.3}, {0.6}} {{0.4}, {0.4}} {{0.2}, {0.7}} {{0.1}, {0.3,0.4}} 
Z2 {{0.6}, {0.4}} {{0.2}, {0.7}} {{0.5}, {0.6,0.7}} {{0.2,0.3}, {0.7}} 
Z3 {{0.5,0.7}, {0.2}} {{0.3,0.5}, {0.8}} {{0.3}, {0.4}} {{0.1}, {0.8}} 
Z4 {{0.7}, {0.3}} {{0.4}, {0.6}} {{0.1}, {0.6}} {{0.3}, {0.7}} 

Table 2 
Hesitant Pythagorean fuzzy decision matrix for DM 2  

K1 K2 K3 K4 
Z1 {{0.1}, {0.8}} {{0.5}, {0.6,0.7}} {{0.3}, {0.7,0.8}} {{0.3}, {0.6}} 
Z2 {{0.7}, {0.3}} {{0.2}, {0.7}} {{0.6}, {0.4}} {{0.3,0.6}, {0.4}} 
Z3 {{0.3,0.5}, {0.8}} {{0.1}, {0.6}} {{0.1}, {0.5}} {{0.1}, {0.4}} 
Z4 {{0.6}, {0.4}} {{0.1}, {0.8}} {{0.2,0.4}, {0.6}} {{0.7}, {0.3}} 

 Table 3 
 Hesitant Pythagorean fuzzy decision matrix for DM 3  

 K1 K2 K3 K4 
Z1 {{0.5,0.7}, {0.2}} {{0.6}, {0.4}} {{0.2}, {0.7,0.8}} {{0.4}, {0.5}} 
Z2 {{0.1}, {0.7}} {{0.6}, {0.3}} {{0.5}, {0.4,0.5}} {{0.6}, {0.2}} 
Z3 {{0.2}, {0.6}} {{0.6,0.8}, {0.2}} {{0.1}, {0.6}} {{0.5}, {0.3,0.6}} 
Z4 {{0.4,0.5}, {0.5}} {{0.1}, {0.8}} {{0.7}, {0.3}} {{0.2,0.4}, {0.4}} 

Step.1.   Aggregate the values for each DM’s by making the use of THPFWA operator with weights of DM’s as  
              (0.3,0.2,0.5). The aggregated matrix is shown in table 4. 

Table 4  
Aggregate decision matrix  

 K1 K2 K3 K4 
Z1 {{0.734,0.761}, {0.436}} {{0.755}, {0.474,0.481}} {{0.715}, 

{0.598,0.617,0.606,0.625}} 
{{0.724}, {0.48,0.5}} 

Z2 {{0.748}, {0.507}} {{0.743}, {0.486}} {{0.754}, 
{0.483,0.511,0.494,0.522}} 

{{0.745,0.754,0.747,0.756}, 
{0.416}} 

Z3 {{0.726,0.743,0.732,0.749}, 
{0.485}} 

{{0.745,0.782,0.753,0.789}, 
{0.442}} 

{{0.713}, {0.514}} {{0.730}, {0.469,0.55}} 

Z4 {{0.761,0.769}, {0.461}} {{0.716}, {0.612}} {{0.758,0.762}, {0.468}} {{0.735,0.744}, {0.48}} 

 
Step.2.   Convert the hesitant Pythagorean fuzzy matrix into Pythagorean fuzzy matrix for calculating weights.  
The converted matrix is shown in Table 5. 

Table 5  
Pythagorean fuzzy decision matrix   

 K1 K2 K3 K4 
Z1 {{0.747}, {0.436}} {{0.755}, {0.477}} {{0.715}, {0.611}} {{0.724}, {0.49}} 
Z2 {{0.748}, {0.507}} {{0.743}, {0.486}} {{0.754}, {0.502}} {{0.751}, {0.416}} 
Z3 {{0.737}, {0.485}} {{0.767}, {0.442q}} {{0.713}, {0.514}} {{0.73}, {0.509}} 
Z4 {{0.765}, {0.461}} {{0.716}, {0.612}} {{0.76}, {0.468}} {{0.739}, {0.48}} 

 
Step.3.   By applying the z-score method as described in section 3.4 we get the weights of membership and non- 
              membership matrix as:  
              𝜔 = (0.224, 0.238, 0.284, 0.254)   and  𝑤 = (0.265,0.248,0.243,0.244) . 

Step.4.  By employing the THPFWA operator in Eq. (7) to Table 4, we get the overall value of the alternatives Zi (i = 
1,2,3,4). We let  λ1 = 10, λ2 = 30, λ3 = 50, λ4 = 70. For instance, the overall value of Z1 is- 
                    z1 = THPFWA (z11, z12, z13, z14) 

= ⎩⎪⎨
⎪⎧ 1 − sin 𝜆𝑗 1 − 𝛾1𝑗2 , (sin 𝜆𝑗𝜂1𝑗) ⎭⎪⎬

⎪⎫
, ,        
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                         = {{0.78804, 0.790479}, {0.510428, 0.511337, 0.512664, 0.513578, 0.512186, 0.513098, 0.51443, 
0.515346, 0.511176, 0.512086, 0.513415, 0.51433, 0.512908, 0.513822, 0.515155, 0.516073}} 

Equally for other alternatives, 

                    z2 = {{0.793376, 0.794079, 0.793529, 0.79424}, {0.50197, 0.5052, 0.503261, 0.506419}    

                   z3 = {{0.786676, 0.790402, 0.787429, 0.791183, 0.788135, 0.791832, 0.788883, 0.792607, 0.787179, 
0.790896, 0.787931, 0.791675, 0.788675, 0.792362, 0.789421, 0.793134}, {0.503406, 0.511969}              

                    z4 = {{0.79199, 0.792763, 0.792417, 0.793189, 0.792659, 0.793429, 0.793085, 0.793854}, {0.508902}} 

Step.5   Calculate the score S(zi) of the overall HPFE di (i = 1, 2, 3, 4) by using eq. (28). 
             S(z1) = 0.307843, S(z2) = 0.296749, S(z3) = 0.301911, S(z4) = 0.301863 

Step.6   Rank the alternatives in the ascending order of scores.   

              Z2> Z4> Z3> Z1. Hence the most required alternative is Z2. 

Similarly, on applying THPFWG operator to aggregate the values we get the following results. The first three steps are 
same. 

Step.1’   By utilizing the THPFWG operator in eq. (11) we get the overall value of the alternatives Zi (i = 1,2,3,4). We let  λ1 = 10, λ2 = 30, λ3 = 50, λ4 = 70. For example, overall value of Z1 is: 
                z1 = THPFWG (d11, d12, d13, d14) 

= ⎩⎪⎨
⎪⎧ 1 − sin 𝜆𝑗 1 − 𝛾1𝑗2 𝜔 , 1 − (1 − sin 𝜆𝑗𝜂1𝑗)𝑤 ⎭⎪⎬

⎪⎫
,  

                   = {{0.69923, 0.699697}, {0.604582, 0.605195, 0.610436, 0.611037, 0.608244, 0.608849, 0.614024,  

                          0.614616, 0.606121, 0.606731, 0.611944, 0.612541, 0.609793, 0.610395, 0.615541, 0.61613}} 

Equally for other alternatives, 

                 z2 = {{0.71194, 0.714753, 0.712562, 0.715383}, {0.566335, 0.571852, 0.568497, 0.574031}} 

               z3 = {{0.699853, 0.702551, 0.700415, 0.703092, 0.700136, 0.702835, 0.700698, 0.703376, 0.699952,   
                          0.70265, 0.700513, 0.703191, 0.70024, 0.702939, 0.700802, 0.70348}, {0.58367, 0.609078}} 

                    z4 = {{0.708001, 0.708148, 0.708748, 0.708896, 0.710769, 0.710917, 0.71152, 0.711667}, {0.59291}} 

Step.2’   Calculate the score S(zi) of the overall HPFE di (i = 1, 2, 3, 4) using eq. (28). 

                S(z1) = 0.462906, S(z2) = 0.407106, S(z3) = 0.444826, S(z4) = 0.435743 

Step.3’   Rank the alternatives in the ascending order of scores.   

               Z2> Z4> Z3> Z1. Hence the most desirable alternative is Z2. 

Similarly, we apply THPFOWA, THPFOWG operators to get the ranking. 

On applying THPFGHWA operator to aggregate the values we get the following results. 

Step.1.  We let  λ1 = 10, λ2 = 30, λ3 = 50, λ4 = 70 and m = n = 2. For instance, for alternative Z1 we have- 

                z1 = THPFGHWA (z11, z12, z13, z14) 

=

⎩⎪⎪
⎨⎪
⎪⎧ 1 −∏ 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 . 1 − sin λj 1 − 𝛾𝑗2 𝜔, ( ) ,

1− 1 −∏ 1 − (1 − (sin λi𝜂𝑖)𝑤  ). 1 − (sin λj𝜂𝑗)𝑤, ( ) ⎭⎪⎪
⎬⎪
⎪⎫

, , ,  

                        = {{0.782917, 0.7844307}, {0.824263, 0.824576, 0.82468, 0.824931, 0.824586, 0.8249, 0.824941, 
0.825255, 0.824402, 0.824715, 0.824757, 0.82507, 0.824715, 0.825029, 0.82507, 0.825384}}    

Likewise for other alternatives, 

                 z2 = {{0.786539, 0.787044, 0.786649, 0.78716}, {0.826621, 0.827387, 0.826932, 0.827665}} 
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               z3 = {{0.782092, 0.784548, 0.782589, 0.785061, 0.782923, 0.785367, 0.783418, 0.785878, 0.782379,  
                         0.784831, 0.782875, 0.785343, 0.783231, 0.78567, 0.783725, 0.78618}}  

                    z4 = {{0.78547, 0.78591, 0.785767, 0.786206, 0.78595, 0.786389, 0.786246, 0.786684}, {0.824436}} 

Step.2.   Calculate the score S(zi) of the overall HPFE di (i = 1, 2, 3, 4). 

                S(z1) = 0.727162, S(z2) = 0.729614, S(z3) = 0.728121, S(z4) = 0.725457 

Step.3.   Rank the alternatives in the ascending order of scores.   

              Z4> Z1> Z3> Z2. Hence the most desirable alternative is Z4. 

Similarly, by using THPFGHWG operator to aggregate the values we get the following results. 

Step.1’   We let  λ1 = 10, λ2 = 30, λ3 = 50, λ4 = 70 and m = n = 2. For instance, for alternative Z1 we have- 

              z1 = THPFGHWG (z11, z12, z13, z14) 

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧
⎩⎪⎨
⎪⎧ 1 − 1 − 1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 𝜔 2. 1 − 1 − sin λj 1 − 𝛾𝑗2 𝜔 2, ⎭⎪⎬

⎪⎫ ,

⎩⎪⎨
⎪⎧
⎣⎢⎢⎢
⎡ 1− 1 − 1− (1 − sin λi𝜂𝑖)𝑤 }2. 1 − (1 − sin λj𝜂𝑗)𝑤 2, ⎦⎥⎥⎥

⎤
⎭⎪⎬
⎪⎫

⎭⎪⎪
⎪⎪⎬
⎪⎪⎪⎪
⎫

, , ,  

                      = {{0.896328, 0.896346}, {0.357018, 0.357181, 0.362214, 0.362369, 0.359667, 0.359826,   
                             0.364706, 0.364858, 0.35812, 0.358282, 0.36325, 0.363404, 0.360814, 0.360972, 0.365787,  
                             0.365938}}  

Likewise for other alternatives, 

                 z2 = {{0.901686, 0.903092, 0.901998, 0.903405}, {0.325612, 0.32928, 0.327021, 0.330795}} 

               z3 = {{0.89701, 0.897366, 0.897087, 0.897433, 0.897022, 0.897377, 0.897098, 0.897445, 0.897014,  
                          0.89737, 0.897091, 0.897437, 0.897026, 0.897381, 0.897102, 0.897449}, {0.342816,  
                          0.367274}}  

                    z4 = {{0.900112, 0.900117, 0.900343, 0.900349, 0.90151, 0.901516, 0.901746, 0.901752}, {0.346257}} 

Step.2’   Calculate the score S(zi) of the overall HPFE di (i = 1, 2, 3, 4). 

                S(z1) = 0.141455, S(z2) = 0.117202, S(z3) = 0.136768, S(z4) = 0.129709 

Step.3’   Rank the alternatives in the ascending order of scores.   

              Z2> Z4> Z3> Z1. Hence the most desirable alternative is Z2. 

       Considering real life problems there may arise situations when the information about attribute weights is incomplete 
i.e., despite of a particular crisp value of weight it lies between particular interval such as wi = [a, b] where a<b and a, b Є 
[0,1]. In such cases we can use THPFGHIWA and THPFGHIWG operators. 
      Considering the same problem let the criteria weights be given as: 
w1 Є [0.2, 0.3], w2 Є [0.18, 0.27], w3 Є [0.25, 0.35] and w4 Є [0.15, 0.25] 
 
Applying THPFGHIWG operator to aggregate the values we get the following results. 

Step.1   By utilizing the THPFGHIWG operator, we get the overall value of the alternatives Zi (i = 1,2,3,4).    
            Let  λ1 = 10, λ2 = 30, λ3 = 50, λ4 = 70 and m = n = 2. For instance, for an alternative Z1 we have- 

              z1 = THPFGHIWG (d11, d12, d13, d14) 
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⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧
⎩⎪⎨
⎪⎧ 1 − 1 − 1 − 1 − 1 − sin λi 1 − 𝛾𝑖2 √ 2. 1 − 1 − sin λj 1 − 𝛾𝑗2 2,

( )

⎭⎪⎬
⎪⎫ ,

⎩⎪⎨
⎪⎧
⎣⎢⎢⎢
⎡ 1 − 1 − 1 − (1 − sin λi𝜂𝑖)√ 2. 1 − (1 − sin λj𝜂𝑗) 2, ⎦⎥⎥⎥

⎤( )

⎭⎪⎬
⎪⎫

⎭⎪⎪
⎪⎪⎬
⎪⎪⎪⎪
⎫

, , ,  

                  = {{0.914243, 0.914265}, {0.355484, 0.355952, 0.360752, 0.360854, 0.358191, 0.358296, 0.363296,  

                         0.363396, 0.35661, 0.356717, 0.36181, 0.361911, 0.359364, 0.359468, 0.3644, 0.364499}} 

Likewise for other alternatives, 

                 z2 = {{0.918829, 0.919949, 0.919078, 0.920198}, {0.323165, 0.326953, 0.32462, 0.328516}} 

               z3 = {{0.91476, 0.91507, 0.91483, 0.91512, 0.91477, 0.91508, 0.91484, 0.91514, 0.91476, 0.91507,  
                          0.91483, 0.91513, 0.91478, 0.91508, 0.91484, 0.91517}, {0.31244, 0.366021}}  

                    z4 = {{0.917587, 0.917594, 0.9178804, 0.917811, 0.918706, 0.918713, 0.918927, 0.918934},   
                               {0.342882}} 

Step.2   Calculate the score S(zi) of the overall HPFE di (i = 1, 2, 3, 4). 

                S(z1) = 0.13699, S(z2) = 0.112637, S(z3) = 0.132435, S(z4) = 0.12425 

Step.3   Rank the alternatives in the ascending order of scores.   

              Z2> Z4> Z3> Z1. Hence the most desirable alternative is Z2. 

Similarly, we can use THPFGHIWA operator to aggregate the values, the ranking order thus obtained is 

Z4> Z1> Z2> Z3. Hence the most desirable supplier is Z4. 

Figure 2 depicts the ranking order by different operators. 

 
Fig. 2. Graphical representation of the ranking by different operators 

5.    Comparative analysis and discussions 

In this section, we illustrate the validity of the proposed approach by comparing with many other well-known approaches 
and discuss the results. 

5.1.    Comparative analysis 

Here we compare the ranking obtained by the described operators with the other well-known aggregation’s operators for 
HPFNs. Consider the numerical example given in section 4.3.  
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Table 6  
Comparative Study 

Aggregation Operators  Ranking of alternatives 
HPFWA Z2> Z4> Z3> Z1 
HPFWG Z2> Z4> Z3> Z1 
HPFOWA Z2> Z3> Z4> Z1 
HPFOWG Z2> Z3> Z4> Z1 
DHPFWA Z2> Z4> Z3> Z1 
DHPFWG Z2> Z3> Z4> Z1 
DHPFGWHM Z2> Z4> Z3> Z1 
DHPFGGWHM Z2> Z4> Z3> Z1 
THPFWA Z2> Z4> Z3> Z1 
THPFWG Z2> Z4> Z3> Z1 
THPFOWA Z2> Z3> Z4> Z1 
THPFOWG Z2> Z3> Z4> Z1 
THPFGHWA Z4> Z1> Z3> Z2 
THPFGHWG Z2> Z4> Z3> Z1 

We can also implement fuzzy TOPSIS in HPF environment to rank the alternatives, the closeness coefficient thus obtained 
are CC1= 0.7255, CC2= 0.4738, CC3= 0.3177, CC4=0.7505. The ranking of alternatives is given as Z4> Z1> Z2> Z3. The 
difference in ranking is because of the fact that the proposed method effectively considers the interaction between 
membership and non-membership degree which is absent in TOPSIS method. Also, the study assigns attribute weights for 
membership and non-membership degrees separately to reduce the information loss, thus provides more reliable results as 
compared to TOPSIS in HPF environment. 

Furthermore, it is observed from Table 6 that the best alternative obtained by our proposed operators coincide with the 
existing operators under hesitant Pythagorean fuzzy environment. Hence this confirms the resistance of the proposed 
operators. From the table we can verify that the optimal alternative is A2 by all the approaches, the computational steps 
being different. The proposed operators use the characteristics of sine trigonometric function to aggregate the hesitant 
Pythagorean fuzzy information hence provides effective results as compared to the existing ones. Also, the consideration 
of optimistic nature of decision-makers makes the results more practical. Thus, the proposed method plays a vital role in 
solving real decision-making problems. 

5.2.    Influence of value of parameter λ 
With the help of trigonometric properties and definition of sin 𝜆 d we observe that- 

a) There exist a λ* = sin 1 − 𝛾  such that  

 If λ = λ*, then 1 − sin 𝜆 (1 − 𝛾2) = 𝛾 

 If λ > λ*, then 1 − sin 𝜆 (1 − 𝛾2) < 𝛾 

 If λ < λ*, then 1 − sin 𝜆 (1 − 𝛾2) > 𝛾 

       b)    There exist a λ# = sin 𝜂 such that  

 If λ = λ#, then sin 𝜂 = 𝜂 
 If λ > λ#, then sin 𝜂 > 𝜂 
 If λ < λ#, then sin 𝜂 < 𝜂  

b) If we pick λ < λ*< λ#, then 1 − sin 𝜆 (1 − 𝛾2) > 𝛾 and sin 𝜂 < 𝜂 thus sin 𝜆 d > d. Hence on      
subsequently applying the trigonometric operator, the estimation of HPFN d will be expanded.  

d) If we pick λ*< λ < λ#, then 1 − sin 𝜆 (1 − 𝛾2) < 𝛾 and sin 𝜂 < 𝜂 thus values of both membership degree 
and non-membership degree decrease on applying trigonometric operator. 

       e)     If we pick λ* < λ#< λ, then 1 − sin 𝜆 (1 − 𝛾2) < 𝛾 and sin 𝜂 > 𝜂 thus values of membership              
               degrees decrease and non-membership degree increases on applying trigonometric operator. 

Thus, keeping all these points in mind, a decision maker can choose a suitable value of parameter λ according to their risk 
preference.  

5.3.   Discussions 

The main difference between the proposed approach and existing methods is shown in Table 7.  
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Table 7  
Comparative analysis 

Aggregation operators Whether attribute weights are 
derived using some information 

measures 

Whether consider 
interrelationship among 

arguments 

Whether contains an additional 
parameter  

(Garg 2018)  No No No 
(Tang et al. 2019) No Yes No 
(Yang et al. 2019) No Yes No 

(Rahman et al. 2020) No No Yes 
(Sarkar et al. 2021) No Yes No 

(Senapati et al. 2022) No No Yes 
Proposed approach  Yes Yes Yes 

Whether information by HPFS Whether can handle GDM 
problems 

Whether define score function  Whether can handle incomplete 
weights 

Yes No Yes No 
Yes No No No 
Yes No No No 
No Yes No No 
Yes No No No 
No No No No 
Yes  Yes Yes Yes 

 
To highlight the superiority of the proposed approach different characteristics of the proposed approach are discussed over 
the existing ones. From the table we can determine that the approaches mentioned in (Rahman et al., 2020) and (Senapati 
et al. 2022) are bound to deliver their preferences in form of discrete set (PFS) and hence the approaches are precarious.  
The proposed approach considers more general case of decision-making in real environment where decision makers 
preferences consider hesitancy. The existing approaches except (Rahman et al., 2020) are applied for solving MADM 
problems and doesn’t consider GDM problems, but GDM provides more realistic results as it considers the opinions of 
different experts. The attribute weights in the existing approaches are taken as priori which is quite inappropriate. Due to 
lack of complete information, it is unlikely to get weight information before deciding alternatives. In real-life MADM 
problems relationship do exist between the arguments being fused. Thus, the interrelationship among arguments is an 
important aspect which can’t be ignored in decision-making process. (Garg et al., 2018; Rahman et al. 2020, Senapati et al. 
2022) doesn’t take the relationship among arguments into consideration. Risk preferences of decision makers can alter the 
final ranking of alternatives; thus, it becomes essential to capture the risk preference of decision makers before final ranking. 
The proposed approach considers an additional parameter to capture the risk preference of DMs, the DMs makers can vary 
the value of the parameters according to their tendencies, thus the operators with the parameter provides more versatile and 
realistic results as compared to the approaches in (Garg et al., 2018; Tang et al., 2019; Yang et al., 2019; Sarkar et al., 2021). 
Score function provides score value to an alternative, responsible for the ranking order of alternatives. But the score 
functions defined in (Khan et al., 2017; Garg 2018) are not able to provide ranking order in some situations thus, the 
proposed approach conquers the shortcomings of existing score functions to provide more realistic outcomes. Also, it is not 
always possible for the experts to have complete information about attribute weights, thus the study extends the defined 
operators to the environment of incomplete weight information, to robust the results as compared to the other operators 
defined in the existing approaches. 
 
However, the present study considers operational laws based on sine trigonometric function to handle the ambiguity in data, 
responsible for information loss through analysis. Also, the proposed approach is capable of handling GDM problems. 
Besides, the attribute weights are not known beforehand and are deduced based on the concept of z-scores considering the 
membership and non-membership degrees separately to reduce the original information loss. Further, the operators consider 
the relationship between arguments and risk preference of decision makers. Thus, the proposed operators are more 
comprehensive, reliable and contains broader information to handle GDM problems in HPF environment. 
 
 
6.   Experimental evaluations  
 In this section we verify the stability of the proposed approach by carrying sensitivity analysis.  
There are two parameters namely m, n by making the use of generalized Heronian mean operator for taking the relationship 
between arguments into account. By varying the values of these parameters, we can get different rankings. Earlier also in 
many studies researchers have used operators like generalized heronian mean operators, generalized bonferroni mean 
operators etc. In the present study in addition to these parameters there exists an extra parameter λ which makes it more 
flexible. As for a particular value of m, n different values of λ can be varied according to the risk preference of decision 
makers. Also, from Table 8 it is concluded that the best alternative will remain same in all the cases hence there will be no 
conflict in selecting the best alternative. 
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Table 8  
Ranking by THPFGHWG 

m = n = 4 λ1 = 05, λ2 = 35, λ3 = 45, λ4 = 85 Z2> Z4> Z1> Z3 λ1 = 10, λ2 = 20, λ3 = 80, λ4 = 90 Z2> Z4> Z3> Z1 

m = n = 6 λ1 = 08, λ2 = 15, λ3 = 85, λ4 = 90 Z2> Z4> Z3> Z1 λ1 = 05, λ2 = 45, λ3 = 45, λ4 = 90 Z2> Z4> Z1> Z3 

 

7.   Conclusion 

The major contributions of the present study are described as:  

1. Hesitant Pythagorean fuzzy sets, an extension of PFS and HFS, can handle indeterminacy in a far better way, thus the 
paper makes the use of HPFS to deal with the uncertainty persisting in the opinion of decision makers.  

2. The paper aims to define aggregation operators in HPF environment. Since during the aggregation, the crucial process 
is to outline operational laws which provides a base for aggregation operators this paper defines some novel 
trigonometric operational laws for HPFNs by making the use of sine function keeping in mind its characteristics such as 
periodicity, symmetry about origin and restricted range. Fundamental properties of these operational laws are studied 
and discussed in detail.  

3. The flexibility of the proposed operational laws is increased by considering an additional parameter λ to measure the 
preferences of the decision makers. The decision makers can vary the value of the parameter according to their risk 
preference as shown in section 5.2.  

4. To aggregate the information in HPF environment, different aggregation operators are defined built on these operational 
laws. Several properties related to the proposed operators are discussed.  

5. To strengthen the operators, they are combined with generalized heronian mean operator which measures the relationship 
between arguments to be aggregated.  

6. Since ranking of alternatives is affected by weights of criteria, and it is unlikely to always have a prior information about 
attribute weights due to lack of information, thus the study defines a novel weight determination method based on the 
concept of z-scores. The weight of criterions is determined by taking the membership and non-membership degrees 
separately to reduce the loss in original information. 

7. Considering the real-life problems there might arise the situation when DMs are not able to assign an exact weight to 
attribute rather, they define an interval in which weights may lie. Thus, the defined operators are extended to the 
environment with incomplete weight information.  

8. Further a score function for HPFN’s is defined which conquers the shortcomings of previously defined score functions 
(Khan et al. 2017, Garg 2018) in HPF environment. 

9. A complete algorithm for multi attribute group decision-making is presented based on the defined aggregation operators 
where each alternative is evaluated by different decision makers in hesitant Pythagorean fuzzy environment. 

10. The effectiveness and reliability of the proposed approach is investigated with the help of numerical example of supplier 
selection problem and compared with the existing approaches in HPF environment. The discussion in Table 7 explains 
the superiority of the proposed approach. The robustness of the proposed approach is enhanced using sensitivity analysis 
in Table 8. 

Analyzing the abovementioned points, it can be concluded that the proposed approach and operators can effectively handle 
the group decision-making problems in HPF environment. 

In the future, these operators can be employed to solve decision-making problems in other fields such as medical diagnosis, 
transportation problems etc. Further, these operators can be extended to other variants of fuzzy sets like neutrosophic fuzzy 
sets etc. 
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Appendix A. List of abbreviations used 

MAGDM Multi-Attribute Group Decision-Making 
HPFS Hesitant Pythagorean Fuzzy Sets 
HPFE Hesitant Pythagorean Fuzzy Elements 
HM Heronian Mean operator 

GHM Generalized Heronian Mean operator 
TOLs Trigonometric Operational Laws 

THPFWA Trigonometric Hesitant Pythagorean Fuzzy Weighted Averaging operator 
THPFOWA Trigonometric Hesitant Pythagorean Fuzzy Ordered Weighted Averaging operator 
THPFWG Trigonometric Hesitant Pythagorean Fuzzy Weighted Geometric operator 

THPFOWG Trigonometric Hesitant Pythagorean Fuzzy Ordered Weighted Geometric operator 
THPFGHWA Trigonometric Hesitant Pythagorean Fuzzy Generalized Heronian Weighted Averaging 

operator 
THPFGHWG Trigonometric Hesitant Pythagorean Fuzzy Generalized Heronian Weighted Geometric 

operator 
THPFGHIWA Trigonometric Hesitant Pythagorean Fuzzy Generalized Heronian Interval Weighted 

Averaging operator 
THPFGHIWG Trigonometric Hesitant Pythagorean Fuzzy Generalized Heronian Interval Weighted 

Geometric operator 
 

Appendix B.  Proof of theorem 3.1.2 

   sin 𝜆 𝑑1 =   1 − sin 𝜆 (1 − 𝛾12) , sin 𝜆𝜂1 ∈ , ∈        

   sin 𝜆𝑑2 =   1 − sin 𝜆 (1 − 𝛾22) , sin 𝜆𝜂2 ∈ , ∈         

By using operational laws for HPFNs, we have sin 𝜆 d1  ⊕  sin 𝜆 d2   =   1 − sin 𝜆 (1 − 𝛾12) . sin 𝜆 (1 − 𝛾22) , sin 𝜆𝜂1 sin 𝜆𝜂2 ∈ , ∈ , ∈ , ∈    

 

         sin 𝜆 d1  ⊗  sin 𝜆 d2   =   (1 − sin 𝜆 (1 − 𝛾12) ) . (1 − sin 𝜆 (1 − 𝛾22)) ,∈ , ∈ , ∈ , ∈     1 − (1 − sin 𝜆𝜂1 ). (1 − sin 𝜆𝜂2)  

(a)  for a real number k > 0, k ( sin 𝜆 d1  ⊕  sin 𝜆 d2)  

=    (1 − (sin 𝜆 (1 − 𝛾12) . sin 𝜆 (1 − 𝛾22))𝑘 , (sin 𝜆𝜂1 sin 𝜆𝜂2)𝑘∈ , ∈ , ∈ , ∈    

=   (sin 𝜆 (1 − 𝛾12) )𝑘, sin 𝜆𝜂1𝑘 ∈ , ∈  ⊕ (sin 𝜆 (1 − 𝛾22) )𝑘, sin 𝜆𝜂2𝑘 ∈ , ∈  

=    k  sin 𝜆 d1 ⊕  k  sin 𝜆 d2 

(b)  for a real number k > 0, (sin 𝜆 d1  ⊗  sin 𝜆 d2) k    =    (1 − sin 𝜆 (1 − 𝛾12))𝑘. (1 − sin 𝜆 (1 − 𝛾22))𝑘 , 1 − ((1 − sin 𝜆𝜂1)(1 − sin 𝜆𝜂2))𝑘∈ , ∈ , ∈ , ∈   

=     1 − sin 𝜆 (1 − 𝛾12) 𝑘, 1 − (1 − sin 𝜆𝜂1)𝑘∈ , ∈ ⊗                                                                                                                                  1− sin 𝜆 (1 − 𝛾22) 𝑘, 1 − (1 − sin 𝜆𝜂2)𝑘∈ , ∈  =    sin 𝜆 d1 
k

 ⊗  sin 𝜆 d2
k 

(c)  for a real number k1, k2 > 0, (k1 sin 𝜆 d1 ⊕  k2  sin 𝜆 d1)  
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=    (sin 𝜆 (1 − 𝛾12) )𝑘1, sin 𝜆𝜂1𝑘1 ∈ , ∈  ⊕                                                                                                          (sin 𝜆 (1 − 𝛾12) )𝑘2, sin 𝜆𝜂1𝑘2 ∈ , ∈  

=   (sin 𝜆 (1 − 𝛾12) )𝑘1 + 𝑘2, sin 𝜆𝜂1𝑘1 + 𝑘2 ∈ , ∈  =  (k1 +  k2)sin 𝜆 d1 

(d)  for a real number k1, k2 > 0, (sin 𝜆 d1) k1 ⊗  (sin 𝜆 d1) k2 

=  1 − sin 𝜆 (1 − 𝛾12) 𝑘1, 1 − (1 − sin 𝜆𝜂1)𝑘1∈ , ∈  ⊗                                                                                                         1 − sin 𝜆 (1 − 𝛾12) 𝑘2, 1 − (1 − sin 𝜆𝜂1)𝑘2∈ , ∈  

=   1 − sin 𝜆 (1 − 𝛾12) 𝑘1 + 𝑘2, 1 − (1 − sin 𝜆𝜂1)𝑘1 + 𝑘2∈ , ∈  

= (sin 𝜆 d1) k1+ k2 

(e)  for a real number k1, k2 > 0, ((sin 𝜆 d1) k1) k2 

=  〈 1 − sin 𝜆 (1 − 𝛾12) 𝑘1, 1 − (1 − sin 𝜆𝜂1)𝑘1∈ , ∈ 〉 𝑘2 

=   1 − sin 𝜆 (1 − 𝛾12) 𝑘1. 𝑘2, 1 − (1 − sin 𝜆𝜂1)𝑘1.𝑘2∈ , ∈  

= (sin 𝜆 d1) k1 k2 

Proof of theorem 3.1.3: 

    sin 𝜆1 d = 1 − sin 𝜆1 (1 − 𝛾2) , sin 𝜆1𝜂 ∈ , ∈         

     sin 𝜆2d = 1 − sin 𝜆2 (1 − 𝛾2) , sin 𝜆2𝜂 ∈ , ∈         

Since we have  λ1 ≤ λ2 ⇒ sin 𝜆1 (1 − 𝛾2) ≤ sin 𝜆2 (1 − 𝛾2) 

hence, 1 − sin 𝜆1 (1 − 𝛾2) ≥ 1 − sin 𝜆2 (1 − 𝛾2) 

and sin 𝜆1𝜂 ≤ sin 𝜆2𝜂  ⇒ sin 𝜆1𝜂 ≤ sin 𝜆2𝜂 

hence, sin 𝜆1 d  ≥  sin 𝜆2 d 

Proof of theorem 3.1.4: 

Since γ1 ≤ γ2 ⇒ γ12 ≤ γ22  ⇒ (1 − 𝛾12) ≥ (1 − 𝛾22) 

sin 𝜆 (1 − 𝛾12)   ≥   sin 𝜆 (1 − 𝛾22)  ⇒ 1 − sin 𝜆 (1 − 𝛾12)  ≤  1 − sin 𝜆 (1 − 𝛾22) 

Now 𝜂1 ≥ 𝜂2    so   sin 𝜆𝜂1 ≥  sin 𝜆𝜂2   ⇒ sin 𝜆𝜂1 ≥ sin 𝜆𝜂2 

Hence sin 𝜆 d1 ≤  sin 𝜆 d2 

Appendix C.  Proof of property 3.2.1 

Since all di = (hi, gi) = d then by theorem 3.2.1  

THPFWA (d1, d2 …… dn) =  
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⎩⎪⎨
⎪⎧ 1 − sin λ 1 − 𝛾𝑖2 , (sin λ𝜂𝑖) ⎭⎪⎬

⎪⎫
, ……  , , …..  

             =  ⎩⎪⎨
⎪⎧ 1 − sin λ 1 − 𝛾2 , (sin λ𝜂) ⎭⎪⎬

⎪⎫
,  

             =  1 − sin 𝜆 1 − 𝛾2 ∑ , (sin 𝜆𝜂)∑,  

             =  1 − sin 𝜆 1 − 𝛾2 , (sin 𝜆𝜂),  

              = sin 𝜆 d 

 

Proof of property 3.2.2: 

 Let 𝛾  = 1 − sin 𝜆 1 − 𝛾 2 ,  𝛾  = 1 − sin 𝜆 1 − 𝛾 2 , 𝜂  = (sin 𝜆𝜂 ), 𝜂  = (sin 𝜆𝜂 ), 𝛾 = 

1 − sin 𝜆 1 − 𝛾𝑖2  and  𝜂 = (sin 𝜆𝜂𝑖) . Then d = (𝛾, 𝜂), d+ = ( 𝛾 , 𝜂 ) and d- = ( 𝛾 , 𝜂 ).  
For all j we have  min ℎ ≤  𝛾𝑗 ≤ max ℎ  , min 𝑔 ≤  𝜂𝑗 ≤ max 𝑔   and ∑ 𝜔  = 1. 

Assume THPFWA (d1, d2 …… dn) = sin 𝜆 d, THPFWA (d+) = sin 𝜆 d+ and THPFWA (d-) = sin 𝜆 d- 

 1 − sin 𝜆 1 − 𝛾 2  ≤ 1− sin 𝜆 1 − 𝛾𝑖2    ≤  1 − sin 𝜆 1 − 𝛾 2  

1 − sin 𝜆 1 − 𝛾 2 ∑
 ≤ 1 − sin 𝜆 1 − 𝛾𝑖2    ≤  1 − sin 𝜆 1 − 𝛾 2 ∑

 

1 − sin 𝜆 1 − 𝛾 2  ≤ 1 − sin 𝜆 1 − 𝛾𝑖2    ≤  1 − sin 𝜆 1 − 𝛾 2  

 𝑖. 𝑒., 𝛾 ≤  𝛾 ≤  𝛾  

Similarly, (sin 𝜆𝜂 )    ≤  (sin 𝜆𝜂𝑖)  ≤  (sin 𝜆𝜂 )  

                    (sin 𝜆𝜂 )∑   ≤  (sin 𝜆𝜂𝑖)  ≤  (sin 𝜆𝜂 )∑  

                  (sin 𝜆𝜂 ) ≤  (sin 𝜆𝜂𝑖)  ≤  (sin 𝜆𝜂 ) 𝑖. 𝑒., 𝜂 ≤  𝜂𝑗 ≤ 𝜂  

According to score function S (THPFWA (d1, d2 …… dn)) = ∑ 𝛾2 / ∗ ℎ  -  ∑ 𝜂2∈  / ∗ 𝑔   
S (d+) = ∑ 𝛾 2∈  / ∗ ℎ -  ∑ 𝜂 2∈  / ∗ 𝑔   = 𝛾 2 - 𝜂 2 

S (d-) = ∑ 𝛾 2∈  / ∗ ℎ -  ∑ 𝜂 2∈  / ∗ 𝑔   = 𝛾 2 - 𝜂 2 

S (THPFWA (d1, d2 …… dn)) = ∑ 𝛾2 / ∗ ℎ  -  ∑ 𝜂2∈  / ∗ 𝑔  ≤ ∑ 𝛾 2 / ∗ ℎ  -  ∑ 𝜂 2∈  / ∗ 𝑔   
                                                           ≤  𝛾 2 - 𝜂 2 = S (d+)  
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S (THPFWA (d1, d2 …… dn)) = ∑ 𝛾2 / ∗ ℎ  -  ∑ 𝜂2∈  / ∗ 𝑔  ≥  ∑ 𝛾 2 / ∗ ℎ  -  ∑ 𝜂 2∈  / ∗ 𝑔   
                                                 ≥  𝛾 2 - 𝜂 2 = S (d-) 

Hence, S (d-) ≤ S (THPFWA (d1, d2 …… dn)) ≤ S (d+) ⇒ sin 𝜆 d- ≤ THPFWA (d1, d2 …… dn) ≤ sin 𝜆 d+ 

Proof of property 3.2.3: Same as above. 
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