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Abstract 

Background  To evaluate the correlation between single- and multi-slice cross-sectional thoracolumbar and whole-
body compositions.

Methods  We retrospectively included patients who underwent whole-body PET–CT scans from January 2016 to 
December 2019 at multiple institutions. A priori-developed, deep learning-based commercially available 3D U-Net 
segmentation provided whole-body 3D reference volumes and 2D areas of muscle, visceral fat, and subcutaneous 
fat at the upper, middle, and lower endplate of the individual T1–L5 vertebrae. In the derivation set, we analyzed the 
Pearson correlation coefficients of single-slice and multi-slice averaged 2D areas (waist and T12–L1) with the reference 
values. We then built prediction models using the top three correlated levels and tested the models in the validation 
set.

Results  The derivation and validation datasets included 203 (mean age 58.2 years; 101 men) and 239 patients (mean 
age 57.8 years; 80 men). The coefficients were distributed bimodally, with the first peak at T4 (coefficient, 0.78) and the 
second peak at L2-3 (coefficient 0.90). The top three correlations in the abdominal scan range were found for multi-
slice waist averaging (0.92) and single-slice L3 and L2 (0.90, each), while those in the chest scan range were multi-
slice T12–L1 averaging (0.89), single-slice L1 (0.89), and T12 (0.86). The model performance at the top three levels for 
estimating whole-body composition was similar in the derivation and validation datasets.

Conclusions  Single-slice L2–3 (abdominal CT range) and L1 (chest CT range) analysis best correlated with whole-
body composition around 0.90 (coefficient). Multi-slice waist averaging provided a slightly higher correlation of 0.92.

Key points 

•	 In single-slice analysis, the L2–3 and L1 levels had the closest correlations with whole-body composition.
•	 Multi-slice waist averaging (0.92; correlation) showed a better correlation than the L2–3 single-slice analysis 

(0.90) in the abdomen.
•	 Multi-slice T12–L1 averaging (0.89) provided a comparable correlation to the L1 level in the chest (0.89).
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Introduction
Body composition, defined as the proportion of fat and 
muscle in the body, is an important modifiable risk fac-
tor associated with the clinical outcomes of chronic [1–4] 
and malignant diseases [5–7], as well as obesity-related 
health risks [8–10]. Several methods are used to assess 
body composition, including dual X-ray absorptiom-
etry and bioelectrical impedance [11–13]. Nevertheless, 
cross-sectional CT and MR imaging are considered the 
gold standards because tissue can be directly separated 
on cross-sectional CT and MR images [14–20].

CT and MRI-based body composition analysis has 
been typically conducted using single slices because seg-
mentation is laborious and time-consuming. Early stud-
ies analyzed the correlation between cross-sectional 
body composition in sparse lumbar levels and whole-
body composition and showed the best correlation for 
the L3 vertebral level [21, 22]. Subsequently, many stud-
ies conducting CT-based body composition analysis at 
the L3 level identified numerous clinical implications of 
CT body composition analysis [21–27]. Furthermore, 
deep neural networks were recently developed for auto-
matic single-slice segmentation of L3 body composition, 
enabling large-data analysis. However, chest CT scans 

do not include the L3 vertebra, and several vertebral lev-
els, such as T4, T8, T12, and L1, have been suggested for 
body composition analysis instead of L3 [28, 29].

Body composition can vary in the craniocaudal direc-
tion, and the following questions have remained under-
explored: a) how well body composition at individual 
thoracolumbar vertebral levels represents whole-body 
composition, particularly for chest CT scans; b) whether 
cross-sectional body composition may differ within a 
vertebral level; and c) whether multi-slice cross-sectional 
CT analysis is better correlated with whole-body compo-
sition than single-slice CT analysis.

This study aimed to evaluate the correlation between 
cross-sectional thoracolumbar body composition and 
whole-body composition.

Materials and methods
The institutional review board of the participating hos-
pitals approved this retrospective study and waived the 
requirement for patients’ informed consent.

Study population
The study populations were collected retrospectively 
from one tertiary referral hospital  (SNUH; derivation 

Fig. 1  Patient inclusion flowchart
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set) between January 2016 and December 2019 and two 
secondary referral hospitals (BRM and KUDH; valida-
tion set) with the same eligibility criteria (Fig.  1). The 
inclusion criteria were: (a) adult patients, (b) undergoing 
a baseline PET–CT scan covering the entire body from 
hand tip to toe, and (c) available height and weight infor-
mation. The exclusion criteria were: (a) follow-up PET–
CT for disease monitoring, (b) active disease that could 
be included in the segmentation results of body composi-
tion, and (c) no available height and weight information.

A study coordinator collected patients’ age, sex, weight, 
and height information. Body mass index (BMI) was cal-
culated as the weight in kilograms divided by the square 
of the height in meters (kg/m2).

PET/CT acquisition
All patients underwent PET–CT using integrated PET–CT 
scanners (Biograph Truepoint or mCT40, Siemens Health-
ineers; Gemini TF scanner, Philips Healthcare; Discovery 
STE, General Electric Healthcare). Patients fasted for at least 
6 h, and FDG (5.18 MBq/kg) was administered intravenously. 
Images were acquired approximately 60 min after injection. 
Patients were examined in the supine position with the arm 
down. A CT scan (40 mA and 120 kVp) was performed for 
attenuation correction without contrast enhancement, and 
PET images were acquired from the skull base to the toe. 
The CT images were reconstructed using a 512 × 512 matrix 
in combination with a 50-cm field of view and a 3-mm slice 
thickness.

Body composition segmentation
CT images were processed using commercially available 
software (DeepCatch, version 1.x.x.x; MEDICAL IP Co., 
Ltd., Seoul, Korea) for the automatic volumetric segmen-
tation of whole-body CT images. The software contained 
2D and 3D U-Net that segmented CT images into seven 
classes: skin, muscle, bone, abdominal visceral fat (VF), 
subcutaneous fat (SF), internal organs/vessels, and cen-
tral nervous system. A total of 39,268 image slices were 
used to develop the networks, and 3D U-Net provided an 
average dice score of 96.8–99.2% for muscle, 95.1–98.9% 
for VF, and 97.1–99.7% for SF (Fig.  2) in the domestic 

Fig. 2  Representative whole-body 3D and cross-sectional CT 
images of segmented body composition in a 77-year-old male (A, 
C) and a 68-year-old female (B, D) patients. Whole-body 3D (A, B) 
and cross-sectional images at the L3 level (C, D) show differences in 
the distribution of muscle (purple), subcutaneous fat (yellow), and 
intraabdominal fat (red) by sex. Thoracolumbar cross-sectional areas 
of muscle, subcutaneous, and visceral fat were assessed from the 
trunk after excluding those tissues in the arms

◂
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validation sets, respectively [30]. The chest radiologist 
(J.H.H., with 7 years of experience in CT interpretation) 
visually inspected the segmentation results to ensure the 
accuracy of the reference standard by the same software 
and confirmed that no further adjustments were required 
in all cases.

In the 3D U-Net’s segmentation, the intrathoracic VF 
was included in the SF mask. Accordingly, a chest radiolo-
gist (J.H.H., with 7 years of experience in CT interpreta-
tion) separated the intrathoracic VF from the SF mask in 
all cases and revised the U-Net’s segmentation results of 
muscle, abdominal fat, VF, and SF if necessary using same 
software. Intrathoracic VF was defined as the fat enclosed 
by the inner aspect of the sternum, lung, and spines, 
extending from the thoracic apex to the diaphragm [31]. 
The segmented intrathoracic VF was merged into the 
abdominal VF to represent the total VF [32].

The reference whole-body composition comprised 
whole-body volumes of muscle, VF, and SF. Single-slice seg-
mented 2D areas of muscles, VF, and SF in the trunk were 
calculated at the upper endplate, lower endplate, and mid-
vertebra between T1-L5. If the vertebral body was tilted, it 
was measured based on the slice containing the center of 
the anteroposterior plane (Additional file 1: Fig. S1).

We assumed that the chest CT scans covered the area 
from the upper endplate of T1 to the lower endplate of 
L1, while abdominal CT scans extended from the upper 
endplate of T10 to the lower endplate of L5 [33]. Multi-
slice averaging was performed at T12–L1 (from the T12 
upper endplate to the L1 lower endplate) for the chest CT 
range and the waist (from the lowest rib to the iliac crest) 
for the abdominal CT range.

Statistical analysis
The Pearson’s correlation coefficient was used to assess 
the linear associations between reference (3D whole-body 
composition volume) and single-slice or multi-slice aver-
aged 2D areas, and the 95% confidence interval was derived 
based on 1000 bootstrap resamples. We analyzed the coef-
ficients of muscle, VF, and SF separately in each sex. In 
addition, we estimated overall correlation coefficients in 
the three compositions to identify the top three levels rep-
resenting whole-body muscle, VF, and SF simultaneously. 
The coefficients were estimated with a linear mixed model, 
which accounts for dependency among observations within 
each individual, as proposed by Hamlett et al. [34]. In the 
analysis, measurements standardized by sex were used to 
make scales of measurements from the three compositions 
comparable, and the standardization was done as follows:

Z − score =
individual observation−average in the corresponding sex

standard deviation in the corresponding sex

To build prediction models for whole-body composition 
in the derivation dataset, linear regression was used with the 
natural logarithm of whole-body composition as the out-
come, and all predicted values were back-transformed to the 
original scale. The candidate predictors were the natural log-
arithms of body composition on CT slices and participants’ 
sex, age, height, and weight (Additional file 1: Text). Predic-
tion models were determined by applying backward elimina-
tion based on the Akaike information criterion. Prediction 
models’ performance was assessed in terms of R2, the root-
mean-squared error (RMSE), mean absolute error (MAE), 
calibration slope, and calibration-in-the-large. To assess the 
performance of prediction models in the derivation dataset, 
optimism-corrected statistics were estimated based on 1000 
bootstrap samples. The prediction models were externally 
validated using data from BRM and KUDH. In the external 
validation, the models were updated by re-estimating inter-
cepts to account for differences in whole-body composition 
distribution between the derivation and validation datasets 
(Additional file 1: Text).

A P-value less than 0.05 was considered to indicate statisti-
cal significance. All statistical analyses were performed using 
R software (version 4.1http://​www.R-​proje​ct.​org/).

Results
Baseline characteristics
Of the 1272 patients and 617 patients in derivation and 
validation dataset, the derivation dataset included 203 
patients (mean age 58.2  years; 101 men; mean BMI 
23.9  kg/m2) and the validation dataset included 239 
patients from two external hospitals (Fig. 1 and Table 1): 
199 patients (mean age 56.5  years; 61 men; mean BMI 
23.4  kg/m2) and 40 patients (mean age 64.2  years; 19 
men; mean BMI 24.0  kg/m2), respectively. The thora-
columbar body composition was differently distrib-
uted by sex (Fig.  3 and Additional file  1: Table  S1): The 
summed amount of muscle, VF, and SF was highest at L3 
in men and L5 in women. The muscle amount was larg-
est at T1–3 in both sexes (male 1.77–1.97  cm2; female 
1.29–1.38  cm2). The second-largest amount existed at 
L3 in men (1.43  cm2), while the amount was relatively 
consistent across the other T–L levels in women. The 
amount of SF was much larger in women than in men 
and peaked in L5 in both sexes (male, 1.57  cm2; female, 
2.19  cm2). VF remained negligible at T1–T8 and then 
gradually increased and plateaued at L1–L3 (peak value, 
male, 1.36 cm2; female, 0.84 cm2).

http://www.R-project.org/
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Table 1  Participants’ characteristics in the derivation and validation datasets

a Mean values ± standard deviation are presented

Derivation dataset External validation dataset

Male (n = 101) Female 
(n = 102)

All (n = 203) Male (n = 80) Female 
(n = 159)

All (n = 239) BRM (n = 199) KUDH (n = 40)

Age 59.3 ± 14.8 57.1 ± 16.3 58.2 ± 15.5 59.9 ± 13.8 56.7 ± 12.5 57.8 ± 13.0 56.5 ± 12.5 64.2 ± 13.8

Height (cm)a 169.6 ± 6.9 157.4 ± 6.5 163.5 ± 9.1 166.4 ± 7.2 156.8 ± 6.7 160.0 ± 8.2 159.9 ± 8.3 160.3 ± 8.1

Weight (kg)a 69.9 ± 10.8 58.3 ± 9.2 64.1 ± 11.6 65.4 ± 11.4 57.7 ± 8.8 60.4 ± 10.4 59.9 ± 10.1 61.9 ± 11.47

Body mass 
indexa

24.3 ± 3.3 23.5 ± 3.5 23.9 ± 3.4 23.5 ± 3.2 23.5 ± 3.3 23.5 ± 3.3 23.4 ± 3.3 24.0 ± 3.2

  < 18.5 2 (2.0%) 9 (8.8%) 11 (5.4%) 5 (6.3%) 9 (5.7%) 14 (5.9%) 13 (6.5%) 1 (2.5%)

 18.5–22.9 38 (37.6%) 37 (36.3%) 75 (36.9%) 29 (36.3%) 65 (40.9%) 94 (39.3%) 79 (39.7%) 15 (37.5%)

 23–24.9 25 (24.8%) 23 (22.5%) 48 (23.6%) 20 (25.0%) 31 (19.5%) 51 (21.3%) 44 (22.1%) 7 (17.5%)

 25–29.9 30 (29.7%) 30 (29.4%) 60 (29.6%) 25 (31.3%) 52 (32.7%) 77 (32.2%) 61 (30.7%) 16 (40.0%)

  ≥ 30 6 (5.9%) 3 (2.9%) 9 (4.4%) 1 (1.3%) 2 (1.3%) 3 (1.3%) 2 (1.0%) 1 (2.5%)

Body composition (liter)a

Whole-body 
muscle

23.9 ± 4.5 16.4 ± 2.6 20.1 ± 5.2 19.7 ± 4.0 14.7 ± 2.6 16.4 ± 3.9 16.3 ± 3.5 17.1 ± 5.4

Whole-body 
visceral Fat

3.6 ± 1.9 2.3 ± 1.4 3.0 ± 1.8 3.0 ± 1.7 2.1 ± 1.2 2.4 ± 1.4 2.3 ± 1.4 3.0 ± 1.4

Whole-body 
subcutaneous 
fat

13.7 ± 5.2 18.4 ± 5.4 16.1 ± 5.8 9.7 ± 4.8 14.3 ± 4.5 12.8 ± 5.1 12.6 ± 5.1 13.3 ± 5.1

Fig. 3  Averaged cross-sectional areas of muscle, subcutaneous fat (SF), and visceral fat (VF) at thoracolumbar levels in both sexes
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T1–L5 correlation coefficients for muscle, VF, and SF
The Pearson correlation coefficients of muscle, VF, and 
SF using 1000 bootstrap resamples are summarized in 
Fig. 4 and Additional file 1: Table S2.

The craniocaudal trend (T1–L5) in the coefficients for 
muscle presented a bimodal shape regardless of sex: the 
first peak was around the T3–T4 level (coefficients 0.79 
in men and 0.76 in women) followed by a decrease and 
nadir at T6 (coefficients, 0.66 in men and 0.55 in women). 
The coefficients then gradually increased and eventually 
peaked at L3–L4 (coefficients, 0.87 in men and 0.86 in 
women).

The T1–L5 craniocaudal trend of the VF coefficients in 
women also showed a bimodal shape: the first peak was 
around T4–5 (coefficient, 0.83), followed by a decrease 
and nadir at T8 (coefficient, 0.70). Then, the coefficient 
was over 0.90 at T12, followed by a peak at L2–3 (coef-
ficient, 0.97). In men, the coefficients resembled a para-
bolic curve with a skewed peak at the lumbar levels. The 
coefficients increased, with some degree of fluctuation, 
but remained 0.80 or smaller at T1–T9 and increased to 
over 0.90 at T12 with a peak at L2–3 (0.98).

The SF coefficients in women at T1–L5 tended to be 
lower than in men by 0.05–0.1 in general. The coefficients 
plateaued at 0.8 or less at T1–T11. Then, they reached 
around 0.85 at most lumbar levels, with a peak at L5 

(coefficient, 0.91). The coefficients in men were 0.80 at 
T1 and reached around 0.90 at T6, with mild fluctuations 
across vertebrae and peaks at T12 and L5 (0.93).

Best single‑slice and multi‑slice averaging in the chest 
and abdominal CT ranges
The correlation coefficients in each composition are sum-
marized in Fig. 4 and Additional file 1: Table S2, and coef-
ficient in three compositions is presented in Fig.  5 and 
Additional file 1: Table S3.

The T1–L5 craniocaudal trend of the overall coeffi-
cients had a bimodal shape: the coefficient began around 
0.6 at T1, followed by the first peak at T4 (coefficient, 
0.78). The coefficient mildly decreased at T6–7 to 0.74 
and then gradually increased toward the second peak at 
L2–3 (coefficient, 0.90).

The top three correlated levels in the abdominal scan 
range were multi-slice waist averaging (0.92), followed 
by single-slice L3 and L2 (0.90, each), and those in the 
chest scan range were multi-slice T12–L1 averaging 
(0.89) and single-slice L1 (0.89), followed by T12 (0.86). 
The coefficients within vertebrae were similar regardless 
of whether they were obtained at the upper, middle, or 
lower endplate levels. Nevertheless, within the vertebrae, 
the best single-slice levels were regarded as the L3 upper 
endplate, L2 lower endplate, T12 lower endplate, and L1 

Fig. 4  Bar graphs of Pearson correlation coefficients for whole-body composition and 95% confidence intervals based on 1000 bootstrap 
resamples
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lower endplate because these levels produced the highest 
95% confidence intervals of coefficients.

Prediction models in abdominal and thoracic CT
Prediction models to estimate whole-body muscle, VF, 
and SF were derived from the top three single-slice and 
multi-slice cross-sectional analyses. In the abdominal 
scan range, multi-slice waist averaging, the single-slice 
L3 upper endplate, and the single-slice L2 lower endplate 
were chosen. In the chest scan range, multi-slice T12–L1 
averaging, the single-slice L1 upper endplate, and the sin-
gle-slice T12 lower endplate were selected (Table  2 and 
Additional file  1: Tables S4–6). The L1 upper endplate 
was selected because a chest CT scan may not cover the 
entire L1 vertebra, and the correlation coefficients within 
the L1 vertebra did not significantly differ.

The prediction model derived from multi-slice waist 
averaging provided the best estimation for muscle, VF, 
and SF in the internal dataset (R2, 0.89–0.96; RMSE, 
0.38–1.97 L; MAE, 0.26–1.45 L; calibration-in-the-large, 
of − 0.01–0.86  L; calibration slope, 0.95–1.01) (Table  2 
and Additional file  1: Fig. S2). For the abdominal scan 

range, the single-slice L2 lower endplate (R2, 0.87–0.94; 
calibration slope, 0.95–1.05) and L3 upper endplate (R2, 
0.86–0.94; 0.94–1.04) were slightly worse than multi-slice 
waist averaging in all performance measures, including 
RMSE and MAE. For the chest scan range, the model 
performance was similar between multi-slice T12–L1 
averaging (R2, 0.90–0.92; calibration slope, 0.97–1.03) 
and the single-slice L1 upper endplate (R2, 0.89–0.92; 
calibration slope, 0.97–1.05). The single-slice T12 lower 
endplate provided slightly lower performance (R2, 0.87–
0.90; calibration slope, 0.97–1.00) and larger RMSE and 
MAE in general.

In the external validation, the performances of updated 
models were improved than original models, and a simi-
lar order of model performance was replicated in the 
external dataset. Multi-slice waist averaging provided the 
best estimations for muscle, VF, and SF (R2, 0.90–0.94; 
RMSE, 0.34–1.63  L; MAE, 0.25–1.23  L; calibration-in-
the-large, − 0.02 to − 0.30 L; calibration slope, 1.01–1.05) 
(Table 3 and Additional file 1: Fig. S3). For the abdominal 
scan range, the single-slice L2 lower endplate (R2, 0.88–
0.92; calibration slope, 0.84–1.10) and L3 upper endplate 

Fig. 5  Bar graph plotting correlation coefficients for whole-body composition after standardizing muscle, visceral fat, and subcutaneous fat 
measurements by sex and confidence intervals based on 1000 bootstrap resamples
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(R2, 0.88–0.92; calibration slope 1.00–1.11) provided 
slightly lower performance. For the chest scan range, 
similar performance was found between multi-slice T12–
L1 averaging (R2, 0.89–0.92; calibration slope, 0.88–1.01) 
and the single-slice L1 upper endplate (R2, 0.88–0.90; 
calibration slope, 0.96–1.02). The single-slice T12 lower 
endplate provided a slightly lower R2 (0.87–0.90) for 
muscle, VF, and SF and resulted in a slightly larger RMSE 
and MAE for muscle and VF.

Discussion
Using the up-to-date 3D U-Net for the volumetric seg-
mentation of body composition, we assessed the distribu-
tion of muscle, SF, and VF in T1–L5 cross-sectional CT 
images and evaluated the correlations of those estimates 
with whole-body composition. In a single-slice analysis of 
abdominal and chest scans, the L2–3 and L1 levels had 
the closest correlations (0.90 and 0.89, respectively) with 
whole-body composition. Multi-slice waist averaging 
(0.92) showed a better correlation than the L2–3 single-
slice analysis in the abdomen, and multi-slice T12–L1 
averaging (0.89) provided a comparable correlation to 
the L1 level in the chest. The models built for estimating 
whole-body composition based on the top three levels 

estimated whole-body composition in a similar order for 
abdominal and chest scan ranges in the derivation and 
external validation sets.

Most CT studies have analyzed body composition 
using single slices at specific vertebral levels [21, 22, 35, 
36]. The L3 vertebra are widely used, but it has rarely 
been specified where researchers made measurements 
within the vertebra. In the present study, the coefficients 
within the vertebrae of three body compartments (mus-
cle, SF and SV) were similar regardless of the endplate 
levels in the top three levels, with the exception of occa-
sional sharp differences (e.g., VF amount at T1, 0.25–
0.64 in men; 0.26–0.63 in women). Therefore, assessing 
cross-sectional body composition at these vertebral lev-
els would obviate the need to be concerned about which 
level within a vertebra should be measured.

L3 (and the lower L2 level) correlated best with the 
whole-body composition (correlation coefficients, 0.90), 
in accordance with prior studies [22, 35], but it is not 
routinely included in the chest CT scan range. In the 
chest scan range, our results showed the highest correla-
tion coefficients of 0.89 for the single-slice L1 level and 
multi-slice T12–L1 averaging, whereas the upper to mid-
thoracic spine levels represented by T4 and T8 yielded 

Table 2  Model performance for predicting whole-body composition in the internal dataset

RMSE Root-mean-squared error, MAE Mean absolute error

Data in parentheses indicate 95% confidence intervals

Multi-slice 
averaging in the 
waist

Single-slice L2 
lower endplate

Single-slice L3 
upper endplate

Multi-slice 
averaging in 
T12–L1

Single-slice T12 
lower endplate

Single-slice L1 
upper endplate

Muscle

R2 0.94 0.92 0.92 0.91 0.90 0.92

RMSE (L) 1.34 1.51 1.53 1.57 1.67 1.46

MAE (L) 1.03 1.07 1.09 1.10 1.20 1.05

Calibration-in-the-
large (L)

0.11 (− 0.61, 0.82) 0.09 (− 0.70, 0.89) 0.15 (− 0.66, 0.96) − 0.02 (− 0.86, 0.83) 0.02 (− 0.89, 0.92) − 0.10 (− 0.89, 0.69)

Calibration slope 1.00 (0.96, 1.03) 1.00 (0.96, 1.04) 0.99 (0.96, 1.03) 1.00 (0.96, 1.04) 1.00 (0.96, 1.05) 1.01 (0.97, 1.05)

Visceral fat

R2 0.96 0.94 0.94 0.92 0.87 0.91

RMSE (L) 0.38 0.45 0.42 0.49 0.65 0.54

MAE (L) 0.26 0.32 0.30 0.34 0.44 0.38

Calibration-in-the-
large (L)

− 0.01 (− 0.11, 0.08) − 0.10 (− 0.21, 0.02) − 0.08 (− 0.19, 0.03) − 0.03 (− 0.16, 0.09) 0.06 (− 0.11, 0.24) − 0.08 (− 0.22, 0.07)

Calibration slope 1.01 (0.98, 1.04) 1.05 (1.01, 1.09) 1.04 (1.01, 1.08) 1.03 (0.99, 1.06) 1.00 (0.95, 1.05) 1.05 (1.01, 1.09)

Subcutaneous fat

R2 0.89 0.87 0.86 0.90 0.89 0.89

RMSE (L) 1.97 2.07 2.15 1.87 1.94 1.96

MAE (L) 1.45 1.54 1.60 1.42 1.47 1.49

Calibration-in-the-
large (L)

0.86 (0.09, 1.62) 0.89 (0.09, 1.70) 0.99 (0.15, 1.83) 0.51 (− 0.23, 1.25) 0.55 (− 0.22, 1.32) 0.54 (− 0.24, 1.32)

Calibration slope 0.95 (0.91, 1.00) 0.95 (0.90, 1.00) 0.94 (0.90, 0.99) 0.97 (0.93, 1.02) 0.97 (0.93, 1.02) 0.97 (0.93, 1.02)
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Table 3  Model performance for predicting whole-body composition in the external dataset

RMSE Root-mean-squared error, MAE Mean absolute error

Data in parentheses indicate 95% confidence intervals

Multi-slice 
averaging in the 
waist

Single-slice L2 
lower endplate

Single-slice L3 
upper endplate

Multi-slice 
averaging in 
T12–L1

Single-slice T12 
lower endplate

Single-slice L1 
upper endplate

Before updating models

Muscle

 R2 0.48 0.41 0.45 0.42 0.46 0.39

 RMSE (L) 2.79 2.98 2.89 2.96 2.86 3.04

 MAE (L) 2.51 2.64 2.58 2.68 2.54 2.71

 Calibration-in-the-
large (L)

− 0.04 (− 0.71, 0.63) 0.38 (− 0.38, 1.15) 0.13 (− 0.63, 0.88) − 0.25 (− 1.01, 0.51) − 0.05 (− 0.87, 0.77) 0.12 (− 0.67, 0.92)

 Calibration slope 0.87 (0.84, 0.90) 0.84 (0.80, 0.88) 0.86 (0.82, 0.90) 0.88 (0.84, 0.91) 0.87 (0.83, 0.91) 0.85 (0.81, 0.90)

Visceral fat

 R2 0.94 0.93 0.93 0.9 0.87 0.89

 RMSE (L) 0.35 0.38 0.38 0.45 0.51 0.47

 MAE (L) 0.26 0.3 0.3 0.33 0.37 0.36

 Calibration-in-the-
large (L)

− 0.02 (− 0.11, 0.07) − 0.16 (− 0.26, 
− 0.06)

− 0.17 (− 0.27, 
− 0.06)

− 0.02 (− 0.12, 0.09) 0.01 (− 0.11, 0.13) − 0.07 (− 0.18, 0.05)

 Calibration slope 0.99 (0.95, 1.02) 1.03 (1.00, 1.07) 1.04 (1.01, 1.08) 0.93 (0.90, 0.97) 0.93 (0.89, 0.97) 0.96 (0.92, 1.00)

Subcutaneous fat

 R2 0.61 0.44 0.44 0.52 0.53 0.47

 RMSE (L) 3.16 3.8 3.8 3.51 3.48 3.71

 MAE (L) 2.7 3.4 3.4 3.02 2.96 3.2

 Calibration-in-the-
large (L)

− 0.30 (− 0.89, 0.29) − 0.71 (− 1.31, 
− 0.10)

− 0.78 (− 1.40, 
− 0.16)

0.16 (− 0.39, 0.72) 0.35 (− 0.21, 0.91) 0.06 (− 0.53, 0.66)

 Calibration slope 0.85 (0.81, 0.89) 0.84 (0.80, 0.87) 0.84 (0.81, 0.88) 0.80 (0.77, 0.84) 0.80 (0.76, 0.83) 0.80 (0.77, 0.84)

After updating models

Muscle

 R2 0.91 0.88 0.89 0.89 0.87 0.88

 RMSE (L) 1.15 1.33 1.29 1.28 1.38 1.35

 MAE (L) 0.81 0.88 0.86 0.88 0.93 0.93

 Calibration-in-the-
large (L)

− 0.04 0.38 0.13 − 0.25 − 0.05 0.12

(− 0.71, 0.63) (− 0.38, 1.15) (− 0.63, 0.88) (− 1.01, 0.51) (− 0.87, 0.77) (− 0.67, 0.92)

 Calibration slope 1.01 0.84 1 0.88 1.01 1

(0.97, 1.04) (0.80, 0.88) (0.95, 1.04) (0.84, 0.91) (0.96, 1.06) (0.95, 1.04)

Visceral fat

 R2 0.94 0.92 0.92 0.92 0.88 0.9

 RMSE (L) 0.34 0.4 0.41 0.39 0.48 0.45

 MAE (L) 0.25 0.3 0.31 0.28 0.35 0.32

 Calibration-in-the-
large (L)

− 0.02 − 0.16 − 0.17 − 0.02 0.01 − 0.07

(− 0.11, 0.07) (− 0.26, − 0.06) (− 0.27, − 0.06) (− 0.12, 0.09) (− 0.11, 0.13) (− 0.18, 0.05)

 Calibration slope 1.02 1.03 1.04 0.93 1.03 0.96

(0.99, 1.05) (1.00, 1.07) (1.01, 1.08) (0.90, 0.97) (0.99, 1.08) (0.92, 1.00)

Subcutaneous fat

 R2 0.9 0.89 0.88 0.9 0.9 0.89

 RMSE (L) 1.63 1.71 1.76 1.57 1.6 1.67

 MAE (L) 1.23 1.3 1.35 1.14 1.17 1.24

 Calibration-in-the-
large (L)

− 0.3 − 0.71 − 0.78 0.16 0.35 0.06

(− 0.89, 0.29) (− 1.31, − 0.10) (− 1.40, − 0.16) (− 0.39, 0.72) (− 0.21, 0.91) (− 0.53, 0.66)

 Calibration slope 1.05 1.1 1.11 1.01 0.99 1.02

(1.00, 1.09) (1.05, 1.14) (1.06, 1.15) (0.97, 1.05) (0.94, 1.03) (0.97, 1.06)
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coefficients of around 0.77 with large confidence inter-
vals. Considering the correlation coefficients of 0.90 in 
L2–3 and 0.89 in T12–L1, chest CT seems to have the 
potential to estimate whole-body composition compara-
bly to abdominal CT [37].

Single-slice CT analysis has most often been used to 
estimate body composition rather than multi-slice cross-
sectional CT analysis, which requires substantial effort 
to manually segment consecutive CT images. Neverthe-
less, earlier studies suggested that multi-slice CT analysis 
could estimate whole-body composition more accurately, 
considering variation in the body composition in the 
Z-axis and bowel shifting. In addition, selecting repre-
sentative slices can cause intra- and inter-observer vari-
ability [16]. Recent advances in deep neural networks 
have enabled multi-slice body composition CT and our 
3D U-Net able to process a single case less than a few 
minutes. Indeed, multi-slice waist averaging could alle-
viate the varying distribution [38], surpassing L3 in the 
abdominal scan range, and multi-slice T12–L1 averaging 
provided comparable correlations with L1 in the chest 
scan range. A low-dose chest CT scan typically limits 
the scan range confined to the lung parenchyma, and in 
our experience, one-fourth of low-dose chest CT scans 
did not cover L1 (unpublished). This results in significant 
missing data if a single-slice body composition analysis is 
performed at the L1 level in low-dose CT screening for 
lung cancer. However, multi-slice T12–L1 averaging can 
effectively complete body composition data acquisition, 
allowing for the identification of sarcopenic heavy smok-
ers in a large-data low-dose CT scan analysis [39]. How-
ever, it should be acknowledged that the network’s results 
required an assistance of a radiologist for the confirma-
tion and readjustment of the intrathoracic VF for this 
study.

Our study has several limitations. First, the number 
of subjects in the study population was relatively small 
and retrospectively collected at a limited number of 
institutions. Second, we excluded patients with abnor-
mal lesions that would potentially interfere with the CT 
quantification of body composition. Almost all lesions 
excluded from the study were metastasis or primary 
cancer lesions. Those cases were inevitably excluded 
from the analysis since the margin of the lesions was 
less identifiable on non-contrast CT scans. Third, we did 
not analyze and compare body composition using other 
modalities, such as dual-energy X-ray absorptiometry 
or bioelectrical impedance analysis. Nevertheless, CT 
is regarded as the gold standard for body composition 
analysis, and radiologists confirmed the 3D U-Net’s seg-
mentation results. Studies comparing with other modal-
ities such as DEXA help further validate our results. 
Fourth, we used only non-contrast CT scans for body 

segmentation; this was inevitable because whole-body 
PET–CT scans are routinely performed without con-
trast in the participating institution, potentially caus-
ing segmentation errors in references. For instance, 
small vessels running distal to the thyroid, axilla, and 
proximal thighs could not be separated from the mus-
cles masks, as radiologists or the network could not 
identify the small vessels on non-contrast CT scans. In 
addition, due to difference in PET/CT and CT protocols 
dedicated to the chest or abdomen, the spatial resolu-
tion of whole-body PET/CT scans is relatively low com-
pared to CT scans. Despite this, using whole-body CT 
scans was deemed necessary in this study as CT or MR 
scan is considered the best modality for capturing body 
composition. Accordingly, our results might not apply 
to CT scans with different contrast or spatial resolution 
or MR scans and warrant further validation. Fifth, intra-
muscular fat was classified as subcutaneous fat. Sixth, 
the body fat distribution observed in our study may 
not be representative of the general population, as the 
retrospectively selected patients were relatively normal 
or slightly overweight patients. The number of subjects 
corresponding to obese and underweight is small, mak-
ing it difficult to conduct a small group analysis in this 
data. We explored the relationship between whole-body 
composition and slice body composition through a scat-
ter plot in the obese or underweight group compared to 
the normal group, but there was no significant deviation 
in all six areas (Additional file 1: Fig. S4). A larger-scale 
study that can adequately reflect the obesity levels of the 
entire population is needed. In conclusion, single-slice 
CT analysis best-estimated whole-body composition 
at the L2–3 level and L1 level for abdominal and chest 
CT ranges, respectively. Multi-slice averaging produced 
comparable to better results. These results confirm the 
utility of abdominal body composition CT analysis and 
show that chest CT analysis can potentially estimate 
whole-body composition reasonably, like an abdominal 
CT scan. Multi-slice averaging can alleviate a different 
distribution between CT slices.
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