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ABSTRACT

Today’s automotive control systems have gained huge advan-
tage from using integrated software and hardware to reliably
manage the performance of vehicles. The integration of large-
scale software with many hardware components, however,
have increased the complexity of diagnosis and root cause
analysis for a detected malfunction. High level of expertise
and detailed knowledge of the underlying software and hard-
ware are typically required to analyze a large list of variables
and precisely identify the root cause of the malfunction. In
this paper, an abstraction method is presented to identify the
most important signals for a root cause analysis by leverag-
ing data collected from a connected fleet of field vehicles. A
novel label propagation methodology is proposed to select the
most relevant signals for the root cause analysis by detecting
linear and nonlinear correlations between an observed mal-
function and candidate test signals of the control system. The
proposed label propagation method eliminates the require-
ment for a priori known correlation kernel that is needed for
a regression analysis. The signal abstraction method is ap-
plied and successfully tested for abstracting signals in the fuel
control system, with high degree of interconnection between
software and hardware, using data from more than 5000 con-
nected vehicles.

1. INTRODUCTION

Advanced control systems such as vehicles include many hard-
ware and software components that are managed for precise
and reliable operation and monitoring of the system (Isermann,
2022). The high number of components and their interac-
tions, however, have increased the difficulty of monitoring the
vehicular system performance and detection of root causes
for an observed malfunction (Xiong, Sun, Yu, & Sun, 2020;
Komsiyska, Buchberger, Diehl, & Ehrensberger, 2021). One
major challenge in diagnosis of such systems is the large num-
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ber of signals (that includes both physical and calculated vari-
ables in a software) that are needed to be analyzed to find
the unknown root cause(s) of the malfunction. Therefore, ab-
straction of the number of signals and reducing it to include
only the most relevant for a particular failure mode analysis
could help to decrease the complexity of diagnosing and re-
duce the trouble shooting time.

In addition to the large number of signals, the existence of
causal relations between different elements in a control sys-
tem adds complexity to the root case detection process be-
cause a malfunction in one component could impact multiple
downstream or upstream components (Chioua et al., 2016).
For example, in Figure 1, a failure in actuator 3 could create a
disturbance for the performance of actuator 2. However, the
system interconnection and feedback loops create a potential
for the failure to propagate inversely from actuator 2 to actu-
ator 3 through a path such as Actuator2 ! System ! Sen-
sors ! InFunc3 ! OutFun3 ! Actuator3. Therefore, root
causing subsystems with feedback loops requires analyzing
downstream and upstream components as well that increases
the number of signals required for the analysis.

System abstraction is widely used to reduce order of models
by decreasing the number of states in a dynamical model and
their associated parameters; thus, simplifying the design and
calibration processes. Different techniques are developed for
model order reduction such as truncated balanced realization
in which the model order reduces based on the Hankel sin-
gular values of the system. The reduced system states are
then calculated from linear transformation of original states;
therefore, the new states are in a different space and units.
In (Choroszucha, Sun, & Butts, 2015), a balanced realization
is presented to reduce the order of a close-loop engine air
path model and its controller. Time-scale analysis is another
method used to reduce the order of dynamical systems where
dynamics with different time response are present. For a sys-
tem with different set of slow and fast dynamics, the states
could be decoupled based on eigenvalues of the linearized
system (Naidu, 1988; Naidu & Calise, 2001). The reduced
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Figure 1. Illustrative example of symptom tracing by label propagation. The label that is created at the initial test point
(symptom) is propagated to find matching patterns at other test points.

order models could be used, for example, to simplify a con-
troller design. Singular perturbation is one of the reduction
techniques for dividing a set of model differential equations
into slow and fast dynamics. In (Moulin & Chauvin, 2011),
the singular perturbation method is applied to ignore exhaust
manifold and intake manifold pressure dynamics since their
dynamics are much faster compared to the turbocharger ro-
tational dynamics in an internal combustion engine model.
Conversely, in (Sharma, Nesic, & Manzie, 2011), the singu-
lar perturbation methods are used to detect the slow dynamics
of temperature in a thermodynamic system with fast pressure
dynamics. As can be observed, the model reduction methods
either ignore some of the system dynamics or introduce new
coordinates by transforming the original state space in which
the original physics-based states may not be interpreted any-
more. Another method to reduce the system development
complexity is to reduce the number of parameters that require
calibration by detecting the most influential terms in the pa-
rameter space (Salehi & Stefanopoulou, 2020).

Even with abstracted model and parameters, advanced vehi-
cle control systems still have many signals that increase com-
plexity and time to analyze them for root cause detection dur-
ing a diagnostics process. With hardware and software feed-
back loops, the diagnosis becomes even more complicated
and requires a detailed understanding of the system and over-
whelming experiments. Here, a signal abstraction method is
proposed to detect signals that provide insights into a root
cause by estimating the signals correlation with an observed
anomaly. The novelties of the paper are two-fold. First, it
is proposed to detect the correlation using a data driven la-
bel propagation method therefore, a priori knowledge of the
correlation kernel is not required. Utilizing the label propa-

gation technique makes it possible to apply this method for
detection of both linear and nonlinear correlations. Second,
the proposed signal abstraction method is validated experi-
mentally by detecting the most valuable signals in root cause
analysis of the fuel system in gasoline direct injection engines
for a fleet of 5000 connected vehicles. Leveraging the con-
nected fleet data reduces requirements of extra off-the-field
lab experiments to simulate the failure operating conditions
and shortens the analysis time.

2. SYMPTOM TRACING USING LABEL PROPAGATION

Hardware and software interconnection between variables (sig-
nals) in a control system creates signal observability (or cor-
relation) which means changes in a signal is detectable by
observing the behavior of (at least) one different signal. The
observability can be affected, either increased or decreased,
when a change happens to the system due to, for example, a
degradation in a component. Figure 2 shows two illustrative
examples for the change of observability due to system degra-
dations. As illustrated, the observability, defined as estima-
tion of changes in the output signal z by measuring variation
of input signal x, reduces (Figure 2-a ) or increases (Figure
2-b) after the fault occurs. For a complex system failure root
cause analysis, domain experts look for changes in correla-
tions as clues to the root cause and take this information into
next stages to create a hypothesis for possible reasons that
generated the failure. Here, we propose a data driven method
to detect existing correlations between symptoms of a fault
and other (test) signals measured by a metric of observabil-
ity. Highly correlated signals are detected and suggested to be
used, along with prior knowledge of the system operation, to
identify unexpected relations that have been created after the
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Figure 2. illustrations for (a) reduction of observability of
signal z1 from x1 measurements when a fault is applied to
the plant (b) creation of observability of z2 from x1 measure-
ments when the valve is broken and stays open after a close
command..

fault occurrence as evidences to build a particular root cause
hypothesis.

The observability of a symptom by a test signal is determined
based on the correlation between the test signal (or variable)
at a desired test point and the symptom signal at the initial la-
beling point (Figure 1). Typically, such correlation could be
detected if a priori known linear or nonlinear kernel is avail-
able. The importance of the kernel selection is illustrated in
Figure 3 using two sets of synthetic data. First, Figure 3-
(a) shows how a nonlinear (exponential) kernel well detects
the correlation. However, with a different dataset shown in
Figure 3-(b), a simple linear regression reveals the existing
correlation better than the nonlinear kernel. Thus, in root
cause analysis applications where the correlation kernel is not
known a priori, conventional regression could miss detecting
an existing relation between a symptom and test signals.

To eliminate the requirement for the kernel, a data driven la-
bel propagation method is proposed that uses a support vector
machine (SVM) to cluster test signals data. It is assumed here
that if a variable is correlated with the selected symptom, one
should be able to regenerate the labels assigned to the symp-
tom data using the test signal data as they are collected at
the same time stamp. Figure 4 shows how label propagation
works for two illustrative examples one with a strong corre-
lation (top) and the other without any correlation (bottom).
First, in Figure 4-(a) and (c) “healthy” and “faulty” operation
of the vehicle is detected based on the symptom “X”. If there
is an unknown correlation, one should be able to get a similar
classification by looking at the test signal “Z” (Figure 4-(b)).
Similarity of data classification using symptom “X” and test
variable “Z” is used as an indication of existing correlation.
On the other hand, as Figure 4-(d) shows, when there is no
correlation, the classification results are very different if the
test signal is used to classify healthy and faulty operation in-
stead of the symptom variable.

Figure 3. A kernel is needed to estimate a functional corre-
lation between two variables. Using a wrong kernel could
results to misdetection of an existing relation. In (a), the (ex-
ponential) nonlinear kernel detects a better correlation com-
pared to the linear kernel while in (b) the linear kernel out-
performs the exponential kernel.

The following explains how the label propagation problem
is formulated in this paper. Let’s assume X is a vector of
samples [x1, x2, . . . , xn] collected at n time steps for a vari-
able measured as the symptom, Then, one can assign a corre-
sponding label vector Y = [y1, y2, . . . , yn]T to the symptom
signal samples as:

yi = f(xi) (1)

where f is a mapping function defined, for example,

f(xi) =

⇢
low if xi < L

high if xi � L
(2)

with L being a threshold. Let Z be a variable measured at
another test point with the same sampling timestamp as X . If
there exist a causal relation between Z and X such as Z =
g(X), then one should be able to calculate the initial label Y
by composing f and g

�1 and using Z instead of X:

Y = f(g�1(Z)). (3)

The existence of a causality between the pair [X,Z] and its
corresponding mapping function f(g�1(.)) are detected us-
ing a support vector machine (SVM) algorithm that classifies
Z as described in the following steps.

1. Label samples of symptom X based on the mapping func-
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Figure 4. Illustration of switching the labeling variable from
the symptom domain (X) into the test signal (Z) domain.
(top) successful switching when a correlation Z = g(X) ex-
ists (bottom) very different labelling when there is no corre-
lation.

tion f(.) defined to trace the symptom.

[y1, ..., yn]
T = f([x1, ..., xn]

T ) (4)

where xi is the ith sample of the variable X and [y1, . . . , yn]
are the labels assigned to each symptom sample. There
could be m labels such that yi 2 {L1, . . . , Lm} with
m < n.

2. For each sample xi there will be a corresponding sample
zi in Z domain that is collected at the same time instant
as xi. Assume there is a strong correlation between X

and Z then, one can copy the labels from X and apply to
Z elements using the time stamp connection between X

and Z.

[y1, ..., yn]
T ! [z1, ..., zn]

T (5)

3. Train a support vector machine (SVM) algorithm using
training data Z and their associated Y labels.

4. Analyze the classification performance on the same train-
ing set Z by feeding it back into the trained SVM to es-
timate the label ŷi for each sample zi,

ŷi = SVM(zi). (6)

5. Calculate a deviation metric to measure the success of
SVM training process. There could be different met-
rics, as a simple example the following deviation metric

Figure 5. Major steps of the proposed label propagation algo-
rithm.

is used here:

DMj =
nX

i=1

u(|ŷi � yi|)/n (7)

where, n is the number of samples in Z and u(.) is the
Heaviside step function. When an estimated label matches
the original label, i.e ŷi = yi, then u(|ŷi � yi|) = 0 and
the deviation metric approaches zero. Finally, to sort test
signals based on the strength of the correlation, an ob-
servability, Oj , is associated with each test signal, calcu-
lated as:

Oj = DM
�1
j

/

pX

i=1

DM
�1
j

, DMj 6= 0 (8)

where P is the number of test signals being analyzed and
compared to the selected symptom. Higher observability
of a test signal indicates that it has a better correlation
with the selected symptom. A flowchart of the designed
algorithm is shown in Figure 5.

The label propagation and data classification could be applied
into a r-dimensional test data in general. In other words, the
test vector in Eq. (5) could be in a n⇥r matrix [Z2;Z3; . . . ;Zr].
Using higher dimensions of the data classification helps to vi-
sualize interactions between more variables (i.e. multivariate
interactions) and the symptom at the same time, with a cost
of increased computation time. Results in section 2.2 shows
an example of a 2-dimensional classification.

2.1. Label propagation results

The signal abstraction method is realized with a structure
shown in Figure 6 to detect the observabilities and use it to
select diagnostically important signals in the fuel control sys-
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tem for a fleet of connected vehicles. As shown, the analysis
starts with the user applying filters to select a populations of
vehicles. For example, the filters could be applied to select
a list of vehicles knowing the identification number (”VIN”),
required model years (”MY”), and other production factors
(”RPO”). Then, the user selects test signals ([z1, z2, ...]) nec-
essary for the analysis. The user also designs the labeling
function (f(.) in Eq. (4)). Then, signals and labeled symptom
data enter the reasoning machine for label propagation and
observability detection. Depending on the user preferences,
1-D or 2-D classification results are generated and presented.

The signal abstraction system of Figure 6 is validated on the
fuel control system of a fleet of vehicles with gasoline direct
injection engines. The direct injection fuel system is one of
the most complicated subsystems in modern vehicles. A sim-
plified schematic of its components and their arrangement are
shown in Figure 7. As shown, the fuel pressure increases at
two stages; once at the low-pressure tank pump and then at
the high-pressure pump before reaching the injectors. There
is a check valve between the low pressure and high-pressure
side that is integrated to the system to avoid fuel back flow. A
malfunction in the check valve, such as slow response time at
closing, could cause high pressure pulsations to be observed
at the low-pressure side that could damage the low-pressure
pump at extreme cases. Even with a check valve with a fast
response, small pulsations from the high-pressure pump side
could be observed at the low-pressure side. In addition to that,
the final pressure at the high-pressure pump outlet is depen-
dent on its input pressure, which is fed by the low-pressure
pump. These physical couplings between high pressure and
low-pressure sections of the fuel system is used here to illus-
trate the usage of the signal abstraction method.

The results of 1-D label propagation tested on the fuel sys-
tem with (selected test) signals listed on Table (1) are shown
in Figure 8 for the case where error at the high-pressure fuel
line (�PHP ) is used as the symptom, which is expected to
be zero for a perfect fuel controller. For this example, only
two labels ”low” and ”high” are generated based on the value
of �PHP . Then, the labels are propagated to other selected
(test) signals to estimate their deviation metrics and sort them
based on symptoms observability values. This means, one
should expect the signals on top of the list to have the best
correlation with the reference labeling signal (i.e. �PHP ).
In the example presented in Figure 8, it was known that the
variable ”Angl�Adj” (an adjustment angle from the con-
troller for the high pressure pump to correct the fuel pres-
sure error) is well correlated to the labeling variable, i.e.,
Angl�adj = g(�PHP ) through the internal controller soft-
ware design. The presented results also indicate high cor-
relation detected by the label propagation method. Also, ob-
served from Figure 8, one can see that the label propagation is
successfully detecting nonlinear correlations for signals such
as ”I�feedBack” or ”Deliv�duration”. Figure 8 also re-

Table 1. Description of test signals used for root cause iden-
tification

• �PHP : Error of of the high pressure fuel controller
(�PHP = desired pressure – actual pressure)

• Angl�adj: Adjustment angle calculated by the con-
troller based on the fuel-rail pressure error (�PHP )

• Deliv�duration: Duration of the actuation signal ap-
plied to the fuel pump

• I�feedBack: Measured current applied to the fuel
pump

• Err�press�LP : Error of of the low pressure fuel con-
troller

• Controller�Iterm: High pressure loop controller inte-
gral term

• Eng�speed: Engine speed
• Injpuls: Duration of the fuel injection
• ActPress�LP : Measured fuel pressure in the low pres-

sure loop
• ActPressHP : Measured fuel pressure in the high pres-

sure loop
• Odometer: Vehicle millage at the time of data collection
• DesPress�LP : Desired fuel pressure in the low pres-

sure loop

veals the internal connection between high pressure and low
pressure sides of the fuel system; whenever the low pressure
pump error (Err�press�LP ) is less than 0.3, the high pres-
sure pump error �PHP is high, that matches the physical
connection between the two pumps.

2.2. Label propagation results: 2-dimensional analysis

Higher dimensional (i.e. multivariate) root cause analysis re-
veals simultaneous interconnection of multiple signals with
a symptom, a more comprehensive root cause analysis ap-
proach compared to a univariate analysis (Kirdar, Green, &
Rathore, 2008). The results of a 2-D analysis example are
shown in Figure 9 for the fuel system case study of this re-
port. Results show the label propagation reveals the intercor-
relation between three different signals (including the symp-
tom variable that was selected to be the high pressure pump
error, �PHP , similar to the 1-D case). As plotted in Figure
9, with the 2-dimensional classification, it is easier to identify
the separation edge between major regions corresponding to
each label from �PHP status (High, Low) simultaneously for
all the selected test signals (Angl�adj and I�feedBack).
In a general case of r-dimensional analysis and for a control
system with K test signals, the total number of cases to be
analyzed (�) would be

� =
K!

r!(K � r)!
(9)

with r being the dimension of classification. For example,
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Figure 6. Architecture of implemented reasoning machine for label propagation and signal abstraction for the fuel system case
study

Figure 7. Major components of fuel system in a direct injec-
tion gasoline engine.

if K = 10, then for r = [1, 2, 3] one need to analyze � =
[10, 45, 120] combinations of test signals with a selected symp-
tom.

3. COMPARISON OF THE SVM-BASED LABEL PROPA-
GATION TO A LINEAR REGRESSION

The proposed label propagation method in section 2 is com-
pared to a linear regression fit between the selected symptom
(i.e. �PHP ) and each test signal. Deviation metrics (Eq. (7))
for the two classification results are shown in Table 2. De-
viation metric indicates how the classification variable could
be switched from the symptom into a test signal. Therefore,
DM = 0 means no matter which variable (the symptom or
the test signal) is used for the classification, the results would
be the same. In another words, DM = 0 indicated perfect
correlation between a test signal and the symptom variable.
Table 2 compares the comparison between linear regression

and label propagation with SVM. If DM is lower, that means
the selected classification method was more successful to de-
tect an existing correlation. For example, for the test signal
“Angl�adj”, the SVM based label propagation classification
results show a 70% better match compared to the linear re-
gression. The DM difference, �DM , in Table 2 is defined
as:

�DM =
DMlinearRegress �DMSVM

DMlinearRegress

⇤ 100 (10)

The calculated DM differences in Table 2 suggest, for most
of the test signals, existing relations could be revealed better
with a general purpose classifier such as SVM that is sug-
gested in this work, without any need for a known correlation
kernel.

4. CONCLUSION

A signal abstraction methodology was proposed in this pa-
per based on label propagation. The label, that was generated
based on a symptom of a malfunction, was traced into a list
of test signals for detection of existing correlations without
needing the correlation kernel. It was suggested that test sig-
nals that show a high correlation with a symptom carry more
diagnostics information and should be selected for building a
root causing hypothesis. The proposed methodology was suc-
cessfully tested for detection of existing relations in the fuel
control system of a fleet of 5000 vehicles and was able to de-
tect both nonlinear and linear relations between the controller
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Figure 8. Results of label propagation and correlation detection for an analysis with high pressure pump error selected as the
symptom (only 8 top observable signals plotted). The vertical dashed lines indicate the original separation edge in symptom
domain and the horizontal lines show the separation edge in test signal domain after label propagation. All values are scaled.

Table 2. Comparision of DM between linear regression and
nonlinear label propagation with SVM classifier.

Test signal name DMLG DMSMV �DM(%)
Angl�adj 0.1 0.03 70.0
Deliv�duration 0.12 0.12 0.0
I�feedBack 0.125 0.12 4.0
Err�press�LP 0.13 0.115 11.5
Controller�Iterm 0.19 0.185 2.6
Eng�speed 0.235 0.3 -27.7
Inj�puls 0.265 0.26 1.9
ActPress�LP 0.315 0.365 -15.9
ActPress�HP 0.43 0.43 0.0
Odometer 0.465 0.445 4.3
DesPress�LP 0.495 0.49 1.0

error (selected as the symptom) and selected test signals.
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