
Explainable Models for Multivariate Time-series Defect
Classification of Arc Stud Welding

Sadra Naddaf-Sh1, M-Mahdi Naddaf-Sh1, Maxim Dalton2, Soodabeh Ramezani2, Amir R. Kashani2, Hassan Zargarzadeh1

1 Phillip M. Drayer Electrical Engineering Department, Lamar University, Beaumont, Texas, USA
snaddafsharg@lamar.edu
mnaddafsharg@lamar.edu

h.zargar@lamar.edu

2 Artificial Intelligence Lab, Stanley Black & Decker, USA
maximdalton@sbdinc.com

soodabeh.ramezani@sbdinc.com
amir.kashani@sbdinc.com

ABSTRACT

Arc Stud Welding (ASW) is widely used in many indus-
tries such as automotive and shipbuilding and is employed
in building and jointing large-scale structures. While defec-
tive or imperfect welds rarely occur in production, even a
single low-quality stud weld is the reason for scrapping the
entire structure, financial loss, and wasting time. Preventive
machine learning-based solutions can be leveraged to mini-
mize the loss. However, these approaches only provide pre-
dictions rather than demonstrating insights for characterizing
defects and root cause analysis. In this work, an investigation
of defect detection and classification to diagnose the possi-
ble leading causes of low-quality defects is proposed. More-
over, an explainable model to describe network predictions
is explored. Initially, a dataset of multi-variate time series of
ASW utilizing measurement sensors in an experimental en-
vironment is generated. Next, a set of techniques to leverage
synthetic measurements, reference, and residual signals, and
generate a residue dataset, are proposed. Finally, the archi-
tecture of classification models is optimized and by Bayesian
black-box optimization methods to maximize their perfor-
mance. Our best approach reaches an F1 score of 0.84 on
the test set. Furthermore, an explainable model is employed
to provide interpretations on per class feature attention of the
model to extract sensor measurement contribution in detect-
ing defects as well as its time attention.

Keywords: Time Series, Arc Stud Welding, Machine Learning,
Deep Learning, Defect Classification, ICA, Explainable AI,
Bayesian Optimization, Root Cause, Data-Centric AI.
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1. INTRODUCTION

Arc Stud Welding (ASW) is a standard process in many in-
dustrial production lines, such as the automobile industry, and
shipbuilding(Samardžić, Klarić, & Siewert, 2007), where a
metal fastener called Stud is welded to a workpiece with an
electric arc (Al-Sahib, Ameer, & Ibrahim, 2009). The process
includes heat transfer, mass transfer, metallurgical reaction,
element diffusion, micro-structure change, and variation of
mechanical properties, all of which make arc stud welding a
complicated process (Hildebrand & Soltanzadeh, 2014). Ad-
ditionally, the process is characterized by high currents and
short weld times. As the process is used in high-volume man-
ufacturing production lines and is applied for structures with
numerous stud welded joints, defective or low-quality welds
are inevitable. Therefore, a single defective weld leads to the
rejection of an entire large-scale structure which imposes sig-
nificant extra cost and time on the manufacturing process in
high volumes (Al-Sahib et al., 2009; Hildebrand & Soltan-
zadeh, 2014). Hence, root cause analysis of low-quality or
defective welds can result in minimizing disposed structures,
financial loss, and optimization of the production line. Sim-
ilar approaches (Heidarydashtarjandi, Prasad-Rao, & Groth,
2022) can be further applied to optimize costs.

Many factors result in a low-quality or defective weld stud,
including weld area surface condition or material, inappro-
priate weld settings, malfunctioning equipment, and inexpe-
rienced welding operators (Chambers, 2001). While many
are being avoided by appropriate supervision of the process,
predicting a possible defective or substandard stud leads to
saving time and costs. Furthermore, detecting precise causes
helps experts prevent further issues. While in post-weld Non-
destructive testing (NDT) X-ray imaging and automated anal-
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ysis are applicable (S. Naddaf-Sh et al., 2022; M.-M. Naddaf-
Sh et al., 2021), such techniques are not practical for compli-
cated structures in automotive where uncounted weld studs
appear in hard-to-access areas. Hence, the monitoring of the
process and preventive techniques are more applicable. How-
ever, such data and the design of the experiment are not pub-
licly available, and most welding setups are only equipped
with voltage and current sensors, where no additional sensors
are leveraged for monitoring.

In this study, a set of experiments are designed to syntheti-
cally generate defective arc stud welds while various sensors
monitor and record welding parameters to generate a dataset
of multivariate time-series (MTS) measurements for ASW. To
enhance the detection process, a set of reference signals are
logged, and synthetic measurements are generated with resid-
ual signals to shape a residue dataset. Finally, enhancements
of the framework are empirically shown, and a comparative
analysis of the methods for the classification of defects is in-
vestigated and presented.

Contributions of this work are as follows:

• An extended dataset of experiments is generated based
on four sensor measurements during ASW for the pur-
pose of monitoring the operation.

• A new algorithm to calculate the mean approximation
of time-series signals and signal residuals is proposed,
leading to the enhancement of the overall processing and
classification model performances.

• A set of synthetic time-series measurements (e.g.,
Power) are generated and leveraged to provide enhanced
measurements for models and to improve defect (root
cause) classification results.

• A set of state-of-the-art classifiers are investigated
and optimized for both their architectures and hyper-
parameters employing Bayesian methods in order to
maximize the performance for the mentioned task. In
addition, a comparative analysis of their performance is
reported.

• Performance of an explainable deep MTS classification
model is investigated and optimized to provide interpre-
tation on how the model decides on features to classify
signals as well as its time attention.

The remainder of this paper is organized as follows. Section
2 described related works in this scope. Section 3 gives an
overview of the terms in the paper, the applied method for
synthetic measurement and residual generation steps as well
as network architectures. In section 4, the data preparation
and dataset, training, evaluation, as well as experimental re-
sults, are explained in detail. Finally, in section 5 a discus-
sion on performance is proposed, and in section 6, the paper
is concluded, and future improvements are presented.

2. RELATED WORK

In the past decades, few works are published for the enhance-
ment of the ASW process with AI-powered technologies. In
(Samardžić et al., 2007), an offline evaluation of parameter
distribution during ASW is performed for seven trials with
the purpose of common defect detection. Several experi-
ments with various welding conditions, such as a surface with
primer or rust, were designed, and parameters such as volt-
age, current, power, and resistance were measured. Results
based on statistical analysis illustrate that, in most abnormal
welding conditions, increased variation for voltage and cur-
rent for fewer cases, e.g., surface with primer, is observed.
The study is conducted by manual analysis of measurements.

In (Al-Sahib et al., 2009), quality monitoring and stability
of the ASW process are investigated. Moreover, methods
for real-time NDT for defect prediction are presented. Re-
searchers present two neural net designs for monitoring weld
quality. Welding Time, Welding Current Range, Workpiece
Thickness, and Stud Diameter are used as inputs for both net-
works. One network has two outputs of Welding Current Peak
Value and Torque at Failure, and the second network has a
single output of visual Inspection (either defective or not).
For both networks, a similar training set with only twenty
training data was used. In the end, the relationship between
the current peak and welding condition was observed and
proved the advantage of utilizing the current peak for mon-
itoring purposes. Moreover, employing these networks show
the reading of additional weld quality-related parameters. Fi-
nally, all the approaches are tested on a tiny dataset with less
than twenty samples, and none of them led to imperfection
classification. In another work, ASW joint connection sta-
tus is evaluated by ultrasonic technique (Dong et al., 2019),
where A-scan signals are manually analyzed through Wavelet
Packet. The authors concluded A-scan characteristics that re-
late to weak connection zones in stud welds.

More recently, researchers focused on addressing the imbal-
ance issue due to the significant rare occurrence of anomaly
cases for the task of fault prediction. In (Zhang, Jha,
Laftchiev, & Nikovski, 2019), the authors focus on propos-
ing a new loss function for a recurrent neural architecture that
handles imbalance and is specialized for multi-label fault pre-
diction. In another work (Ducoffe, Haloui, & Gupta, 2019),
Generative Adversarial Networks (GANs) are employed to
learn patterns of anomaly cases in the frequency domain.
Later, it is shown that Wasserstein GANs show significantly
lower reconstruction error in comparison with variational
Auto Encoder.

For supervised time series classification (TSC) and detec-
tion of MTS, many studies are done. In (Wang, Yan, &
Oates, 2017), Wang et al. presented a baseline for TS
classification. Three baselines are presented and compared
with older existing ones through 44 benchmark datasets.
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The baselines are Fully Convolutional Network (FCN),
Residual network (ResNet), and deep multilayer perceptron
(MLP). In most cases, these architectures outperformed older
methods such as Dynamic time warping (DTW) (Keogh
& Ratanamahatana, 2005), The bag-of-features framework
(TSBF) (Baydogan, Runger, & Tuv, 2013), and Bag-of-
SFA-Symbols (BOSS) (Schäfer, 2015). In (Serrà, Pas-
cual, & Karatzoglou, 2018), a universal encoder is proposed
that reaches state-of-the-art performance on MTS benchmark
datasets. Finally, In (Fawaz, Forestier, Weber, Idoumghar, &
Muller, 2019) a comprehensive review on the classification
of both univariate and MTS signals is done by applying both
mentioned architectures and a few other designs existing in
the literature with competing results on benchmark datasets.
The work illustrates that ResNet, FCN (Wang et al., 2017),
and Encoder (Serrà et al., 2018) outperform other designs for
MTS datasets. These models are appropriate choices for the
baseline of our work.

Although many of the available classification methods in
the literature have reached significant accuracy on bench-
mark datasets, a lack of accurate model explainability is dis-
cernible. In (Wang et al., 2017; Fawaz et al., 2019) class
activation maps (CAM) for univariate datasets are provided.
However, in view of architectural limitations, unique designs
are required to provide extended explanations for model be-
havior. In (Assaf, Giurgiu, Bagehorn, & Schumann, 2019),
an end-to-end explainable CNN design (MTEX-CNN) is pro-
vided to employ gradient-based methods for extracting the
time and feature attention of the network on MTS datasets.
Fauvel et al. redesigned the network for more accurate per-
formance in prediction results and also significantly has fewer
parameters (around ten times less) while boosting the accu-
racy of explanations of the model called XCM (Fauvel, Lin,
Masson, Fromont, & Termier, 2020). In this work, five mod-
els of MLP, FCN, ResNet, Encoder, and XCM are optimized
and evaluated for ASW defect classification.

3. FRAMEWORK

In an industrial production line, because of the complex-
ity and temporal compression of the process, gathering la-
beled data on defective welds is impractical. In fact, a non-
destructive examination of the entire welded structure is per-
formed afterward. Hence, the design of the experiment is
required to carefully simulate similar conditions to reproduce
common defective stud welds and generate a dataset of mea-
surements.

In this work, convolutional classification architectures with
novel residual signal and reference and synthetic measure-
ment generation of multivariate time-series sensor measure-
ments are utilized, investigated, and optimized. First, signal
residuals are calculated based on either an existing reference
signal or mean reconstruction of signals using Independent

Component Analysis (ICA) whenever a reference signal does
not exist. Second, residuals are aligned with original mea-
surements. Moreover, the power and resistance of the pro-
cess are added by multiplying and dividing the voltages by
the corresponding currents, (Samardžić et al., 2007) followed
by dynamic time-warping alignment of the resulting signals.
Third, Bayesian optimized neural/convolutional architectures
are used to perform classification. Finally, network output
determines the root causes found in the weld MTS data. The
entire system is presented in Figure 1.

In the following, definitions used in the paper are described,
then mentioned steps are elaborated in detail.

3.1. Definitions

The technical terms used in this paper are as follows:

• Time-series: Consider the time-series of T as a tempo-
ral ordered set of n variables sampled with a specific fre-
quency of f and indexed with i to the last value, in the
following equation (Fawaz et al., 2019):

T = t[1], t[2], ..., t[n] (1)

which is called univariate time series. On the other hand,
an M-dimensional univariate Time-series collection is
called Multi-variate Time-series (MTS) and is shown as:

T = T [1], ..., T [M ] (2)

Where each T is a univariate time series and M is equal
to the number of dimensions (Fawaz et al., 2019).

• residuals: A residual of time-series T is calculated by
T

0 = T � T̂ where T̂ is the mean approximation of T
or a reference time-series which accounts for the mean
approximation of it.

3.2. Normalization

Each measurement during the process is a T sampled with
a frequency of f , and all values per each measurement type
and stud type get normalized to zero mean and unit of energy
before passing to the next stage using (Goldin & Kanellakis,
1995):

T̄ [i] =
T [i]� µ

�
, (3)

where µ is the mean of all measurements with the same type
of measurement (e.g., all voltage measurements) and similar
stud type, and � is the standard deviation of the values.

3.3. Residuals

For each univariate measurement, T gets subtracted by either
its own mean approximation T̂ or an exiting reference mea-
surement for the very measurement type T

0 = T � T̂ . For
measurements with an existing reference signal, the residual
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Figure 1. Block Diagram of Defect (root cause) Classification for Arc Stud Welding Process.

calculation is a simple one-by-one subtraction of features for
each instance. However, for other signals, a T̂ is required.
Both ICA reconstruction and signal average were experimen-
tally tested as a mean approximation. However, the mean
approximation outperformed the average method in experi-
ments. Next, the mathematical background of ICA is dis-
cussed.

3.4. Reconstruction with Independent Component Anal-
ysis

In this part, first ICA and fast ICA are briefly introduced, and
then, the procedure of using ICA is described.

3.4.1. ICA

Independent component analysis (ICA) can separate or re-
cover unknown independent sources from signal mixture ob-
servation (Chen & Khashanah, 2015; Hyvärinen & Oja,
2000). Let T be t[1], ..., t[n] observations with centering and
whitening as a pre-processing step. Then, ICA can be written
as

T = AS, (4)

where A is the transformed mixing matrix (Hyvärinen & Oja,
2000) and S is a matrix that contains k independent compo-
nents of T , where k  n and each component is assumed
to be non-Gaussian. ICA tries approximate A by maximiz-
ing the Independence of S, and the background assumption
is that components of S are independent statistically. After
acquiring A, the inverse matrix of it W is calculable, and then

S = WT. (5)

As mentioned, a basic assumption for the ICA is non-
Gaussianity. A classical method to measure non-normality is
excess kurtosis which is computationally efficient and theo-
retically straightforward. Nonetheless, kurtosis is sensitive to
outliers which makes it non-robust for non-Gaussianity mea-
surements (Hyvärinen & Oja, 2000). Instead, in the literature,
the Negentropy method is used which is based on information
theory entropy (Hyvärinen & Oja, 2000).

Entropy explains the degree of freedom of information for a
given variable. Considering Y as a discrete random variable

and, p as probability, then the entropy of H is:

H(Y ) = �
X

p(Y ) log p(Y ). (6)

J , the Negentropy, is to obtain non-normality measurement,
and it is similar to differential entropy value of which is al-
ways non-negative, and for Gaussian variables (i.e., Ygauss of
the same Y matrix) is equal to zero. J can be shown as

J(Y ) = H(Ygauss)�H(Y ) (7)

In (Hyvärinen & Oja, 2000) an efficient approximation for
Negentropy is proposed, which is used in the following Fas-
tICA and is written as:

J(Y ) / {E[G(Y )]� E[G(v)]}2, v ⇠ N(0, 1), (8)

where G(x) = log cosh(x) that is non-linear and non-
quadratic.

3.4.2. FastICA

The efficient Negentropy J used to estimate W in (8) is
called FastICA. With the assumption of having T centered
and whitened, FastICA can estimate W that in (Hyvärinen &
Oja, 2000), it is shown W estimations are consistent.

Finally, as in (5) an approximation of unknown sources S is
generated, and by remixing with A in (4), an approximation
of original time-series signals is achieved, which is used as
a reconstruction of original signals. Practical employment is
described more in-depth in the section 4.

3.5. Dynamic Time Warping:

Dynamic Time Warping (DTW) is largely used in MTS, such
as speech signals as well as classification tasks (Górecki &
Łuczak, 2015). In this work, DTW is used to find an opti-
mal global alignment of query and reference signals. It uses a
Dynamic Programming (DP) matching approach to generate
a distance matrix and pair-wise matching of each sample of
the query TS and the nearest sample from the reference sig-
nal (Sakoe & Chiba, 1978). For this task, euclidean distance
and symmetric step pattern with slope constraint condition of
P = 0 are applied. DP equation (i.e. g(i, j)) for initial point
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is:
g(1, 1) = 2d(1, 1). (9)

and for the rest is:

g(i, j) = min

2

4
g(i, j � 1) + d(i, j)
g(i� 1, j � 1) + 2d(i, j)
g(i� 1, j) + d(i, j)

3

5 , (10)

where d is the distance function ( i.e. d(i, j) = kai � bik).

3.6. Network Architectures

As mentioned in2, five models are applied and optimized in
this work, as shown in Figure 2.

• MLP: Multi-layer Perceptron consists of stacks of fully
connected dense layers followed by an activation layer to
increase non-linearity and prevent saturation of the gra-
dients. Also, a dropout layer is used at the layer’s input
to prevent overfitting, and the model ends with a soft-
max layer (Wang et al., 2017). In our experiments, the
number of layers, activation function, number of nodes
in each dense layer, and dropout rate are considered hy-
perparameters and get optimized for MLP.

• FCN: FCN consists of a few repeated blocks followed
by a Global Average Pooling (GAP) layer instead of a
fully connected layer, and has a softmax layer as the fi-
nal layer. Each block starts with a 1-Dimension Con-
volutional layer followed by a batch normalization layer
which speeds up the training process and reduces over-
fitting, and an activation layer (Wang et al., 2017). In our
optimization pipeline, the number of blocks, filter length,
the number of filters in 1-D Convolution, and the type of
activation function get optimized for this design. In addi-
tion, a few optional fully connected layers are added just
before the softmax layer, and the number of these layers
(can be zero), number of nodes, and dropout rate are to
get optimized.

• ResNet: ResNet consists of a few residual blocks, and,
similar to FCN, ends with GAP and softmax layers. Each
residual block has the structure of a 1-D convolutional
layer, Batch normalization, and activation layer three
times. Also, lateral connections are added from the in-
put of the block to the end of the same block (Wang et
al., 2017; He, Zhang, Ren, & Sun, 2016). The num-
ber of blocks, filter length, the number of filters in 1-D
Convolution, and the type of activation function get op-
timized for this design. Furthermore, similar to FCN,
optional dense layers are added, and their parameters get
optimized during architecture optimization.

• Encoder: This design is inspired by FCN. However, the
GAP layer is replaced with an attention layer (Bahdanau,
Cho, & Bengio, 2014) in which the network learns which
parts of the time series are more important for classifica-
tion. The encoder model also consists of a few repeated

blocks; each block starts with 1-D convolution followed
by instance normalization (Ulyanov, Vedaldi, & Lempit-
sky, 2016), Parametric ReLU (He, Zhang, Ren, & Sun,
2015) activation, and finally, a dropout. Each block is
followed by max-pooling except the last layer, which
gets fed into the attention layer, followed by a dense layer
and a softmax. For this design, the number of repeated
convolutional blocks, number of filters and filter length
of 1-D convolutions and drop rate of dropout layer, acti-
vation of dense layer, and number of its nodes.

• XCM: This design starts with two separate paths. One
path uses 2-D convolutions, batch normalization, and ac-
tivation, and finally uses 1x1 convolution and activation.
The second path is similar to path one, except it uses 1-
D convolutions. Next, the results of these two paths get
concatenated and then pass through one more 1-D con-
volution followed by GAP and softmax layer. Having
two separate paths help to extract feature and time atten-
tion of the input using gradient-based methods. For this
design, filter length, the number of filters, and activation
function type gets optimized.

4. IMPLEMENTATION

Arc Stud Welding is described in (Samardžić et al., 2007;
Al-Sahib et al., 2009; Hildebrand & Soltanzadeh, 2014; Ra-
masamy, Gould, & Workman, 2002), and the same proce-
dure (shown in Figure 3) is performed for experiments in this
work, except the process is automated through a robotic arm.
During the welding process, sensors in the robotic arm ac-
tuator monitor voltage and current. Simultaneously, the lift
position sensor also monitors fastener positioning and the ref-
erence signal for lift position. LMcurrent is the current of the
linear motor that moves the stud and is a critical factor in the
penetration of the surface material. For these experiments:
The average penetration is 0.70 with an average welding time
of 72 ms. The sampling rate is approximately 1 kHz, and fi-
nally, all logged sensors’ data get transmitted through MQTT
protocol to generate a dataset of defective welds.

In the following, the dataset is described, and synthetic signal
generations, as well as prediction models, are elaborated on.

4.1. Dataset

The initial dataset contains six classes of Arc Stud Welds with
various welding conditions, as mentioned, and measurement
types include Voltage, Current, LM Current, and its reference,
lift position, and its reference (residual of which is called
penetration). Additionally, synthetic measurements, includ-
ing Power (i.e., pair-wise V*I for each feature) and Resis-
tance (i.e., V/I), are also computed and added to the dataset.
Therefore, there are six measurement types in total. Although
Current is a controlling parameter of the process, experiments
show that it helps network classify more accurately. Hence,
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Figure 2. The models’ architecture. The blocks inside Lime Dashed lines are repeated blocks, and the number of repeats can
from 1 to 3. The optimal repeat number is searched for during optimization.

Figure 3. Arc Stud Welding Process (Stanley Black and
Decker, 2022).

Classes RC1 RC2 RC3 RC4 RC5 RC6
Count 59 60 56 52 16 20

Table 1. Class Distribution for Dataset

it is kept among measurements.

As mentioned in this process, defective welds are syntheti-
cally generated with known root causes of the defects. The
six types of defects (or root causes) are synthetically gener-
ated based on the design of the experiment principles. The
defect types include four types of pollution on the welding
surface which are coded into Root Cause (RC) 1 to Root
Cause (RC) 4. Two types of defects are also made on stud
quality and electrical system and coded into Root Cause 5
and Root Cause 6. Figure 4 visualizes how measurements
for various Root Causes across classes are similar, illustrat-
ing how patterns are complicated to extract, and why addi-
tional synthetically generated measurements and residual sig-
nals are helpful. The final dataset has 263 samples from 6
classes, and the distribution is shown in Table 1. Each in-
stance has six measurements with 480 timestamps. The final
dataset (i.e., residue dataset) has six measurements of Voltage
residual, Current residual, Penetration, LMCurrent residual,
Power, and Resistance.

6
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Figure 4. The similarity of measurements across classes RC1 to RC6. The full length of signals is visualized (i.e., 0 to 480).

7



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

4.2. Pre-processing

Initially, only voltage and current have a length of 480. Other
measurements are padded with zeros to have the same length.
For LM current, at the end of the process, it is stopped, and
thus zero-padding is meaningful. For the lift position, since
the nozzle turns back to the initial point, then padding with
zero is rational and meaningful.

4.3. Synthetic Measurement and Residual Generation

As described in 3, a series of steps are performed to gener-
ate synthetic residuals to use as a reference for voltage and
current. Starting with a mean approximation of signals to get
residuals. Since for LM and lift position a reference signal ex-
ists, the existing reference will be used as T̂ and residual (T 0)
is T

0 = T � T̂ . For measurements with no existing refer-
ence signal, a mean approximation is required. As mentioned
in 3.4, since independent components of unknown sources
of S in (5) are an approximation of the original signal T ,
remixing through (4) creates an approximate of the original
signal with common unknown sources. Hence, the resulting
signal (T̂ ) is employed for creating a residual signal. There-
fore, to acquire mean reconstruction ICA, for measurements
with no reference signal (i.e., voltage, power, resistance) and
per stud type, a three-component ICA transform and inverse
transform (reconstruction) are done, respectively. Then, the
mean of reconstructed signals (all signals have the same stud
type, measurement type, and features) is calculated and used
as T̂ to get T 0 residual. For synthetic data (i.e., power and re-
sistance), multiplication or division is done prior to residual
calculation. Finally, FastICA from (Pedregosa et al., 2011)
implementation is applied for the mentioned reconstructions.

Next, dynamic time warping is applied to the signals. Since
the start and the end of extreme periods or peaks change along
with signals, then extreme periods in the query signal and
mean signal do not overlap, and this results in shifts in the fi-
nal residual. Hence, using DTW on residual (T 0) as the orig-
inal signal and (T ) as a reference would align peaks with the
query reference signal. Note that for signals with existing ref-
erence signals, DTW is not required, for no shifts appear in
those. Moreover, it is experimentally determined that apply-
ing symmetric step pattern results in a smaller rooted mean
square error in comparison with an asymmetric step pattern.
Finally, Algorithm 1 summarizes how the residual calculation
is done to create the residue dataset.

As the last step, normalization is done per sensor measure-
ment type using (3). Figure 5 shows samples of normalized
voltage and current, its mean reconstruction, and aligned and
non-aligned residual signals.

Algorithm 1: residual calculation for a specific sensor
measurement type
Result: residuals of T’ as residuals set ;
residuals set [ ] ;
if reference signal (T̂ ) exists then

while not processed every instance T do
T

0  T � T̂ ;
residuals set T

0 ;
end

else
ICA,T̂mica  [] ;
ICA fit ICA for the entire set of T s ;
ICA Inverse Transform ICA ;
T̂mica  calculate mean of reconstructed signals

over x-axis;
while not processed every instance T do

T  DTW (T, T̂mica) ;
T

0  T � T̂mica;
residuals set T

0 ;
end

end
normalize residuals set using (3);

Figure 5. Samples of voltage and current for original nor-
malized measurements, their ICA mean Reconstructions for
a specific sample, their residuals, and DTW aligned residuals.
Only timestamps 60 to 240 are visualized for a clear demon-
stration.
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Parameters Search Space
optimizer Adam, SGD, RMSprop, Adadelta

activation functions relu, swish, sigmoid, tanh, selu
# of layers/blocks 2 to 5

# of filters 16, 32, 64, 128, 256
kernel size 1 to 12 (dependent to model)

drop out rate 0 to 0.5 with 0.1 step
Batch size 32 to 256 with 32 step

Epochs 40 to 100
learning rates 1e-2 to 10e-4 (logarithmic)

max-pooling size 2 & 4 (for Encoder only)
Dense layer nodes 128 & 512 (when applicable)

Table 2. Hyper-parameters search domain used for Bayesian
Optimization.

4.4. Classification models

4.4.1. Hyper-parameter Optimization

Residue dataset gets fed into several architectures described
in section 3.6, and shown in 2 including MLP, FCN, ResNet,
Encoder, and XCM. The models have a pre-defined num-
ber of blocks, and layers as described in the original works.
To show the effectiveness of Algorithm 1, the models are
once trained with default parameters as used in (Fawaz et al.,
2019), and then systematically optimized. For optimization,
all hyper-parameters and overall architectures are optimized
using Bayesian Methods. Table 2, illustrates search space for
Bayesian Hyperparameter Optimization (HPO). Max-pooling
is only used for the Encoder model, while the rest of the pa-
rameters are common for all models.

4.4.2. Training Setting

All models are optimized and tested on a single NVIDIA
GTX 1080 GPU. The implementation and HPO are done us-
ing Tensorflow v2.3 and Keras v2.1. Keras-Tuner (O’Malley
et al., 2019) is used for HPO. Keras-Tuner is a Keras-friendly
framework, with implementations of HPO algorithms. It is
possible to smoothly manage to optimize activation functions,
kernels, layers, and architecture of a descriptive Keras im-
plementation. For the experiments, Bayesian optimization
is used with the Gaussian Process model as the surrogate
model, and the acquisition function used is the upper confi-
dence bound (UCB). Also, the objective was set to maximize
validation set accuracy, with 50 initial points.

Single model training is performed in two to three minutes;
However, HPO takes between two to five hours depending on
model size, number of parameters, and search space. Finally,
inference time is around a millisecond (ms) for a batch size
of one and two ms per batch with a size of 32, meaning the
model is able to predict in real time.

4.4.3. Optimized Models

The residue dataset contains six measurements, which are
padded to have similar lengths. Thus, the models are fed with
tuples with shape (batch size (bs), sequence length, number of
signals), i.e., (bs, 480, 6). 80% of the samples of the dataset
stratifiedly sampled for training and 5-fold cross-validation,
and the remaining 20% is withheld for unbiased testing. Early
Stopping with the patience of 15 epochs is also applied. For
models trained with the raw dataset, the learning rate is fixed
to 1e-3 with Adam optimizer, batch size of 32, and relu as
activation function, the rest of the parameters can be found
in (Fawaz et al., 2019). Table 3 summarizes the best case
models for each design.

Table 4 reveals average performance, recall, F1-score for all
four models.

Table 5 illustrates the performance of the Encoder model as
the best model for each class. As it shows, the hardest root
cause to detect is RC4.

4.4.4. Results Explainability

As described, XCM is designed to be capable of providing
explainability for multivariate time-series datasets. Figure 6
shows a sample of saliency map for a True positive prediction
from class RC2, in which the red areas show high attention to
the network, while white and blue show no to little attention.
Figure 6-a describes that most of the attention of the model
is to the detection of a defect from RC2 is related to the mid-
part and ending part of penetration. Nonetheless, the network
is not considering current and voltage residual (i.e., current*
and voltage*), and the minimum consideration is for Resis-
tance and Power. Figure 6-b relates to time attention, and it
is related to the combinatorial path of the network (i.e., the
path with 1-D convolutions), which represents that mid-part
of the signal is taken into consideration for RC2 defect detec-
tion and relates to the second cycle of the welding process.

5. DISCUSSION

5.1. Model Performance

Table 3 shows the best parameters extracted using the
Bayesian method. As demonstrated for all models, Adam
is the best optimizer, and in most cases, ReLU showed high
performance as an activation function. As mentioned in Fig-
ure 3.6, optional fully connected layers were added after the
GAP layer and based on Table 3, these show noticeable im-
provement in overall network performance. Moreover, mod-
els FCN, Encoder, and ResNet tend to start with smaller win-
dow sizes and the number of filters, and these increase further
on deeper layers.

Table 4 demonstrates model performance on both test sets and
averaged F1-score of 5-fold on the validation set. It reveals
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Parameters Models
MLP FCN ResNet Encoder XCM

Optimizer Adam Adam Adam Adam Adam
activation fun. tanh relu swish relu relu
learning rate 10e-4 10e-2 10e-4 10e-4 10e-4

Epochs 100 100 100 100 100
Batch size 32 32 32 32 32
# of blocks 4 3 3 2 2

# maxpooling -a - - 2 -
# of filters - 16|256 32|64|64 256|512 128|128

kernel sizes - 12|12 6|4|9 5|12 20|20
Dropout 0.4|0.5|0.1 0.2|0.5 - 0.5 -
Dense 350|350|500 128|32 - 128 -

# of param. 1.3M 89K 257K 1.7M 38K
a denotes that the parameter does not exist for the specified model.

Table 3. Hyperparameters extracted for various architectures were extracted using Bayesian Optimization.

Models Test Set Validation Set
Precision Recall F1-score F1-scorea

raw dataset

MLP 0.817 0.807 0.805 0.76
FCN 0.66 0.596 0.551 0.516

ResNet 0.59 0.654 0.616 0.52
Encoder 0.834 0.769 0.767 0.759

XCM 0.65 0.53 0.52 0.51

residue dataset
(our method)

MLP 0.81 0.807 0.799 0.853
FCN 0.682 0.71 0.668 0.776

ResNet 0.73 0.71 0.71 0.75
Encoder 0.847 0.847 0.843 0.849

XCM 0.59 0.57 0.58 0.56
a These values are averaged F1-score of validation over 5-fold.

Table 4. Models performance on test/validation sets. F1-score is weighted to address class imbalance on final accuracy.

Class Test Set
Precision Recall F1-score

RC1 0.85 1.0 0.92
RC2 0.70 0.70 0.70
RC3 0.73 0.67 0.70
RC4 1.0 0.67 0.80
RC5 1.0 1.0 1.0
RC6 1.0 1.0 1.0

Weighted Average 0.85 0.85 0.84

Table 5. metrics per class for best model (Encoder).
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Figure 6. Feature Attention-a, Time Attention-b for prediction of class RC2. the x-axis is timestamps and the y-axis is features,
Current*, LmCurrent, Penetration, Power, Resistance, Voltage*. All are residual signals. Penetration is the difference between
lift position and its reference, * underlines that residual is used.

that models are showing great performance on about 65% of
training data, and the best model is the Encoder model. Ta-
ble 5 shows per-class accuracy for all classes using Encoder
Model. Classes related to RC5 and RC6 are the easiest to
classify, while RC2, RC3, and RC4 are the hardest. Although
the Encoder model shows a 0.70+ F1 score per class, the same
does not happen with the per-class F1 score of other models.
For instance, FCN shows a 0.85+ F1-score for classes RC2
and RC3, while it fails to detect RC4 class (i.e., less than 0.4
accuracy). Thus, a model ensemble will help to reach higher
overall performance.

5.2. Model Explainability

XCM model feature attentions on the test set reveal feature
importance in for each classification. Figure 6 demonstrates
an example for RC2 class, which is a workpiece defect. The
overall analysis of feature importance is summarized in Table
6, where features importance for each class is sorted in order
of their contribution (i.e., left most feature is the one with the
most contribution. Linear Motor current is the feature with
the most contribution in detection. One explanation is, the
impurity on the surface causes slight movements when the
welding head makes contact with the surface, which results
in variations in LMCurrent. These slight movements vary
across classes, and are a reliable source for the model to make
classification decisions. On the other hand, for stud-related
impurities (i.e., RC5, RC6), the common discriminative fac-
tor is Penetration. Although the rest of the signals had partial
contributions to classification, (illustrated in Figure 6), their
existence is crucial to achieving the highest performance. A
witness to this is the results in Table 4, where models without

Class Measurement Attentions
RC1 Vol*, LMCurr*, Curr*, Res.
RC2 Vol*, LMcurr*, Curr*

RC3, RC4 -
RC5, RC6 Pen., Res.

Table 6. Per Class XCM Measurement Attentions

synthetic measurements have lower accuracy. Finally, since
the XCM model performance is not acceptable for RC3, and
RC4, they are not reported.

5.3. Welding Improvements

The described procedure can appropriately and immediately
detect issues related to the base material, stud, workpiece,
or configuration, where slight degradation can cause unex-
pected issues. As the system and monitoring are standalone
in the process, it does not have any interference with the weld-
ing operation. Moreover, this allows overtime monitoring
of the system and components, where unexpected changes
and downtime can be monitored and addressed during sched-
uled maintenance rather than causing unexpected emergency
downtime, which increases productivity and prolongs the sys-
tem’s life span. Furthermore, adaptive weld parameter con-
trol is achievable based on surface impurity. For example,
based on observed primer on the surface weld time should be
optimized to increase or decrease energy transfer, and reduce
surface errors.
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6. CONCLUSIONS

In this paper, an initial dataset of Stud Welding is generated
and transformed into the residue dataset with a novel method
to boost classification performance. Moreover, Bayesian
hyper-parameter optimization and comparative analysis of
deep convolutional classifiers for MTS are conducted. Fur-
thermore, the explainability of the model, feature, and time
attention based on XCM architecture is analyzed. Our ex-
periments show the combination of our approach of synthetic
measurements, residual signal generation, and deep classifier
has enabled further investigations on tracking possible causes
of stud weld failure. The residue dataset creation steps consist
of the mean approximation of signal through ICA reconstruc-
tion, which is then used as a reference for calculating signal
residual and is followed by performing dynamic time warping
for signal alignment. For classifiers, MLP, FCN, ResNet, En-
coder, and XCM are investigated and optimized both in terms
of architecture and parameters. The most accurate model is
the Encoder model, with an F1-score of 0.84 on both the 5-
fold cross-validation and test set.

Although the approach reveals high-performance defect clas-
sification, further investigation is required for both improv-
ing existing designs and production deployment. For improv-
ing present designs, ensemble methods, extending the dataset,
and investigation feature importance are suggested. Another
interesting path can be a deep investigation of the explainabil-
ity of models. XCM is chosen as it outperforms other existing
models and utilizes ten times fewer parameters than MTEX-
CNN. However, the explainability capabilities are still to be
investigated. For production requirement, investigations for
validating the same performance is suggested as production
is not labeled, and hand labeling such data is either impossi-
ble in most cases or time-consuming and costly.
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