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ABSTRACT

Increasing reliability, availability and safety requirements as
well as an increasing amount of data acquisition systems have
enabled condition-based maintenance in mobile and industrial
machinery. In this paper, we present a methodology to develop
a robust diagnostic approach. This includes the consideration
of variable operating conditions in the data acquisition process
as well as a versatile, non domain-specific feature extraction
technique. By doing so, we train anomaly detection models for
different fault types and different fault intensities in variable
displacement axial piston pumps. Our specific interest points
to the investigation of high-frequency condition indicators
with a sampling rate of 1MHz. Furthermore, we compare
those to industry standard sensors, sampled with up to 20 kHz.
By considering variable operating conditions, we are able
to quantify the influence of the operating point. The results
show, that high-frequency features are a suitable condition-
indicator across several operating points and can be used to
detect faults more easily. Although set up on a test-bench, the
experimental design allows to draw conclusions about realistic
field operational conditions.

1. PROBLEM SETTING AND MOTIVATION

During the last decades, preventive and reactive maintenance
strategies prevailed in industry use cases due to their ease of
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use and simple planning. However, the first causes sorting
out components that could have been operated longer, while
the second can lead to long, unplanned downtime. Therefore,
there is a strong desire for cost reduction and a simultane-
ous desire for more up-to-date information from the systems
that can be enabled by condition-based maintenance. As a re-
sult, research and the proposed methods in the Prognostics and
Health Management (PHM) domain have grown rapidly. PHM
is a holistic approach, that incorporates all data acquisition,
fault detection, diagnosis and prognosis techniques, including
health management strategies, e.g., the ordering of spare parts
before a failure occurs or the change of mission profiles (Kim,
An, & Choi, 2017). In contrary to failure distribution based
condition indication (Wöhler curves, Weibull analysis, Propor-
tional Hazard models etc.), assessing the present and future
health state of a single unit under test by measuring quantities
that are directly linked to a fault type is the subject of PHM.

In industrial as well as in mobile machinery use cases, hy-
draulic drives are a major power source due to their high
power density, precise control movements and stepless ratio
change under variable operating conditions. In the agricultural
domain an unplanned downtime of harvesting machines during
beet harvesting season can cause significant financial losses
(Brinkschulte & Geimer, 2017). In the mining sector, where
the value-chains depend on a few excavators and conveyor sys-
tems, downtimes can even cost up to several tens of thousands
of dollars per hour (Michaud, 2014). In the aerospace domain,
a failure in the hydraulics circuit can even be safety-critical if
the wing actuators can no longer be controlled or the landing
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gear cannot be operated (Gomes, Leão, Vianna, Galvão, &
Yoneyama, 2012). This underlines the need to monitor the
state-of-health of hydraulic assets in order to plan appropriate
measures in a timely manner and to assess whether a system
can still be operated despite being in a degraded state.

Since axial piston units (APU) represent the central power
source in such drive systems that provide energy for the driving
and working hydraulics, a special focus of investigation is on
them to detect faults at an early stage. When in good condition,
the function of the APU is to transform mechanical energy
– depicted by shaft speed and torque – into volumetric flow
and a system pressure. The system pressure results from the
hydraulic resistance in the circuit. For the mobile machinery
domain, the power is usually provided by a diesel engine
while industrial applications are powered by electric drives.
Explanations about the function, details and the mathematical
modelling of axial piston pumps can be found in the literature
of (Ivantysyn & Ivantysynova, 2003) and (Mandal, Saha, &
Sanyal, 2008).

However, there are some specific challenges regarding the
health assessment of a pump. First, due to the structure and
the rotating parts surrounded by a housing, it is practically
impossible to measure the fault directly. Therefore, at an eco-
nomically reasonable cost, indicators and signal features based
on measurable physical quantities must be built that have a
functional mapping to the extent of fault. Second, there are
several influencing factors that make it challenging to establish
an efficient and robust methodology based on experimental
data. On the one hand, different applications such as agri-
cultural use, industrial use, use in construction machines as
well as different pump characteristics (size, controllers, used
materials and surface treatments etc.) within one application
make it hard to generate a one-fits-all approach. On the other
hand, fault simulation can only be helpful in limited situations
(Bayer & Enge-Rosenblatt, 2011b), because of the complex
multi-body and multi-domain mechanisms including damping,
friction, tribological and lubricating effects. Considering all
the mentioned varying influence factors and uncertainties can
make it difficult for a pump manufacturer when it comes to the
transfer of fault detection algorithms among several pumps.

Even for one single pump, various problems arise that increase
the difficulty of monitoring and assessing the pump. This is
since various subsystems and components can be affected by
fault, and depending on the fault mechanism, different data
patterns can appear. For example, undesired tilting, abrasive
wear or plastic deformation can occur at the slipper pad / slid-
ing shoe, which is located at the pistons head of the pump.
A detection algorithm – i.e., classification of the fault and
quantification of its extent can only work correctly if the al-
gorithm was exposed to this specific pattern in the training
data previously. In practice though, data for a healthy pump is
mainly available, which sets a special focus on models, that

learn from one class only. At the same time, the large variety
of different fault mechanisms make it clear, that it is important
to have a well generalizing algorithm, which avoids overfitting
to a specific failure mechanism.

Furthermore, operating conditions – depicted by shaft speed,
the system pressure and the swivel angle – influence the operat-
ing behavior of the APU and mask the fault specific signatures
in the signal characteristics. In axial piston units the swivel
angle is the angular displacement of the swash plate and thus
determines the flow rate of the pump. Figure 1 depicts the
central part of an hydraulic axial piston unit. Here, the oil
is sucked into the cylinder at the intake port. Through the
rotation of the cylinder and the tilted swash plate the pistons
conduct a translatory stroke and hence deliver oil through the
discharge port. Therefore, our goal is to design a condition
indicator, that is sensitive to a specific fault but insensitive to
operating point changes. To address this issue, in a first step
we investigate how different fault types become noticeable
in vibrational frequency bands up to 500 kHz. This is done
for different operating conditions of the APU, for three dif-
ferent sensor positions and two different fault types – loose
slipper and cavitation erosion in the port plate. In addition to
the fault types examined, others (e.g. abrasion) can occur in
specific applications. Since these often have a strong interde-
pendence with oil quality, viscosity and temperature as well
as oil contamination such fault types are not part of our study.

Piston
Slipper

Swash plate

Intake port

Port plate
Discharge port

Cylinder

Shaft

Figure 1. Central part of an axial piston unit with variable
displacement

In Section 2, we present a literature review that reflects the
current state of research. Section 3 describes the methodology
and experimental setup we used to acquire our data. Section 4
depicts the data-driven analysis leading to Section 5, the re-
sult presentation. It is followed by Section 6 and Section 7,
where we put them into context as well as deriving further
investigation steps.
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2. LITERATURE REVIEW

As APUs are a major component in drive systems, several
authors have dealt with fault detection and diagnosis in hy-
draulic pumps, most of them using a methodology based on
vibration signals for the assessment. Physic based approaches
are present (Hast, Findeisen, & Streif, 2015), (Bayer & Enge-
Rosenblatt, 2011b) and (Bayer & Enge-Rosenblatt, 2011a),
but data-driven approaches are far more common due to the
high complexity of the systems and non-linear effects due to
viscous friction and contacts (Lan et al., 2018). During our
research, we investigated 39 papers and articles in the research
area of fault detection and diagnosis in hydraulic pumps, from
which 72% make use of vibration signals, 33% use pressure
signals and 20% state that volumetric flow rate is a quantity
with informative content.

Among them are (Casoli, Pastori, & Scolari, 2019), who
present a diagnostic approach based on time and frequency
features in combination with neural networks and support vec-
tor machines (SVM) for the fault types abrasion on valve plate,
cavitation erosion, slipper wear and cylinder wear. Further, a
multi-layered diagnostic approach is presented by (Du, Wang,
& Zhang, 2013). Together with the vibration power spectrum,
they use pressure spectrum analysis and leakage flow rate to
develop a rule-based method. The fault types are distinguished
between slipper clearance, swash plate eccentricity, roller bear-
ing wear, insufficient inlet pressure and abrasion of valve plate.
Important to mention, that they use conventional signal anal-
ysis and statistical methods only, without any integration of
self-learning models. Part of their work is also an intensive
fault mechanism analysis and a study on fault occurrence, in-
tensity and detection probability in the aerospace domain for
hydraulic pumps. Regarding the slipper clearance, they use
12 different levels of fault intensities. However, a sampling
rate of 4 kHz is inadequate for measuring vibration signals
in hydraulic pumps, as demonstrated by (Torikka, 2011) who
found that the high-frequency content of the vibration signals
holds critical fault information that is not captured by this low
sampling rate.

Another work from (Ding, Ma, & Tian, 2015) uses multidimen-
sional scaling for feature extraction and softmax regression
for classifying faults in a plunger pump. By doing so, they can
give probabilities to the predictions of the classification labels
for the faults. Helwig, Klein and Schütze (Helwig, Klein, &
Schütze, 2015) use a working cycle from an industry appli-
cation to identify and quantify faults in gear pumps, among
them degradation of a directional valve, internal pump leak-
age, gas leakage of diaphragm accumulator and aeration of
hydraulic fluid. With the use of a linear discriminant analy-
sis, they reduce the dimensionality and can optimize the class
separation. Another approach is presented by (Torikka, 2011),
who uses time-frequency domain features extracted with a
wavelet transformation. The classification results, produced

by Naı̈ve Bayes, support vector machine and neural networks
for single operating points yield in classification rates between
80% and almost 100%. One of the latest methodologies is
presented by (Maradey Lázaro & Borrás Pinilla, 2020), who
present a comprehensive review for 14 publications regarding
fault detection in axial piston pumps. They also develop a
new methodology for volumetric efficiency decrease based on
vibration signal acquisition, filtering, wavelet feature extrac-
tion, feature selection and artificial neural network training.
They study how the classification performance is affected by
different wavelet families and the choice of the classifier. As
classifiers, they train four different neural networks - an Ada-
line (linear transfer function), two nonlinear mapping (tansig
and logsig) networks and one multi-layer perceptron (softmax).
They also get test results with a very high accuracy between
83.3% and 100%. The sampling rate in (Maradey Lázaro &
Borrás Pinilla, 2020) and (Torikka, 2011) is 50 kHz.

From the analyzed sources it can be concluded that machine
learning approaches, which learn by extracting information
from data and pattern recognition, are advantageous in map-
ping indicator data in higher dimensional space data to fault
data patterns (Biggio & Kastanis, 2020). The higher dimen-
sional data space is usually formed by spectral analysis fea-
tures of the vibration signal. The main benefit of this is that
already slightly occurring faults can have an impact on the
vibration signal and hence enable early diagnosis while sen-
sors are relatively cheap and usually easy to apply onto the
housing.

However, the mentioned sources suffer from one or more
drawbacks. One major limitation which hinders the transfer to
field applications is that the variability of operating conditions
– mainly caused by different load profiles and their effect on
the condition indicators – are not considered. As current state-
of-the-art sensing is still done with sampling rates only up to
50 kHz, the indicators in these frequency bands are masked by
loading profile artifacts and often order tracking or filtering out
frequencies from other stimulation systems (e.g. diesel engine)
needs to be implemented. This can need a lot of computing
power on sensors or processing devices. Therefore, it remains
unclear whether the high-frequency signal components are a
better condition indicator in terms of generalization ability
among different fault types and independence of the loading
characteristics. Another point is the use of supervised learning
algorithms that suit perfectly to test-bench scenarios where
all the necessary data patterns can be acquired. As mentioned
earlier, unsupervised or semi-supervised algorithms which can
be used for anomaly detection, are more field-orientated, as
they benefit from the significantly higher proportion of healthy
pump data.

Our goal is to address those key-challenges, for which we
propose a methodology for investigating:

1. Identify broadband condition indicators for axial piston
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pumps.
2. Show how feature behavior for the whole operating pa-

rameter space influences the condition indicators.
3. Investigate the suitability of high-frequency condition

indicators in frequency range up to 500 kHz for two dif-
ferent fault types.

4. Investigate how the faults’ detectability is influenced by
different fault intensities.

5. Exemplarily show how the position of the sensor influ-
ences the results.

6. Compare different sensor types and different frequency
ranges for their suitability to develop anomaly detection
models out of them.

3. EXPERIMENTAL DESIGN

In the following section, the experimental setup and data ac-
quisition process is described in detail.

3.1. Axial piston pump and operating points

In this work we characterize the operating behavior of an
APU (a Bosch Rexroth A10VSO28) as a combination of the
shaft speed, the swivel angle and the pressure in the hydraulic
circuit. A single combination of these three parameters we
define as an operating point. The pressure-flow-controller
and a load valve, representing the hydraulic resistance in the
circuit, enable us to set any combination within the pump’s
operating specification.

While in industrial applications these operating points usually
are fixed to a specific cycle, in mobile machinery domain they
can vary regarding the load and driver’s behavior. Therefore,
we use a stochastic test plan to sample the operating parame-
ters’ combinations in order to depict the functional relationship
to the signal characteristics. The sampling technique is Latin
Hypercube Sampling (Siebertz, van Bebber, & Hochkirchen,
2017), a statistical method to maximize the minimum distance
between points within predefined intervals.

By doing so, we receive 96 operating points within the inter-
vals over the three-dimensional operating space. The limits
for sampling are listed in the following table (detailed oper-
ating points can be found in Table 4 in the appendix). On
the test-bench, the order of the operating points is random-
ized to prevent our dataset from having order-induced effects.
Each operating point is held for 15 s and 10 s are given for the
transition to the next operating point.

Table 1. Operating space limits

Quantity Min Max
Shaft speed [min

�1] 500.00 3000.00
System pressure [bar] 20.00 280.00
Swivel angle [�] 1.77 17.70

From a methodological point of view, this sampling technique
can be extended by more dimensions (oil temperature, differ-
ent hose lengths etc.) and is especially suitable when a lot of
parameters influence the data acquisition process.

3.2. Measurement Setup

For data acquisition step we use a variable displacement ax-
ial piston pump as the unit under test. The corresponding
equipment we use for logging the data is an imc CronosFlex
standard data acquisition system and an imc EOS high-speed
measurement device. All experiments are conducted on an
acoustic test-bench, which provides vibration decoupling from
other vibrating elements. The test fault order was random-
ized and fixture installation was performed using a torque
wrench to minimize effects on testing. In addition, we run the
cycle three times in healthy condition in order to assess the
repeatability of the test-bench measurement.

Figure 6 in the appendix depicts the different sensor positions.
The piezo-ceramic patch transducers for the broadband indica-
tors (type Invent K025) are attached with specific glue to the
housing surface of the pump and labeled with a tag for better
visibility. We mount one sensor in a radial position on the
housing (position 1), close to swash plate. One has its normal
vector in an axial direction close to the port plate and one is
located at the edge of the port plate, further from the fault
source (position 3, normal vector pointing in radial direction).
The sampling rate here is 1MHz. In case of a piezo-ceramic
patch transducer, the electrical signal is proportional to the
applied deformation of the transducer (Physik Instrumente,
2012). The deformation of the surface is due to the force exci-
tation in the axial piston pump and the structure that conducts
structure-borne sound. This is mainly caused by the sudden
change of pressure (compression) when piston chambers filled
with low suction pressure fluid enters the high-pressure kidney
of the valve plate.

The other positions depicted in Figure 6 are piezoelectric uni-
axial accelerometers (type Endevco 7295B-25) where we set
the sampling rate as 20 kHz. Anti-alias filtering is applied to
all six vibration signals to prevent disturbances from higher
frequencies.The lowpass filter cut-off frequency is the half of
the sampling rate. Furthermore, and according to Figure 2, we
collect the quantities of the pump’s swivel angle (↵), the pres-
sure (pHD) occurring directly at the discharge connector and
the shaft speed (n). These three dimensions describe the oper-
ating point of the pump and are logged synchronously. During
the whole data acquisition process the hydraulic oil tempera-
ture remains constant at 50 �

C. Figure 2 shows the hydraulic
circuit scheme, which includes the individual subsystems of
the pump and the controller.
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Figure 2. Hydraulic circuit scheme

3.3. Fault types and different fault intensities

In this study, two different fault types are exemplarily investi-
gated – loose slipper, and cavitation erosion on valve plate and
on cylinder. The fault types are selected based on different as-
pects, the first one is based on a survey where field technicians
were interviewed about the relative frequency of occurrence of
fault types in field applications and about their economic and
safety relevance. The second aspect is the capability to repro-
duce faults on the test-bench with artificially generated fault
intensities, since reproducing time-history datasets is hardly
realizable because of the high test bench costs and difficulty
to reproduce isolated and accelerated fault mechanisms. Note,
that all PHM stages in the analysis part make more sense for
continuously developing faults, since abrupt failures cannot
be predicted.

The first fault type, loose slipper, which is depicted in Figure 3,
describes an increasing clearance in the slipper-piston pairing
when an increased tensile load is occurring in open-circuit
applications i.e. due to low suction-pressure, critical operation
or wrong oil type. As a result, the softer material of the slipper
shoe is deforming more and more and, thus, the play between
piston and slipper increases, until the slipper is pulled off.
This causes a failure of the pump immediately or within a

Slipper

Slipper clearance Piston

Figure 3. Slipper clearance sketch

short period of time. As additional effects, this fault type
also induces higher internal leakage, lower performance and a
difference in vibration signals (Du et al., 2013). The different
stages (fault extends) that we use for our study are listed in
Table 2. Here, the fault state EE depicts the APU in an healthy
state (run-in condition of the tribological pairings), whereas
AS1 (beginning clearance), AS2 (intermediate clearance) and
AS3 (right before failure) are the fault states.

Table 2. Slipper clearances

Fault Min [mm] Max [mm] Avg [mm]
EE 0.018 0.031 0.023
AS1 0.043 0.082 0.060
AS2 0.120 0.178 0.147
AS3 0.173 0.234 0.199

The other fault type, cavitation erosion, occurs both on the
valve plate and the cylinder and is caused by a pressure dif-
ference between the individual cylinder chambers and the
system pressure port. When the cylinder is entering the system
pressure kidney of the valve plate, this pressure difference is
compensated by a volumetric flow into the cylinder. Because
of the sudden drop in pressure at the tip of the notch the hy-
draulic liquid outgases, with the bubbles being sucked into the
cylinder chamber with the flow and cavitating there. When
this is happening close to the cylinder wall, material is eroded.
Details can be found in (Kleinbreuer, 1979) and (Backe &
Kleinbreuer, 1981).

If this fault type occurs, this results in a geometry change of
the valve plate and hence in a change and shift in the opening
area of the cavitated cylinder chamber over time, i.e. angle of
shaft rotation. Usually, also the valve is affected. To model this
effect in the test-bench setup we prolonged the noise-reducing
notch at the valve plate by the factor of 1.37. All in all, this
means that the temporal excitation inside the pump changes
and, thus, a different structure-borne noise behavior can be
observed.

4. DATA-DRIVEN ANALYSIS

Based on the measurements described in Section 3.1, data-
driven analysis will be performed to find answers to the key
challenges formulated in Section 2. To do this, it is first
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necessary to preprocess the data. Features are then extracted
which allow conclusions to be drawn about the fault condition
of the APU. Finally, artificial intelligence (AI) based models
are trained which use the calculated features as a basis for the
fault assessment.

4.1. Data preprocessing

As described in Section 3.2 the measurement consists of a
series of operating conditions which are held for 15 s and fol-
lowed by a transition phase of 10 s. Due to the fact that the
operating conditions change during the transition phase the
latter is removed before the further analysis. However, the
sequence of transitional and steady phases induces another
challenge. In case of an increase of either the system pres-
sure, the shaft speed or the swivel angle the resulting system
pressure overshoots its nominal value. It takes time until the
system pressure reaches a steady state and its deviation from
the nominal value is reduced to a minimum. This damped
oscillation leads to not comparable conditions during the os-
cillation phase which induces the need to determine sections
in the time series which are comparable across measurements.
Hence, it is not possible to use the point in time where the
nominal value reaches the next steady phase for detecting the
begin of the next interval with comparable conditions. Rather
it is necessary to determine the end of the oscillation phase by
observing the system pressure in order to define the point in
time when the axial piston pump has reached the next steady
state. For this purpose, a criterion is defined according to
Equation 1, which acts as a necessary boundary condition to
identify the steady state. This criterion evaluates the relative
deviation between the measured pressure (pm) and the nom-
inal pressure (pn). Here, however, the measured pressure is
additionally reduced by the median of the pressure during the
last second before the end of the operating point (⌧ ). This
procedure takes into account the fact that the system pressure
deviates from the nominal pressure even in steady state, with
the magnitude of the deviation caused by the test rig settings
and depending on the set operating point as well as the fault
pattern.

|pm [t]�median (pm [⌧ � 1, ⌧ ]) |
pn

< 0.01 (1)

In addition to this criterion it is checked if the pump reaches a
steady state within the 15 s of the operating point. If there is at
least one APU that did not meet this criterion, the correspond-
ing operating point is excluded from the following analysis.
Given this procedure the operating points 32, 57, 58, 70, 78
and 90 are excluded.

4.2. Feature extraction

Feature extraction is used to derive characteristic properties
of the time series, which provide information about the fault
condition of the APU. The influence of the broadband analysis

in the frequency range up to 500 kHz must also be investigated
(key-challenges 1 and 3). This requires high-resolution data in
the frequency range.

For an initial identification of potential broadband features,
we investigate how the power spectral density changes over
the entire frequency range depending on the respective fault
type and its expression in case of the K025 sensors. In order to
be comparable with the analysis for all operating conditions,
first the minimum duration of the steady states of all operating
conditions is determined. This value is 1.92 s for the present
data set. For each operating condition for which a steady
state was found, the power spectral density is calculated over
this duration, starting from the end of the steady state of the
operating condition. Based on the measurements of the healthy
APU, the expected value of the power spectral density per
frequency band over all operating conditions as well as the
deviation of the expected value of the power spectral density
between the healthy APU and the respective faulty APUs is
determined. This shows that in some frequency bands there are
differences between the expected value of the power spectral
density for healthy APUs and for faulty APUs (see Figures 8,
9 and 10 in the appendix).

For the determination of the broadband damage indicators,
the covered frequency range is first subdivided into subranges.
Each subrange is in turn broken down into individual fre-
quency bands with a defined bandwidth (see Table 3). Within
each frequency band the total power of the signal is determined
based on the power spectral density (Bauer & Puente León,
2017). With regard to the training of a machine learning model,
it is necessary to split the time series into non-overlapping seg-
ments, which on the one hand contain the relevant features
and on the other hand are available in a sufficiently high num-
ber. The non-overlapping segments are necessary to prevent
information leakage between training and test data. For this
purpose, the time series of each operating condition is split
into segments of 0.1 s, starting with the end of the presence
of the operating condition, as long as the APU is in a steady
state. This splitting results in a resolution in the frequency
domain of 10Hz as well as a number of training samples for
the healthy condition of 57 to 450 per operating point.

Table 3. Frequency band definition and resolution

Start frequency
[Hz]

End frequency
[Hz]

Bandwidth
per frequency

band [Hz]
100 1000 100

1000 10 000 1000

10 000 500 000 10 000

4.3. Anomaly Detection

Based on the key-challenges 2, 4, 5 and 6, there is a need for
a targeted comparison of the fault detection performance of

6
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the anomaly detectors, related to the senor, sensor position,
operating condition, fault type and fault intensity. Basically,
the training of the anomaly detectors is done separately ac-
cording to the sensor and the sensor position based on the data
of the healthy condition. Due to the different occurrence of the
operating conditions, there is a risk that an overarching model
would not correctly represent infrequently occurring operating
conditions due to insufficient information being available and
would therefore produce poorer results for these operating
conditions. Hence, when training the anomaly detectors, an
additional distinction is made according to the operating con-
dition. Consequently, a separate anomaly detector is trained
for each sensor, each sensor position and each operating con-
dition. Additionally, a transformer is designed based on the
training data that removes the mean of each feature and scales
the variance to value 1.

There exists a wide range of methods that are used for anomaly
detection such as one-class SVM (Schölkopf, Platt, Shawe-
Taylor, Smola, & Williamson, 2001), Local Outlier Factor
(Breunig, Kriegel, Ng, & Sander, 2000), Isolation Forest
(Liu, Ting, & Zhou, 2008) and (Liu, Ting, & Zhou, 2012),
Principle Component Analysis (PCA) (Hotelling, 1933) and
Auto-Encoders (Kramer, 1991). The choice of the underlying
model is restricted by the amount of available samples of each
sub-dataset. Taking this and the degree of explainability into
account, a model based on PCA is chosen to represent the
healthy condition of the APU. The anomaly detection with a
PCA is performed as follows:

1. Determine a suitable number of principle components.
2. Project the input data onto the selected principle compo-

nents.
3. Transform the data back into a space with the same di-

mension as the input feature space.
4. Measure the reconstruction error during the training.
5. Determine a threshold which acts as a decision boundary

during the inference.
6. Compare the reconstruction error for each sample with

the predefined threshold to determine if the sample is
anomalous or not.

The number of principle components is determined by using
a scree-plot (Cattell, 1966). Usually the scree-plot shows
the eigenvalue of each principle component. The number
of principle components is chosen by analyzing the graph
visually and determining the number of principle components
where the eigenvalues start to level off. This can be suitable in
cases where the number of principle components is determined
for one model. In the given case the eigenvalues vary for each
of the 576 models. It is cumbersome to check model by model.
So, there is the need to normalize the eigenvalues and set a
threshold for all models to determine the number of principle
components. Hence, the added explained variance ratio is
calculated for each principle component (�⇢C,j) based on its

singular value (s). This is shown in Equation 2, where M is
the dimension of the input feature space.

�⇢C,j =
s2
j
� s2

j�1P
M

i=1 s
2
i

, j = 2, ...,M (2)

As a result the threshold for the added explained variance by a
single principle component is set to 0.02 in case of the K025
sensors and to 0.06 in case of the Endevco sensors. Each oper-
ating condition leads to a different added explained variance
given the number of principle components. An example of the
development of the added explained variance distributions per
principle component for the Endevco sensor at position 2 is
shown in Figure 4. In this case the added explained variance
ratio starts to level off between the fourth and eighth principle
component depending on the operational condition. The max-
imum amount of principle components for which the added
explained variance ratio exceeds the threshold is used for the
further analysis.

Figure 4. Added explained variance ratio for the Endevco
sensor at position 2

When projecting the input data onto the selected principal
components and then transforming back into a space with the
same dimension as the input feature space, the input data can
not be reconstructed exactly. If the matrices for the transfor-
mations are determined based on data representing only the
healthy condition of the APU, it can be assumed that the recon-
struction error increases when data of the faulty conditions is
processed. An anomaly exists, when the reconstruction error
exceeds a threshold based on the reconstruction error during
training. The reconstruction error is determined by calculating
the root mean squared error (RMSE) (see Equation 3), with
the number of samples (N ), the index (t), the measured value
(xt), the reconstruction of the measured value (x̂t) and the end
of the measurement (T ).

RMSE =

sP
T

t=0 (x̂t � xt)
2

N
(3)
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If there is available only data of the healthy condition it is
tempting to set the threshold to separate normal from anoma-
lous samples to the maximum reconstruction error during the
training. This should result theoretically in 0% false positive
rate (FPR). Reducing the threshold on the one hand increases
the sensitivity of the anomaly detector, but on the other hand
increases the amount of false alerts. In the present case the
available data of the faulty APUs is used to determine an opti-
mal threshold to tell anomalous samples apart from samples
which depict the healthy condition. Therefore, the percentiles
are varied in unit steps in the range from 100 to 90 which re-
sults in a maximum false positive rate of 10%. Based on this,
there are 11 thresholds from which the most suitable one is
determined. For each model, false positive rate, fault type and
fault intensity the Matthews Correlation Coefficient (MCC)
(Matthews, 1975) is calculated. Here, only the data of the
healthy condition and one fault type as well as fault intensity
is used. Given the MCC it is determined which false positive
rate leads to a maximum MCC for the analyzed combination
of model, fault type and fault intensity. Finally, the overall
false positive rate is chosen which has the highest occurrence
over all models.

4.4. Feature importance

Based on the models trained in advance, the importance of
the respective features is examined. The Permutation Feature
Importance (Breiman, 2001) is used for this purpose. This
measures how much the performance of a model is reduced if
the samples of a feature are mixed. Due to the mixing, the con-
nection to the other values within the sample is broken. Thus,
it becomes quantifiable how strongly the model considers a
certain feature.

In order to evaluate all features, each feature is individually
shuffled and subsequently the performance decrease of the
model is calculated. To reduce random effects when mixing
the samples, the process of mixing and evaluating is repeated
30 times for each feature. Finally, the mean value of the
performance decrease is determined from all 30 repetitions.
This analysis is performed separately for each model, always
using the data of the healthy units and one faulty unit each.
Although this gives seven results for each model, it opens up
the comparison with the preliminary analysis of the features
as well as the possibility to explain differences with respect to
the MCC.

5. RESULTS

Figure 8, 9 and 10 in the appendix show the differences of
the signal power for the frequency range of the piezo-ceramic
patch transducers for the different positions. The mean value
for all operating points is depicted. Position 1 shows a strong
deviation for the cavitation erosion intensities 3 and 4 between
300Hz and 1 kHz as well as a significant increase in the ex-

pected signal power between 200 and 300 kHz. Especially
for the increased slipper clearance the deviation is high and
clearly distinguishable from the cavitation erosion and the
healthy pump.

For position 2, which is the sensor with the closest distance to
the valve plate and, thus, with the closest distance to the cavi-
tation erosion fault, we can see an increase of spectral power
almost in the whole spectrum. Furthermore, Figures 9 and 10
also show the dependency for different intensities of cavitation
erosion, serving as an indicator that the power level is not only
dependent on the frequency band but also dependent on the
intensity of fault. For the fault type cavitation erosion, position
2 and position 3 show the best decision boundary in power
level in the frequency range between 5 to 10 kHz and 200 to
500 kHz. In positions 2 and 3 the fault type loose slipper is
hardly distinguishable from the healthy pump behaviour.

The threshold which is used to tell an anomalous sample apart
from a sample which represents the healthy condition is de-
termined by evaluating the occurrence of false positive rates
that maximize the MCC for each model, fault type and fault
intensity. As described in Section 4.3 each model corresponds
with a sensor and a sensor position as well.

Figure 5. Distribution of false positive rates that maximize the
MCC for each model, fault type and fault intensity

Figure 5 shows the counts for each false positive rate which
maximizes the MCC for each sensor, sensor position, fault type
and fault intensity. For both sensors (Endevco and K025) a
false positive rate of 0% leads to an optimal MCC, in the most
cases. Therefore, the maximum reconstruction error during
training is chosen as the threshold to separate the healthy
condition from the anomalous condition, during the further
analysis. It can also be seen in the figure that in case of the
Endevco sensor higher false positive rates occur more often
compared to the K025 sensor. This indicates that the models
which are based on the Endevco sensor have difficulties to
mimic the healthy condition as well as the models which are
based on the K025 sensor.

Figure 11 in the appendix depicts in detail how well the
anomaly detection algorithm works depending on different
operating conditions, fault types, fault intensities and sensor
positions. In general, two effects are particularly evident for
the left heatmap column. First, positions 1 and 2 have the
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highest detection rates, while position 3 falls behind for both
loose slipper and cavitation erosion. Figure 12 underlines this
observation by depicting the average detection rates and their
standard deviations. Second, the MCC is generally higher for
the cavitation erosion than for the loose slipper. Regarding the
fault intensities, the MCCs also increase with the increasing
faults. Interestingly, this is not true for every operating point,
as there are a few ones where the detection rate for the initial
fault intensity (S1) is higher than the advanced intensities (S2,
S3 and S4). Also we can observe one outlier in the barplot for
the intensity S1 in cavitation erosion at position 2, that does
not follow this trend. For the Endevco sensors, the positions
1 and 2 do not have a significant effect on the MCC values,
which also matches with the observations and conclusion of
(Ramdén, 1998).

For the piezo-ceramic patch transducers the results differ in
several aspects, first of all showing higher overall detection
rates than the Endevco comparison group. Second, the posi-
tion here makes a significant difference for the loose slipper
fault type, indicating that position 1, which has the shortest
transfer path to the actual fault, has higher detection rates for
all intensities than in the other two positions. For position 2
and 3 an increasing trend in MCCs for the increasing slipper
clearance is also visible. For position 2 and 3 the standard
deviation bars are also higher, indicating, that the detection
rate in terms of MCC is also depending on the operating point.

For the cavitation erosion, detection rates are on a high average
level in general, only a few operating points with a high shaft
speed (6, 7, 9 and 34) are out of line for the K025. Comparing
both fault types for both sensors and all operating conditions,
the cavitation erosion fault type can better be detected.

The comparison of the preliminary analysis as well as the
permutation feature importance of the K025 sensors shows,
matching results at position 1 (see Figures 8 and 16 in the
appendix). For positions 2 and 3, the differences between
the healthy condition and the various intensities of cavitation
erosion are better visible in the preliminary analysis than in
the case of the permutation feature importance, especially in
the frequency range above 100 kHz (see Figures 9 and 17 as
well as Figures 10 and 18 in the appendix). The models for
positions 2 and 3 based on the data of the K025 sensor rely
only to a small extent on these frequency ranges and make
their decisions primarily on the basis of the frequency ranges
up to 40 kHz for position 2 and the frequency ranges up to
2 kHz for position 3. The models based on data from the
Endevco sensors primarily consider the frequency range up to
2 kHz (see Figures 13, 14 and 13 in the appendix). Frequency
ranges above this value play only a subordinate role for the
models.

6. DISCUSSION

In general, the detection rates of our study are within the
range of the literature sources. We also have shown, that the
condition indicators depend on the operating point, while the
detection rates of our anomaly detection rates are within a
close range within the specified operating space. The higher
detection rates for cavitation erosion can be explained by the
exciting cause of the structure-borne noise. Here the signal
characteristics’ change are not caused by a changing momen-
tum due to two bodies colliding, instead here the pressure
and, thus, the force profile in the cylinder change due to the
caviation damaged geometry and resulting in an different time
profile in the housing’s surface vibration. Since the axial ex-
citation due to pressure is the main contribution to pump’s
vibration according to (Münch, 2021), it is plausible that a
change here causes a larger effect. The loose slipper, which in
theory causes a clattering effect, is masked by this excitation.
Hypothetically, this effect can change when increasing the
size of the investigated pump, since larger pump models have
greater mass (signature of clearance can be stronger) but are
not necessarily exposed to higher pressure profiles.

While investigating the reason for significantly lower MCCs
at position 3 across both fault types and all fault intensities,
we found out, that the obtained power spectra are strongly
masked by noise which means that the piston induced fre-
quency and their harmonics are not as clear as they are in
the other positions. We assume, that this is either due to this
specific position, meaning that the sensor is placed in a node
of the structural movement. Another plausible reason might
be impulsive shocks in this direction (e.g. caused due to re-
flexions of the pressure pulsation) that result in a broadband
frequency excitation and masking the signal part. Since it is a
one-directional sensor, it is also possible that it was pointing
in a direction where less deflection happens.

As the evaluation of the difference of the expected signal
power between the healthy units and the faulty units shows
that an identification as well as a distinction of both types of
fault is only possible at sensor position 1 and in the frequency
range between 200 and 300 kHz. At the other positions only
the cavitation erosion can be identified. This is underlined
by the results of the anomaly detection, which show that the
cavitation erosion at these positions is better detected by the
K025 sensors than the loose slipper fault. This shows that the
position of a sensor can have a critical impact on the detection
rate of fault and contrasts with (Ramdén, 1998). Moreover,
this result is underlined by the similar MCC values of both
sensors at position 2, since at this position both sensors are
positioned close to each other. However, an analysis of the
permutation feature importance of both sensors shows that
the K025 sensor at position 2 hardly considers the frequency
ranges above 40 kHz. Compared to the difference in expected
signal power, however, this range proves to be informative
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with regard to cavitation erosion. Hence, it is reasonable to
conclude that taking a higher frequency range into account
would have caused better detection results. This hypothesis
is underlined by the nearly perfect MCC values of the K025
sensor, especially in combination with the results of the per-
mutation feature importance for the K025 sensor at position 1,
since only at this position also features above 100 kHz were
evaluated as particularly relevant by the models.

An open question that still remains is, how assembly and
manufacturing tolerances affect the detection rates in this mea-
surement setup and how we can verify that the fault and not
the state of installation or other external effects have actually
been measured by the sensors and recognized by the algorithm.
With our experimental design, we cannot completely refute
this, but the increasing detection rates in the piezo-ceramic
patch transducers and the order randomization strongly indi-
cates that there is causality between the effects in the data and
the fault. With more test samples and a larger dataset in terms
of more variance, we could statistically underline this further.

7. CONCLUSION

We have shown that the signal power in a defined frequency
band changes as a function of the damage to an APU and,
thus, represents a broadband condition indicator of an APU.
Furthermore, it is obvious that the difference between the
healthy and faulty APUs depends on both the analyzed fre-
quency range and the operating condition. Provided that data
in the frequency range above 100 kHz is available and suffi-
ciently accounted for by the model, the influence of operating
condition on the condition indicator decreases. This shows
that, with regard to the analyzed fault types cavitation erosion
and loose slipper, an analysis in the frequency range up to
500 kHz is beneficial. Furthermore, we have shown that more
severe fault intensities are easier to detect than less severe
ones. However, the trained anomaly detectors are already able
to detect the smallest intensity of both types of fault, whereby
the positioning of the sensors is a major influence. If the sen-
sors are positioned optimally and the frequency range above
100 kHz is taken into account, even the lowest level of fault is
detected correctly in over 99% of cases.

Finally, our results show, that using high-frequency condition
indicators and piezo-ceramic patch transducers are suitable for
PHM applications. In our case study, they show less operating
condition dependence than low frequency signals and show
higher detection rates than using piezoelectric accelerometers.
With the proposed method and measurement setup we are
now able to investigate multiple circumstances including fault
diagnosis, quantification and the dependency in the dimen-
sions of sensor technology and positioning. We are keen to
evaluate this setting in a mobile machinery setup to verify the
robustness of our methodology in its final application.
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APPENDIX

Experimental Design

Table 4. List of operating points
Shaft speed

[min
�1]

Pressure [bar] Swivel angle
[�]

500 20 10

500 20 100

500 280 100

500 280 50

3000 20 10

3000 20 100

3000 280 100

3000 280 30

2497 181 90

1246 147 60

1140 133 50

704 126 100

931 56 70

1364 249 90

2523 145 80

2305 242 20

2921 210 40

2122 169 40

1297 188 50

1746 77 60

2244 177 80

2751 246 80

779 259 70

970 272 60

1230 40 50

1283 270 70

2555 152 70

2055 41 80

504 60 90

1678 87 10

1639 65 70

1396 215 30

2705 251 90

2952 239 90

1757 195 80

1838 228 20

1010 52 60

2438 156 50

1063 36 20

1868 231 40

2002 106 20

1509 234 40

2266 206 90

1790 101 80

2396 73 20

2223 105 100

Shaft speed
[min

�1]
Pressure [bar] Swivel angle

[�]
2871 141 90

2320 162 20

1827 128 50

1931 219 70

1919 31 10

2836 120 40

1489 70 50

2076 116 80

1023 95 60

2368 26 20

856 202 30

616 199 50

1172 238 30

1208 130 100

909 189 30

1120 192 40

2982 112 10

1967 89 90

1617 204 80

1095 26 40

2905 268 50

2159 185 70

2091 53 70

885 264 40

1601 142 30

2488 261 30

740 274 80

2431 80 70

2576 167 30

658 22 70

589 63 20

559 109 30

1532 224 60

2649 92 50

1329 174 50

1450 123 40

793 217 60

2018 278 40

1696 136 10

2179 44 90

828 49 60

2682 97 40

1570 84 90

698 256 50

1437 153 60

2608 176 30

2823 34 100

534 76 100

2778 226 60

2738 163 30
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K025_Pos1 K025_Pos2

Endevco_Pos1
Endevco_Pos2

Endevco_Pos3

K025_Pos3

Figure 6. Measurement setup with piezo-ceramic patch transducers and conventional vibration sensors

EE - 
healthy cylinder

KS1 -
beginning fault

40°

KS2 - 
medium fault

KS3 - 
increased fault

KS4 - 
severe fault

Ø2 Ø3 Ø4 Ø5

Figure 7. Cylinder with faults. Left - healthy cylinder, increasing fault from beginning (KS1) to severe (KS4)

Results

Feature extraction

Figure 8. Expected signal power difference for K025 at position 1
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Figure 9. Expected signal power difference for K025 at position 2

Figure 10. Expected signal power difference for K025 at position 3
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Anomaly Detection

Figure 11. Comparison of the MCC for both sensors and fault types for varying positions, fault intensities and operating
conditions

Figure 12. Comparison of the MCC for both sensors and fault types for varying positions and fault intensities
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Feature importance

Figure 13. Permutation feature importance for the Endevco sensor at position 1

Figure 14. Permutation feature importance for the Endevco sensor at position 2

Figure 15. Permutation feature importance for the Endevco sensor at position 3
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Figure 16. Permutation feature importance for the K025 sensor at position 1

Figure 17. Permutation feature importance for the K025 sensor at position 2

Figure 18. Permutation feature importance for the K025 sensor at position 3
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