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1 INTRODUCTION 

1.1 Peroxisomes 

Peroxisomes have first been described in 1954 by Rhodin [1] and were initially called 

“microbodies”. The presence of several H2O2-producing oxidases and the H2O2-

degrading enzyme catalase within the matrix of these organelles has led to the name 

peroxisomes in 1966 [2]. Today, peroxisomes and the related organelles in plants and 

trypanosomes, glyoxisomes and glycosomes, respectively, represent the group of 

microbodies. In plants, peroxisomes are involved in lipid metabolism, whereas 

glyoxisomes are mainly found in germinating seeds, where they are part of the 

glyoxylate cycle [3]. Glycolysis is performed in trypanosomal glycosomes, while it occurs 

in the cytosol in other species [4]. Thus, glyoxisomes and glycosomes are specialized 

microbodies that are adapted to specific cellular needs and external influences. 

 

Figure 1.1: Cytochemical staining of the peroxisomal enzyme urate oxidase. Crystalline core of urate 
oxidase (arrows) within the matrix of a peroxisome (PO) stained with the cerium method [5]. 
Modified from [6]. 

Peroxisomes are single membrane-bound organelles that are present in all types of 

eukaryotic cells and have a diameter in the range of 0.1 – 0.5 µm. In contrast to 

mitochondria, peroxisomes do not contain DNA; hence, all peroxisomal proteins are 

synthesized in the cytosol and have to be imported posttranslationally. Dependent on 

the particular cell type, the number of peroxisomes and their protein contents can be 

quite variable [7]. Especially in peroxisomes of liver and renal cells, some proteins, such 

as urate oxidase, are present in such high concentrations that they appear as crystalline 

inclusions, which can easily be identified in electron micrographs (Figure 1.1, [8, 9]). 
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1.2 Peroxisomal metabolic pathways  

More than 50 peroxisomal enzymes have been identified in human cells to date. In 

addition to the degradation of H2O2 and other reactive oxygen species (ROS), 

peroxisomes are responsible for oxidative processes especially in lipid metabolism 

(Figure 1.2). In mammalian cells, the -oxidation of fatty acids is divided between 

mitochondria and peroxisomes [10, 11]. While standard fatty acids are oxidized in 

mitochondria, only peroxisomes can catabolize unusual compounds such as very long 

chain fatty acids (VLCFA), branched chain fatty acids, or long chain dicarboxylic acids 

[12]. In these processes, and additionally during the degradation of several D-amino 

acids (D-proline, D-aspartate) [13] and purine metabolism, ROS (H2O2 and epoxides) are 

produced and have to be degraded by the enzyme catalase. In addition to these catabolic 

processes, peroxisomes harbor several anabolic functions, including the synthesis of bile 

acids [14] and plasmalogens [15]. Several steps of cholesterol biosynthesis have also 

been reported to take place in peroxisomes [16]. 

 

Figure 1.2: Metabolic pathways in the human liver. The products of the -oxidation of VLCFA are 
further processed for the biosynthesis of ether lipids, cholesterol and bile acids, or are transferred 
to mitochondria. The activity of several oxidases results in the production of H2O2, which is 
degraded by the enzyme catalase. Image taken from [6]. 

1.3 Peroxisomal biogenesis disorders 

The central role of peroxisomes in many metabolic pathways explains the appearance of 

severe inherited diseases in individuals that partially or fully lack peroxisomal functions. 

These diseases can be classified into two main groups: (i) disorders of peroxisome 

biogenesis and (ii) single peroxisomal enzyme deficiencies. One example for a single 
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enzyme defect is X-linked adrenoleukodystrophy (X-ALD), in which the ABC-transporter 

ABCD1 is no longer able to transport VLCFA or their correspondent acyl-CoA esters into 

the peroxisomal matrix [17]. This leads to enriched levels of VLCFA in the blood. The 

patients suffer from strong neurologic dysfunctions, including the demyelination of 

neurons, which finally lead to death [18]. The autosomal recessive lethal diseases 

included in the term “peroxisomal biogenesis disorders” (PBDs) are caused by 

mutations in the PEX-genes [19, 20]. 14 PEX-genes are known in humans and encode 

specific proteins, the peroxins, which are all involved in peroxisomal biogenesis [21]. 

Several phenotypes have been linked to mutations in different peroxins. In cells lacking 

one of the peroxins PEX3, PEX16 or PEX19, peroxisomal membrane structures cannot be 

detected at all. Mutations in all other peroxins lead to the formation of empty 

peroxisomal membrane vesicles, so-called “ghosts”, which mostly appear with a lower 

copy number compared to normal peroxisomes within the cell. An overview of all 

known peroxins, including their localization and function is given in Table 1. PBDs 

include Zellweger syndrome (ZS) [22], neonatal adrenoleukodystrophy (NALD) [23], 

infantile Refsum disease (IRD) [24, 25] and rhizomelic chondrodysplasia punctata type 1 

(RCDP) [26], with ZS bearing the most severe features. The patients show retardation in 

their neurological development including degenerative changes of the white matter 

combined with severe hepatic or renal dysfunctions and usually die in early or late 

infancy. 

1.4 Peroxisomal biogenesis 

Peroxisomal dynamics include the formation, proliferation and degradation of 

peroxisomes. The formation of peroxisomes can be divided into three steps: 1. formation 

of the peroxisomal membrane, 2. insertion of peroxisomal membrane proteins, and 3. 

import of peroxisomal matrix proteins. All peroxisomal membrane and matrix proteins 

are encoded in the nucleus and have to be inserted into the peroxisome after translation 

at ribosomes in the cytosol. In contrast to mitochondria and chloroplasts, peroxisomes 

are additionally able to form de novo in cells initially lacking peroxisomes. The 

proliferation of mature peroxisomes and their degradation (pexophagy) are highly 

dynamic processes, which can be regulated depending on the presence of specific 

metabolites or under specific physiological conditions (for reviews see: [6, 27, 28]). 
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Table 1: Overview of peroxins. 

Name Organisma Localizationb Featuresc Proposed functiond 

PEX1 m, y c, m AAA-ATPase  Export of PEX5 
PEX2 m, y m Integral membrane protein, RING-finger motif  Part of translocation machinery 
PEX3 m, y m Integral membrane protein PMP import 
PEX4 y m Ubiquitin ligase PEX18/PEX21 turnover, PEX5 recycling  
PEX5 m, y c, p 2 splicing variants in mammals, TPR domains  Receptor for matrix proteins (PTS1), import pore 
PEX6 m, y c, m AAA-ATPase Export of PEX5 
PEX7 m, y c, p WD40 repeats Receptor for matrix proteins (PTS2) 
PEX8 y m Integral membrane protein PEX5-binding 

PEX10 m, y m Integral membrane protein, RING-finger motif Part of translocation machinery 
PEX11 m, y  Integral membrane protein, 3 isoforms in mammals Proliferation and fission 
PEX12 m, y m Integral membrane protein, RING-finger motif Part of translocation machinery 
PEX13 m, y m Integral membrane protein, SH3 domain PEX5 docking complex 
PEX14 m, y m Integral membrane protein PEX5 docking complex, import pore 
PEX15 s.c. m Integral membrane protein, phosphorylated Anchoring of PEX6 in the membrane 
PEX16 m, y.l. m Integral membrane protein PMP import 
PEX17 y m Integral membrane protein Docking complex, PMP import 
PEX18 s.c. c, p Cytoplasmic PTS2-dependent import 
PEX19 m, y c, p Farnesylated: CAAX motif Receptor for PMPs, chaperone 
PEX20 y.l. c, p Cytoplasmic Import of thiolase 
PEX21 s.c c, p Integral membrane protein PTS2-dependent import 
PEX22 y m Integral membrane protein Anchoring of PEX4 in the membrane 
PEX23 y.l. m Integral membrane protein Import of matrix proteins 
PEX24 y.l. m Integral membrane protein Matrix and membrane protein import 
PEX25 s.c. m Integral membrane protein Regulation of number and size of peroxisomes 
PEX26 m m Integral membrane protein Anchoring of PEX6 in the membrane 
PEX27 s.c. m Integral membrane protein Regulation of number and size of peroxisomes 
PEX29 s.c. m Integral membrane protein Regulation of number and size of peroxisomes 

PEX30-32 s.c. m Dysferlin domain Regulation of number and size of peroxisomes 
a Organism: mammals (m), yeast (y), Saccharomyces cerevisiae (s.c.), Yarrowia lypolitica (y.l.) 
b Localization: membrane (m), cytosol (c), peroxisome (p) 
c Features: AAA-ATPase (ATPase associated with diverse cellular activities), RING-finger (really interesting new gene-finger), TPR domain (tetratricopeptide repeat 
domain), WD40 repeat (Trp Asp 40 repeat), SH3 domain (src homology 3 domain) 
d Proposed function: PMP (peroxisomal membrane protein), PTS (peroxisomal targeting sequence). Modified from [29].
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1.4.1 Formation of the peroxisomal membrane 

The origin of the peroxisomal membrane is an ongoing matter of debate. In the 1960s, 

peroxisomes were thought to arise from the endoplasmic reticulum [30]. Based on the 

observation that peroxisomal membrane proteins (PMPs) are synthesized in the cytosol 

and have to be imported posttranslationally into peroxisomes [31], Lazarow and Fujiki 

postulated their “growth and division” theory in the 1980s [32]. This scenario requires a 

preexisting organelle that multiplies autonomously similar to mitochondria and 

chloroplasts to serve as a precursor for mature peroxisomes (Figure 1.3). However, this 

model is challenged by the observation that cells deficient in PEX3, PEX16 or PEX19, and 

thus lacking any detectable peroxisomes, are able to form peroxisomes de novo upon 

complementation with the missing gene [33-35]. Over the past years, several 

experiments confirmed the ER as the origin for de novo formation of peroxisomes at 

least in yeast [36-38]. Several peroxins have been reported to be N-glycosylated in 

Yarrowia lipolytica [39] and Saccharomyces cerevisiae [40], indicating that these proteins 

must have passed through the ER. Particularly in yeast, the membrane protein PEX3 

initiates budding of preperoxisomal vesicles from a specialized compartment in the ER 

(Figure 1.3, [38, 41]. This event appears to be independent of the Sec machinery [42], 

but requires the presence of PEX19 [38, 40]. Recently, a cell-free ER-budding assay in 

Pichia pastoris showed a packaging of PEX3 and PEX11 into the budded vesicles [43]. 

This process was dependent on ATP, temperature, yet undefined cytosolic factors and 

PEX19. In wildtype yeast, it was shown that peroxisomes multiply mainly by growth and 

division [44]. However, the concept of ER-dependent peroxisome biogenesis was also 

expanded to wildtype cells [45]. At least for PEX3, the route via the ER is supported by 

the observation that PEX3 mRNA colocalizes to the ER in S. cerevisiae [46]. It has been 

shown that the information for de novo peroxisome formation is harbored in the 

cytosolic C-terminal domain of PEX3 [47], which is even able to initiate peroxisome 

formation from mitochondria when fused to the targeting sequence of the mitochondrial 

protein TOM20 [48]. Furthermore, a membrane fusion assay in Y. lipolytica revealed the 

dependence of early peroxisomal vesicle fusion on the AAA-ATPases PEX1 and PEX6 [36, 

49].  

In mammalian cells, the contribution of the ER to peroxisome biogenesis is less evident. 

In mouse dendritic cells, PEX13 and PMP70 have been identified in ER subdomains 

using immunocytochemistry [37, 50]. Additionally, PEX3 and PEX16 have been shown to 
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start from the ER in PEX3- or PEX16-deficient cells, respectively, to generate 

preperoxisomal membranes [51, 52]. This process does likely not involve the classical 

COPI/COPII-mediated vesicular transport for developing peroxisomes [53, 54]. 

However, Sec16B, an ER protein involved in the formation of COPII vesicles, was 

recently identified to mediate the export of PEX16 from the ER en route to peroxisomes 

[55]. The contribution of de novo formation to peroxisome maintenance in wildtype cells 

is still a matter of debate in lower and higher eukaryotes. 

 

Figure 1.3: Peroxisome biogenesis. Mature peroxisomes proliferate by growth and division (lower 
panel) and are formed de novo via peroxisomal compartments of the ER (upper panel). Here, PEX3 
is first localized to a specialized compartement of the ER in order to generate preperoxisomal 
vesicles that bud from the ER in the presence of PEX19. Image taken from [56]. 

1.4.2 Insertion of peroxisomal membrane proteins 

The peroxins PEX3 and PEX19, and additionally PEX16 in mammals and in the yeast 

Y. lipolytica are absolutely essential for the formation of detectable peroxisomal 

membrane structures [35, 57]. These three peroxins exhibit important functions in the 

early stages of peroxisomal biogenesis and de novo formation of peroxisomes [58, 59]. 

This process can be induced in cells lacking one of the three early peroxins after 

reintroduction of the corresponding gene [33-35]. The import of peroxisomal membrane 

proteins is completely independent of the import of peroxisomal matrix proteins [60, 

61]. PMPs do not possess a defined amino acid sequence that could serve as a sorting 

signal to peroxisomes [62]. One or two transmembrane segments flanked by a cluster of 

basic amino acid residues represent the membrane peroxisomal targeting sequence 
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(mPTS) [63]. The cytosolic protein PEX19 acts as the receptor for class I PMPs, which 

are directly targeted to peroxisomes [64]. PEX19 binds a multitude of PMPs via their 

mPTS [63, 65-69], probably during or shortly after protein synthesis at the ribosome 

[70]. However, within some PMPs, the peroxisomal targeting signal and the PEX19-

binding region do not overlap [62, 71]. 

 

Figure 1.4: Import of peroxisomal membrane proteins. PMPs are either imported directly to 
peroxisomes with the help of PEX19 (class I PMPs) or are sorted via the ER (class II PMPs) to 
peroxisomes [72]. PMPs are transported to peroxisomes posttranslationally by the receptor 
PEX19 that mediates the interaction with PEX3 at the peroxisomal membrane. The PMP insertion 
into the membrane and the role of ATP remain to be elucidated. Image taken from [64]. 

The peroxins PEX3 and PEX16 represent class II PMPs, which arrive in peroxisomes 

after travelling through the ER. While PEX3 acts as the receptor for PEX19 at the 

peroxisomal membrane [70, 73, 74], PEX16 was shown to be a tethering factor for PEX3 

at the peroxisome [52, 75]. The subsequent insertion of the PMP into the lipid phase 

remains to be elucidated. After PMP release, PEX19 is cycled back to the cytosol to 

initiate another round of import [76]. The schematic mechanism of PMP import is shown 

in Figure 1.4. The role of ATP in PMP import is discussed controversially. An in vitro 

import assay showed that the targeting of PEX19 to peroxisomes is more efficient in the 

presence of ATP [76]. However, a similar cell-free import assay detected that PMP22 is 

inserted into the peroxisomal membrane independently of ATP [77]. 
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1.4.3 Import of peroxisomal matrix proteins 

The import of peroxisomal matrix proteins is the step in peroxisomal biogenesis that is 

best characterized (Figure 1.5, for review see: [56, 64, 72]). In contrast to mitochondria 

and the ER, peroxisomal matrix proteins are imported in a folded, co-factor bound and 

even oligomeric state [78-80]. Most matrix proteins exhibit one of two known 

peroxisomal targeting signals, PTS1 and PTS2, which are recognized by their 

corresponding cytosolic receptors PEX5 and PEX7, respectively, in mammals [81, 82]. 

Nearly 90 % of peroxisomal matrix proteins carry a PTS1 signal represented by a highly 

conserved C-terminal tripeptide with the sequence Ser/Cys/Ala-Lys/Arg/His-Leu (SKL) 

[83, 84], which interacts with the cytosolic receptor PEX5 via its TPR domain [85]. 

Matrix proteins carrying a PTS2 sequence are bound by the cytosolic receptor PEX7. 

This nonapeptide (Arg/Lys-Leu-X5-Gln/His-Leu) is located in the N-terminus of the 

PTS2-protein [86]. Cargo-loaded PEX7 requires a longer isoform of PEX5 (PEX5L) in 

mammals to be directed to peroxisomes [87-89]. Some peroxisomal proteins are 

imported into peroxisomes without any evidence for a PTS sequence. These proteins 

either “piggyback” on a PTS-containing protein [79, 90] or interact with PEX5 without 

binding to the TPR domain [91].   

After cargo recognition in the cytosol (step I), the cargo-loaded receptor complexes are 

directed to the peroxisomal membrane (step II), where the docking-complex is located 

[92]. This complex is composed of the integral membrane proteins PEX13 [60] and 

PEX14 [93]. A transient import pore is formed by the receptor PEX5 and the peroxin 

PEX14 (step III) [94]. PEX5 can be integrated into the peroxisomal membrane and tends 

to form oligomers [95] – two prerequisites for the transient pore model. In the 

translocation process, the size of the pore is highly dynamic and can be influenced by the 

size of the receptor-cargo-complex [94]. After cargo release (step IV), PEX5 and PEX7 

are recycled back to the cytosol to start another round of protein import. PEX5 is mono-

ubiquitinated at a highly conserved cysteine residue close to its N-terminus [96, 97]. 

This modification of PEX5 is essential for its removal from the peroxisomal membrane 

into the cytosol (step V). This step is ATP-dependent [98] and requires a protein export 

complex composed of two AAA-ATPases (ATPases associated with diverse cellular 

activities), PEX1 and PEX6, and its membrane anchor PEX26 [99] [100]. In addition, 

PEX5 can also be poly-ubiquitinated, which is a signal for proteasomal degradation and 

may serve as a quality control to remove dysfunctional PEX5 [101, 102]. 
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Figure 1.5: Peroxisomal matrix protein import is divided into five steps. Matrix proteins are targeted 
to peroxisomes with PTS1 and 2 using the cytosolic receptors PEX5 and PEX7, respectively. The 
docking-complex is composed of PEX13 and PEX14. A transient pore is formed by PEX5 and 
PEX14, which mediates the translocation across the peroxisomal membrane. After cargo release 
into the matrix, the receptors are recycled back to the cytosol to start another round of protein 
import. The peroxins underlayed in blue are additional compounds in S. cerevisiae. Image 
modified from [64]. 

1.5 Protein translocation and insertion – a comparison of 
peroxisomes with other cellular membranes 

The majority of proteins is synthesized in the cytosol and has to be distributed co- or 

posttranslationally to their final destination within the cell. Targeting information 

within the protein sequence, which is recognized by cytosolic or membrane-bound 

receptors, is often responsible for correct intracellular localization. The protein 

translocation across or insertion into biological membranes is usually mediated by 

multi-subunit complexes that manage the crossing of the membrane barrier. In many 

cases, cytosolic chaperones keep the protein in an import-competent form to translocate 

the unfolded polypeptide chain, which is subsequently folded to receive its active form. 

Although these requirements for successful protein translocation are rather universal 

(Figure 1.6), the import and insertion machineries of the individual cellular 

compartments differ profoundly in their structures, signal sequences and insertion 

mechanism. 
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Figure 1.6: General mechanisms of protein translocation across biological membranes. Proteins are 
either imported cotranslationally from the ribosome (blue) or posttranslationally with the help of 
chaperones (red). In general, a receptor/motor module (green) mediates insertion into the 
translocon and translocation across the membrane barrier. Image taken from [103]. 

1.5.1 Protein translocation processes 

In the ER, mitochondria or chloroplasts, the protein translocation machinery is in 

general linked to the machinery that mediates protein insertion into the corresponding 

membranes (Figure 1.7). In peroxisomes, however, matrix protein import appears to be 

strictly separated from peroxisomal membrane protein insertion. The presence of 

peroxisomal membrane ghosts, which contain PMPs but lack peroxisomal matrix 

proteins, supports the independence of PMP insertion from peroxisomal matrix protein 

import [104, 105]. These ghosts are detected in cells with defects in peroxins involved in 

matrix protein import [106]. Peroxisomal matrix protein import is comparable to 

protein translocation across the ER, mitochondria or chloroplasts, as all pathways use 

import pores. These translocons provide an aqueous channel for the proteins to cross 

the hydrophobic membrane barrier. The Sec61 complex of the ER [107], the TOM/TIM 

complexes of mitochondria [108] and the TOC/TIC complexes of chloroplasts [109] 

feature a static pore and translocate the linear polypeptide chain across the 

corresponding membrane. The proteins destined for the ER matrix, the mitochondrial 

matrix and the chloroplast matrix are imported as unfolded polypeptide chains with 

only single secondary structure elements already formed [103]. In peroxisomes, a 

transient import pore is formed by the cytosolic receptor PEX5 and the PMP PEX14 [94]. 

As peroxisomes are capable of importing folded and oligomeric proteins, the diameter of 

the pore can be dynamically adapted to the size of the cargo protein [94]. An additional 
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example for the import of folded proteins is the TAT (twin arginine translocase) system, 

which is found in bacterial plasma membranes [110] and in thylakoid membranes of 

plants [111]. 
 

 

Figure 1.7: Protein translocation processes in (A) the ER, (B) mitochondria and (C) chloroplasts. 
Image modified from [103]. 

1.5.2 Protein insertion processes 

ER membrane protein insertion initially uses the import pore of the Sec61 complex, but 

laterally releases the protein into the lipid bilayer by partial opening one side of the 

channel [107]. Mitochondrial outer membrane proteins are first completely translocated 

via the TOM complex into the intermembrane space before they are inserted into the 

mitochondrial outer membrane with the help of the TOB/SAM complex [112]. Proteins 

destined for the mitochondrial inner membrane also cross the outer membrane via the 

TOM complex but are then directed to the TIM23 or TIM22 complex. In both cases, 

membrane proteins are arrested within the pore after entry, which results in a lateral 

release of the membrane proteins into the lipid phase [113]. In chloroplasts, all 
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membrane proteins are first translocated through the TOC pore into the intermembrane 

space [114]. Proteins of the outer membrane are then inserted into the chloroplast outer 

membrane, whereas proteins of the inner membrane are probably first translocated to 

the stroma via the TIC complex before they are embedded into the chloroplast inner 

membrane [109]. In contrast, PMP insertion into peroxisomal membranes is isolated 

from matrix protein import. The targeting of PMPs requires the cytosolic receptor 

PEX19, which interacts with PEX3 at the peroxisomal membrane. However, the 

mechanisms of PMP insertion into the peroxisomal membrane remain to be elucidated 

in detail. 

1.5.3 Tail-anchored proteins 

Tail-anchored (TA) proteins represent a special class of membrane proteins that can be 

found in a variety of biological membranes (ER, outer mitochondrial, outer chloroplast, 

peroxisomal) and that use insertion pathways distinct from the previously described 

processes. As TA proteins carry a single C-terminal transmembrane domain, which 

represents the sole targeting signal, they are inserted into the corresponding 

membranes posttranslationally. The majority of TA proteins destined for the ER follow 

the TRC40/Get pathway, which relies on the activity of the ATPases TRC40 

(transmembrane recognition complex) in mammals and Get3 (guided entry of tail-

anchored proteins) in yeast [115]. A distinct insertion pathway for TA proteins to 

mitochondria has not been established yet. Different mitochondrial TA proteins use 

different entry systems or are inserted in an unassisted manner into the outer 

mitochondrial membrane [115]. In peroxisomes, the machinery for inserting 

peroxisomal membrane proteins and TA proteins (e.g. PEX26, Fis1) is the same, both 

involving the cytosolic receptor PEX19 and its membrane receptor PEX3 [116, 117].  

1.6 The peroxins PEX3 and PEX19 

1.6.1 A dual function of PEX3 and PEX19 

The peroxins PEX3 and PEX19 are conserved throughout all eukaryotic species, which 

emphasizes their essential role in peroxisomal membrane biogenesis. The insertion of 

PMPs is thought to occur directly into the peroxisomal membrane after translation on 

free ribosomes in the cytosol. In this model, PEX19 acts as a cytosolic receptor by 

generally binding the mPTS of PMPs [68, 69]. Furthermore, PEX19 is considered a 

chaperone [67, 118] as it shields exposed hydrophobic domains and keeps the PMPs in 
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an import competent form. This stabilizing effect is supported by the observation, that 

PMPs are degraded or mislocalized in the absence of PEX19 [67, 69]. The interaction at 

the peroxisome surface is mediated by PEX3 (Figure 1.4), resulting in a PEX3-PEX19-

dependent insertion process [67, 70, 76, 119]. Apart from anchoring cargo-loaded 

PEX19 at peroxisomes, PEX3 could occupy an active role during PMP insertion, although 

a direct binding of PEX3 to PMPs has not yet been shown. 

 

Figure 1.8: ER-dependent biogenesis of peroxisomes in yeast. PEX3 is first localized to a specialized 
compartment of the ER in order to generate preperoxisomal vesicles that bud from the ER in the 
presence of PEX19. Image modified from [56]. 

However, a study in yeast showed that multiple PMPs are first targeted to the ER in 

wildtype cells as well as in PEX3- and PEX19-deficient cells [43, 45]. The finding that 

PMPs may be localized cotranslationally to the ER independently of PEX19 and that 

PEX19 is rather required for the budding of preperoxisomal vesicles from the ER led to a 

different import model [45, 56]. There, PMPs are not inserted into existing peroxisomes 

but are in general first localized to the ER to form a preperoxisomal compartment. 

Budding from the ER in the presence of PEX3 and PEX19 and the subsequent fusion of 

several small vesicles form peroxisomes, which already contain most if not all PMPs 

(Figure 1.8). 

1.6.2 Biochemical properties of PEX3 

The human peroxin PEX3 is a 42 kDa protein composed of 373 amino acid residues, with 

the N-terminal 33 residues anchoring it into the peroxisomal membrane (Figure 1.9). 

This transmembrane domain is necessary and sufficient for PEX3 targeting to 

peroxisomes [120, 121]. PEX3 represents a class II PMP, which is directed to 

peroxisomes in a PEX19-independent way. The cytosolic domain of PEX3 protrudes into 
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the cytosol and mediates the interaction with PEX19 [70, 122]. This PEX3-PEX19 

interaction is of high affinity and involves a strictly conserved tryptophan residue at 

position 104 within PEX3 [123]. In addition, a hydrophobic region of PEX3 comprising 

residues 120-136 was proposed to bind PEX19 [70]. 
 

Figure 1.9: Domain topology of the peroxins 3 and 19. (A) The transmembrane domain (TM) at the N-
terminus of PEX3 is essential for peroxisome targeting. The rest of the protein projects into the 
cytosol and is responsible for PEX19 binding. (B) The first N-terminal 56 amino acids of PEX19 
are necessary for binding to PEX3 and for localization to peroxisomes. The C-terminal domain 
mediates the interaction with PMPs. 

1.6.3 Biochemical properties of PEX19 

PEX19 is mainly localized in the cytosol, but a small amount can also be found at the 

peroxisomal membrane [59]. The human 299-residue protein adopts a two-domain 

architecture (Figure 1.9), with a highly flexible N-terminal domain and a folded C-

terminal domain [118] that was recently shown to form an all -helical bundle able to 

recognize several PMPs [66]. Some data suggest an additional role for the N-terminal 

part of PEX19 in PMP recognition [76, 118, 124]. The N-terminus of PEX19 comprising 

residues 1-56 is needed for the localization to peroxisomes, and thus for the interaction 

with PEX3 [65, 70, 76]. A second PEX3-binding site was proposed to lie within PEX19 

residues 124-150 [65]. PEX19 carries a strictly conserved CAAX-box at its very C-

terminus, a typical farnesylation motif [125]. The importance of PEX19 farnesylation in 

vivo is discussed controversially [126-128]. 
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1.7 Aim of this work 

The major objective of this thesis was to elucidate the parameters underlying the PEX3-

PEX19 complex formation. Although both proteins were known to interact and are 

indispensable for peroxisome biogenesis, no structural information was available on 

either PEX3 or the N-terminus of PEX19, which mediates the interaction with PEX3. 

Therefore, structural analyses of PEX3 alone and PEX3 in the presence of its interaction 

partner PEX19 were undertaken. An available PEX3 construct starting at amino acid 26 

was used initially, with limited success [129]. A further truncated PEX3 construct was 

then designed, and the expressed protein was purified and used to screen for 

crystallization conditions alone and in the presence of a PEX19-derived peptide 

fragment. The in vitro studies were complemented with in vivo experiments in order to 

achieve a comprehensive structure-function analysis of the PEX3-PEX19 interaction. All 

experiments in this thesis were designed and performed to address the following 

questions: 

 What are the molecular details of the PEX3-PEX19 interaction? 

 What residues are essential for the PEX3-PEX19 complex formation? 

 What are the affinity and the molar ratio of the PEX3-PEX19 complex? 

 Does PEX19-binding have an effect on the structure or stability of PEX3? 

 Are the identified conserved regions on the surface of PEX3 involved in 

PEX19-binding or other steps in peroxisome biogenesis? 

 
Answering these questions was expected to lead to a more detailed model of PMP 

import into the peroxisomal membrane by defining the specific function of PEX3 and 

PEX19 in peroxisome membrane biogenesis. 
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2 MATERIALS AND METHODS 

2.1 Buffers and reagents 

All chemicals were purchased from Roth (Karlsruhe, Germany) or Sigma Aldrich 

(München, Germany). Reagents for molecular biology were from Fermentas (Thermo 

Fisher Scientific/Fermentas, St. Leon-Roth, Germany). 

Table 2: Buffers and reagents used for cloning, protein preparation and protein analysis. 

E. coli strains 

DH5 F-80lacZM15 (lacZYA-argF)U169 recA1 endA1 hsdR17(rk-

, mk+) phoA supE44 thi-1 gyrA96 relA - 

BL21 (DE3) F- ompT hsdSB(rB- mB-) gal dcm lon λ (DE3) 

Rosetta2 (DE3) F- ompT hsdSB(rB-mB-) gal dcm (DE3) pRARE2 (CAMR) 

Cloning 

6x DNA loading dye 10 mM Tris, 60 % (v/v) glycerol, 60 mM EDTA, 0.03 % (w/v) 

bromophenol blue, pH 7.6 

5x TBE 450 mM Tris, 450 mM boric acid, 10 mM EDTA, pH 8.0 

LB medium 1 % (w/v) peptone, 1 % (w/v) NaCl, 0.5 % (w/v) yeast extract 

LB-Amp 1 % (w/v) peptone, 1 % (w/v) NaCl, 0.5 % (w/v) yeast 
extract, 100 µg/mL ampicillin 

LB-Amp/Cam 1 % (w/v) peptone, 1 % (w/v) NaCl, 0.5 % (w/v) yeast 
extract, 100 µg/mL ampicillin, 34 µg/mL chloramphenicol 

LB agar 1 % (w/v) peptone, 1 % (w/v) NaCl, 0.5 % (w/v) yeast 
extract, 1.5 % (w/v) agar 

SOC medium 2 % (w/v) peptone, 0.5 % (w/v) yeast extract, 10 mM NaCl, 
2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose 

Protein preparation 

HisA 20 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 5 mM -ME, 
pH 8.0 

HisB 20 mM NaH2PO4, 300 mM NaCl, 500 mM imidazole, 5 mM -
ME, pH 8.0 

SEC 50 mM Tris, 200 mM NaCl, 5 mM DTT, pH 8.0 

Protein analysis 

SDS- and native PAGE 

2x SDS loading dye 125 mM Tris (pH 6.8), 4 % (w/v) SDS, 10 % (v/v) -ME, 20 % 
(v/v) glycerol, 0.02 % (w/v) bromophenol blue 
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SDS running buffer 25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS, pH 8.3 (do not 
adjust) 

Coomassie staining 
solution 

30 % (v/v) ethanol, 10 % (v/v) acetic acid, 0.25 % (w/v) 
Coomassie Brilliant Blue G-250 

Coomassie destaining 
solution 

30 % (v/v) ethanol, 10 % (v/v) acetic acid 

2x loading dye (native) 125 mM Tris (pH 6.8), 20 % (v/v) glycerol, 0.02 % (w/v) 
bromophenol blue 

Western blotting 

WB buffer 20 mM Tris, 150 mM glycine, 0.05 % (w/v) SDS, 20 % (v/v) 
methanol 

PBS 10 mM Na2HPO4, 1.8 mM KH2PO4, 140 mM NaCl, 2.7 mM KCl, 
pH 7.4 

PBS-Tween PBS, 0.1 % Tween-20 

PBS-ST PBS, 0.02 % (w/v) SDS, 0.1 % (v/v) Triton-X-100 

Antibodies  

GDA7 antibody against C-terminal human PEX3 peptide (aar 354-
371) generated in rabbit; Dodt lab, University of Tübingen 

PEX19-1 antibody against recombinant human full-length PEX19 
generated in rabbit; Dodt lab/N. Treiber, University of 
Tübingen 

Secondary antibody α-rabbit IgG coupled to HRP (Sigma Aldrich) 

CD spectroscopy 

CD buffer 5 mM Na2HPO4, 0.9 mM KH2PO4, 70 mM NaCl, 1.35 mM KCl, 
0.25 mM TCEP, pH 7.2 

Tm buffer 10 mM Na2HPO4, 1.8 mM KH2PO4, 5 mM NaCl, pH 7.4 

ITC experiments 

ITC buffer 10 mM Na2HPO4, 1.8 mM KH2PO4, 140 mM NaCl, 2.7 mM KCl, 
0.5 mM TCEP, pH 7.4 

TNT and CoIP 

CoIP A 20 mM HEPES, 110 mM KAc, 5 mM NaAc, 2 mM MgAc, 1 mM 
EDTA, pH 7.3 

CoIP B 20 mM HEPES, 110 mM KAc, 5 mM NaAc, 2 mM MgAc, 1 mM 
EDTA, pH 7.3; 0.1 % (w/v) BSA 

CoIP C 20 mM HEPES, 110 mM KAc, 5 mM NaAc, 2 mM MgAc, 1 mM 
EDTA, pH 7.3; 0.5 % (v/v) Triton X100 + protease inhibitor 
cockatil (Sigma Aldrich, 1:200)) 
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2.2 Molecular biology 

All enzymes and reagents used for cloning procedures were purchased from Fermentas 

(St. Leon-Roth, Germany) unless indicated otherwise. Oligonucleotides were synthesized 

by biomers.net (Ulm, Germany). Chemicals were purchased from Roth (Karslruhe, 

Germany) or Sigma Aldrich (München, Germany). DNA concentrations were calculated 

using their absorbance values at 260 nm with a NanoDrop ND-100 (PeqLab, Erlangen, 

Germany). 

2.2.1 Plasmids 

The plasmids used in this work are listed in Table 3. Detailed plasmid cards of pNT65, 

pFS122 and pNT45 can be found in section 0. The DNA and amino acid sequences of 

sPEX3 and PEX19 are listed in section 9.2.1 and 9.2.2, respectively. 

Table 3: Plasmid list. 

Plasmid Basic vector Description Protein 
Bacterial expression 

pNT65 
[129] 

pET32a 
(Merck/Novagen, 
Darmstadt, Germany) 

Human PEX3, aar 26-373, 
C235S, N-terminal Trx-His6-
tag, TEV protease cleavage site 

nPEX3 

    pFS122 pET32a 
(Merck/Novagen, 
Darmstadt, Germany) 

Human PEX3, aar 41-373, 
C235S, N-terminal Trx-His6-
tag, TEV protease cleavage site 

sPEX3 

    pNT45 
[129] 

pCold1 
(Takara/Bio Europe, 
St Germain en Laye, 
France) 

Human PEX19, full-length 
N-terminal His6-tag, TEV 
protease cleavage site 

PEX19 

 Mammalian expression 

pMS20 [120, 
130] 

pcDNA3.1zeo 
(Invitrogen,  
Darmstadt, Germany) 

Human PEX3, full-length 
C-terminal myc-tag 

PEX3-myc 

    pMS200 
[120, 130] 

pcDNA3.1zeo 
(Invitrogen,  
Darmstadt, Germany) 

Human PEX3, aar 1-33 
C-terminal GFP-tag 

PEX31-33-GFP 

    pMS218 
[120, 130] 

pcDNA3.1zeo 
(Invitrogen,  
Darmstadt, Germany) 

Human PEX3, aar 34-373 
C-terminal GFP-tag 

PEX334-373-GFP 

    pPEX3-YFP 
(A. Muntau) 
[73] 

pcDNA3.1zeo 
(Invitrogen,  
Darmstadt, Germany) 

Human PEX3, aar 1-373 
C-terminal YFP-tag 

PEX31-373-YFP 

pKB8.1 
(K. Bagner; 
Dodt lab) 

pcDNA3.1zeo-myc 
(Invitrogen,  
Darmstadt, Germany) 

Human PEX16, aar 1-336 
C-terminal myc-tag 

PEX16-myc 
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pBG4 
(B. Gürke; 
Dodt lab) 

pEYFP-N1 
(Takara/ Clontech 
St Germain en Laye, 
France) 

Human PEX16, aar 1-336 
C-terminal YFP-tag 

PEX16-YFP 

    pPMP70-myc 
(S. Gould; 
Baltimore) 

pcDNA3 
(Invitrogen,  
Darmstadt, Germany) 

Human PMP70 
C-terminal myc-tag 

PMP70-myc 

    pYFP-PTS1 
(A. Muntau, 
München) 

pEYFP-Peroxi 
(Takara/ Clontech 
St Germain en Laye, 
France) 

YFP 
C-terminal PTS1-tag 

YFP-PTS1 

 

2.2.2 Cloning 

2.2.2.1 General theory 

A DNA insert used for cloning into an expression plasmid is amplified from template 

DNA with specific primers using polymerase chain reaction (PCR, [131]). The PCR 

product is analyzed with agarose gel electrophoresis. The expression plasmid and the 

PCR product are digested with restriction endonucleases to obtain suitable DNA 

fragments for ligation. The produced new plasmid is then transformed into E. coli cells, 

and plasmid-containing cells are selected via antibiotic resistance. Several clones are 

tested for positive insertion by DNA preparation followed by analytical digestion with 

restriction endonucleases.  

For inserting point mutations within a DNA sequence, the method of site directed 

mutagenesis is performed [132]. Here, specific primers are designed that contain the 

desired mutation within the sequence of the oligonucleotide. A subsequent PCR 

amplifies the complete plasmid carrying the desired mutation. The parental DNA is 

digested with DpnI. After transformation of the plasmid, DNA is amplified and isolated of 

E. coli cells. In both cases, new DNA constructs are sequenced based on the dideoxy 

method of Sanger using fluorescence labeled ddNTPs as terminator nucleotides [133]. 

2.2.2.2 Polymerase chain reaction and agarose gel electrophoresis 

For cloning of sPEX3 into pET32a, the plasmid pNT65 served as template DNA. The 

forward primer (GD 425) contained in addition the sequence for the TEV protease 

cleavage site (italics) following the restriction site for NcoI (underlined). The reverse 

primer (GD 426) contained the restriction site for SalI (underlined). The primer 

sequences were: 
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GD 425  5´-3´ GCCCATGGAAAACCTGTATTTTCAGGGACAGGAAAGGGAGGCTGCAGAATACATTGC 

GD 426  5´-3´  GGCGTCGACTCATTTCTCCAGTTGCTGAGGGG 

The components and the program for PCR reaction are listed in Table 4. Each PCR 

product was analyzed by agarose gel electrophoresis. Therefore, 1 µL of 6x DNA loading 

dye was added to 5 µL of the PCR sample and loaded onto a 1 % (w/v) agarose gel. The 

gel was produced by melting agarose (Biozym, Hessisch Oldendorf, Germany) in 50 mL 

0.5x TBE buffer. Ethidium bromide was added (end concentration: 1 mg/mL) and the gel 

was cast into a gel chamber. Gels were run for 1 hour at 100 V before DNA was 

visualized under UV light. 

Table 4: PCR reaction batches and PCR program used for amplifying sPEX3.  

Component Volume 
(µL) 

 Step Time (min) Temperature 
(°C) 

pNT65 (100 ng/µL) 1  1 denaturation 3 95 
Primer GD 425 
(10 pmol/µL) 

5 
 

2 denaturation 2 95 

Primer GD 426 
(10 pmol/µL) 

5 
 

3 annealing 2 65 

Buffer (10x) 5  4 elongation 5 72 
dNTPs (10 mM) 1    Go back to step 2 for 30 times 
Pfu DNA polymerase 
(2.5 U/µL) 

1 
 

5 elongation 15 72 

H2O 32  6 hold pause 4 

 

2.2.2.3 Restriction and ligation 

The PCR product was purified using the mi-PCR Purification Kit according to the 

manufacturer’s instructions (Metabion, Martinsried, Germany). In order to obtain DNA 

sequences suitable for ligation, the purified PCR product and the plasmid pNT65 were 

digested with restriction endonucleases overnight at 37 °C using the following reaction 

mixture: 

DNA   1 µg 
NcoI   1 µL 
SalI   2 µL 
Buffer (Tango, 10x) 4 µL 
H2O   ad 20 µL 

The samples were separated on a 1 % (w/v) agarose gel, and the corresponding bands 

were cut out. The DNA was eluted from the agarose by centrifugation (16000*g, 10 min, 

4 °C) using a filter tube (Costar Spin-X®, Corning, Amsterdam). For ligation, 80 ng of 

digested plasmid pNT65 were incubated with the insert DNA. Different molar ratios of 



2 MATERIALS AND METHODS 

 

21 
 

insert to vector were used (5:1 and 25:1). The reaction batch was completed with ligase 

(1 µL) and ligation buffer (10x, 2 µL), and it was filled up with H2O to 20 µL. The reaction 

mixtures were incubated at 16 °C for 16 hours in a thermocycler (Biometra, Göttingen, 

Germany). 

2.2.2.4 Transformation and DNA isolation 

The ligation batches were dialyzed for 20 minutes against H2O prior to transformation 

into E. coli DH5 using electroporation. In preparation, the DNA solutions were pipetted 

on a nitrocellulose filter (0.025 µm VSWP, Merck/Millipore, Darmstadt), floating on 

5 mL H2O in a culture dish. 50 µL of competent bacteria cells were mixed with 10 µL of 

dialyzed DNA sample on ice. The cell-DNA suspension was transferred to an 

electroporation cuvette (Biozym, Hessisch Oldendorf, Germany) and exposed to 2500 V 

for 6 ms using an electroporator (Eppendorf, Hamburg, Germany). Directly after 

electroporation, cells were treated with 500 µL warm (37°C) SOC medium and incubated 

at 37 °C with gentle shaking for 30-60 minutes. 100-200 µL of cell suspension was plated 

on an LB agar plate containing ampicillin (100 µg/mL) and incubated overnight at 37 °C. 

For DNA preparation, single colonies were transferred into 15 mL of LB-Amp medium 

and incubated on a bacterial shaker (Infors HT, Basel, Switzerland) at 180 rpm overnight 

at 37 °C. DNA isolation was carried out with the mi-Plasmid Miniprep Kit (Metabion, 

Martinsried, Germany) according to the manufacturer’s instructions. To test for 

successful ligation, restriction analysis with NcoI/SalI was performed and analyzed by 

agarose gel electrophoresis. Positive clones containing the insert were sequenced at 

Eurofins MWG Operon (Ebersberg, Germany) using S-tag (5’ CGAACGCCAGCACATGGACA 

3’) and T7 reverse (5’ CTAGTTATTGCTCAGCGGT 3’) primers. 

2.2.2.5 Site directed mutagenesis 

For inserting point mutations in sPEX3 (pFS122), PEX3-myc (pMS20) or PEX3-YFP 

(pMS204), site directed mutagenesis was performed by PCR. The primers are listed in 

Table 5, with the sequences of the corresponding mutations being underlined. 

Components and the program for mutagenesis PCR are listed in Table 6.  

The PCR reaction samples were incubated with 1 µL DpnI at 37 °C overnight to digest 

methylated template DNA. To verify successful mutagenesis PCR, each sample was 

analyzed by agarose gel electrophoresis. PCR-positive samples were transformed into 

E. coli DH5 (2 µL DNA + 50 µL electro-competent cells; see section 2.2.2.4) and 



2 MATERIALS AND METHODS 

 

22 
 

plasmid-containing clones were selected via ampicillin resistance. 15 mL of LB-Amp 

medium were inoculated with a single colony and incubated on a shaker overnight at 

37 °C and 180 rpm. DNA was isolated with the mi-Plasmid Miniprep Kit (Metabion, 

Martinsried, Germany) according to the manufacturer’s instructions and sequenced 

(Eurofins MWG Operon, Ebersberg, Germany). 

Table 5: Primers used for inserting point mutations in sPEX3 and PEX3-myc and PEX3-YFP. 

Mutation Primer forward 
5’- 3’ 

Primer reverse 
5’- 3’ 

L93N CCGAGAGCCTCACAGCTCTGAACAAAAACAGGCC GGCCTGTTTTTGTTCAGAGCTGTAGGCTCTCGG 

I140N CATAATTGGTGGATATAACTACCTGGATAATGCAGC GCTGCATTATCCAGGTAGTTATATCCACCAATTATG 

L165N CCAACAGCAGTATAATTCAAGTATTCAGCACC GGTGCTGAATACTTGAATTATACTGCTGTTGG 

E266A CTATTAAACTTCTCAATGCAACTAGAGACATGTTGG CCAAATGTCTCTAGTTGCATTGAGAAGTTTAATAG 

D275A GTTGGAAAGCCCAGCTTTTAGTACAGTTTTG CAAAACTGTACTAAAAGCTGGGCTTTCCAAC 

K324A GTCAGCCTGCCTTTAGCTGCGATAATTCCAATAG CTATTGGAATTATCGCAGCTAAAGGCAGGCTGAC 

C235S GGATCCAAACCTTTATTAAGCCATTATATGATGCC GGCATCATATAATGGCTTAATAAAGGTTTGGATCC 

 

Table 6: Reaction batches and corresponding temperature program for mutagenesis PCR. 

Component Volume 
(µL) 

 Step Time (min) Temperature 
(°C) 

pMS20 or pFS122 
(100 ng/µL) 

1 
 

1 denaturation 2 95 

Primer forward 
(10 pmol/µL) 

5 
 

2 denaturation 1 95 

Primer reverse 
(10 pmol/µL) 

5 
 

3 annealing 1 60 

Buffer (10x) 5  4 elongation 15 72 
dNTPs (10 mM) 1    Go back to step 2 for 18 times 
Pfu DNA polymerase 
(2.5 U/µL) 

1 
 

5 elongation 20 72 

H2O 32  6 hold pause 4 

2.3 Protein preparation and protein analysis 

All chemicals were purchased from Roth (Karlsruhe, Germany), Fermentas (St. Leon-

Roth, Germany) or Sigma Aldrich (München, Germany) unless stated otherwise. Protein 

purification was carried out on an ÄKTA Purifier system (GE Healthcare, München, 

Germany) using the supplied Unicorn 5.01 software. Size exclusion chromatography was 

performed using an FPLC BioLogic Duo Flow system (Bio-Rad, München, Germany). All 

columns for purification procedures were purchased from GE Healthcare. All 

purification steps were carried out at 4 °C. 
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2.3.1 Expression and purification of proteins 

2.3.1.1 General remarks 

For recombinant expression of proteins in E. coli, a plasmid coding for the desired 

protein sequence with a suitable promoter is first transformed into bacterial cells. 

Plasmid-containing cells are selected by specific antibiotic resistance. Protein expression 

can be induced through the presence of specific metabolites, which initiate DNA 

transcription by activating the corresponding promoter. In this thesis, all bacterial 

expression plasmids are based on the lac operon, which can be regulated by the addition 

of isopropyl--thiogalactopyranoside (IPTG). The culture conditions (bacterial cell line, 

temperature, concentration of IPTG) must be optimized for each single protein to obtain 

soluble protein in an adequate yield.   

For purification, the recombinantly expressed protein has to be extracted from the 

protein pool of the lysed cells. Metal chelate affinity chromatography is based on 

reversible interactions of histidine residues in proteins with metal ions, usually Ni2+, 

which are immobilized on a column matrix [134]. After binding to the column, proteins 

can be eluted with increasing concentrations of imidazole that competes with histidine 

residues for binding to the Ni2+ ions. Size exclusion chromatography separates proteins 

according to their size and shape using a porous matrix. Each column has to be 

calibrated with proteins of known molecular mass to estimate the oligomerization state 

of the protein of interest. 

2.3.1.2 Expression of nPEX3 and sPEX3 

For protein expression, 100 ng of the different PEX3 constructs were transformed in 

E. coli Rosetta2 (DE3) cells as described in section 2.2.2.4 this time using LB-Amp/Cam 

medium. 4 mL of the overnight culture were used to inoculate 400 mL of LB-Amp/Cam 

medium. Cells were incubated in a bacterial shaker at 37 °C and 180 rpm until the OD600 

reached 0.6-0.9. Then, protein expression was induced with 1 mM IPTG and the 

temperature was set to 18 °C for 16-20 hours without precooling the bacterial cultures. 

2.3.1.3 Expression of PEX19 

For PEX19 expression, 100 ng of the vector pNT45 containing the DNA for human PEX19 

was transformed into E. coli BL21 (DE3) cells (see section 2.2.2.4). 4 mL of the overnight 

culture were used to inoculate 400 mL of LB-Amp medium. Cells were incubated in a 

bacterial shaker at 37 °C and 180 rpm until the OD600 reached 0.4. Then, the temperature 
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was lowered to 15 °C for 30-45 minutes before protein expression was further induced 

with 1 mM IPTG. Cells were then incubated overnight at 15 °C. 

2.3.1.4 Cell lysis and protein purification 

Cell lysis and protein purification were the same for nPEX3, sPEX3 and PEX19. First, 

bacterial cells were harvested by centrifugation (8000*g, 10 min, 4 °C). The pellet was 

resuspended in buffer HisA (10 g pellet in 50 mL buffer) prior to lysis in a French press 

(Emulsiflex, Avestin, Mannheim, Germany). After centrifugation (28000*g, 45 min, 4 °C), 

the lysate was filtered (0.45 µm), loaded onto a Ni2+-column (HisTrapTM HP, 5 mL), and 

target protein was eluted with buffer HisB using the protocol listed in Table 7. The flow-

through was collected separately. Five mL fractions were collected during the first two 

washing steps and 2 mL fractions were collected during the elution steps. 

Table 7: Protocol for elution of proteins from Ni2+-columns. 

Step Concentration HisB (%) Column volume (CV) 
Washing 1 0 20 
Washing 2 10 25 
Elution 1 10-100 25 
Elution 2 100 10 
 

The target protein containing fractions were pooled, and 1 mg TEV protease was added 

to 40 mg of protein. Cleavage was carried out in a membrane tube (MWCO 10 kDa, 

Spectrumlabs, Breda, The Netherlands) overnight at 4 °C while dialyzing against 1 L 

buffer HisA. The protein solution was next applied to a second Ni2+-column to remove 

uncleaved protein, His6-tags and His6-tagged TEV protease. The flow-through containing 

cleaved protein was concentrated using a centrifugal filter unit (Merck/Millipore, 

Darmstadt, Amicon Ultra, Ultracell, MWCO 10 kDa) and applied to a SEC column. 

Preparative SEC was carried out on a SuperdexTM 200 10/300 GL column whereas 

analytical SEC was done on a SuperdexTM 200 PC 3.2/30 with SEC buffer. 

2.3.2 Peptide synthesis 

PEX19-derived peptides were synthesized by H. Kalbacher (IFIB, University of 

Tübingen) using solid-phase chemistry and the N-(9-fluorenyl)methoxycarbonyl (Fmoc) 

strategy on a SyroII synthesizer (MultiSynTech, Witten, Germany) as described in [135]. 

Peptides were purified with a C18 column. Purity was confirmed by analytical HPLC, 

matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-

TOF-MS), and electrospray ionization mass spectrometry (ESI-MS).  
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2.3.3 Protein analysis 

2.3.3.1 SDS-PAGE 

Heterogeneous protein solutions can be separated using discontinuous sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE, [136]). In general, the proteins 

are denatured by incubating with a reductive reagent and SDS, an anionic detergent that 

charges proteins with a constant mass ratio of 1.4 mgSDS/mgprotein and additional boiling 

for 5 min. The protein solution is then loaded onto an acryl-/bisacrylamide gel that 

forms a network of defined pores and separates the different proteins by molecular 

mass using an electric field.  

In this thesis, protein fractions were tested for purity with SDS-PAGE analysis. 

Therefore, a 10 % separating gel with a 5 % stacking gel was cast with components 

listed in Table 8. Samples (5 µL) were mixed with 5 µL 2x SDS loading dye without 

boiling before loading on the gel. Electrophoresis was carried out at 140 V for 1 hour at 

room temperature using SDS running buffer. Gels were incubated with Coomassie 

staining solution and heated to 80 °C in a microwave for 30 seconds before they were 

incubated for 10-20 minutes at room temperature. After removing the staining solution, 

gels were destained in Coomassie destaining solution for 1 hour at room temperature. 

Table 8: Composition of SDS gels. 

 10 % separating 
gel 

(mL) 

 5 % stacking 
gel 

(mL) 
H2O 1.9 H2O 1.4 
Acrylamide-
bisacrylamid (37.5:1) 

1.7 Acrylamide-
bisacrylamide (37.5:1) 

0.33 

1.5 M Tris, pH 8.8 1.3 1.5 M Tris, pH 6.8 0.25 
10 % SDS 0.05 10 % SDS 0.02 
10 % APS 0.05 10 % APS 0.02 
TEMED 0.002 TEMED 0.002 
 

2.3.3.2 Native PAGE 

A native PAGE is carried out under non-reducing and non-denaturing conditions to 

detect possible oligomerization states of a protein or protein-protein interactions. In this 

thesis, a native PAGE was done to characterize the molar ratio of the PEX3-PEX19 

complex formation. Therefore, protein solutions were separated on an 8 % native gel 

without addition of SDS. nPEX3 and PEX19 were used at a concentration of 10 µM each 

and mixed in different molar ratios. 15 µL protein samples were incubated with 2x 
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loading dye (native) before electrophoresis was done at 50 V for 3-4 hours under ice 

cooling using SDS running buffer without the addition of SDS. The gel was then further 

analyzed by Western blotting (see section 2.3.3.3). 

2.3.3.3 Western Blotting 

Western blotting identifies proteins using specific immunodetection with antibodies 

against the target protein. Therefore, proteins are separated by electrophoresis and 

electroblotted onto a membrane to make protein epitopes accessible to the antibodies 

[137]. The antibody itself is detected indirectly with a secondary antibody that is 

coupled to horseradish peroxidase. In the presence of H2O2 and the substrate luminol, 

photons are generated, which react with a light sensitive film at the positions of the 

proteins.  

In this thesis, nPEX3:PEX19 protein solutions of different molar ratios (2:1, 1:1, 1:2) 

were separated with a native PAGE (section 2.3.3.2) before the gel was blotted onto a 

PVDF membrane (GE Healthcare, München, Germany) that was activated before in 

100 % methanol. The proteins were transferred at 20 V for 1 hour at room temperature 

in a semidry blotting system (Bio-Rad, München, Germany) using WB buffer. The 

membrane was blocked with 10 % milk powder in PBS-Tween at 4 °C overnight with 

gentle shaking. Primary antibodies were either directed against PEX3 (GDA7, 1:15000 in 

5 % milk powder in PBS-ST) or PEX19 (PEX19-1, 1:10000 in 5 % milk powder in PBS-

ST), and were used at the indicated dilutions to decorate the membrane for 2 hours at 

room temperature under gentle shaking. After 5 washing steps with 10 mL PBS-ST for 

10 minutes, the membrane was incubated with secondary antibodies (-rabbit IgG 

coupled to horseradish peroxidase, 1:15000 in 5 % milk powder in PBS-ST) for 1 hour at 

room temperature. After washing 5 times with 10 mL PBS-ST for 10 minutes, the 

membrane was washed once with 10 mL PBS. The protein bands were detected with the 

ECL (enhanced chemoluminescence) system (Pierce/Thermo Fisher Scientific, Bonn, 

Germany) according to the manufacturer’s instructions. A light sensitive film 

(Amersham Hyperfilm™ ECL, GE Healthcare, München, Germany) was then placed onto 

the membrane for 10-30 seconds and was processed in an automated film-developing 

machine (Konica, Langenhagen, Germany). 
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2.3.3.4 Protein concentration 

The concentration of homogeneous protein solutions can be determined by 

measurements of absorbance at 280 nm according to the Lambert-Beer equation (Eq. 1). 

   
  

      
            

                   (1) 

A280 absorption at 280 nm 
Mr molecular mass 
280 molar extinction coefficient at 280 nm 
d optical path length 

 

The molar extinction coefficient at 280 nm can be calculated using the amino acid 

sequence of the corresponding proteins, as mainly tryptophans, tyrosines and cysteines 

are absorbing in the UV range [138].  

In this thesis, the measurements of absorption were carried out using a NanoDrop ND-

100 (Peqlab, Erlangen, Germany) and the 280 values were determined using the 

software ProtParam ([139, 140], Table 9). 

Table 9: Extinction coefficients at 280 nm and molecular masses. 

Protein 280 (M-1cm-1) Mr (kDa) 

nPEX3 26275 39.3 
sPEX3 23295 37.5 
PEX19 10220 32.8 
 

2.3.3.5 CD spectroscopy 

The folding characteristics of a purified protein can be analyzed using circular dichroism 

(CD) spectroscopy. The secondary structure elements (α-helices, β-sheets) interact with 

circular polarized light and exhibit specific minima or maxima of ellipticity at distinct 

wavelengths in the recorded spectrum. Therefore, a CD spectrum can be used to 

differentiate between folded or unfolded proteins and to estimate the amount of α-

helices and β-sheets within the protein fold. Additionally, the melting point of a protein 

can be determined with a CD spectrometer by recording the ellipticity at a specific 

wavelength in a defined temperature range. The change of the signal indicates unfolding 

of the protein structure. The melting point of a protein is defined as the inflection point 

in the data curve.  

In this work, CD spectra were recorded on a JASCO J-720 spectropolarimeter. Proteins 

were present at a concentration of 10-15 µM in CD buffer. The mean of 8 protein spectra 

was corrected by subtracting the buffer spectrum. For the determination of protein 
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melting points, a JASCO J-810 spectropolarimeter was used. The scan rate was 1 °C/min 

in a temperature range of 20 to 95 °C. The CD signal was measured at 208 nm and the 

proteins were present at a concentration of 10-15 µM in Tm buffer. 

2.3.3.6 ITC experiments 

Isothermal titration calorimetry (ITC) is used to determine the thermodynamic 

parameters ΔH, ΔS and ΔG of an interaction between two molecules. With Equation 2, 

the dissociation constant (Kd-value) of the binding process can be calculated. 

ΔG = -RT·lnKa  with  Ka = 1/Kd    (2) 

ΔG free energy (J/mol) 
R gas constant (8.314 J/mol·K) 
T absolute temperature (K) 
Ka association constant (1/M) 
Kd dissociation constant (M) 
 

During the experiment, a ligand is titrated into a protein solution. The heat (enthalpy, 

ΔH), which is released or consumed during the reaction, is measured. The data points 

are fitted to a sigmoidal curve, which leads to the calculation of the entropy ΔS, the free 

energy ΔG and stoichiometry of binding. For an interpretable experiment, the 

concentration of the ligand should be 10-times higher than the protein concentration. 

Table 10: Protein concentrations for ITC experiments. 

PEX3 Concentration [µM] PEX19 Concentration [µM] 
nPEX3 8.2 Full-length 92.0 
sPEX3 10.1 Full-length 83.2 
sPEX3 17.2 PEX19Pep 275.1 
sPEX3 17.2 PEX19Pep F29A 184.6 
sPEX3 17.2 PEX19Pep A25L 156.3 
sPEX3 17.2 PEX19Pep A25Y 153.7 
sPEX3 17.2 PEX19 124-136 101.6 
sPEX3 L93N 25.9 Full-length 274.3 
sPEX3 K324A 12.0 Full-length 147.2 
sPEX3 E266A 9.3 Full-length 92.2 
sPEX3 I140N 8.0 Full-length 96.3 
sPEX3 L165N 10.1 Full-length 95.4 

 

Affinity measurements between nPEX3, sPEX3, sPEX3 mutants and full-length PEX19 

were recorded on a VP-ITC calorimeter (Microcal/GE Healthcare, München, Germany) at 

the Max Planck Institute (MPI), Tübingen. Binding studies of sPEX3 in complex with a 

PEX19-derived peptide were carried out with an ITC200 system (Microcal/GE 

Healthcare, München, Germany) at the Paul Scherrer Institute (PSI) in Villigen, 
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Switzerland. The concentrations used in the different experiments can be found in Table 

10. PEX19 or PEX19Pep was titrated in 29 distinct steps to the corresponding PEX3 

solutions. All measurements were done once at 25 °C in ITC buffer, with the exception of 

the binding analysis of nPEX3 with full-length PEX19, which was carried out in SEC 

buffer. Data were fitted in Microcal Origin® version 7.0 according to one binding site 

model. 

2.3.3.7 In vitro transcription/translation 

TNT experiments followed by coimmunoprecipitation (CoIP, section 2.3.3.8) were done 

to analyze the ability of PEX3 mutants to interact with PEX19. In vitro transcription and 

translation experiments were carried out with the TNT® Coupled Reticulocyte Lysate 

System (Promega, Mannheim, Germany) according to the manufacturer’s instructions. 

The reaction was carried out in the presence of 35S-methionine (37 TBq/mmol, 

Hartmann Analytic, Braunschweig, Germany) to label the translation products for 

detection. The empty vector pcDNA3 was used as a negative control. 10 µL of translated 

PEX19 were mixed with 10 µL of translated PEX3-myc, the corresponding PEX3-myc 

mutants or with the negative control. The samples were incubated at 30 °C for 1 hour, 

before they were subjected to CoIP experiments.  

2.3.3.8 Coimmunoprecipitation 

50 µL of Dynabeads® M-280 sheep -mouse IgG (Invitrogen, Darmstadt, Germany) were 

prepared according to the manufacturer’s instructions using CoIP buffer B for washing. 

The beads were then loaded with mouse -myc antibodies (Cell Signalling/NEB, 

Frankfurt a.M., Germany; 1:200) in the presence of 0.1  % (w/v) BSA overnight at 4 °C. 

After washing with CoIP buffer B, the beads were resuspended in 130 µL CoIP buffer C 

before the translation mixtures obtained by TNT assays (section 2.3.3.7) were added. 

The samples were incubated under slight rotation for 2 hours at 4 °C and then placed on 

a magnet to separate the magnetic beads from the solvent. The supernatant was 

removed, immediately mixed with SDS-loading buffer and heated to 80 °C for 5 minutes. 

The beads were washed with CoIP buffer C, resuspended in 25 µL SDS-loading buffer 

and heated to 80 °C for 5 minutes. The tubes were then again placed onto the magnet to 

obtain the elution fraction. The samples were analyzed on a 10 % SDS-PAGE before the 

gels were incubated in 0.5 M Na-salicylate for 20 minutes. The gels were dried onto 

Whatman paper and exposed to an autoradiography film (BioMax MR film, Kodak) 
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overnight, which was then processed in an automated film-developing machine (Konica, 

Langenhagen, Germany). 

2.4 Cell culture experiments 

All cell culture reagents were purchased from PAA (Cölbe, Germany), Nunc (Fisher 

Scientific, Langenselbold, Germany) or BD Biosciences (Heidelberg, Germany), unless 

indicated otherwise. Cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10 % (v/v) fetal calf serum (FCS), 2 mM glutamine and 

0.1 mM (50 mg/mL) gentamicin. Cells were incubated at 37 °C in the presence of 8.5 % 

CO2. All other experiments (transfection, immunofluorescence) were carried out at room 

temperature. 

2.4.1 Cell lines 

Human fibroblast cells were used for cell culture experiments. The cell line GM5756T, 

which represents transformed normal human fibroblasts, was provided by Stephen 

Gould (John Hopkins University, Baltimore). PEX3-deficient cells (PEX3) were obtained 

from Barbara Paton (Women’s and Children’s Hospital, Adelaide; patient 1 in [141]), 

whereas the PEX19-deficient cells (PEX19) were a gift by Ron Wanders (Academic 

Medical Centre, University of Amsterdam). Both cells have been transformed with large 

T-antigen of SV40 as described in [142] and are referred to as PEX3T and PEX19T 

fibroblasts, respectively. 

2.4.2 Transfection of human fibroblasts 

The uptake of plasmids in mammalian cells is known as transfection. There are different 

techniques for a transient transfection using electroporation, Ca3(PO4)2 precipitation, or 

lipofection. In the latter technique, polyethyleneimine and DNA form positively charged 

particles, which interact with proteoglycans at the cell surface. These complexes enter 

the cell by endocytosis. The plasmid is then transferred to the nucleus, where protein 

expression is initiated. The cell density should range between 60-70 % for optimal 

transfection results. The ratio of plasmid DNA to transfection reagents and the 

incubation time should be optimized for every cell line.   

In this thesis, human fibroblasts were transfected using the corresponding plasmid DNA 

(Table 3) and the transfection reagent jetPEI (PeqLab, Erlangen, Germany) according to 

the manufacturer’s instructions. GM5756T and ΔPEX19T cells were seeded onto cover 
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slides 24 hours prior to transfection. ΔPEX3T cells were transfected in 25 cm2 culture 

flasks. In each case, the jetPEI to plasmid ratio was 2 µL/1 µg with an incubation time of 

3-4 hours. 

2.4.3 Immunofluorescence microscopy 

Proteins within a cell can be visualized with immunofluorescence using fluorescence-

labeled antibodies against the target protein. Therefore, the cells have to be fixed on a 

surface with formaldehyde before cells are permeabilized with a detergent to allow the 

antibody to enter the interior of the cell. Indirect immunofluorescence uses a secondary 

antibody, which is directed against the primary antibody and is labeled with a 

fluorescent dye. The detection is carried out with a microscope, which excites the 

fluorescence label with a specific wavelength. The fluorescence itself can be extracted 

out of the entire spectrum by filters, which are permeable for a defined wavelength 

range. 

Table 11: Antibodies and their dilutions in D-PBS used in immunofluorescence microscopy. 

Primary antibody Dilution 

-myc, mouse 
(Cell Signaling/NEB, Frankfurt a.M., Germany) 

1:200 

-PEX13, rabbit 
(Marc Fransen, KU Leuven, Belgium) 

1:250 

-PEX14, rabbit 
[143] 

1:400 

-AFP, mouse (3E6) 
(QBiogene/MP Biomedicals, Illkirch, France) 

1:400 

-PEX16, rabbit (JH290) 
(Stephen Gould, John Hopkins University, Baltimore) 

1:100 

-PMP70, sheep 
(Stephen Gould, John Hopkins University, Baltimore) 

1:100 

-catalase, sheep 
(The Binding Site, Schwetzingen, Germany) 

1:100 

Secondary antibodies  
AlexaFluor-488 
(Molecular Probes/Invitrogen, Darmstadt, Germany) 

1:300 

AlexaFluor-596 
(Molecular Probes/Invitrogen, Darmstadt, Germany) 

1:200 

After transient transfection, cells were subjected to immunofluorescence analysis one 

day (PEX19T), two days (GM5757T), or seven days (PEX3T) after transfection. Cells 

(density: 60 %) on cover slides were washed three times with Dulbecco’s PBS (D-PBS, 

Gibco/Invitrogen, Darmstadt, Germany) before they were fixed with formaldehyde (3 % 



2 MATERIALS AND METHODS 

 

32 
 

(v/v) in D-PBS) for 20 minutes. After permeabilization with Triton-X100 (1 % (v/v) in 

D-PBS) for 5 minutes, cells were again washed three times with D-PBS and incubated 

with 30 µL primary antibodies upside down on parafilm for 30 minutes. After washing 

for ten times with D-PBS, cells were incubated with 30 µL secondary antibodies upside 

down on parafilm for 10 minutes and washed again ten times with D-PBS. In the end, 

cells were embedded in mowiol (100 mg/ml; Callbiochem/Merck, Darmstadt, Germany) 

with n-propylgallate (2.5 mg/mL; Fluka/Sigma Aldrich, München, Germany) and dried 

overnight in the dark before cells were analyzed with a fluorescence microscope 

(Axiovert 200M; Zeiss, Jena, Germany). The antibodies used and their corresponding 

dilutions in D-PBS are listed in Table 11. 

2.5 Protein crystallization 

The vapor diffusion technique is the most widely used method to obtain protein crystals 

and can be performed in two experimental setups: the sitting drop or the hanging drop 

technique (Figure 2.1). In this method, a concentration difference between the reservoir 

and the protein solution is overcome by solvent diffusion through the gas phase.  

 

Figure 2.1: Schematic drawings of the sitting (A) and hanging drop (B) vapour diffusion techniques. 
Image modified from [144]. 

The solubility of the protein is decreased by organic compounds such as polyethylene 

glycols (PEGs) or inorganic compounds such as ammonium sulfate. With increasing 

protein concentration, the clear protein solution will reach a metastable region, where a 

nucleation seed initiates the growth of a protein crystal (Figure 2.2). This procedure is 

dependent on many factors including temperature, purity and concentration of the 

protein, concentration of precipitants, pH of buffers, and the presence of additives. As 

protein crystallization is an empiric process, all these different parameters have to be 

optimized to find suitable crystallization conditions.  
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Screening for initial crystallization conditions was carried out with a crystallization 

robot (Freedom Evo, Tecan, Switzerland) using the sitting drop technique. All 

crystallization screens were purchased from Hampton Research (Aliso Viejo, USA), 

Emerald Biosciences (Bainbridge Island, USA) or Qiagen (Hilden, Germany). 

 

Figure 2.2: Phase diagram of a protein solution dependent on the protein and precipitant 
concentration. Image taken from [145]. 

Screening was carried out for nPEX3, nPEX3+PEX19, sPEX3 and sPEX3+PEX19Pep with 

all samples being present in SEC buffer. For nPEX3+PEX19, the proteins were purified 

separately, mixed in a molar 1:1 ratio and again applied to SEC. For sPEX3+PEX19Pep, 

sPEX3 was purified and PEX19Pep was added in a molar 1:1 ratio before being 

cocrystallized without further purification. The screens tested, the protein 

concentrations and the incubation temperatures can be found in section 9.5. Initial 

crystals were only found for nPEX3 and sPEX3+PEX19Pep and were refined concerning 

the pH of the buffer, the concentration of protein, precipitants and salts using the 

hanging drop vapor diffusion method. The initial and refined conditions are listed in 

section 9.6. Crystallization plates were incubated at 4 or 20 °C and examined daily for 

the appearance of crystals. Crystals of nPEX3 were detected 10-14 days incubation time 

at 4 or 20 °C, whereas crystals of the sPEX3+PEX19Pep-complex appeared after 24 hours 

at 4 or 20 °C. Crystals were prepared for data collection by fishing with an appropriate 

loop and flash freezing in liquid nitrogen. In case of nPEX3, 25 % (v/v) glycerol was 

added as cryoprotectant. The crystals of sPEX3+PEX19Pep were frozen without any use 

of cryo protectant. 
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2.6 X-ray crystallography 

This chapter was written with the help of the textbooks Biomolecular Crystallography 

[146] and Outline of Crystallography for Biologists [147]. 

2.6.1 X-ray sources and protein crystals 

Protein crystallography is applied to produce a magnified image of a protein molecule. 

To achieve atomic resolution, an appropriate wavelength in the atomic range (1-2 Å) 

must be used for the diffraction experiment. These X-rays are electromagnetic waves, 

which have energies in the range of 6-12 kV and are able to ionize atoms. X-rays can be 

generated with metal anodes such as copper, chromium or molybdenum. Accelerated 

electrons hit the metal leading to gaps in the low-energy electron shell. These gaps are 

then filled with electrons of high-energy levels under emission of radiation. The 

radiation is focused and filtered to obtain suitable monochromatic radiation of a specific 

wavelength, e.g. CuK: 1.54 Å. Much more intense X-ray sources are generated in 

synchrotron devices such as the SLS (Swiss Light Source; Villigen) or the BESSY 

(Berliner Elektronenspeicherringgesellschaft für Synchrotronstrahlung, Berlin). There, 

electrons are accelerated to a velocity near the speed of light in a vacuum. Strong 

electromagnetic fields keep the electrons moving circularly while radiation is emitted in 

a tangential direction. This X-ray beam can be easily adjusted to wavelengths between 

0.5-2 Å, which is very useful for experimental phasing. 

For structure determination with X-ray crystallography, single protein crystals of an 

appropriate size are required. Crystals are formed by a three dimensional repetition of a 

unit cell that is defined by the length of its axis (a, b, c) and the angles between these axis 

(, , ). The unit cell can be further divided into smaller parts and the smallest volume 

that is able to generate the complete unit cell by symmetry elements, such as translation 

vectors or rotation axis, is called asymmetric unit (ASU). The entire symmetry of the 

crystalline lattice is represented with the space group, which includes information about 

the crystal system, the lattice centering and the crystallographic symmetry operators. In 

protein crystals, only 65 space groups can be found due to chirality of amino acids. 

2.6.2 Diffraction 

When X-ray radiation hits matter, for example a protein crystal, it is diffracted by 

interacting with the electrons of the protein molecules. The oscillating electrons emit X-

ray radiation of the same frequency as the monochromatic incident beam. 
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Crystallographic structure determination is based on this coherent scattering. As the 

wavelength is similar to the atomic distances in the crystal (C-C bond: 1.5 Å), 

interference occurs. Constructive interference only emerges when the scattered waves 

have the same phases so that their amplitudes can accumulate. This process is 

dependent on the distribution of scatterers in a considered volume, which is the electron 

density. The sum of amplitudes can be measured by an X-ray detector and corresponds 

to the intensity of reflections on a diffraction image. 

A simplified description for the diffraction of radiation by a lattice is provided by Bragg’s 

law (Figure 2.3, [148]). Here, a model is used that devides the crystal into many parallel 

lattice planes. A reflection corresponds to an X-ray, which is diffracted by such a set of 

planes in the crystal lattice under a specific angle . The position of the planes within the 

unit cell is described by the reciprocal Miller indices (hkl) that represent the intersection 

of the lattice planes with the unit cell edges. According to Equation 3, positive 

interference of the diffracted X-rays is produced when the path difference 2dsin is a 

multiple of the wavelength . 

                   (3) 

n integer 
 wavelength 
d spacing between lattice planes 
 glancing angle 

 

The Ewald construction illustrates the connection between real lattice and reciprocal 

lattice and translates Bragg’s law into three dimensions [149]. The Ewald sphere 

represents a sphere with a radius of 1/ and a crystal in the center (Figure 2.4). The 

origin O of the reciprocal lattice is the intersection between the incident beam and the 

surface of the Ewald sphere. Bragg’s law is fulfilled when a reciprocal lattice point P(hkl) 

is located on the surface of the Ewald sphere and thus, a reflection occurs. In practice, 

the crystal is rotated along an axis perpendicular to the incident beam to cover more and 

more lattice points fulfilling Bragg’s law. The reflections can be measured with an X-ray 

detector and result in the diffraction patterns. The symmetry of the produced diffraction 

Figure 2.3: Geometric description of Bragg’s law. Constructive interference occurs when the path 
difference 2dhklsinhkl of two diffracted beams is a multiple of the wavelength . 
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image is related to the symmetry of the crystal lattice and thus leads to the 

determination of the geometric parameters of the unit cell. 

 

Figure 2.4: The Ewald sphere. Two dimensional representation of the Ewald sphere of reflection. 
Constructive interference occurs if a lattice point P(hkl) is located on the surface of the sphere. : glancing 
angle, : wavelength, d*: reciprocal spacing between lattices 1/d, O: origin. 

2.6.3 Data processing 

Information about the amplitudes and the phases of the scattered X-rays has to be 

extracted from the diffraction data. The amplitude is proportional to the intensity of the 

reflections on the detector (see below), whereas additional experiments need to be done 

to identify the phases. However, several initial parameters of a unit cell can be calculated 

just based on the diffraction patterns without any phase information. After collecting 

diffraction data, the initial steps in data processing are indexing, integration and scaling. 

Indexing uses the distances and angles of the reflection spots together with 

experimental parameters (origin of the image, detector distance, wavelength) to 

determine the parameters of the unit cell. Then, the spots are integrated in order to 

obtain intensities for each diffraction point. During scaling, the intensities of only 

partially recorded reflections are adjusted and symmetry related reflections are merged 

[150]. In addition, scaling is done to adjust the intensity levels of diffraction data 

recorded at different time points, which might differ due to radiation damage or 

fluctuations in the X-ray beam. In the end, a list of all unique reflections including their 

coordinates (hkl), their intensities and the corresponding signal to noise ratio (I/I) is 

generated. Moreover, statistics are calculated to estimate the quality for the entire data 

set as well as for several resolution bins. 
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There are several reliability factors (R-factors) that indicate the quality of a data set. R-

factors use the ratio of mean differences between values, which should be the same and 

mean magnitude of measured values to determine a value for accuracy. The linear 

merging R-value, Rmerge, is defined in Equation 4. 

        
       

         
 
      

      
  

      
     (4) 

Iihkl is the intensity of a redundant reflection (hkl), Ihkl is the mean intensity of a 

measured reflection. The summation is done over N redundant reflections and is thus 

dependent on redundancy. If a reflection is measured many times the value of the linear 

Rmerge increases. To introduce a redundancy independent merging R-factor, the Rmeas is 

defined [151], which weighs every reflection with a function of its multiplicity (Eq. 5). 

       

  
 

   
            

  
          

      
  

      

    (5) 

An acceptable data set has an overall Rmeas below 10% and an Rmeas in the range of 50 % 

in the highest resolution bin. Furthermore, the signal to noise ratio of the measured 

intensities gives a cut-off value for the resolution limit. It is defined as the ratio of the 

mean intensity and the mean standard deviation of the measurements. A reasonable 

value for I/(I), where a spot can be clearly distinguished from the background, is 

around 2. However, the reflection intensities decrease with higher resolution. This can 

be displayed by plotting the mean intensity against the resolution expressed as (sin/)2 

[152]. The resulting characteristic curve is called Wilson plot, which approximates 

linearity in regions below 3.5 Å. The Wilson B-factor can be calculated from the linear 

slope and describes the decrease of diffraction intensities due to thermal vibration of 

atoms or atomic disorders in the crystalline lattice. In addition, the data should be as 

complete as possible. The map will become noisy if only 50-60% of the data is used in 

the highest resolution bin. Taken together, a set of parameters (Rmerge, Rmeas, I/(I), 

completeness) indicates the quality of a data set. 

2.6.4 Matthews parameter 

The solvent content of protein crystals usually ranges between 30 to 70 %. Therefore, 

the number of molecules in the asymmetric unit can be estimated although the crystal 

structure is not known [153]. The packaging parameter VM (Matthews parameter) can 
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be calculated if the geometric parameters of the unit cell are known (Eq. 6). The value of 

VM usually lies in the range of 1.7 – 3.5 Å3/Da with a mean around 2.5 Å3/Da and a 

solvent percentage of 50 %. 

           
      (6) 

V volume of the unit cell (Å3) 
Mr molecular mass (Da) 
z number of ASU in the unit cell 
n number of molecules in the ASU 

2.6.5 Twinning 

Defects and imperfections in growth lead to a protein crystal that is not a perfect entity 

but is built up by different subcrystals. The orientations of the domains to each other are 

related by twinning operations towards a defined crystallographic axis. Normally, 

twinned crystals look like perfect single crystals. Epitaxial twinning can be recognized in 

the diffraction pattern as it exhibits spots of two different interpenetrating lattices. In 

case of merohedral twinning, the reflections of the distinct crystal domains exactly 

overlap resulting in an unsuspicious diffraction pattern. The diffraction pattern looks 

more symmetric and leads to space group determinations with apparent higher 

symmetry. In fact, the measured reflections correspond to the sum of two individual 

intensities, which are weighted by the twinning fraction α (Eq. 7).  

                       (7) 

The individual contributions to the measured intensities can often be determined with 

computational programs. However, if the twinning fraction  is 0.5, a perfect twin occurs 

and it is more challenging to separate the measured intensities. The entire data set must 

be examined for irregularities in intensity distribution. The H-test examines the ratio of 

I2>/<I>2 which is 1.5 for perfectly twinned data and 2.0 for untwinned data [154]. The 

twinning fraction  is determined by comparison of the actually observed data with the 

statistical distribution. 

2.6.6 Structure determination 

Every reflection can be described with a structure factor Fhkl. Fhkl is a complex number, 

expressed by a vector representing the diffracted X-rays with the length of the vector 

corresponding to the amplitude (Fhkl) and the angle of the vector corresponding to the 

phase (hkl) (Eq. 8). The structure factor itself is a summation over all scattering atoms 
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in the unit cell. If the atomic scattering factor fj and the atomic coordinates x, y, z are 

known, the structure factor of the scattered beam can be calculated for each reflection 

(Eq. 9). Thus, each atom in the unit cell contributes to the structure factor of each single 

reflection. 

                                       
        (8) 

          
                         

       
       (9) 

The structure factor amplitudes Fhkl can be directly extracted from the diffraction 

data, as Fhklis proportional to the square root of the measured reflection intensity Ihkl 

(Eq. 10). However, reflections do not contain any phase information. This circumstance 

is known as the phase problem. Therefore, different experiments must be done to 

determine the phases (see chapter 2.6.7). 

           
        

        (10) 

Equation 8 is a mathematical description for transforming information of real space into 

reciprocal space. This Fourier transformation connects the amplitudes and phases of the 

scattered beams (reciprocal space) to the distribution of scattering atoms in the unit cell 

(real space). In contrast, an inverse Fourier transformation can be applied to obtain 

information about the electron density (xyz) in the unit cell if structure factors are 

known (Eq. 11). 

        
 

 
        

                
 

 
                             (11) 

2.6.7 Phasing and molecular replacement 

A native data set of a diffraction experiment only contains information about the 

amplitudes of the diffracted X-rays, and not about their phases. However, for electron 

density calculation (Eq. 11), knowledge about phases is essential. There are two 

possibilities in protein crystallography to gain phase information. Experimental phasing 

is used for de novo phase determination in an individual experiment. Therefore, a 

marker atom substructure must be generated within the crystal. This can be done by 

soaking heavy atoms into the native crystal or by using scatterers such as Se-methionine 

or sulfur, which can be already incorporated in the protein. Ideally, this derivative 

crystal is isomorphous to the native crystal, that means, the geometric parameters of the 
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crystal are conserved. The introduction of marker atoms leads to electronic differences 

between the native crystal and its derivative. The diffraction data of the native and the 

derivative crystals and the localization of the marker atoms lead to phase determination 

of the native and the derivative crystals. However, the solutions are ambiguous and 

additional derivatives are needed to define the correct phases. 

In contrast to experimental phasing, the method of molecular replacement uses a known 

structurally similar model for determining starting phases. Usually, this search model 

must exhibit at least 30 % sequence identity with the unknown protein structure [155]. 

For molecular replacement, the correct position of the molecule in the crystals has to be 

identified. The known structure is moved within the asymmetric unit until the calculated 

diffraction data from the search model and the experimental diffraction data from the 

unknown protein coincide. The process is split into a 3D-translational and a 3D-

rotational Patterson search [156]. The Patterson function is an autocorrelation of the 

electron density and is the product of the structure factor amplitude Fhkl with its 

conjugate complex Fhkl*, with the same amplitude but the negative phase -hkl. According 

to Equation 12, the product yields a real number, which is the square of the amplitude. 

As Fhkl2 is used as Fourier coefficients to generate the Patterson map, no phases are 

needed for this purpose. 

         
  =                                   

                        
        (12) 

The Patterson space unit cell is populated with N(N-1) peaks corresponding to 

interatomic distance vectors between N different atoms. The map exhibits specific 

distances in the low resolution range (10 – 4 Å) representing intramolecular vectors that 

are characteristic for the relative locations of secondary structure elements. In proteins 

with the same fold, these distances should be similar and their distribution only depends 

on the orientation of the molecule. This is the basis for Patterson rotation searches. The 

map of the search model is calculated only with intramolecular vectors. This map is then 

rotated and the fit between calculated and observed Patterson maps is calculated after 

each increment and expressed as a correlation coefficient. Once the relative orientation 

of the molecule is found, its actual position within the unit cell is determined with a 

Patterson translation search. The procedure is the same as described for rotation 

searches, this time using intermolecular Patterson vectors as characteristic for correctly 

oriented molecules in the unit cell. 
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2.6.8 Structure refinement 

Once starting phases are obtained and an initial map is generated, the structure must be 

improved and refined. Again, better phases are calculated from the new model, which in 

turn leads to more interpretable electron density. This iterative procedure requires 

computational programs as well as manual model building to adjust the model to the 

experimental data. The model improvement can be monitored with crystallographic R-

factors. The R-factor describes the difference between calculated and observed structure 

factor amplitudes (Eq. 13). 

  
                    

          

     (13) 

During refinement, the R-value should converge. However, overrefinement is usually a 

problem, when the R-factor still decreases without any gain in model improvement. 

Therefore, 2-10 % of randomly selected reflections are excluded from the refinement 

process to calculate an autonomous R-value. This Rfree is unbiased and used to perform a 

cross-validation of the model to estimate the model improvement [157, 158]. The 

difference between the R- and the Rfree- values should not exceed 5 %, as this might be 

an indication for overfitting.  

The general parameters describing the model are the atomic coordinates (xyz) and the 

atomic B-factor (atomic displacement parameter, Eq. 14). The B-factor describes the 

positional displacement of scattering atoms due to thermal motion. The value of the B-

factor is often limited because of covalent bonds, which provide more rigidity to the 

neighboring atoms. Therefore, backbone atoms exhibit lower B-factors than solvent 

exposed, long amino acid side chains. Isotropic B-factor refinement uses only one 

parameter according to the same atomic motion in every direction. Anisotropic 

refinement correlates different atomic movements with different directions, leading to a 

more complex calculation for individual B-factors. 

B = 82<u>2      (14) 
<u>: mean displacement of a vibrating atom 

Stereochemical restraints such as bond lengths, bond angles, torsion angles, planarity or 

non-bonded interactions limit the geometric orientation of the peptide backbone as well 

as the amino acid side chains to find the best fit between experimental data and the 

computed model. 
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2.6.9 Experimental procedures 

2.6.9.1 Data collection 

In this work, synchrotron experiments were carried out at beamline BL14.1 at BESSY. 

Crystals of nPEX3 were exposed to the X-ray beam ( = 0.91841  Å) for 2 sec at a 

detector distance of 330 mm. The crystal was rotated in 1 ° steps for 120 °. In total, four 

data sets were collected with the resolution limit in the range of 4.0-3.3 Å. Crystals of 

sPEX3+PEX19Pep were exposed to radiation with a wavelength of 1.00001 Å at a detector 

distance of 215 mm for 1.5 sec and rotated in 1 ° steps for 180 °. In total three native 

data sets were collected and the best crystal diffracted to 2.4 Å.  

2.6.9.2 Data processing and molecular replacement 

Indexing, integrating and scaling, was carried out using the program XDS [159]. For 

sPEX3+PEX19Pep, molecular replacement was carried out with the program Phaser [160] 

implemented in the CCP4 suite [161]. The solutions of the molecular replacement search 

are evaluated with maximum likelihood methods. The likelihood is the probability that a 

value is actually observed under the assumption of a given model. The log likelihood 

gain (LLG) distinguishes a solution from the average of solutions and results in an 

increasing Z-score (“signal to noise ratio”). Translational Z-scores of 6-8 indicate a 

probable a correct solution, whereas the rotational Z-scores do not exhibit large 

differences among the solutions.  

2.6.9.3 Model building and refinement 

The model of sPEX3+PEX19Pep was built manually with the software Coot [162] and 

refinement was done with the program REFMAC5 [163] implemented in CCP4 [161]. The 

refined model was used to calculate more accurate phases and in turn an improved 

electron density map. In addition, geometric parameters were validated in Coot or 

REFMAC5. Anisotropic B-factor refinement was done using TLS analysis (translation, 

libration, screw) [164], where entire protein domains are defined as rigid bodies that 

are refined with correlated vibrational movement. TLS groups of sPEX3+PEX19Pep were 

separated with the help of the TLS server [165] and were analyzed using TLSANL [166] 

within CCP4. To minimize model bias, a simulated annealing omit map was generated in 

Phenix [167, 168]. Here, part of the structure is removed before the rest of the structure 

is treated with simulated annealing, where the structure is heated up and slowly cooled 

down to reach the lowest energy state. In this thesis, the PEX19-derived peptide was 
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omitted from the complex structure. Then, simulated annealing was performed with the 

rest of the structure and refinement was carried out before a new unbiased electron 

density map was calculated. 
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3 RESULTS 

The human peroxins PEX3 and PEX19 are involved in the early steps of peroxisomal 

biogenesis and the import of PMPs. PEX3 is anchored in the peroxisome membrane with 

its first 33 amino acids. The rest of the protein protrudes out in the cytosol and mediates 

the interaction with the N-terminus of PEX19, the cytosolic receptor for newly 

synthesized PMPs. After insertion of the PMP into the lipid bilayer, PEX19 is recycled 

back to the cytosol to start another round of protein import.  

In order to elucidate the parameters underlying the PEX3-PEX19 interaction, structural 

and functional studies were undertaken. In the first part of this work, different 

constructs of PEX3 and full-length PEX19 were expressed in E. coli and purified to 

homogeneity. Purification and characterization of the recombinantly expressed proteins 

is described, including an initial analysis of the PEX3-PEX19 complex. To obtain 

structural information, the PEX3 variants were subjected to crystallization alone and in 

the presence of full-length PEX19 or a synthesized PEX19-derived peptide. The second 

part focuses on the crystal structure of a truncated version of PEX3 in complex with a 

PEX19-derived peptide. Furthermore, the molar ratio and the affinity of the PEX3-PEX19 

complex were characterized by biochemical experiments. Based on conservation 

analysis, several mutations were introduced on the surface of PEX3. The third part 

addresses the role of these mutations in PEX19-binding and in peroxisome biogenesis by 

applying in vitro and in vivo studies. 

3.1 Purification of PEX3 and PEX19 

3.1.1 Purification of nPEX3 

The nPEX3 protein comprising residues 26-373 of human PEX3 and a cysteine to serine 

exchange at position 235 was expressed in E. coli Rosetta2 cells. The expression system 

is based on the plasmid pET32a, resulting in nPEX3 N-terminally fused to thioredoxin 

followed by a hexahistidine tag that is cleavable with TEV protease. The purification 

protocol was established previously [129, 144] and comprised the following steps: 

1. affinity chromatography using a nickel column, 2. TEV protease cleavage, 3. a second 

Ni2+ affinity chromatography step and 4. size exclusion chromatography (SEC). A single 

purification yielded 3-4 mg pure nPEX3 protein from 1 L bacterial culture. 
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Figure 3.1: Purification and CD spectrum of nPEX3. (A) Elution profile of a preparative SEC of 3 mg 
protein in SEC buffer shows one major peak at 15.4 mL corresponding to a molecular mass of 
52 kDa. The fractions marked with a blue bar were used for further analysis and crystallization 
attempts. (B) 15 µl samples were subjected to SDS-PAGE analysis. The band below the 40 kDa 
marker band represents nPEX3, which appears as a slight double band. The faint band at 80 kDa 
corresponds to a dimer of nPEX3. (C) CD spectrum of folded nPEX3 (10 µM in CD buffer) reveals 
characteristic -helical properties with two minima of ellipticity at 208 and 220 nm. 

SEC results in one major peak at 15.4 mL, corresponding to an apparent molecular mass 

of 52 kDa (Figure 3.1 A). The molecular mass of nPEX3 was calculated with the online 

tool ProtParam [139, 140] to be 39.3 kDa. As proteins might adopt a non-globular form 

in solution, the elution volume can sometimes correspond to a higher molecular mass 

than that determined based on the amino acid sequence. Thus, nPEX3 is a monomer in 

solution. Additionally, two minor peaks are detected in the chromatogram, which 

correspond to the void volume (peak 1) and the dimer of nPEX3. SDS-PAGE analysis 

shows pure protein with a band slightly below the 40 kDa marker (Figure 3.1 B). The 

faint band at 80 kDa corresponds to protein dimer formation that was previously 

verified by N-terminal sequencing [129] and which is likely due to an artefact in SDS-
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PAGE. The CD spectrum of nPEX3 exhibits clear -helical features, including the 

characteristic two minima of ellipticity at 208 and 220 nm (Figure 3.1 C). 

3.1.2 Purification of PEX19 

Full-length human PEX19 fused to an N-terminal hexahistidine tag followed by a TEV 

protease cleavage site was expressed in E. coli BL21(DE3) cells. The expression system 

uses the plasmid pColdI, in which protein expression is inducible by addition of IPTG 

and/or by reduced temperature. The purification protocol was established by N. Treiber 

[129] and consists of the following steps: 1. affinity chromatography using a nickel 

column, 2. TEV protease cleavage, 3. a second Ni2+ affinity chromatography step to 

remove uncleaved protein and His6-tagged TEV protease, 4. SEC. A single purification 

yielded 10 mg pure PEX19 protein from 1 L bacterial culture. 

 

Figure 3.2: Purification and CD spectrum of PEX19. (A) Elution profile of a preparative SEC of 5 mg 
protein using SEC buffer reveals one major peak at 13.8 mL, corresponding to a molecular mass of 
112 kDa. The fractions marked with a blue bar were used for further analysis and crystallization 
attempts. (B) 15 µl samples were subjected to SDS-PAGE analysis, which shows pure protein 
slightly below the 40 kDa marker band. (C) CD spectrum of PEX19 (10 µM in CD buffer) reveals 
folded protein with -helical features. 
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Two peaks are observed in SEC with the first one corresponding to the void volume of 

the column (peak 1). The main peak in SEC elutes at 13.8 mL, which corresponds to a 

molecular mass of 112 kDa (Figure 3.2 A). The molecular mass of PEX19 calculated on 

the primary structure with the program ProtParam [139, 140] is 32.8 kDa. As a similar 

version of PEX19 was shown to be monomeric in solution by analytical 

ultracentrifugation [123], the difference in calculated molecular mass and 

experimentally determined molecular mass is probably due to the highly extended 

conformation of the N-terminal domain of PEX19 [118]. PEX19 migrates with the 40 kDa 

marker band on SDS-PAGE (Figure 3.2 B). The pure protein was shown to be folded 

using CD spectroscopy, and it exhibits -helical features with two minima of ellipticity at 

208 and 220 nm (Figure 3.2 C). 

3.1.3 Molar ratio of the PEX3-PEX19 complex 

Pure nPEX3 and PEX19 were used to determine the stoichiometry of the PEX3-PEX19 

complex by mixing different molar ratios of of the two proteins followed by analytical 

SEC experiments. The individual nPEX3 and PEX19 proteins elute at 1.59 and 1.43 mL, 

respectively, on an analytical SEC column. 
 

Figure 3.3: Analytical SEC runs of PEX3-PEX19 complex formation. nPEX3 and PEX19 were used at 
25 µM; 50 µL of protein mixture were separated on analytical scale in SEC-buffer. (A) nPEX3 and 
PEX19 mixed at a molar ratio of 1:1 result in a single peak that corresponds to the PEX3-PEX19 
complex. The corresponding SDS-PAGE is shown on the right. (B) nPEX3 and PEX19 mixed at a 
molar ratio of 2:1 result in two distinct peaks, which represent the PEX3-PEX19 complex and 
excess of unbound PEX3. (C) nPEX3 and PEX19 mixed at a molar ratio of 1:2 result in one peak 
that tails towards lower molecular masses. 

The corresponding molecular masses refer to 44.4 kDa for nPEX3 and 95.2 kDa for 

PEX19. For the equimolar mixture, a single peak at 1.36 mL is observed, indicating a 

shift to a higher molecular mass of 132.9 kDa (Figure 3.3 A). This fits well with the sum 

of the molecular masses of the individual proteins, indicating a 1:1 complex formation. If 

nPEX3 is added in 2-fold excess, two peaks are observed. These correspond to a 1:1 
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complex (1.36 mL) and remaining unbound nPEX3 (1.59 mL; Figure 3.3 B). Excess of 

PEX19 results in one peak at 1.36 mL, which exhibits a slight tailing towards lower 

molecular masses (Figure 3.3 C). This shoulder likely corresponds to residual unbound 

PEX19, which cannot be completely separated from the PEX3-PEX19 complex on the SEC 

column used here. 

In addition, the protein mixtures of different molar ratios were separated with native 

PAGE followed by western blotting analysis (Figure 3.4). The -PEX3 antibody detects 

nPEX3 (left panel, lane 5) as a broad smear on the film. This is probably due to the pI of 

the protein (6.3), which is close to the pH of the stacking gel. Therefore, nPEX3 is only 

slightly negatively charged and needs longer to reach the separating gel with a pH of 8.8. 

However, the band corresponding to the nPEX3-PEX19 complex (*) appears as a distinct 

band, which is also detected by antibodies against PEX19 (right panel). The band 

corresponding to the nPEX3-PEX19 complex (*) is shifted towards higher molecular 

masses compared to PEX19. The bands of the individual proteins nPEX3 and PEX19 

almost disappear if both proteins are present at equimolar ratio (lane 3) indicating a 1:1 

complex formation. 
 

Figure 3.4: Western blot analysis of PEX3-PEX19 complex formation. nPEX3 and PEX19 were present 
at a concentration of 10 µM. 15 µL of protein mixtures in different molar ratios were separated by 
native PAGE and analyzed with western blotting using antibodies against PEX3 (left panel) and 
PEX19 (right panel). The PEX3-PEX19 complex (*) is detected by both antibodies and indicates a 
molar 1:1 ratio between PEX3 and PEX19. 

For crystallization attempts, nPEX3 and PEX19 were purified separately (section 3.1.1 

and 3.1.2) and mixed in a 1:1 molar ratio. The protein mixture was then subjected to SEC 

resulting in a single peak at 12.9 mL (Figure 3.5). This corresponds to a molecular mass 

of 171 kDa and fits with the sum of the individual molecular masses of nPEX3 (52 kDa) 
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and PEX19 (112 kDa) in SEC experiments. The fractions containing pure protein 

complex were concentrated to 5 mg/mL in SEC buffer and screened for initial 

crystallization conditions at 4 and 20 °C. However, initial protein crystals of the complex 

could never be obtained in any of the utilized screens. 

 

Figure 3.5: SEC of nPEX3+PEX19. (A) Elution profile of a preparative SEC of 4 mg protein using SEC-
buffer reveals one major peak at 12.9 mL, corresponding to a molecular mass of 171 kDa. The 
fractions marked with a blue bar were used for crystallization. (B) 15 µl samples were loaded on 
the SDS-PAGE, which shows two protein bands slightly below the 40 kDa marker band. The upper 
band corresponds to PEX19, the lower one corresponds to nPEX3. 

3.2 Crystallization of nPEX3 

The purified nPEX3 solution obtained after SEC (Figure 3.1) was concentrated and used 

to screen for new crystallization conditions at two different concentrations of 3 and 

4 mg/mL in SEC buffer. In total, six initial conditions could be identified (see 

section 9.5). The conditions were refined concerning the pH, the precipitant 

concentration and the protein concentration (see section 9.6). For crystal refinement, 

the hanging drop vapour diffusion method was used by mixing 1 µL of nPEX3 solution 

with 1 µL of reservoir solution. Only in two of the initial conditions (pHClearI_27 and 

pHClearI_34), crystal refinement was successful, leading to crystals of 100-200 µm in 

length (Figure 3.6). The crystals appeared after 10-14 days at 4 or 20 °C and were flash 

frozen in liquid nitrogen using 25 % glycerol as cryo protectant for data collection. 
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Figure 3.6: Refined nPEX3 crystals. nPEX3 was crystallized at a concentration of 3.1 mg/mL in SEC-
buffer. (A) Crystals grown in refined condition of pHClear_27 (0.1 M MES, pH 6.2, 4 % PEG 6000) 
at 20 °C. (B) Crystals grown in refined condition of pHClear_34 (0.1 M HEPES, pH 6.5, 7 % PEG 
6000) at 4 °C. 

Several nPEX3 crystals were tested at the beamline BL14.1 at BESSY. Four native 

datasets in the resolution range of 4-3.3 Å were collected. Indexing, integrating and 

scaling, was carried out using the program XDS [159]. The crystals belong to hexagonal 

symmetry (a=b=258.1 Å, c=98.1 Å; ==90°, =120°), but the correct space group could 

not be identified definitely. The best data set was processed and scaled in all possible 

space groups, which resulted in similar statistics and an overall Rmeas of 16 % and 65 % 

in the highest resolution bin. All datasets show a high twinning factor of 0.45. The crystal 

form, the ambiguous space group determination and the high twinning factors are 

similar to previous results, which has led to an unrefined model of nPEX3 [129]. 

Therefore, new PEX3 constructs were designed in order to obtain non-twinned crystals. 

3.3 Purification of sPEX3 

As nPEX3 produced highly twinned crystals, new PEX3 constructs were designed to 

generate alternate crystal packing. The unrefined model of nPEX3 revealed that the 

crystal contacts involve the N-terminal -helix [129]. Thus, the N-terminus of PEX3 was 

further truncated. The resulting PCR product was cloned into the NcoI, SalI sites of the 

plasmid pET32a. The new construct comprises residue 41-373 of human PEX3, retains 

the cysteine to serine mutation at position 235 and is referred to as sPEX3.  

The expression and purification procedure was the same as described for nPEX3 

(section 3.1.1). A single purification yielded 4-5 mg pure sPEX3 from 1 L bacterial 

culture. SEC results in a major peak at an elution volume of 15.6 mL (Figure 3.7 A). This 

corresponds to an apparent molecular mass of 48 kDa and indicates monomeric sPEX3 
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in solution (calculated molecular mass: 37.5 kDa). The two minor peaks correspond to 

the void volume (peak 1) and sPEX3 dimer (peak 2). The corresponding SDS-PAGE 

analysis shows pure sPEX3 (Figure 3.7 B). As for nPEX3, a dimer band of sPEX3 can be 

observed, which is attributed to an artefact occurring in SDS gels. 

 

 

Figure 3.7: Purification and SDS-PAGE analysis of sPEX3. (A) Preparative SEC of 6 mg protein using 
SEC buffer results in one major peak at 15.6 mL corresponding to a molecular mass of 48 kDa. The 
fractions marked with a blue bar were used for further analysis and crystallization attempts. (B) 
15 µl samples of the SEC were subjected to SDS-PAGE analysis. Pure sPEX3 can be detected with a 
monomer band below the 40 kDa marker and a dimer band at the 80 kDa marker. 

3.4 Crystallization of sPEX3+PEX19Pep 

The homogenous sPEX3 solution was concentrated to 2.6 mg/mL in SEC buffer and 

subjected to initial crystallization experiments with the screens listed in section 9.5. In 

parallel, structural information about the PEX3-PEX19 complex was tried to obtain by 

crystallizing the protein complex. Crystallization attempts did not lead to initial crystals 

for nPEX3 in complex with full-length PEX19 (section 3.1.3), which might be due to the 

highly flexible N-terminal domain of PEX19 [118] that prevents successful 

crystallization. Therefore, sPEX3 was cocrystallized only with a fragment of PEX19, 

which was predicted to be -helical [65]. The PEX19 peptide spans residues 14-33 

(PEX19Pep) and lies within the PEX3-binding region of the first 56 amino acid residues of 

PEX19 [65, 70, 76]. For initial screening, pure sPEX3 was concentrated to 2.8 mg/mL in 
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SEC buffer and mixed with the synthesized PEX19-derived peptide in a 1:1 molar ratio. 

The screens used are listed in section 9.5. 

sPEX3 alone did not lead to any initial crystals. However, crystals of sPEX3+PEX19Pep are 

detected within 24 hours at 20 °C in five initial conditions that were refined by varying 

the pH of the buffers and the precipitant concentration (see section 9.6). The hanging 

drop vapour diffusion technique was used for set up refined crystals. sPEX3 was present 

at a concentration of 2.5 mg/mL and was mixed with the equimolar amount of the 

PEX19-derived peptide. Crystals appeared after 24 hours at 4 and 20 °C in four refined 

conditions. As an example, refined crystals of the initial condition JCSG_92 (0.1 M Bis-

Tris, pH 5.5, 25 % (w/v) PEG 3350, 0.2 M NaCl) are shown in Figure 3.8. 

 

Figure 3.8: Refined crystals of sPEX3+PEX19Pep. sPEX3 was present at a concentration of 2.5 mg/ml in 
SEC buffer and was mixed at a molar 1:1 ratio with PEX19Pep. Crystals grew in 0.1 M Bis-Tris (pH 
5.6), 24 % (w/v) PEG 3350, 0.2 M NaCl and appeared after 24 hours at 20 °C. 

In total, 20 crystals from all refined conditions were flash frozen in liquid nitrogen 

without any cryo protectant and were tested at the BESSY. Three native data sets of 

three different crystals were collected, which diffracted around 2.6 Å. The space group 

was determined as P21 for all three crystals. Data was cut at I/σI of 3.0 and data 

statistics were similar for all three data sets. However, one crystal diffracted to 2.4 Å and 

resulted in slightly better data statistics (Table 12) with an overall Rmeas of 5.9 %. The 

Matthews parameter was calculated to 2.07 Å3/Da and one monomer per ASU, which 

corresponds to a solvent content of 41 %.  

Structure determination of sPEX3+PEX19Pep was done with molecular replacement. 

Therefore, an unrefined model of nPEX3 that was obtained previously [129] was used as 

search model. In this model, the core of nPEX3 could be built into the electron density 

map. However, the initial model could not be refined due to high twinning factors ( ≈ 

0.4). The resulting high R-values of 40 % are probably due to remaining electron 

density, which could not be assigned definitely [129]. Molecular replacement led to a 
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unique solution with Z-scores for the rotation and translation functions of 14.3 and 18.3, 

respectively. The initial phases were used to calculate a first electron density map for 

sPEX3+PEX19Pep. Clear positive electron density for the PEX19-derived peptide was 

observed in the difference map (Fobs-Fcalc). The peptide and several parts of sPEX3, which 

were not included in the search model, could be built manually with the software Coot 

[162]. Geometric and stereochemical parameters were validated in Coot, resulting in 

96.9 % of residues located in favorable regions of the Ramachandran plot and 3.1 % 

located in allowed regions. In addition, anisotropic B-factor refinement was done using 

TLS analysis. Refinement statistics are listed in Table 12. 

Table 12: Data statistics for sPEX3+PEX19Pep. 

Parameter Value 

Data collection  

Space group P21 

Cell dimensions a=38.48 Å, b=65.68 Å, c=61.59 Å 

=90°, =91.52°, =90° 

Resolution (Å) 25-2.4 (2.48-2.42)* 

Rmeas (%) 5.9 (55.9) 

I/I 20.2 (3.0) 

Completeness (%) 99.8 (99.8) 

Redundancy 3.7 (3.7) 

Wilson B (Å2) 46.7 

Refinement  

Resolution (Å) 25-2.42 

Unique reflections 11779 (848)* 

Rwork/Rfree (%) 19.4/23.4 (28.9/29.0) 

No. of atoms 

Protein 

Peptide 

Water 

 

2249 

122 

67 

B-factors (Å2) 

Protein 

Peptide 

Water 

 

39.2 

58.7 

40.8 

Rmsd 

Bond length (Å) 

Bond angles (°) 

 

0.01 

1.08 
* Values in parentheses correspond to the highest resolution shell. 
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3.5  Crystal structure of sPEX3 in complex with PEX19Pep 

This research was originally published in The Journal of Biological Chemistry, [169],       

© the American Society for Biochemistry and Molecular Biology. Here, the key findings 

are recapitulated with the indicated figures and tables referring to the original 

publication, which can be found directly following this section (page 58). 

Insights into peroxisome function from the structure of PEX3 in complex 
with a soluble fragment of PEX19. Schmidt F, Treiber N, Zocher G, Bjelic S, 
Steinmetz MO, Kalbacher H, Stehle T, Dodt G (2010). J Biol Chem 285, 
25410-25417. 

Peroxisomal matrix protein import has been elucidated in detail, including several 

structures of the matrix protein receptor PEX5 and its cargos [85, 170]. However, 

structural information about the proteins involved in peroxisomal membrane protein 

import is rather scarce. X-ray data is available of the C-terminal domain of PEX19 [66] 

(PDB: 2WL8). Furthermore, an NMR structure of a PEX14 peptide in complex with a 

PEX19 peptide was published [171] (PDB: 2W85). Here, one of the first crystal 

structures of a peroxin complex involved in PMP import is presented. The structure of 

human PEX3 in complex with a peptide derived from its interaction partner PEX19 was 

determined at 2.4 Å using molecular replacement (Table 1). Affinity measurements and 

conservation analysis provide insights into the atomic details mediating the PEX3-

PEX19 interaction. Furthermore, three conserved regions within PEX3 were identified 

that might represent additional binding sites for other proteins during peroxisome 

biogenesis. 

Structural features of sPEX3 

The cytosolic domain of PEX3, sPEX3, folds into an all helical bundle composed of ten -

helices and one short 310-helix (Figure 2C and 2D). The structure exhibits a novel fold 

according to computer-based structural homology searches [172, 173], which could 

identify only a similarity to subsets of -helical regions of proteins but not to their 

correct three-dimensional arrangements. The helical bundle is 80 Å long, has a diameter 

of 30 Å, and is composed of slightly twisted helices that encircle a central helix, 3 

(Figure 2A). Some helical segments include proline residues, resulting in kinked helical 

structures. The long N-terminal helix projects from the protein core and represents the 

elongation of the transmembrane region (Figure 2B). In vivo, both the N- and C-termini 
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would be oriented towards the peroxisomal membrane. The inner core of the protein is 

stabilized by mainly hydrophobic interactions between the individual helices and the 

central 3-helix, excluding any water molecules from the protein interior. The 3-helix 

has been proposed previously to mediate the binding to PEX19. Cell culture experiments 

showed that this part of PEX3, comprising residues 120-136, colocalizes with PEX19 to 

the nucleus when PEX19 is equipped with a nuclear localization signal [70]. According to 

the sPEX3 crystal structure, the 3-helix is not able to interact with PEX19 unless a 

rearrangement of the entire protein takes place that would expose the helix. However, 

such a rearrangement is unlikely. Thus, the previously observed colocalization is 

probably due to the characteristic feature of PEX19 to bind hydrophobic protein 

segments, which applies to the 3-helix. 

Characteristics of the PEX19-binding groove 

The PEX19-binding groove is located at the top of the helical bundle and is composed of 

three distinct regions within sPEX3 (Figure 3). The PEX19-derived peptide forms a 

single -helix that exhibits amphipathic properties. The non-polar side represents the 

main interaction surface with sPEX3, burying a total area of 580 Å2 from solvent. On the 

solvent exposed side, additional hydrogen bonds and salt bridges mediate interactions 

of the peptide with sPEX3. The largest contact area (42 % of buried surface area, BSA) is 

located between residues Thr90 and Lys108. This region forms a helix-loop-helix motif 

comprising helix 2 and 3 (Figure 3B). The central residue is a tryptophan placed at 

position 104, which is surrounded by hydrophobic residues Leu22, Ala25, Leu26 and 

Phe29 of PEX19. The significance of Trp104 can be deduced from its strict conservation 

throughout organisms (Figures 4 and S4A) and its essential role in peroxisome 

biogenesis [123]. The second contact region involves only two residues of sPEX3, 

Leu196 and Lys197, and represents 21 % of the BSA (Figure 3A). The residues lie in a 

loop that connects helices 4 and 5 of sPEX3, and they interact with the N-terminus of 

PEX19Pep. Leu196 is engaged in hydrophobic interactions with three leucine residues of 

PEX19 (Leu18, Leu21, Leu22). The side chain of Lys197 mediates two salt bridges to 

Asp15 and Glu17 of PEX19 and several van-der-Waals contacts with Leu18. The third 

contact region ranges from Pro321 to Pro327 and involves helix 8 and the preceding 

loop (Figure 3C). The BSA counts for 37 % of the total contact area. Lys324 forms one 

salt bridge to Asp28 and a hydrogen bond with Ser24 of the PEX19 peptide. Pro321 

interacts with Leu21 and Leu22 of PEX19. The short side chain of Ala323 is involved in 
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hydrophobic contacts with Leu21, Leu22 and Ala25 of PEX19Pep. The ring of Pro327 

packs against the aromatic side chain of Phe29 at the C-terminus of the peptide, which 

further contacts the residues Ile326 and Asn330 of sPEX3. 

Electrostatic surface potential 

The electrostatic potential of the PEX19Pep-binding groove is positive due to several 

lysine residues (Lys94, Lys100, Lys197, Lys324), and it matches the negatively charged 

glutamates (Glu17, Glu19) and aspartates (Asp15, Asp28) within the PEX19-derived 

peptide (Figure S2). Furthermore, the electrostatic surface of the PEX19-binding groove 

can explain the previous observation that PEX3 binds membrane lipids but only in the 

absence of PEX19 [174]. The PEX19-binding groove is likely able to generate charge-

charge interactions with phospholipids, forming high molecular mass aggregates of 

PEX3. The high affinity of PEX19 (see below) disrupts these unspecific PEX3-lipid-

complexes, which are unlikely to play a significant role under physiological conditions.  

Affinity of the PEX3-PEX19 interaction 

The Kd-value for the sPEX3-PEX19Pep complex was determined with ITC experiments to 

330 nM (Figure 1B). This high-affinity interaction can be attributed to the features of the 

fing groove described above. Another ITC experiment revealed an even lower Kd-value of 

10 nM for the interaction of PEX326-373(C235S), nPEX3, with full-length PEX19 (Figure 

1A). In all cases, the complex is formed with an 1:1 molar ratio. Surface plasmon 

resonance data from independent measurements are consistent with these findings 

[123, 124]. The difference in affinity of PEX3 for full-length PEX19 or the N-terminal 

peptide might be assigned to additional contributions of residues within the full-length 

protein. A putative second binding site for PEX3, spanning residues 124-140 of PEX19, 

was postulated based on peptide scanning mutagenesis [65]. However, this fragment did 

not show any affinity for sPEX3 in ITC experiments (Table S1). As the enthalpy of the 

sPEX3+PEX19Pep complex is 70 % of the enthalpy calculated for the binding to full-

length PEX19, binding of the peptide produces the main energetic force. Thus, the 

identified PEX19-binding groove represents the major interaction site of PEX3. 

Surface conservation analysis 

Surface analysis of PEX3 revealed several evolutionary conserved regions within the 

amino acid sequence (Figure S4A). Mapping of solvent-exposed residues identified three 

strikingly conserved patches on the surface of sPEX3 (Figure 4A). In addition to the 
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PEX19Pep-binding groove, there is a hydrophobic groove lining the base of the molecule, 

and a cluster of several acidic residues on the opposite side of the protein. The binding 

groove for the peptide is built of several strictly conserved residues (Figure 4B), of 

which tryptophan at position 104 has already shown to be essential for the function of 

PEX3 in peroxisomal biogenesis and for the interaction with PEX19 [123]. The high 

degree of conservation within the binding groove throughout species emphasizes the 

crucial role of the PEX3-PEX19-complex during membrane protein import into 

peroxisomes. Thus, it is possible that the two other conserved regions, the hydrophobic 

groove and the acidic cluster, are engaged in peroxisome biogenesis, perhaps by 

mediating contacts with other proteins or molecules.  

Conservation analysis was also carried out for the N-terminus of PEX19 (Figure S4B). 

The majority of residues involved in the interaction with PEX3 are highly conserved 

throughout species, with the C-terminally located amino acids being more conserved 

than the residues within the N-terminal part (Figure 4B). Phenylalanine at position 29 

closes the binding groove with its bulky side chain and is crucial for binding to PEX3, as 

a mutation to alanine (PEX19Pep F29A) results in a loss of affinity for sPEX3 (Figure 1C). 

This is consistent with the in vivo finding that the F29A mutation completely abolishes 

the complementation ability of full-length PEX19 in PEX19 cells [124]. Another highly 

conserved residue is Ala 25. Mutagenesis experiments revealed that a leucine, which is 

present in some yeast at this position, is tolerated at this position, revealing a Kd of 

410 nM calculated by ITC measurements. In contrast, the substitution to a tyrosine 

results in loss of binding, probably because the big aromatic side chain prevents 

complex formation (Table S1). 

A similar PEX3-PEX19 complex structure 

At the same time as these results were published, a competing group published a similar 

structure of a PEX3-PEX19 complex [124]. They used a shorter version of PEX3, starting 

at amino acid 49, and the first 44 N-terminal amino acids of PEX19 for crystallization. 

The crystals belong to space group P6522 and the structure was solved with MAD 

phasing of a seleno-methionine derivative. The hexagonal space group is reminiscent of 

the twinned crystals obtained for nPEX3. An overlay of the present structure with the 

complex structure of the other group reveals no significant differences in the overall 

fold, with an rmsd of 1.4 Å for the C-backbone (Figure 3.9) as determined with least 

square superposition in Coot [162]. The largest deviations can be found in some loops 
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and surface-exposed regions, which indicates flexibility. The PEX19-binding groove is 

highly similar in both structures, with good agreement of the side chain positions. The 

PEX19 fragment shows an rmsd of 0.6 Å for the C-backbone. The high similarity of two 

independently determined structures provides additional support for the PEX3-PEX19 

complex structure determined in this thesis. 

 

Figure 3.9: Superposition of two similar PEX3-PEX19-complex structures. The structure of sPEX3 
(green cartoon) with a PEX19-derived peptide (orange cartoon) is superimposed with a similar 
complex structure published in [124] (PDB: 3AJB) with a shorter version of PEX3 depicted as a 
blue and a longer version of PEX19 depicted as a yellow cartoon, respectively. The rmsd values for 
the C-backbone are 1.4 Å for the PEX3 molecules and 0.6 Å for the PEX19 peptides, respectively. 

 

The sPEX3+PEX19Pep structure presented in this thesis provides insights into the 

mechanisms underlying the PEX3-PEX19 interaction and enables further functional 

analysis. The conservation of the PEX19-binding groove and the PEX19-derived peptide 

supports the crucial role of the PEX3-PEX19-complex during peroxisome biogenesis. The 

nanomolar affinity of the PEX3-PEX19 interaction ensures a correct initiation point for 

an essential step in peroxisome biogenesis, the insertion of peroxisomal membrane 

proteins. The biological relevance of the identified conserved regions on the surface of 

PEX3 has to be validated, especially applying in vivo studies. Furthermore, the functions 

of the conserved hydrophobic groove and the acidic patch, which both might represent 

the second PEX19-binding site as proposed earlier [65], remain to be elucidated. 
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FIGURE S1. Overall structure of the sPEX3-PEX19
Pep

 complex. Stereo view of sPEX3 (green) in 

complex with PEX19
Pep

 (orange). The termini of loops missing in the electron density maps are 

labelled. The stereo view was made using molscript (46). 

 



 

 
 

 

 

FIGURE S2. Electrostatic surface potentials of sPEX3 and PEX19
Pep

. Two views, differing by 180 

degrees along a vertical axis, are shown for each protein. The color scheme ranges from red (-12 kT) 

to blue (12 kT). The maps were calculated using APBS (44) in Pymol. A Electrostatic surface potential 

of sPEX3. PEX19
Pep

 is shown as an orange ribbon. The view on the right hand side reveals a highly 

negative electrostatic potential at the base of sPEX3. B Electrostatic surface potential of PEX19
Pep

. 

sPEX3 is shown as a pale green ribbon. PEX19
Pep

 displays a highly negative electrostatic surface 

potential. 

  



 

 
 

 

 

FIGURE S3. Experimental electron densities. A Simulated annealing omit map for PEX19
Pep

, 

contoured at a -level of 1.0. sPEX3 is shown as a pale green ribbon, and PEX19
Pep

 is represented 

with a stick model. B Final 2Fo-Fc electron density map, centered at Trp104 and contoured at a 

-level of 1.0. Labels in italics correspond to PEX19
Pep

, labels in regular font correspond to sPEX3.  
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FIGURE S4. Sequence conservation for PEX3 and PEX19 in different eukaryotic species. A, 

Alignment of PEX3 sequences from different eukaryotic species. Conserved residues are shown 

in shades of green. Conservation scores  9 (9, 10+, 11*) are displayed in the same color. B, N-

terminal sequence alignment of PEX19. Conserved residues are shown in shades of orange. 

Conservation scores  9 (9, 10
+
, 11*) are displayed in the same color. The alignments were performed 

with ClustalW (54) and displayed in Jalview (55). 



 

 
 

Table S1. ITC affinity measurements 

Summarized binding data for ITC experiments with different PEX3 and PEX19 proteins. F29A, A25L 

and A25Y denote single point mutations of PEX19
Pep

, whereas 120-134 defines a PEX19 derived 

peptide, spanning amino acids 120-134, that was proposed as a second PEX3 binding region (30). 

Single measurements were done at 25 °C. 

Binding partners Kd  

nM 

HBinding  

kcal/mol 

Molar ratio 

PEX3
26-373

(C235S)-PEX19 FL
a
 9.3 -6.7 0.86 

sPEX3
b
-PEX19

Pep
 330 -4.9 1.06 

sPEX3-PEX19
Pep

 F29A n.b.
c
 n.b. n.b. 

sPEX3-PEX19
Pep

 A25L 410 -1.9 1.10 

sPEX3-PEX19
Pep

 A25Y n.b. n.b. n.b. 

sPEX3-PEX19
Pep

 120-134 n.b. n.b. n.b. 
a 
full-length, 

b 
PEX3

41-373
(C235S), 

c 
no binding, 
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3.6 Functional analysis of conserved PEX3 regions 

The data presented in this section were used to prepare a manuscript for publication. 

The obtained results and conclusions are summarized here. The figures and tables refer 

to the publication manuscript, which is placed directly after this section (page 65). 

The role of conserved PEX3 regions in PEX19-binding and peroxisome 
biogenesis. Schmidt F, Dietrich D, Eylenstein R, Groemping Y, Stehle T, Dodt G. 
Manuscript submitted.  

The crystal structure of sPEX3 in complex with a PEX19-derived peptide has been 

determined at 2.4 Å resolution. Based on this structure, a mapping of conserved residues 

identified three highly conserved regions on the surface of sPEX3: the PEX19-binding 

groove, a hydrophobic groove and an acidic cluster. Mutagenesis experiments elucidated 

the functional relevance of these regions during different steps in peroxisomal 

membrane biogenesis in vitro and in vivo. For this, selected amino acids were mutated 

within sPEX3 and full-length, C-terminally myc-tagged PEX3 (PEX3-myc, Figure 1). The 

obtained results provide insights into peroxisome membrane biogenesis and define a 

direct participation of PEX3 during insertion of peroxisomal membrane proteins. Finally, 

the combined data lead to an improved model for the multi-step process of peroxisome 

membrane biogenesis. 

Experimental prerequisites 

The analysis of functional PEX3 can be easily performed in PEX3-deficient fibroblasts. 

These cells are completely lacking peroxisomes or peroxisomal ghosts. If these PEX3T 

cells are transiently transfected with a plasmid coding for PEX3 carrying a C-terminal 

myc-tag, the complemented cells are able to develop peroxisomes de novo. 24 hours 

after transfection, first membrane vesicles, the so-called preperoxisomes, can be 

detected. These preperoxisomes exhibit positive staining for PEX3 or PEX16 (Figure 8) 

but lack other membrane proteins such as PEX14 (Figure 8). Membrane proteins and 

other proteins necessary for the import of matrix proteins are imported before matrix 

proteins are transported to peroxisomes. Import competent peroxisomes, which exhibit 

a positive staining for the matrix protein catalase, are detected 5-7 days after 

transfection. In this thesis, PEX16-YFP was cotransfected with PEX3 variants to induce 

preperoxisome formation and to better visualize these early membrane structures. 

omplementation rates are calculated 7 days after transfection by counting the number of 
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cells that show a positive peroxisomal staining for PEX14. Transfection rates are 

determined 2 days after transfection in human fibroblasts by counting all cells that 

feature a positive peroxisomal myc staining due to expression of PEX3-myc. All in vitro 

experiments were carried out with sPEX3, which exhibits a cysteine to serine mutation 

at position 235. To test for any impact of this mutation on PEX3 function, the same 

mutation was also introduced in the mammalian expression vector and the 

complementation rate was determined in PEX3T cells. As the complementation ability 

of PEX3-myc C235S lies in the range of normal PEX3-myc (4.5 % vs. 4.7 %, respectively), 

any influence of the C235S mutation can be excluded.  

Folding and stability of PEX3 mutants 

First, CD-spectroscopy and thermal denaturation assays were performed with the sPEX3 

variants that have been successfully mutated within the E. coli expression vector. In the 

CD-spectra, all proteins exhibit the same -helical folding characteristics as sPEX3 

(Figure S1A). Furthermore, the protein melting points were determined using a thermal 

denaturation assay by recording the CD-signal at 208 nm and simultaneously heating 

the samples to 95 °C. The melting points of the mutants lie in the same range or even 

higher compared with sPEX3 (Figure S1B). These results indicate that the inserted 

mutations interfere neither with protein folding nor with protein stability, and that the 

effects observed in subsequent experiments are not due to misfolded or per se instable 

protein.  

Mutations in the PEX19-binding groove 

The PEX19-binding groove is one of the three conserved regions on the surface of PEX3 

(Figure 1). It is located on the top of the helical bundle and is composed of three distinct 

areas of PEX3. Within the groove, a leucine at position 93 was mutated to an asparagine, 

which has a similar size but a more hydrophilic character. This mutation diminished the 

affinity for full-length PEX19 as determined with ITC experiments (Figure 2B and 2E). 

The Kd-value for the L93N mutant is 3.7 µM, compared to sPEX3 with 14 nM (Figure 2A 

and 2E). The reduced affinity of sPEX3 L93N for PEX19 can be also detected by 

analytical SEC, where both proteins elute as individual species and do not form a 

complex anymore (Figure S2D). In vivo, the 270-fold decrease in affinity is sufficient to 

abolish the complementation ability of PEX3-myc L93N in PEX3T cells, where the 

peroxisomal membrane marker PEX14 is mislocalized to mitochondria (Figure 6A). 
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Lys324, which is also located in the PEX19-binding region, was exchanged to an alanine. 

The reduction in affinity for full-length PEX19 is less severe than that observed for the 

L93N mutant, with a Kd-value of 270 nM (Figure 2C and 2E). sPEX3 K324A is able to 

form a complex with PEX19 in solution that elutes as a single peak in gel filtration 

experiments (Figure S2D). As the data were obtained with a truncated version of PEX3 

lacking the first 40 amino acids, full-length PEX3 was used in a transcription/translation 

experiment followed by coimmunoprecipitation to test for a possible interaction of 

PEX19 with the N-terminus of PEX3. In contrast to PEX3-myc, the mutant PEX3-myc 

L93N is no longer able to interact with PEX19 (Figure 2F, compare lane 1 and 3). This 

finding excludes a high affinity binding of PEX3 N-terminus to PEX19. The affinity of 

PEX3-myc K324A is high enough to detect the PEX3-PEX19 complex in the CoIP gel 

(Figure 2F, lane 4), although the PEX19 band is weaker than that for normal PEX3-myc. 

In vivo, however, the reduced affinity of the PEX3-myc mutant K324A becomes 

noticeable through a reduced ability to complement PEX3T cells (Figure 6A and 6B). 

The complementation rate of PEX3-myc K324A (2.0 %) is reduced about 60 % 

compared to PEX3-myc (4.7 %). 

Stabilization of PEX3 upon PEX19-binding 

It is worth mentioning that both PEX3-myc variants with mutations in the PEX19-

binding groove are expressed at lower levels in normal human fibroblasts compared to 

PEX3-myc (Figure 3A and 3B). As the mRNA levels of the overexpressed PEX3-myc 

mutants L93N and K342A are 200-fold higher than for endogenous PEX3 (Figure S3B), 

it is likely that these mutants are also present at protein level. The transfection rates for 

PEX3-myc L93N and K324A are 2.7 % and 6.4 %, respectively, compared to a 

transfection rate of 12.4 % for PEX3-myc. As both mutants are properly folded and 

stable at least in vitro as analyzed with CD and thermal denaturation assays, this 

observation might be due to impaired PEX19-binding. To further support this 

hypothesis, a thermal denaturation assay was performed (Figure 4A). The melting point 

of sPEX3 in the presence of a PEX19-derived peptide, PEX19Pep, is 54 °C, an increase 

about 10 °C compared to sPEX3 alone. The membrane-distal end of sPEX3 is fixed upon 

peptide binding, which provides rigidity and stability to the entire helical bundle, 

resulting in a higher melting point of the sPEX3-PEX19Pep complex. As binding to PEX19 

stabilizes PEX3, the PEX3-myc mutants with the mutations in the PEX19-binding groove 

lose a stabilizing element. The stabilization effect on PEX3 upon PEX19-binding is 
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further supported by the fact that in PEX19-deficient cells, the PEX3 protein is almost 

not detectable (Figure 4B, lower panel), while the mRNA level is comparable to that of 

normal cells (P. Krensel, Dodt lab). The same is true for PEX19-knockdown cells, where 

PEX3 at protein level is reduced about 80 % compared to control cells (Figure 4B, lower 

panel). The reduced cellular protein levels of PEX3 in PEX19T or PEX19 knock-down 

cells and PEX3-myc mutants L93N and K324A in normal cells may be explained by an 

increased degradation of unstable protein. Thus, the instability of the PEX3 protein can 

likely be attributed to either the impaired PEX19-binding or the complete absence of 

PEX19 in PEX19T cells. 

PEX3 targeting to peroxisomes 

The two PEX3 mutants impaired in PEX19-binding (L93N, K324A) are still correctly 

targeted to peroxisomes in human fibroblasts (Figure 3A). To further investigate, 

whether PEX3 is localized to peroxisomes independently of PEX19, human fibroblasts 

were treated with siRNA against PEX19 and subsequently transfected with PEX3-myc or 

PMP70-myc plasmids to analyze their import competence (Figure 5). YFP-PTS1 was 

cotransfected to normalize for transfection efficiencies. In PEX19-knockdown cells, the 

endogenous PEX19 protein level is reduced about 83 % compared to control cells 

(Figure 4B, upper panel). PEX3-myc and PMP70-myc are exclusively found in 

peroxisomes in control cells and in knockdown cells without any mislocalization to 

other organelles (Figure 5A). However, there are fewer cells exhibiting a positive 

peroxisomal staining for PMP70-myc in PEX19-knockdown cells, probably due to a PMP 

import defect and subsequent degradation of not imported PMP70-myc (Figure 5B). On 

the other hand, PEX3-myc is imported to peroxisomes in PEX19-knockdown cells to the 

same extent as in control cells (Figure 5A), implying a PEX19-independent peroxisomal 

localization of PEX3. These results contradict previous findings of a PEX19-dependent 

PEX3 targeting to peroxisomes [75].  

Mutations in the acidic cluster 

A glutamate and an aspartate in the acidic cluster were each mutated to an alanine to 

abolish possible charge-charge interactions with a yet undefined binding partner 

(Figure 1). PEX3-myc E266A is expressed in normal fibroblasts to the same extent as 

PEX3-myc (12.6 %) (Figures 3B and S3A). Furthermore, the E266A mutation does not 

interfere with the abilities to complement PEX3T cells (4.6 %; Figures 6B and S4) or to 
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bind full-length PEX19 (Kd=18 nM; Figure S2B and S2C). This indicates that the 

glutamate at position 266 is not involved in an additional, previously proposed PEX19-

binding site [169]. In contrast, PEX3-myc D275A shows a 50 % reduced 

complementation ability in PEX3T cells (Figures 6B and S4), although the expression 

levels in normal fibroblasts lie in the range of PEX3-myc (9.3 %; Figures 3B and S3A). As 

ITC experiments of sPEX3 D275A with full-length PEX19 are not available, a putative 

additional PEX3-PEX19 interaction via this aspartate cannot be excluded. However, the 

PEX3-myc mutants E266A and D275A are able to interact with PEX19 in a CoIP assay 

(Figure 2F, lane 8 and 9) implying that the PEX3-PEX19 interaction remains unaffected 

in both mutants. 

Mutations in the hydrophobic groove 

An isoleucine at position 140 and a leucine at position 165 in the hydrophobic groove 

were both mutated to an asparagine, which has a similarly sized amino acid side chain 

but exhibits more hydrophilic features (Figure 1). A double mutant carrying both 

mutations was also analyzed in cell culture experiments. sPEX3 I140N and sPEX3 L165N 

have the same affinity for full-length PEX19 as sPEX3, with a Kd-value of 18.3 and 

20.9 nM, respectively (Figures 2D, 2E, S2A and S2C). Thus, a participation of the 

hydrophobic groove in a second PEX19-binding site can be excluded. In addition, CoIP 

experiments reveal that the PEX3-myc mutants I140N, L165N and the double mutant 

I140N*L165N are able to precipitate PEX19 (Figure 2F, lane 5-7). The transfection 

efficiency in human fibroblasts is lowered for PEX3-myc L165N (3.5 %; Figure 3A and 

3B), but not for the PEX3-myc mutants I140N (10.4 %; Figures 3B and S3A) and 

I140N*L165N (13.7 %; Figures 3B and S3A). The decreased protein level for PEX3-myc 

L165N in human fibroblasts cannot be explained at the moment. As the mRNA level of 

PEX3-myc L165N is 170-fold higher than for endogenous PEX3 and correlates to 70 % of 

overexpressed PEX3-myc mRNA (Figure S3B), the reduced protein level is not due to a 

transcription defect. Surprisingly, PEX3-myc L165N and the I140N*L165N double 

mutant exhibit a reduced complementation rate for PEX3T cells (0.8 and 0.9 %, 

respectively; Figures 6A, 6B and S4), whereas PEX3-myc I140N remains unaffected 

(3.9 %; Figures 6B and S4). This indicates, that the leucine to asparagine exchange at 

position 165 is responsible for the observed results. As sPEX3 L165N is not impaired in 

PEX19-binding, the reduced complementation efficiency of the correspondent PEX3-myc 

mutant must be caused by a different factor. There are two possibilities, which might 
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both explain the present findings: 1. The hydrophobic groove is involved in PMP 

insertion into the lipid phase of the peroxisomal membrane. Here, peroxisomal 

membranes can be formed but cannot be complemented with membrane proteins. 2. 

The hydrophobic groove is required for de novo peroxisome formation. In this case, the 

defect occurs in the very early stages of peroxisomal biogenesis, as peroxisomal 

membrane structures are not developed at all. 

The role of the hydrophobic groove during peroxisome biogenesis 

To further elucidate these two hypotheses, PEX3T cells were cotransfected with PEX3-

myc or different PEX3 mutants (L93N, K324A, E266A, L165N) in the presence of PEX16-

YFP to better visualize newly formed peroxisomes (Figure 7A and B). The cells were 

analyzed for preperoxisome formation 24 hours after transfection. PEX3-myc exhibits 

an YFP-positive punctate staining pattern in 24.8 % of transfected cells. The two 

mutations located in the PEX19-binding groove (L93N, K324A) are impaired in 

preperoxisome formation as they show YFP-positive structures only in 8.2 and 9.9 % of 

transfected cells, respectively. This defect in de novo peroxisome biogenesis can 

probably be linked to the reduced PEX19-binding affinity. The requirement of an intact 

PEX3-PEX19 complex for de novo peroxisome formation has been shown previously in 

S. cerevisiae [38, 40, 41]. The E266A mutant is able to form preperoxisomes comparable 

to PEX3-myc (17.4 % of transfected cells), indicating a negligible role of the acidic 

cluster in the very early stages of de novo peroxisome biogenesis. Interestingly, PEX3-

myc L165N, which carries the mutation in the hydrophobic groove, is capable of 

developing preperoxisomes to the same extent as PEX3-myc (19.2 % of transfected 

cells). Thus, the reduced complementation ability of PEX3-myc L165N can be rather 

attributed to a defect in inserting PMPs into the peroxisomal membrane than to a defect 

in preperoxisome formation. 

The PEX3-PEX16 interaction 

In mammalian cells, the only other known interaction partner of PEX3 is PEX16 [52, 75, 

76]. To identify the regions of PEX3 involved in PEX16-binding, PEX19-deficient 

fibroblasts (PEX19T) were transfected with different GFP-tagged versions of PEX3 in 

the absence or presence of PEX16-myc (Figure 9A and 9B). Twenty-four hours after 

transfection, cells were analyzed with immunofluorescence for cellular localization of 

the corresponding proteins. As PEX19T cells do not contain peroxisomes, PEX16 is 
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found in the ER and in the cytosol. The N-terminus of PEX3, PEX31-33-GFP is detected 

mainly in mitochondria in the absence of PEX16-myc. In the presence of PEX16-myc, its 

cellular localization is partly shifted to the ER, where a colocalization with PEX16 is 

observed. The C-terminal domain of PEX3, PEX334-373-GFP, is exclusively located in the 

cytosol independent of the presence of PEX16-myc. These findings indicate that the first 

N-terminal 33 amino acids of PEX3, the peroxisomal targeting signal and membrane 

anchor of PEX3, interact with PEX16. As the hydrophobic groove and the acidic cluster 

are both present on the cytosolic domain of PEX3, these regions are likely not involved 

in PEX16-binding. 

Taken together, these results support a dual function of the PEX3-PEX19 complex in 

peroxisome biogenesis. In addition to its role in PMP insertion, a functional PEX3-PEX19 

interaction is also required for de novo peroxisome biogenesis. Furthermore, the role of 

PEX16 as an interaction partner of PEX3 in the peroxisomal membrane was further 

evaluated and confirmed. Although PEX3 is localized to peroxisomes independently of 

PEX19, the stabilization of PEX3 upon PEX19-binding is quite striking. A more detailed 

model of peroxisome membrane biogenesis is discussed in section 4. 
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ABSTRACT 

The human peroxins PEX3 and PEX19 are essential for peroxisome biogenesis. They are 

involved in the posttranslational import of membrane proteins and in de novo formation 

of peroxisomes. PEX19 binds newly synthesized PMPs posttranslationally and directs 

them to peroxisomes by engaging PEX3, a protein anchored in the peroxisomal 

membrane. After protein insertion into the lipid bilayer, PEX19 is released back to the 

cytosol. Crystallographic analysis provided detailed insights into the PEX3-PEX19 

interaction and identified three highly conserved regions on the surface of PEX3, the 

PEX19-binding groove, a hydrophobic groove and an acidic cluster. Here, we used site-

directed mutagenesis to elucidate the role of these regions in PEX19-binding and in 

peroxisome biogenesis. We find that binding to PEX19 stabilizes PEX3. This interaction 

is however not essential for targeting PEX3 to peroxisomes via the classical 

posttranslational import pathway. Furthermore, we provide evidence for a crucial 

function of the PEX3-PEX19 complex during de novo formation of peroxisomes in 

peroxisome deficient cells. These findings support a dual function of the PEX3-PEX19 

interaction in peroxisome biogenesis. The maturation of preperoxisomes appears to 

require the hydrophobic groove of PEX3, presumably by its involvement in peroxisomal 

membrane protein insertion.  

http://www.ncbi.nlm.nih.gov/pubmed/22624858


 

 
 

INTRODUCTION 

Peroxisomes have long been known for their essential contributions to a multitude of 

metabolic pathways, such as the beta-oxidation of very long and branched chained fatty 

acids, plasmalogen biosynthesis, or the degradation of H2O2 (1, 2). Defects in peroxisome 

biogenesis can be linked to mutations in PEX genes and form a group of inherited 

diseases, the peroxisome biogenesis disorders (3-7). Loss of one of the three peroxins 

PEX3, PEX16 or PEX19 results in severe cellular phenotypes in which cells are not able 

to develop detectable peroxisomal membrane structures but can be complemented by 

reintroduction of the corresponding cDNA (8-12). The phenomenon of peroxisomal de 

novo formation has been intensively investigated in yeast. In PEX3-deficient cells, newly 

synthesized PEX3 is first located in concentrated foci on the endoplasmic reticulum (ER) 

before new peroxisomes are formed in the presence of PEX19 (13-15). While this ER-

dependent route has been found to occur in peroxisome-deficient cells, peroxisomes can 

multiply by growth and division in wild-type cells (16). Recently, it was proposed that 

ER-dependent peroxisome biogenesis is not restricted to de novo synthesis in mutant 

cells but serves as the main pathway in peroxisome biogenesis in all cells (17, 18). 

However, it is not known whether these findings can be generalized to mammalian cells. 

Although it has been described that newly synthesized PEX16 or PEX3 travels via the ER 

in PEX16- or PEX3-deficient cells, respectively (19, 20), it still is debated whether and to 

what extend this pathway is actually used when peroxisomes are present (21). 

Posttranslational import of peroxisomal membrane proteins (PMPs) is initiated by the 

cytosolic receptor PEX19 (22), which binds to the membrane peroxisomal targeting 

sequence (mPTS) (23) of PMPs with its C-terminal domain (24). In addition, PEX19 acts 

as a chaperone for newly synthesized PMPs by shielding hydrophobic patches from the 

aqueous environment (25, 26). The N-terminus of PEX19 is sufficient and necessary to 

localize cargo-loaded PEX19 to peroxisomes (25, 27, 28), where it interacts with PEX3 

(29-31). The cytosolic C-terminal domain of PEX3 forms an -helical bundle and 

mediates the high affinity binding to PEX19 (32-34). PEX3 is anchored in the 

peroxisomal membrane with its first 34 N-terminal amino acid residues, which also 

harbor the information for its targeting to peroxisomes (35, 36). The mechanism of 

membrane insertion of PMPs and the role of ATP in PMP import remain to be elucidated. 

Whereas one study detected an ATP-dependent targeting of PEX19 to peroxisomes (22), 

other findings indicate a negligible role of ATP during the whole process (37, 38). In 



 

 
 

addition to ATP hydrolysis, the thermodynamically favored embedding of 

transmembrane segments into the lipid bilayer might present a driving force for PMP 

insertion. 

Based on the crystal structure of the cytosolic domain of PEX3 in complex with a PEX19-

derived peptide (33), several surface mutations have been inserted into conserved 

regions of PEX3. These mutants were expressed in E. coli, purified and analyzed with 

respect to their folding characteristics and their ability to bind PEX19 in vitro. In 

addition, the full-length proteins were analyzed in vivo to define their localization in 

normal fibroblasts and their functionality in de novo peroxisome formation in PEX3-

deficient cells. Our findings lead to a more detailed model for protein import into the 

peroxisomal membrane. 

 

RESULTS 

The soluble domain of human PEX3, which was crystallized in complex with a peptide 

derived from its interaction partner PEX19, folds into an elongated, -helical bundle 

(33). At the peroxisome surface, the long N-terminal helix would be connected to a 

transmembrane-spanning segment that was not included in the crystallized protein (33, 

34). The mostly hydrophobic PEX19-binding groove is located at the top of the helical 

bundle, distant from the membrane anchor. Analysis of the protein surface identified 

three highly conserved regions within PEX3: the binding groove for PEX19 at the top of 

the helical bundle, a hydrophobic groove near the base of the protein, and a cluster of 

acidic residues also near the base of PEX3 but on a different side (Figure 1) (33). 

Reasoning that conserved regions are rather likely to play a role in peroxisome 

biogenesis and binding to peroxisomal or other proteins, we mutated single amino acids 

in all three areas (Figure 1). Two mutations, K324A and L93N, are located in the binding 

region for PEX19. The K324 side chain interacts with PEX19 primarily via a hydrogen 

bond and a salt bridge, while L93 mediates hydrophobic interactions. Residues I140 and 

L165 were each mutated to an asparagine, a more hydrophilic residue of a similar size, 

in order to change the physical properties of the conserved hydrophobic groove. A 

double mutant (I140N*L165N) was also produced to further reduce the hydrophobicity 

in this area. Finally, residues E266 and D275 were individually mutated to alanine to 

probe the putative function of the acidic cluster by reducing its overall electrostatic 

potential. 



 

 
 

Mutations do not influence the overall fold and the stability of recombinant sPEX3. 

The mutations were introduced into an E. coli expression vector coding for human 

PEX341-373 with a cysteine to serine exchange at position 235. The corresponding protein 

(PEX341-373 C235S) is hereafter referred to as sPEX3 and is identical to the protein 

crystallized earlier (33). Six sPEX3 mutants (L93N, K324A, E266A, I140N, L165N and 

the double mutant I140N*L165N) were expressed in E. coli and purified to homogeneity 

using an established protocol (33). To test whether the mutations affect the overall fold 

of sPEX3, all mutants were subjected to circular dichroism (CD) spectroscopy. sPEX3 

and the six mutants show similar spectra, with clear -helical features represented by 

two minima of ellipticity at 208 and 220 nm (Figure S1A). This indicates that the 

mutagenesis did not alter the overall fold of the protein. However, CD spectroscopy can 

only reveal larger changes in the folding of a protein, and is not sensitive enough to 

detect smaller structural rearrangements or local unfolding. Therefore, the stabilities of 

the mutants were also analyzed using a thermal denaturation assay, in which a CD-signal 

was recorded at 208 nm while the sample was simultaneously heated to 95 °C. The 

melting point of sPEX3 was determined as 43 °C. As all mutants melt at similar or even 

higher temperatures (Figure S1B), we conclude that introduction of the mutations has 

no adverse effect on either fold or stability of sPEX3.  

 

Mutations in the PEX19-binding region reduce the affinity of sPEX3 for PEX19. 

The binding affinities of sPEX3 and the sPEX3 mutants for full-length PEX19 were 

determined using isothermal titration calorimetry (ITC). sPEX3 binds PEX19 with 

nanomolar affinity (Kd = 14 nM, Figure 2A, E), consistent with previous findings (32, 33). 

The mutations I140N, L165N and E266A do not result in significant changes of affinity, 

as the Kd values lie in the range of 20 nM for all three proteins (Figure 2D, Table 1 and 

Figure S2A-C). However, the mutations located in the PEX19-binding region influence 

the PEX3-PEX19 interaction properties. The K324A mutation lowers the affinity for 

PEX19 about 20-fold (Kd = 270 nM). This decrease is in agreement with the expected loss 

of one salt bridge and one hydrogen bond upon complex formation. The binding 

constant is still high enough to detect the complex formation between the K324A mutant 

and PEX19 in solution (Figure S2D). With a Kd value of 3.7 µM, the L93N mutant is 

severely impaired in PEX19-binding (Figure 2B, E). This decrease corresponds to a 250-

fold affinity reduction compared to sPEX3. The observation that the complex of the 



 

 
 

sPEX3 L93N mutant and PEX19 cannot be detected by gel filtration experiments (Figure 

S2D) confirms these results. The thermodynamic parameters of the interaction of sPEX3 

mutants with PEX19 are listed in Table 1. 

 

The N-terminus of PEX3 is not involved in high affinity PEX19-binding. 

To exclude that the N-terminus of PEX3, which is absent in sPEX3 and the mutant 

proteins, influences the interaction with PEX19, we tested full-length PEX3 for the ability 

to bind PEX19 by coimmunoprecipitation (CoIP). All mutations (L93N, K324A, E266A, 

D275A, I140N, L165N and I140N*L165N) were introduced into the mammalian 

expression vector PEX3-myc, which encodes human full-length PEX3 with a C-terminal 

myc-tag. PEX19 and all PEX3-myc mutants were first transcribed and translated 

separately in vitro, then mixed, incubated for one hour and subjected to 

coimmunoprecipitation using beads coupled to -myc antibodies. The translation 

products, the supernatants and the elution fractions were separated by SDS-PAGE prior 

to autoradiographic detection of the 35S-methionine labeled proteins (Figure 2F). Full-

length PEX3-myc and the mutants K324A, I140N, L165N, I140N*L165N, E266A and 

D275A are able to interact with PEX19, as indicated by its detection in the eluate. PEX3-

myc L93N is no longer able to precipitate PEX19, as the corresponding PEX19-band is 

absent in the eluate (lane 3). In case of PEX3-myc K324A, PEX19 can be indeed detected 

in the eluated fraction (lane 4), however the corresponding band is weaker compared to 

PEX3-myc. The negative control (lane 2), where PEX19 was mock treated in the absence 

of PEX3-myc, excludes any unspecific binding of PEX19 to the beads. Thus, it is likely 

that the N-terminus of PEX3 is not involved in a high affinity interaction with PEX19. 

 

All PEX3 mutants localize correctly to peroxisomes in human fibroblasts. 

The different PEX3-myc plasmids used for CoIP experiments were also transfected in 

human fibroblast cells and the expressed proteins were tested for peroxisomal 

localization using indirect immunofluorescence microscopy. PEX3-myc and all mutants 

showed an unambiguous peroxisomal staining pattern and colocalized with the 

peroxisomal membrane protein PEX14 (Figure 3A and Figure S3A). However, the 

transfection rates differ significantly among some of the mutants (Figure 3B). The 

amount of transfected cells for the mutations E266A, D275A, I140N and the double 

mutation I140N*L165N lies in the same range as quantified for PEX3-myc (9-12 % of 



 

 
 

total cells). With a transfection level of 3.5 %, a three-fold reduction was observed for 

the PEX3-myc L165N mutant. Interestingly, the two mutations located in the PEX19-

binding region, L93N and K324A, both have decreased transfection rates of 2.7 % and 

6.4 %, respectively, compared to PEX3-myc. As all PEX3-myc mutants are transcribed at 

the mRNA levels in amounts that are 120-250-fold higher than the mRNA of endogenous 

PEX3 (Figure S3B), it is likely that the PEX3-myc mutants were also present at the 

protein level.  

The two PEX3 mutants L93N and K324A that are impaired in binding to PEX19 might be 

less stable in a cellular environment, resulting in a lower transfection rate compared to 

PEX3-myc. To further investigate this possibility in vitro, we analyzed the stability of 

recombinant sPEX3 in the presence of a PEX19-derived peptide comprising residues 14-

33 (PEX19Pep), which has previously been shown to bind sPEX3 with high affinity (33). 

Thermal denaturation curves for sPEX3 alone and in combination with PEX19Pep were 

determined by recording the CD-signal at 208 nm (Figure 4A). The melting point of the 

sPEX3-PEX19Pep-complex is significantly shifted towards higher temperatures, 

indicating a higher thermal stability of almost 10 °C upon peptide-binding. Thus, PEX19-

binding stabilizes PEX3 in vitro. 

 

The postranslational import of newly synthesized PEX3 into peroxisomes is independent of 

PEX19. 

As the two PEX3 mutants impaired in PEX19-binding still localized correctly to 

peroxisomes, we investigated whether newly synthesized PEX3 is imported into 

peroxisomes independently of PEX19. Normal human fibroblasts were treated either 

with siRNA against PEX19 (25) or with control siRNA. Immunoblotting against PEX19 

revealed a severe reduction of the endogenous PEX19 protein level of 83 % compared to 

control cells (Figure 4B). Interestingly, PEX3 was also reduced in these PEX19-

knockdown cells and in PEX19-deficient cells (Figure 4B), indicating that PEX3 is indeed 

more stable in the presence of PEX19. The siRNA-treated cells were subsequently 

transfected either with PEX3-myc or PMP70-myc. In both cases, YFP-PTS1 was 

cotransfected for normalization of transfection efficiency. Colocalization of PEX3-myc 

and PMP70-myc with the peroxisomal matrix marker YFP-PTS1 revealed a distinct 

peroxisomal staining in control cells as well as in PEX19-knockdown cells. PEX3-myc 

and PMP70-myc were exclusively detected in peroxisomes and were not mislocalized to 



 

 
 

other organelles (Figure 5A). However, PMP70-myc was less frequently detected in cells 

treated with PEX19 siRNA, likely due to an import defect and subsequent degradation. 

These cells showed an 1.5-fold reduction in the ratio of PMP70-myc to YFP-PTS1 

transfection rates compared to control cells (Figure 5B). However, this PEX19 reduction 

does not interfere with PEX3-myc import, as PEX3 was localized to peroxisomes to the 

same extent in control and PEX19-knockdown cells (Figure 5B). These findings support 

a discrete import pathway for PEX3 to peroxisomes that is independent of PEX19. 

 

The PEX3 mutants differ in their efficiency to complement PEX3-deficient human 

fibroblasts. 

As PEX3-deficient cells lack any detectable peroxisomes, PMPs are either mistargeted to 

other organelles or degraded (8, 9). For example, the peroxisomal membrane protein 

PEX14 is mislocalized to mitochondria in PEX3T cells (Figure 6A, (8)), and analysis of 

PEX14 localization therefore can be used as an assay to study PEX3 function. A 

characteristic feature of functional PEX3 is the ability to induce formation of new 

peroxisomes in these PEX3-deficient cells. In complemented cells, PEX14 is detected in 

the restored peroxisomes. To determine the functionality of the different PEX3-myc 

mutants, PEX3T cells were transfected with the corresponding plasmids and analyzed 

for restoration of peroxisomes 7 days after transfection. The amount of complemented 

cells for the PEX3-myc mutants I140N and E266A did not differ from the 

complementation level of PEX3-myc (4-5 % of total cells), whereas the mutant D275A 

lowered the complementation rate about 50 %. The import competence of these new 

peroxisomes was validated by immunofluorescence staining against the matrix protein 

catalase, which colocalizes with the peroxisomal membrane marker PEX14 (Figure S4). 

The PEX3-myc mutant K324A showed a significantly reduced complementation rate 

(2 % of total cells, Figure 6B). However, distinct peroxisomes that are import-competent 

for catalase were detected (Figure 6A). This reduced complementation efficiency may be 

explained by the reduced PEX19-binding affinity. In case of the L93N mutation, the 

complementation ability is lost, showing the typical mitochondrial mistargeting of 

PEX14 (Figure 6A) in PEX3T cells (8). This observation is consistent with the severe 

impact of the PEX3 L93N mutation on PEX19-binding affinity. Interestingly, a defect in 

complementing PEX3-deficient human cells was also observed for the mutant L165N 

and the double mutant I140N*L165N (about 1 % of total cells, Figure 6B). Quantitative 



 

 
 

analysis of complementation rates for PEX3-myc and all PEX3-myc mutants is shown in 

Figure 6B. The in vitro studies described above, used sPEX3, which carries a cysteine to 

serine mutation at position 235. The same mutation was now introduced into the PEX3-

myc plasmid and then transfected into PEX3T cells. As PEX3-myc C235S is able to 

complement PEX3T cells to the same extent as PEX3-myc (4.2 %, Figure S4), we can 

exclude any negative impact of the C235S mutation on essential functions of PEX3. 

 

Binding to PEX19 is important for the formation of preperoxisomes. 

The overall complementation rate does not reflect the influence of PEX3 on the different 

steps necessary to create new peroxisomes. Cotransfection of PEX3 and PEX16 plasmids 

into PEX3T cells leads to the formation of preperoxisomal structures within 24 hours. 

These vesicles do not contain the peroxisomal membrane marker PEX14, but exhibit a 

positive staining for PEX3 and PEX16 (see Figure 8). Here, these structures are defined 

as preperoxisomes. Later, these preperoxisomes import PEX14 and other membrane 

proteins, followed by the translocation of matrix proteins, finally leading to fully 

functional peroxisomes within 3-7 days (8, 39). We now investigated the impact of the 

PEX3-myc mutants L93N, K324A, E266A and L165N on the early stages of 

complementation in PEX3-deficient fibroblasts. PEX3-myc coexpressed with PEX16-YFP 

is able to form YFP-positive preperoxisomes (24,8 % of transfected cells) after 24 hours, 

while few YFP-positive punctate structures were detected with the control vector (4,2 % 

of transfected cells, Figure 7A, B). For the E266A mutant, 17.4 % of transfected cells 

exhibit YFP-positive punctate staining patterns. The L93N mutant shows a three-fold 

reduction in forming preperoxisomes compared to PEX3-myc (8,2 % of transfected 

cells). Additionally, the second mutation in the PEX19-binding groove, K324A, reduces 

the formation of preperoxisomes about 60 % (9,9 % of transfected cells, Figure 7B). 

Interestingly, the L165N mutant, which carries the mutation in the hydrophobic groove, 

reveals only a small reduction in preperoxisome formation (19,2 % of transfected cells), 

but is severely impaired in overall complementation efficiency of PEX3-deficient cells 

(Figure 6B). This implies that the hydrophobic groove is involved later in membrane 

biogenesis, presumably in the import of proteins into the peroxisomal membrane. 

 

 

 



 

 
 

PMPs are imported posttranslationally into preperoxisomes. 

The PEX3-PEX19-complex appears to be required for the formation of preperoxisomes 

that mature into peroxisomes by importing PMPs posttranslationally. To further support 

this hypothesis, PEX3-deficient cells were transfected with a PEX16-myc construct 

together with PEX3-YFP, PEX3-YFP L93N or PEX3-YFP L165N. For this experiment, the 

tags on the proteins were swapped so that the expression of the PEX3-YFP mutants 

could be easily monitored. The cells were subjected to immunofluorescence analysis 

one, two and three days after transfection. In case of PEX3-YFP, punctate 

preperoxisomes were detected after 24 hours. These struc -

-PEX16 antibodies (Figure 8A), but were negative for the PMPs PEX14 and 

PEX13. After 2-3 days, these preperoxisomal structures developed into functional 

peroxisomes harbouring PEX3-YFP, PEX14 and catalase (data not shown). PEX3-YFP 

L93N was primarily detected in the cytosol (Figure 8B) and failed to generate 

peroxisomes after 2-3 days, indicating a crucial function of the PEX3-PEX19 complex in 

the early stages of de novo biogenesis. The PEX3-YFP mutant L165N colocalized with 

PEX16 in preperoxisomes after 24 hours (Figure 8C), while PEX14 was only detected in 

mitochondria. After 2-3 days, the number of PEX3-YFP L16N-positive punctate 

structures has decreased remarkably perhaps due to degradation of import-defective 

preperoxisomes. However, the cells that exhibited a punctate YFP-staining after 3 days 

also showed a punctate PEX14 staining indicating new peroxisomes. These cells 

probably represent the small amount of complemented cells detected after 7 days 

(Figure 6). 

 

The N-terminus of PEX3 colocalizes with PEX16 in the ER. 

In addition to PEX19, only one other peroxin, PEX16, has been shown to interact with 

PEX3 in mammalian cells (20, 40). The observation that transfection of PEX16 into 

PEX19-deficient cells leads to a partial ER-localization of PEX16 (20) was used to test for 

a possible PEX3-PEX16 interaction visualized by colocalization of PEX3 and PEX16 in the 

ER. Therefore, PEX16-myc was coexpressed with truncated versions of PEX3 (PEX31-33-

GFP and PEX334-373-GFP) in PEX19T cells. The N-terminus of PEX3 colocalized with 

PEX16 in the ER (Figure 9A). However, when individually expressed in PEX19T cells, 

this PEX3 variant was primarily detected in mitochondria (Figure 9A, B) and in the 

cytosol. The cytosolic domain of PEX3 (residues 34-373) is exclusively found in the 



 

 
 

cytosol independent of PEX16-myc coexpression and therefore does not superpose with 

PEX16 localization in the ER. These findings suggest that the N-terminus of PEX3 

mediates the interaction to PEX16 in the ER, which is consistent with previous studies 

that found direct PEX16 binding to the mPTS of PEX3 using immunoprecipitation assays 

(40). Furthermore, we can now exclude that the hydrophobic groove on the surface of 

PEX3 is involved in binding to PEX16, as reasoned previously (33). As all tested point 

mutations reside in the cytosolic domain, it is unlikely that the observed 

complementation defect of the L93N or the L165N mutants results from an impaired 

PEX3-PEX16 interaction. 

 

DISCUSSION 

The human peroxins PEX3 and PEX19 are essential for peroxisome membrane 

biogenesis including the posttranslational import of PMPs and the de novo peroxisome 

formation in peroxisome deficient cells. sPEX3 folds into an elongated -helical bundle 

that engages a PEX19-derived peptide with high affinity in a conserved region at the 

membrane-distal end of the protein (33). However, little is known about additional 

interactions of these proteins with each other and also about their mode of interaction 

with other peroxisomal and non-peroxisomal proteins. Surface analysis of the sPEX3 

structure identified two other regions with high levels of conservation in addition to the 

PEX19-binding groove: a hydrophobic groove at one side of sPEX3, and a cluster of 

acidic residues at a different side. It is tempting to speculate that the observed 

evolutionary conservation translates into specific functions of these three regions in 

peroxisome biogenesis. We have therefore probed the putative functions of all three 

regions using site-directed mutagenesis, in vitro binding assays and in vivo localization 

experiments. We find that mutations in the PEX19-binding groove destabilize PEX3 at 

the cellular level, but do not interfere with PEX3 targeting to the peroxisomal 

membrane. In addition, the interaction between the two peroxins is essential for 

preperoxisome formation. One mutant in the hydrophobic groove is selectively impaired 

in later stages of peroxisome biogenesis, most likely in posttranslational membrane 

protein import. The E266A mutation in the cluster of acidic residues did not affect either 

PEX19-binding or other stages in peroxisome biogenesis. 

Based on the observation that full-length PEX19 binds PEX3 with a higher affinity than 

an N-terminal PEX19-derived peptide, a second PEX19-binding site was proposed to 



 

 
 

exist in PEX3 (33). Due to their conservation, the hydrophobic groove and the acidic 

cluster were thought to be possible candidates for such a binding site (33). However, as 

mutations in either region (I140N, L165N, E266A) result in affinities for PEX19, which 

are comparable to sPEX3 (Kd = 15-20 nM) this possibility can now be excluded, at least 

for nonfarnesylated PEX19 used in this study. Furthermore, ITC measurements 

demonstrate that PEX3 mutations located in the PEX19-binding groove (L93N and 

K324A) reduce the affinity for PEX19 about 250- and 20-fold, respectively. However, the 

PEX3 protein used for Kd-value determination did not include the N-terminal 

transmembrane region. This region was proposed earlier to form a possible additional 

PEX19-binding site using pull-down assays with different splice variants of PEX19 (41). 

As the corresponding full-length PEX3 L93N mutant did not bind PEX19 in CoIP 

experiments, an interaction of the N-terminal transmembrane region of PEX3 with 

PEX19 is unlikely. However, the method used here and in previous studies (as reviewed 

in (31)) are not suitable to detect low affinity binding of the N-terminal first 34 amino 

acids of PEX3 and PEX19. 

Pulse-chase experiments in CHO cells demonstrated that the presence of PEX19 extends 

the half-life of PEX3 (40). Our in vitro findings support this observation as binding to a 

PEX19-derived peptide leads to a significant increase in PEX3 stability. The interaction 

with PEX19 shields hydrophobic PEX3 residues from the aqueous environment (33). By 

inserting into the PEX3 groove, the PEX19-derived peptide also crosslinks the walls of 

the groove, limiting their thermal mobility. A comparable effect in terms of temperature 

stability has been observed in major histocompatibility complexes, which also become 

more stable upon peptide-binding to a groove that is similar in length to the one present 

in sPEX3 (42, 43). Remarkably, the mutations in the PEX19-binding region (L93N, 

K324A) exhibit a reduced cellular expression level. As both mutants are properly folded 

and stable in vitro, a destabilizing effect induced by the amino acids changes within PEX3 

can be excluded. However, additional factors such as proteases or chaperones that might 

influence protein integrity and stability in vivo have to be considered. As the mRNA 

levels of these PEX3 mutants in fibroblasts are 200-fold higher than that of endogenous 

PEX3, the reduced expression levels are unlikely to be linked to mRNA instability. The 

diminished PEX19-binding may lower the stability of PEX3 and the more unstable 

protein undergoes subsequent degradation. Our findings that the PEX3 protein level is 

reduced in PEX19-knockdown and PEX19T cells support this scenario. The mutations 



 

 
 

in the acidic cluster are expressed in fibroblasts comparable to PEX3-myc. In addition, 

the E266A variant is neither impaired in complementation efficiency nor in 

preperoxisome formation. This leads to the conclusion that the glutamate at position 

266 plays a negligible role in peroxisome biogenesis. 

Recent siRNA experiments in HEK293 cells implicate PEX19 as a targeting receptor not 

only for PMPs, but also for PEX3 (40). We have employed a similar gene silencing 

approach using fibroblast cells and find that in this case, posttranslational PEX3 import 

into existing peroxisomes is independent of PEX19. In our case the PEX19 protein level 

is at least reduced by 83% and the import of PMP70 is impaired, while the PEX3-myc 

import seems unaffected. Our observation that PEX3 is targeted to peroxisomes 

independently of PEX19 is further supported by an unambiguous peroxisomal staining 

pattern in normal fibroblasts for the two PEX3 proteins that bear mutations in the 

PEX19-binding groove. These mutations severely decrease the affinity of PEX3 for 

PEX19, and in one case even prevent formation of a stable complex. 

Our studies also reveal a strikingly reduced complementation level for PEX3 variants 

carrying mutations in the PEX19-binding groove. The PEX3 mutant L93N has lost the 

ability to complement PEX3-deficient human fibroblasts, while the corresponding ability 

of the K324A mutant is lowered by 60 %. These results agree with our in vitro PEX19 

affinity studies for these two mutants (see above). A similar loss in complementing 

PEX19-deficient cells has been described for a PEX19 mutant in which F29, a residue 

involved in PEX3 binding, is replaced with an alanine (34). In that case, the mutation led 

to a 300-fold decrease in affinity compared to original PEX19 (32), consistent with our 

observation that a 250-fold affinity reduction for the interaction of the PEX3 L93N 

mutant with PEX19 is also sufficient to prevent complementation. Furthermore, the 

L93N mutant is not able to form preperoxisomes to the same extent as PEX3-myc. This 

suggests a crucial function of the PEX3-PEX19 complex already in the very first steps of 

peroxisome membrane biogenesis similar as described for yeast cells (13, 15, 44) and 

not only in the direct import of proteins into the peroxisomal membrane. 

Surprisingly, the L165N and I140N*L165N mutants are severely impaired in the 

reconstitution of peroxisomes in PEX3T cells. As the number of complemented cells for 

the single mutant at position 140 is comparable to PEX3-myc, we conclude that the 

observed effect is due to the amino acid change at position 165. Although the PEX3 



 

 
 

L165N protein has a low expression level in normal fibroblasts, the mRNA is indeed 

generated. Furthermore, the double mutant I140N*L165N is highly expressed in normal 

cells but exhibits the same complementation defect. Thus, the reduced complementation 

efficiency of PEX3-myc L165N is unlikely due to the low expression levels. The PEX3 

mutant L165N is still able to generate preperoxisomes at day one to almost the same 

extent as PEX3-myc. However, in most cells these preperoxisomes cannot be retained at 

the second and third day. Presumably they cannot import further membrane proteins, 

and the PEX3 proteins are localized to the cytosol or to mitochondria. Thus, the defect in 

complementation is more likely linked to a reduced import of PMPs into the peroxisomal 

membrane and not to a dysfunction in the early stages of membrane biogenesis.  

Our results lead to a more informative model of PMP import by providing support for a 

specific role of PEX3 during PMP insertion (Figure 10). PEX19 directs newly synthesized 

PMPs in an import-competent form to the peroxisomal membrane. Here, PEX3, which is 

anchored to the peroxisomal membrane via its N-terminal region, is able to bind to 

PEX19 using its cytosolic domain. It is tempting to speculate that structural 

rearrangements within the PEX19-PMP complex upon binding to PEX3 allow access to 

previously covered hydrophobic patches of the PMP. Such rearrangements might 

explain why only ternary complexes comprising PEX3, PEX19 and a PMP have been 

described so far (22, 37). PEX3 likely adopts an active role in PMP import by offering the 

hydrophobic groove as a channel for the polypeptide chain that has to be inserted into 

the peroxisomal membrane. As depicted in Figure 1, the leucine at position 165 is 

located at the top of the hydrophobic groove. Mutation to an asparagine could interfere 

with PMP import because the channel entrance would feature a more polar residue. 

However, the insertion and the folding process of the PMP into the peroxisomal 

membrane need to be clarified in detail.  

The present study leads to a more detailed view of peroxisome biogenesis and provides 

evidence for a dual role of the PEX3-PEX19 complex in de novo formation of 

peroxisomes and in posttranslational import of PMPs for the investigated mammalian 

system. Moreover, PEX3 is highly stabilized upon binding to PEX19 in solution. However, 

interaction with PEX19 is not essential for PEX3 targeting to peroxisomes, which implies 

a PEX19-independent posttranslational import of PEX3. These findings support the 

coexistence of de novo formation of peroxisomes in peroxisome-deficient cells and the 



 

 
 

posttranslational import of membrane proteins in existing peroxisomes that proliferate 

and divide independently of de novo formation (18, 21, 45, 46). 

 

 

MATERIALS AND METHODS 

Plasmids 

The plasmids containing the coding sequence for human sPEX3 (HsPEX341-373 (C235S) in 

pET32a) and for human PEX19 (full-length HsPEX19 in pColdI) used for expression in E. 

coli have been described previously (33). For expression studies in human fibroblasts 

full-length HsPEX3 encoding a C-terminal myc-tag and two truncated versions with a C-

terminal GFP-tag (PEX31-33-GFP and PEX334-373-GFP) (35), or a C-terminal YFP-tag 

(PEX3-YFP1-373) (30) have been used. The PEX16-myc construct was generated by 

amplifying the ORF with the forward (5'-

CCGGTACCAGGAATTCACCATGGAGAAGCTGCGGCTCC-3', GD119) and reverse primers 

(5'-CGGAGATCTGCCCCAACTGTAGAAGTAG-3'). The PCR product was cloned into the 

Acc65I and BamHI site of pcDNA3.1Zeo-myc followed by the coding sequence of the c-

myc epitope. The PCR product amplified with GD119 and the reverse primer (5'-

CGTCGACGCGCCCCAACTGTAGAAGTAD-3') using the PEX16-myc construct as template 

was cloned into the EcoRI and SalI site of pEYFP-N1 (Clontech) to generate PEX16-YFP. 

The plasmid PMP70-myc in pcDNA3 encoding the HsPMP70 (ABCD3) with a C-terminal 

myc-epitope is a generous gift of Stephen Gould. YFP-PTS1 refers to pEYFP-Peroxi 

(Clontech). 

 

Site-directed mutagenesis 

Primers used for inserting point mutations in sPEX3, PEX3-myc or PEX3-YFP are listed 

in Table S1. sPEX3 (sPEX3 in pET32a), PEX3-myc (PEX3-myc in pcDNA3.1zeo) and PEX3-

YFP (PEX3 in pEYFP-N1) were used as template DNA for PCR amplification. The PCR 

products were digested overnight with DpnI (Fermentas) at 37 °C to remove parental 

methylated DNA. 2 µL of each PCR sample were transformed into E. coli DH5 cells and 

plasmid-containing clones were selected via ampicillin resistance on LB-agar plates. 

Several overnight cultures of LB-medium containing ampicillin were inoculated with 

individual clones. DNA preparation was carried out with mi-Plasmid Miniprep Kit 



 

 
 

(Metabion) according to manufacturer’s instructions. DNA was sent for sequencing 

(MWG Operon) to test for successful mutagenesis.  

 

Protein expression and purification 

PEX19 full-length protein, sPEX3 and the sPEX3 mutants were expressed and purified as 

described previously (33). Protein concentrations were determined by measurements of 

absorption at 280 nm using a NanoDrop ND-1000 (PeqLab). Analytical size exclusion 

chromatography was carried out with a SuperdexTM 200 PC 3.2/30 (GE Healtchcare) in 

buffer A (10 mM Na2HPO4, 1.8 mM KH2PO4, 140 mM NaCl, 2.7 mM KCl, 0.5 mM tris-2-

carboxyethyl-phosphine, pH 7.2). 

 

Circular dichroism (CD) analysis 

CD spectra were recorded with a Jasco J-720 spectropolarimeter. All purified proteins 

were used at concentrations of 10-15 µM in buffer B (5 mM Na2HPO4, 0.9 mM KH2PO4, 

70 mM NaCl, 1.35 mM KCl, 0.25 mM tris-2-carboxyethyl-phosphine, pH 7.2). The spectra 

were recorded 8 times and corrected with the buffer spectrum. Thermal denaturation 

curves were recorded on a Jasco J-810 spectropolarimeter. The proteins were denatured 

with a scan rate of 1 °C/min from 20 to 95 °C measuring the CD signal at 208 nm. The 

purified proteins were used at concentrations of 10-15 µM in buffer C (10 mM Na2HPO4, 

1.8 mM KH2PO4, 5 mM NaCl, pH 7.4). 

 

Affinity measurements using isothermal titration calorimetry (ITC) 

Binding studies between full-length PEX19 and different mutants of sPEX3 were carried 

out with a VP-ITC calorimeter (GE Healthcare). Six PEX3 proteins (sPEX3, K324A, 

E266A, I140N, L165N, I140N*L165N) were present in 10 µM concentrations, whereas 

sPEX3 L93N was used at 25 µM concentration. PEX19 was injected stepwise at an 8- to 

12-fold higher concentration (Table S2). All ITC experiments were performed once at 25 

°C in buffer A. Data were fitted by least-squares procedures according to a one bindig 

site model using Microcal Origin® version 7.0. 

 

In vitro transcription/translation and Coimmuno-precipitation (CoIP) 

In vitro transcription and translation experiments were carried out with the TNT® 

Coupled Reticulocyte Lysate Systems (Promega) according to manufacturer’s 



 

 
 

instructions. The translation products were labeled with 35S-methionine (37 TBq/mmol, 

Hartmann Analytik) for detection. The empty vector pcDNA3 was used as a negative 

control. 10 µL of the translated PEX19 were mixed with 10 µL of PEX3-myc, with the 

corresponding PEX3-myc mutants or with the negative control. The mixtures were 

incubated at 30 °C for 1 hour, and then subjected to CoIP experiments. 50 µL of 

Dynabeads® M-280 sheep -mouse IgG (Invitrogen) were prepared according to the 

manufacturer’s instructions using buffer D (20 mM HEPES, 110 mM KAc, 5 mM NaAc, 

2 mM MgAc, 1 mM EDTA, pH 7.3) and loaded with mouse -myc antibodies (Cell 

Signalling, 1:200) in the presence of 0.1 % (w/v) BSA overnight at 4 °C. After washing 

with buffer D, the beads were resuspended in 130 µL buffer E (buffer D with 0.5 % (v/v) 

Triton X100 and protease inhibitor cocktail (Sigma, 1:200)) and the translation mixtures 

were added. The samples were incubated under slight rotation for 2 hours at 4 °C and 

then placed on a magnet to separate the magnetic beads from the solvent. The 

supernatant was removed, immediately mixed with SDS-loading buffer and heated to 

80 °C for 5 minutes. The beads were washed with buffer E, resuspended in 25 µL SDS-

loading buffer and heated to 80 °C for 5 minutes. The tubes were then again placed onto 

the magnet to obtain the eluate. The samples were analyzed by 10 % SDS-PAGE. The gels 

were incubated in 0.5 M Na-salicylate (AppliChem) for 20 minutes, dried onto Whatman 

paper and exposed to an autoradiography film (BioMax MR film, Kodak) overnight.  

 

Cell culture and transient transfection of human fibroblasts 

The transformed human fibroblasts (GM5657T) were provided by Stephen Gould 

(Baltimore). The PEX3-deficient human fibroblasts (47) were a kind gift by Barbara 

Paton. The PEX19-deficient cells were obtained from Ron Wanders (Amsterdam). These 

fibroblasts were transformed with pRSV-SV40T as described (48) and referred to as 

PEX3T and PEX19T fibroblasts, respectively. Cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) containing 10 % fetal calf serum, 2 mM glutamine and 

0.1 mM (50 mg/L) gentamicin at 37 °C and 8.5 % CO2. In general, cells were seeded onto 

cover slips 24 hours before transfection, whereas PEX3T cells used for 

complementation studies were grown in 25 cm2 culture flasks. The cells were 

transfected transiently with the corresponding plasmid DNA using jetPEI (PeqLab) 

according to the manufacturer's instruction and prepared for indirect 

immunofluorescence microscopy one day (PEX19T, PEX3T), two days (GM5756T) or 



 

 
 

seven days (PEX3T) after transfection, respectively, unless otherwise indicated in the 

figure legend. 

 

Indirect immunofluorescence microscopy 

After washing three times with Dulbecco’s-PBS (D-PBS, Gibco), cells on cover slips were 

fixed with formaldehyde (3 % in D-PBS) for 20 minutes. The fixed cells were 

permeabilized with Triton-X100 (1 % in D-PBS) for 5 minutes and washed three times 

with D-PBS. Incubation with primary antibodies was carried out for 30 minutes. After 

extensive washing with D-PBS, cells were incubated with secondary antibodies for 10 

minutes. Following ten additional washing steps with D-PBS, cells were embedded in 

mowiol (100 mg/mL, Calbiochem) containing 2.5 mg/ml n-propylgallate (Fluka) prior to 

analysis by fluorescence microscopy. All steps were carried out at room temperature. 

Mouse primary antibodies against the C-terminal myc-tag were purchased from Cell 

Signalling and diluted 1:200. Rabbit polyclonal antibodies detecting PEX14 were raised 

against the first N-terminal 133 amino acids of human PEX14 and were used at an 1:400 

dilution (49). Monoclonal -AFP mouse antibodies (3E6) detecting all GFP variants 

(1:400 dilution) were purchased from QBiogene. The polyclonal antibodies against 

HsPEX16 (JH290) were a kind gift of Stephen Gould and used at an 1:100 dilution. 

Catalase antibodies produced in sheep were obtained from Binding Site and used at an 

1:100 dilution. Antibodies against PEX13 (rabbit) were kindly provided by Marc Fransen 

(50) and used at an 1:250 dilution. Corresponding secondary antibodies were either 

donkey or goat IgGs conjugated with AlexaFluor-596 or AlexaFluor-488 (Molecular 

Probes, Invitrogen). Immunofluorescence images were acquired using a Zeiss Axiovert 

200M fluorescence microscope equipped with an AxioPlan Apochromat 1.4 63x oil 

objective, an AxioPlan Neofluar 1.3 100x oil objective, and an AxioCam MRm camera in 

combination with AxioVision 4.7.2 software. 

 

Knockdown of endogenous PEX19 with siRNA 

Human skin fibroblasts (GM5756T) were electroporated twice either with 1 nmol 

(20 µM) siRNA against endogenous PEX19 (sense 5’-GAGAUCGCCAGGAGACACUTT-3’; 

(25) or with1 nmol (20 µM) Negative Control siRNA (Qiagen) at an interval of 24 hours. 

For siRNA transfection cells were resuspended in DMEM and treated with 230 V for 

25 ms. Afterwards, knockdown cells and control cells were transfected transiently either 



 

 
 

with PEX3-myc or PMP70-myc using jetPEI (PeqLab) 24 hours after the second 

electroporation. In both cases, YFP-PTS1 was cotransfected in order to form the ratio of 

transfection rates. Indirect immunofluorescence staining was performed 6, 12 and 24 

hours after plasmid transfection. 

 

Immunoblotting 

The siRNA transfected fibroblasts were harvested for immunoblotting 48 hours after the 

second electroporation. 20 µg of total protein were separated on a 12 % SDS-PAGE gel 

and transferred onto a polivinylidene fluoride membrane (GE healthcare) using a 

semidry blotting system (Biorad). Blots were blocked for 2 hours with 10 % (w/v) non-

fat dry milk. The membranes were decorated for 2 hours with polyclonal rabbit -PEX19 

antibodies raised against the recombinant full-length PEX19 (see Protein expression and 

purification) at a dilution of 1:10000 in PBS-ST (10 mM Na2HPO4, 1.8 mM KH2PO4, 

140 mM NaCl, 2.7 mM KCl, 0.02 % (w/v) SDS, 0.1 % (v/v) Triton-X100), polyclonal 

rabbit -PEX3.1 antibodies (raised against PEX326-373 C235S purified as described in 

(33)) at a dilution of 1:1000 in PBS-ST, -Tubulin-ß I+II antibodies (monoclonal mouse, 

Sigma) at a dilution of 1:2000 in TBS-T (100 mM Tris, 100 mM NaCl, pH7.4, 0.1 % (v/v) 

Tween) or -Tubulin- antibodies (monoclonal mouse, Sigma) at a dilution of 1:2000 in 

TBS-T. After washing, the membranes were incubated for 1 hour either with horseradish 

peroxidase-conjugated goat -mouse IgGs or horseradish peroxidase-conjugated goat -

rabbit IgGs at a 1:15000 dilution (Sigma). The blots were washed and developed using 

enhanced chemoluminescence Western Blotting substrate (Thermo Scientific). All steps 

were carried out at room temperature. 

 

Quantification of PEX3 mRNA levels 

Human skin fibroblasts were transfected with PEX3-myc or the mutated PEX3-myc 

variants with jetPEI and harvested 24 hours after transfection. Total RNA was extracted 

(RNA spin Kit, PrepEase, USB) and subjected to cDNA synthesis (iScript, BioRad) 

according to the manufacturer's instruction. Quantitative real-time PCR was performed 

using Maxima SYBR Green/ROX qPCR Master Mix (Fermentas) and primers for PEX3 

(forward 5’-GGCTGAGTTCTTTCGACCTACTG-3’, reverse 5’-

TCACTGCAAACTGAATGGATCTG-3’) or Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH, forward 5’-CATCAAGAAGGTGGTGAAGCAG-3’, reverse 5’-



 

 
 

CAAAGTGGTCGTTGAGGGGCAATG-3’). The PCR reactions were carried out in the 

StepOne Plus Real-time PCR System (Applied Biosystems) under following conditions: 

50°C for 2 min, 95°C for 10 min, 40 cycles at 95°C for 15 sec and 60°C for 1 min followed 

by melting curve analysis. Data were collected at the 60°C step. The mRNA levels of 

PEX3-myc and PEX3-myc mutants compared to endogenous PEX3 were calculated via 

the 2-ct Method (51). 
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TABLES 

Table 1. Thermodynamic parameters for the interaction of sPEX3 proteins and full-length PEX19. 

Protein Kd [nM] H [kcal/mol] Molar ratio 

sPEX3a 14.8 -9.3 0.89 

sPEX3 L93N 3750 -10.4 0.90 

sPEX3 K324A 270.3 -8.0 1.03 

sPEX3 E266A 17.9 -9.4 0.94 

sPEX3 I140N 18.3 -7.8 1.25 

sPEX3 L165N 20.9 -5.6 0.87 

aPEX341-373 C235S. All experiments were carried out at 25 °C and data were fit to a single binding isotherm. 

  



 

 
 

 

Figure 1. Distribution of conserved amino acids on the surface of sPEX3. Surface representations of sPEX3 

with the bound PEX19-derived peptide depicted as an orange ribbon (PDB entry 3MK4, (33)) differ by 

180°C along the indicated vertical axis. Conservation analysis of surface exposed residues revealed three 

conserved regions within sPEX3, which are highlighted in shades of green: The PEX19-binding groove at 

the top of the helical bundle, where amino acids L93 and K324 are located; a hydrophobic groove that 

includes amino acids I140 and L165; and an acidic cluster that is delineated by residues E266 and D275. 

The color code is the same as used in (33). Mutations in all three regions were inserted into sPEX3 for in 

vitro analysis and into PEX3-myc or PEX3-YFP for in vivo experiments. 

  



 

 
 

 

Figure 2. Analysis of complex formation between different sPEX3 mutants and PEX19 using ITC and CoIP 
experiments. Raw ITC-data for titrations of sPEX3 with PEX19 (A), sPEX3 L93N with PEX19 (B), sPEX3 
K324A with PEX19 (C) and sPEX3 L165N with PEX19 (D) are shown. (E) Integrated heat values for the 
different ITC experiments showing fits to a single binding isotherm for the respective titrations. The data 
for affinity measurements of the mutants E266A and I140N with PEX19 are displayed in Supplemental 
Figure S2. (F) Autoradiography of CoIP experiments using full-length PEX3-myc and full-length PEX19. 
PEX3-myc, the corresponding mutants and PEX19 were obtained by an in vitro TNT assay, mixed and 
subjected to coimmunoprecipitations using -myc antibodies coupled to magnetic beads. The translation 
products, the supernatants and the eluates are shown separately for each PEX3-myc mutant. All PEX3-myc 
mutants except PEX3-myc L93N precipitate PEX19. Note that the corresponding PEX19-band is lacking in 
the eluated fraction (lane 3) for PEX3-myc L93N. 

  



 

 
 

Figure 3. Peroxisomal localization of different PEX3-myc mutants in human fibroblasts. Normal 
fibroblasts (GM5756T) were transfected with the corresponding PEX3-myc plasmids. (A) Cellular 
localization of the expressed mutants was detected using -myc antibodies two days after transfection. 
Peroxisomes were visualized using -PEX14 antibodies. All PEX3-myc mutants reveal a peroxisomal 
distribution pattern validated by colocalization with PEX14. The pictures for PEX3-myc and for the 
representative mutants L93N, K324A and L165N are shown here, the mutants E266A, D275A, I140N and 
I140N*L165N are displayed in Supplemental Figure S3. Scale bar: 10 µm. (B) Rates of transfection, 
determined by the amount of cells that display a myc-positve peroxisomal staining, are quantified for the 
individual PEX3-myc mutants. For each of the three independent experiments, at least 500 cells were 
counted for calculation. Values were represented as means with standard deviations. 

  



 

 
 

 

Figure 4. PEX3 is stabilized upon PEX19-binding. (A) Thermal denaturation curves for sPEX3 (black) and 

sPEX3+PEX19Pep (red). Protein solutions were used at a concentration of 12 µM. Melting curves were 

recorded with a scan rate of 1 °C/min at 208 nm to detect -helical protein content. The temperature was 

raised stepwise to 95°C. The inflection point indicates the melting temperature of the protein, which is 

clearly shifted to higher temperatures in the presence of the PEX19-derived peptide. (B) Human 

fibroblasts (GM5756T) were electroporated twice either with siRNA against endogenous PEX19 or with 

control siRNA. To control the efficiency of PEX19 knockdown, cells were harvested 48 hours after the 

second electroporation. Equal amounts of total protein were separated by SDS-PAGE and analyzed by 

immunoblotting using antibodies against PEX19 and PEX3 and against tubulin- and tubulin- as protein 

loading controls. Quantification reveals an 83% reduction of PEX19 protein and an 87% reduction of PEX3 

protein in PEX19-knockdown cells compared to control cells.  

  



 

 
 

Figure 5. Newly synthesized PEX3 is imported into peroxisomes independently of PEX19. Human 

fibroblasts (GM5756T) were electroporated twice either with siRNA against endogenous PEX19 or with 

control siRNA. (A) The siRNA treated fibroblasts were transfected transiently with plasmid DNA coding 

for PEX3-myc or PMP70-myc and were processed for indirect immunofluorescence at the indicated time 

points post transfection using -myc antibodies. In both cases, YFP-PTS1 was cotransfected to normalize 

for cell transfection efficiency. PMP70-myc and Pex3-myc were exclusively detected in peroxisomes 

validated by colocalization with YFP-PTS1, scale bar: 10 m. (B) The ratios of transfection rates for PEX3-

myc or PMP70-myc to YFP-PTS1 are displayed as a diagram, showing a peroxisomal import defect in the 

case of PMP70-myc, but not for PEX3-myc in PEX19-knockdown cells. Means of three independent 

experiments are presented with standard deviations; at least 1000 cells were counted for each 

experiment.  



 

 
 

Figure 6. Complementation of PEX3-deficient human fibroblasts. PEX3T cells were transfected with 

plasmids coding for different PEX3-myc mutants. For comparison, untransfected cells are displayed in the 

first lane. (A) The corresponding complementation efficiency was determined 7 days after transfection 

using -PEX14 antibodies to detect newly formed peroxisomes. The import competence of these 

organelles was tested with -catalase antibodies. The mutation L93N abolishes the ability of PEX3 to 

complement PEX3T cells showing a mitochondrial localization of PEX14. The other PEX3 mutants are 

still able to complement PEX3T cells. PEX3T transfected with PEX3-myc including the mutations L93N, 

K324A and L165N are shown here exemplarily, the mutants E266A, D275A, I140N and I140N*L165N are 

displayed in Supplemental Figure S4. Scale bar: 10 µm. The image for the L165N mutant was acquired 

using a z-stack overlay. (B) Complementation rates for all mutants were calculated by counting cells that 

exhibit PEX14-positive peroxisomal structures. In each of the three independent experiments at least 500 

cells were counted for quantification. Values were represented as means with standard deviations.  



 

 
 

 

Figure 7. Early stage of complementation in PEX3-deficient cells. PEX3T cells were cotransfected with 

plasmids coding for different PEX3-myc mutants and PEX16-YFP. (A) Cells were labeled with -GFP 

antibodies and -PEX14 antibodies 24 hours post transfection to visualize early stages in peroxisome 

biogenesis. Punctate preperoxisomal structures that are positive for PEX16-YFP could be detected in cells 

transfected with PEX3-myc and with the L165N mutant, but were barely found in cells transfected with 

PEX3-myc L93N. In all cells endogenous PEX14 is localized to mitochondria; scale bar: 10 µm. (B) The 

number of cells with YFP-positive preperoxisomes was counted and is represented in % of transfected 

cells. For each of the three independent experiments at least 500 cells were included in the calculation. 

Values were represented as means with standard deviations. 

  



 

 
 

 
Figure 8. Preperoxisomal maturation. PEX3T cells were cotransfected with plasmids coding for different 

PEX3-YFP mutants and PEX16-myc. (A) Cells were subjected to immunostaining 24 hours post 

transfection and labeled with -GFP antibodies, -PEX16 antibodies, -PEX14 antibodies and -PEX13 

antibodies to visualize early stages in peroxisome biogenesis. The punctate YFP-staining colocalizes with 

PEX16 but not with PEX14 or PEX13, indicating preperoxisomes that are not import competent for PMPs 

yet. (B) PEX3-YFP L93N is mainly detected in the cytosol 2 days after transfection. Preperoxisomal 

structures are barely detectable. (C) One day after transfection, PEX3-YFP L165N colocalizes with PEX16 

in preperoxisomes, whereas PEX14 is found in mitochondria. A small amount of these preperoxisomes can 

mature into peroxisomes import competent for PEX14 and catalase after 2-3 days.  



 

 
 

 

Figure 9. The N-terminus of PEX3 colocalizes with PEX16 to the ER in PEX19-deficient cells. PEX19T 

cells were transfected with plasmids coding for different GFP-tagged PEX3 variants. Additionally, either 

the control vector pcDNA3.1Zeo or PEX16-myc was cotransfected. (A) Cells were analyzed by 

immunofluorescence microscopy 24 hours after transfection. PEX3 localization was detected using -GFP 

antibodies; PEX16 was visualized with -myc antibodies, respectively. In the absence of PEX16-myc, the 

N-terminus of PEX3 is mainly found in mitochondria. In the presence of PEX16-myc that is partially 

localized in the ER, this PEX3 variant exhibits a partial ER staining. The C-terminal domain of PEX3 

(PEX334-373) is exclusively found in the cytosol independently of PEX16-myc coexpression; scale bar: 

10 µm. (B) The distribution of the different PEX3-GFP constructs within the cell in the absence or presence 

of PEX16-myc was evaluated and plotted as a diagram. For each of the three independent experiments at 

least 500 cells were counted. Values were represented as means with standard deviations.  



 

 
 

 

Figure 10. Model for PMP import into peroxisomes. Surface representation of PEX3 (light gray) with the 

hydrophobic groove highlighted in blue. The structures of the N- and C-terminal domains of PEX19 are 

depicted as cartoon (orange), whereas the flexible part in between is shown as a solid line. The PEX19 C-

terminal helix bundle refers to PDB entry 2WL8 (24). PEX3 is anchored in the peroxisomal membrane 

with its N-terminus (green) that mediates the interaction to PEX16 (red). PEX19 binds to the PMP with its 

C-terminal domain. The N-terminal helix of PEX19 directs the cargo-loaded PEX19-PMP-complex to 

peroxisomes by binding to PEX3. After PMP insertion into the peroxisomal membrane, PEX19 is released 

back to the cytosol to initiate another round of PMP import. 

  



 

 
 

SUPPLEMENTAL MATERIAL 

 

SUPPLEMENTAL TABLES 

 

Table S1: Primers for inserting point mutations in sPEX3, PEX3-myc and PEX3-YFP. 

Mutation Primer forward 

5’- 3’ 

Primer reverse 

5’- 3’ 

L93Na CCGAGAGCCTCACAGCTCTGAACAAAAACAGGCC GGCCTGTTTTTGTTCAGAGCTGTAGGCTCTCGG 

I140N CATAATTGGTGGATATAACTACCTGGATAATGCAGC GCTGCATTATCCAGGTAGTTATATCCACCAATTATG 

L165N CCAACAGCAGTATAATTCAAGTATTCAGCACC GGTGCTGAATACTTGAATTATACTGCTGTTGG 

E266A CTATTAAACTTCTCAATGCAACTAGAGACATGTTGG CCAAATGTCTCTAGTTGCATTGAGAAGTTTAATAG 

D275A GTTGGAAAGCCCAGCTTTTAGTACAGTTTTG CAAAACTGTACTAAAAGCTGGGCTTTCCAAC 

K324A GTCAGCCTGCCTTTAGCTGCGATAATTCCAATAG CTATTGGAATTATCGCAGCTAAAGGCAGGCTGAC 

C235S GGATCCAAACCTTTATTAAGCCATTATATGATGCC GGCATCATATAATGGCTTAATAAAGGTTTGGATCC 

aThe corresponding mutation is underlined within the primer sequences. 

 

Table S2: Protein concentrations used for ITC experiments. 

Protein Concentration 
sPEX3 
[µM] 

Concentration 
PEX19 
[µM] 

sPEX3a 10.1 83.2 

sPEX3 L93N 25.9 274.3 

sPEX3 K324A 12.0 147.2 

sPEX3 E266A 9.3 92.2 

sPEX3 I140N 8.0 96.3 

sPEX3 L165N 10.1 95.4 

a PEX341-373 C235S. 

  



 

 
 

 

Figure S1. Folding studies and stability analysis of different sPEX3 mutants. (A) Circular dichroism 

spectroscopy of all sPEX3 mutants show an -helical structural content, indicating no change in the 

overall fold of the protein compared to sPEX3. CD spectra were recorded with 12 µM protein solutions and 

corrected with the buffer spectrum. (B) Thermal stability analysis for sPEX3 mutants. Proteins were 

heated stepwise to 95°C with a scan rate of 1 °C/min. The CD signal at 208 nm was recorded during the 

whole denaturation process. Curves are displayed using a smoothing factor of 5. The inflection point 

represents the melting temperature of the protein. For all mutants, this melting point is somewhat higher 

than for sPEX3 (black), implicating no loss in stability upon introducing the mutations in sPEX3. 

  



 

 
 

 

Figure S2. Affinity measurements of complex formation between different sPEX3 mutants and PEX19. 

Raw data for binding of sPEX3 I140N to PEX19 (A) and sPEX3 E266A to PEX19 (B). (C) Integrated heat 

values for the different ITC experiments showing fits to a single binding isotherm for the respective 

titrations. The thermodynamic parameters for each sample are listed in Table 1. (D) Analytical size 

exclusion chromatography for sPEX3+PEX19, L93N+PEX19, K324A+PEX19 and PEX19 alone are shown. It 

is known, that PEX19 exists as a monomer in solution but elutes at higher molecular weight mass in gel 

filtration (32). Here, PEX19 (molecular mass: 32.8 kDa) elutes at an apparent molecular mass of 115 kDa 

due to its extended conformation. The complex sPEX3+PEX19 represents a molecular mass of 160 kDa, 

corresponding to the total of the two monomers building a 1:1 complex. The second peak in the profile of 

the complex can be assigned to an excess of monomeric sPEX3 (molecular mass: 37.5 kDa). The elution 

profile for sPEX3 K324A+PEX19 overlays with the complex profile for sPEX3+PEX19. Two single peaks, 

corresponding to the individual proteins PEX19 and sPEX3 L93N, characterize the elution profile of a 

mixture of sPEX3 L93N and PEX19. 

  



 

 
 

Figure S3. Peroxisomal localization of different PEX3-myc mutants in human fibroblasts. (A) Normal 

fibroblasts (GM5756T) were transfected with plasmids coding for the different PEX3-myc mutants E266A, 

D275A, I140N and I140N*L165N. The cellular localization of the expressed proteins was detected with -

myc antibodies two days after transfection. Peroxisomes were visualized with -PEX14 antibodies. These 

PEX3-myc mutants reveal a peroxisomal distribution within the cell validated by colocalization with 

PEX14. Scale bar: 10 µm. (B) mRNA levels of endogenous PEX3 and the corresponding PEX3-myc mutants 

in relation to PEX3-myc, which was set to 1. Values represent the mean and range of two experiments.  



 

 
 

 

Figure S4. Complementation of PEX3-deficient human fibroblasts. PEX3T cells were transfected with 
plasmids coding for the different PEX3-myc mutants E266A, D275A, I140N, I140N*L165N and C235S. The 
ability for complementation of PEX3T cells was determined 7 days after transfection using -PEX14 
antibodies to detect newly formed peroxisomes. The import competence of these organelles was tested 
with a-catalase antibodies. The PEX3-myc mutants are still able to complement PEX3T cells, which is 
validated by the colocalization of PEX14 with catalase-positive punctate structures. Scale bar: 10 µ.
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4 DISCUSSION 

In this thesis, the parameters underlying the PEX3-PEX19 interaction were defined. The 

structure of sPEX3 in complex with a PEX19-derived peptide provides insights into the 

molecular details mediating the PEX3-PEX19 binding, which is essential in peroxisome 

biogenesis. Based on the crystal structure, surface analysis of PEX3 reveals three larger 

conserved regions. In addition to the PEX19-binding groove, a hydrophobic groove and a 

cluster of acidic residues feature high conservation, indicating a possible role in PEX3 

function. Mutagenesis studies followed by affinity experiments determine two residues 

in the PEX19-binding groove, which are required for correct PEX19-binding and thus, 

for complementing PEX3-deficient cells. These residues are also essential for functional 

PEX3 in the early steps in peroxisome membrane biogenesis in vivo. Furthermore, the 

hydrophobic groove is likely involved in PMP insertion, which leads to a more detailed 

model of PMP insertion into the lipid bilayer. The cluster of acidic residues does not 

appear to play a critical role in PEX3 function in peroxisome biogenesis. 

4.1 Characteristics of the PEX3-PEX19 interaction 

4.1.1 Topology of PEX3 

The crystal structure of sPEX3 in complex with a peptide fragment of its interaction 

partner PEX19 serves as a platform for understanding the process of PMP import 

(Figure 1.4). According to structural homology searches, the structure of sPEX3 exhibits 

a novel fold. The closest structural homologs are membrane-embedded helical proteins 

such as the -adrenergic receptor or rhodopsin. However, the structural homology is not 

convincing with Z-scores below six (Z=5.5, -adrenergic receptor; Z=5.3, rhodopsin) and 

high rmsd values of 5.5 and 4.3 Å, respectively. The similarity is rather found within the 

-helical propensity of the proteins, but not within the arrangement of the helices 

towards each other and in space. Additionally, analysis of the electrostatic potential of 

sPEX3 reveals a hydrophilic surface with mostly randomly distributed positive and 

negative patches. These surface features make it unlikely that the bulk of PEX3 is 

inserted into the membrane. As only the inner core of the protein is highly hydrophobic 

(especially the central helix 3), the protein would have to undergo an immense 

conformational change to be able to insert into the lipid phase of the peroxisomal 

membrane. These findings support the view of PEX3 being anchored in the peroxisomal 

membrane only with its N-terminal TM domain and the rest of the protein projecting 
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into the cytosol. As no putative pore forming protein has been identified so far, it is 

unlikely that peroxisomal membrane protein import engages a protein pore to insert 

PMPs into the lipid bilayer. However, it has never been shown whether PEX3 is engaged 

in a protein import complex together with other peroxins (PEX16, PEX19). PEX16 was 

identified in this thesis and in other studies [52, 75] to interact with the N-terminal 

membrane anchor of PEX3 and might participate directly in the PMP insertion process. 

However, as a knockdown of PEX16 does not seem to result in an import defect of 

classI PMPs in human fibroblasts (D. Dietrich, Dodt lab), PEX16 might adopt a different 

function in peroxisome biogenesis. 

4.1.2 Comparison of unliganded and PEX19-bound PEX3 

So far, crystallization attempts of sPEX3 alone have not been successful. However, an 

unrefined structural model of a longer version of PEX3, nPEX3, alone is available [129], 

Although the model is somewhat unreliable because of crystal twinning, its core could 

be used for molecular replacement in this thesis. Hence, it is feasible to compare the 

overall fold of unliganded and PEX19-bound PEX3.  

 

Figure 4.1: Superposition of unliganded PEX3 and PEX19-bound PEX3. The unrefined model of nPEX3 
[129] alone is depicted as a blue cartoon, whereas sPEX3 from the PEX19-bound complex is 
shown in green. The variations within the N-terminal -helix are most likely due to crystal 
contacts. The biggest deviations can be found in loop regions and within helix 2. (A) PEX19-
binding groove with selected amino acids depicted as sticks. The other residues involved in 
PEX19Pep-binding and the PEX19-derived peptide are not shown for reasons of clarity. 
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Least squares superposition of the two proteins (Figure 4.1) in Coot [162] results in an 

rmsd of 2.6 Å for the C-backbone. The most noticeable deviations (rmsd: 2-4 Å) of the 

C-backbones can be detected in the N-terminus, in helix 2 and several loop regions. 

The divergence within the N-terminal -helix is most likely due to different crystal 

contacts. The good alignment of the C-backbone and the majority of the side chain 

atoms within the PEX19-binding groove of cargo-loaded and unliganded PEX3 argues 

against an induced structural change in the PEX3 molecule upon PEX19-binding. It is 

thus likely that the complementary geometric shapes of PEX3 and PEX19 perfectly fit to 

each other with only minor structural adaptations accompanying complex formation. 

4.1.3 The PEX19-binding groove 

The crystal structure of sPEX3 in complex with PEX19Pep provides insights into the 

molecular details mediating the binding of PEX3 to PEX19. The complex is formed 

mainly by hydrophobic interactions involving highly conserved residues of PEX3 and 

PEX19, which indicates an essential function of the PEX3-PEX19 complex in peroxisome 

biogenesis. The stabilizing effect on sPEX3 upon peptide binding, which was determined 

here in vitro with a thermal denaturation assay, is probably not only due to a fixation of 

the helices in the bundle, but also to a protection of the hydrophobic PEX19-binding 

groove from the aqueous environment. Concerning the melting temperatures of 

proteins, a comparable impact of peptide binding was described for MHC molecules. In 

this case, a class I MHC molecule is stabilized about 12 °C upon peptide binding 

determined with a similar thermal denaturation assay [175]. In contrast to the specific 

PEX3-PEX19 interaction, MHC molecules are designed for binding a variety of antigen-

derived peptides. Hence, the peptide-binding groove of MHC molecules is less conserved 

than the PEX19-binding groove and the peptide is in general bound via interactions with 

the N- and C-termini to guarantee a large diversity of presented antigens [176]. 

4.1.4 Is there a second PEX19-binding site? 

The affinity of the PEX19-derived peptide for sPEX3 was calculated with ITC 

experiments to a Kd of 330 nM. However, the affinity of full-length PEX19 for sPEX3 is 

even higher, with a Kd of 14.8 nM. This 22-fold higher affinity can be due to long-range 

interactions, which contribute nonspecifically to the affinity, or to a specific second 

PEX19-binding site within PEX3. An additional PEX19-binding site has already been 

proposed earlier [65]. In this thesis, surface conservation analysis of sPEX3 identified 
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two conserved regions in addition to the PEX19-binding groove, which might represent 

the second PEX19 interaction site. However, mutagenesis and affinity measurements 

excluded that the conserved hydrophobic groove or the conserved glutamate at position 

266 of PEX3 participate in PEX19-binding. The presence of a second PEX19-binding site 

is further supported by mutational analysis of a conserved phenylalanine at position 29 

of PEX19, which is engaged in PEX3-binding. The mutation of Phe29 to an alanine within 

full-length PEX19 results in a Kd-value of ~1 µM for PEX3 compared to a Kd-value of 

3.4 nM using native PEX19 calculated with SPR analysis [124]. The same F29A mutation 

within the PEX19-derived peptide completely abolishes binding to sPEX3 as determined 

with ITC experiments in the present thesis. Therefore, these results point towards a 

second PEX19-binding site of minor affinity on the surface of PEX3. 

4.1.5 The hydrophobic groove 

The complementation defect of the mutant PEX3 L165N indicates a direct participation 

of the conserved hydrophobic groove on the surface of sPEX3 in PMP insertion in 

peroxisome biogenesis. During the insertion of tail-anchored proteins into the ER 

membrane, a similar hydrophobic groove has been identified within the dimer interface 

of Get3 [177], which acts as a cytosolic receptor for TA proteins and directs them to the 

target membrane (see section 1.5.3). In that case, the groove is 15 Å wide and 30 Å long, 

and it is capable of binding an -helix of 20 aars deeply within the groove (Figure 4.2A).  

 

Figure 4.2: Dimensions of the hydrophobic groove. (A) Hydrophobic groove built by the interface of 
the Get3 dimer (light grey). The purple helix is modeled into the groove. Image modified from 
[177]. (B) The dimensions of the conserved hydrophobic groove (blue) on the surface of sPEX3 
(grey). PEX19Pep is depicted as an orange cartoon. 
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In case of PEX3, the hydrophobic groove is 7 Å wide and 15 Å long (Figure 4.2B). 

Thus, an interaction between a shorter -helix or a hydrophobic unstructured loop 

present within the PMP is imaginable. As the hydrophobic groove on the surface of PEX3 

is not as deep as the groove of the Get3 dimer, the -helix might not be completely 

lowered into the groove. Furthermore, the hydrophobic groove of PEX3 might also 

partly harbor the farnesyl moiety of PEX19 under in vivo conditions. As the affinity 

measurements were performed with nonfarnesylated PEX19 in this thesis, this 

possibility cannot be fully excluded. 

4.1.6 The acidic cluster 

Four residues are part of the acidic cluster, of which E266 and D275 are the most highly 

conserved. The PEX3 mutations E266A and D275A do not influence the interaction with 

PEX19. In addition, the complementation ability of PEX3 E266A is not impaired 

compared to normal PEX3. Thus, the glutamate at position 266 does not appear to have 

a specific biological function. In contrast, the complementation ability of PEX3 D275A is 

reduced about 50 % compared to normal PEX3. This observation might implicate a role 

of the aspartate in peroxisome biogenesis. However, the relevance and specificity as well 

as possible binding partners require further anaylses to be defined more precisely. 

4.1.7 The roles of PEX3 and PEX19 

There are two different scenarios describing the import of PMPs into peroxisomes. In 

the first one, PMPs are directly inserted into mature peroxisomes posttranslationally 

dependent on PEX3 and PEX19. The second scenario supports an indirect PMP pathway 

via the ER. Here, PEX3 and PEX19 are required for budding preperoxisomal vesicles 

from the ER, which already contain the majority of PMPs [45].  

 

Figure 4.3: A dual function of PEX3 and PEX19. The PEX3-PEX19 complex is required for budding of 
preperoxisomes from a membrane system that likely is the ER (1). These preperoxisomes mature 
to peroxisomes by importing PMPs with the help of PEX3 and PEX19 (2).  
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The findings presented in this thesis favor a direct PMP import into peroxisomes over an 

exclusively ER-dependent route of PMPs. The PEX3 L165N mutant, which carries the 

mutation in the hydrophobic groove, showed a reduced ability to complement PEX3-

deficient human fibroblasts. This is likely due to a defect in PMP insertion and not to an 

impaired preperoxisome formation. As these structures do not contain PEX14, PMP 

insertion is thought to occur after the budding of preperoxisomes. Furthermore, it was 

shown, that a functional PEX3-PEX19 interaction is required for the formation of 

preperoxisomes: The PEX3 L93N mutant, which is impaired in PEX19-binding, exhibits a 

defect in developing these early membrane structures. This is consistent with findings in 

yeast that the presence of PEX19 is essential for preperoxisomal vesicle budding [38, 40, 

43]. This also implies that the PEX3-PEX19 interaction may have a dual function during 

peroxisome biogenesis (Figure 4.3). 

4.2 A more detailed model of PMP import 

In addition to gaining detailed insights into the basis of the PEX3-PEX19 complex 

formation, the combination of in vitro and in vivo experiments leads to a more detailed 

model of PMP import into peroxisomes (Figure 4.4). PEX19 recognizes newly 

synthesized PMPs in the cytosol posttranslationally [77] by binding to one or even 

multiple mPTSs [63, 69]. At the same time, PEX19-binding provides stability to the PMP 

probably by shielding hydrophobic patches from the aqueous environment and keeping 

the PMPs in an import-competent form [67]. The PMP-PEX19-complex is then directed 

to the peroxisomal membrane through the interaction of the PEX19 N-terminus with 

PEX3 [122].  

The high affinity interaction ensures a precise initiation for the following steps of PMP 

insertion. The PMP-PEX19 complex must be oriented towards the peroxisomal 

membrane in such a way that the PMP can be inserted into the lipid phase correctly. As 

the very C-terminus of PEX19 can be oriented to face the peroxisome, the C-terminal 

farnesyl moiety might act as another membrane anchor, which was proposed previously 

[69]. This ancillary function of the lipid anchor has been shown independently for 

human and yeast cells [69, 128]. However, some studies favor an essential role of the 

farnesylation motif in peroxisome biogenesis and cell viability in eukaryotic cells [34, 59, 

126]. Several reports have shown that the farnesyl anchor enhances binding to several 

PMPs [71, 126], in contradiction to other results that could not detect any difference in 
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PMP-binding of farnesylated or unmodified PEX19 [128, 178]. Thus, the importance and 

exact function of farnesylated PEX19 is still a matter of ongoing debate.  

Furthermore, the hydrophobic groove of PEX3 represents an interaction site for the 

PMP, which probably helps to insert the PMP into the lipid bilayer. It is tempting to 

speculate that hydrophobic patches in the PMP are made accessible after docking the 

PEX19-PMP complex to the peroxisomal membrane. This scenario might involve a 

structural rearrangement within the PMP to be able to interact with PEX3. The indirect, 

PEX19-dependent complex formation of PEX3 and the PMP might explain the finding of 

only ternary complexes including PEX3, PEX19 and a PMP [76, 179]. However, it is not 

clear if PEX3, PEX19 and/or a yet unidentified factor promotes the insertion process. As 

the insertion process itself proceeds in the absence of ATP [180], the energy needed for 

crossing the membrane barrier could be (over-) compensated by the favorable 

interactions between the TM domains of the PMP with the lipid phase of the 

peroxisomal membrane. 

 

 

Figure 4.4: Model for PMP import into the peroxisomal membrane. Surface representation of PEX3 
(light gray) with the hydrophobic groove highlighted in blue. The known structures of the PEX19 
N- and C-terminal domains are depicted as cartoon (orange) with the flexible part shown as a 
solid line. The PEX19 C-terminal helical bundle refers to PDB entry 2WL8 [66]. PEX3 is anchored 
in the peroxisomal membrane with its N-terminus (green), which binds to PEX16 (red). The N-
terminal PEX19 helix directs cargo-loaded PEX19 to peroxisomes by interacting with PEX3. After 
PMP insertion, PEX19 is recycled back to the cytosol to start another round of PMP import. 
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The high affinity interaction between PEX3 and PEX19 must be disrupted to start 

another round of PMP import. It has been shown that the affinity of PEX3 for cargo-free 

PEX19 is reduced compared to cargo-loaded PEX19 [179]. Thus, a PEX19-PMP complex 

would be able to displace unliganded PEX19 from PEX3. Another scenario might involve 

a cooperative process between PMP-insertion and PEX19 recycling. Here, a 

conformational change within PEX19 would break the PEX3-PEX19 interaction after 

cargo release into the peroxisomal membrane resulting in free cytosolic PEX19 prepared 

for another round of PMP import. 
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5 OUTLOOK 

The combination of in vitro and in vivo experiments performed in this thesis has led to 

the structure-function analysis of the PEX3-PEX19 interaction. The crystal structure 

provided first insights into the basis of the PEX3-PEX19 complex formation and allowed 

to assess the impact of specific PEX3 mutations on PEX19-binding and in peroxisome 

biogenesis. In the end, a more precise model of PMP insertion into the peroxisomal 

membrane could be presented. However, many details about peroxisome membrane 

biogenesis remain to be clarified. 

The first controversial issue is the role of the farnesyl moiety at the very C-terminus of 

PEX19. As recombinantly expressed PEX19 can be easily farnesylated in vitro, affinity 

measurements of modified PEX19 and PEX3 will determine a putative influence of the 

prenyl moiety on PEX3-binding. Furthermore, ITC experiments of PEX3 and PEX19 in 

the presence of a PMP might shed light on a replacement of unliganded PEX19 with 

cargo-loaded PEX19 on the binding site of PEX3. As full-length PMPs are hard to express 

in a soluble form and in an adequate amount, it might be sufficient to perform the 

experiments in the presence of a peptide, which is derived from a known mPTS of a 

PMP. However, a peptide might not be enough to detect a possible influence of PMP-

binding on the PEX3-PEX19 interaction. Therefore, the PMP could be coexpressed in the 

presence of PEX19, which would help to keep the PMP in a soluble form and to prevent 

aggregation. If the PEX19-PMP complex can be expressed in sufficient amounts, it would 

be feasible to subject the protein complex to crystallization attempts. 

Further experiments have to be carried out in order to confirm the role of the 

hydrophobic groove during PMP insertion. So far, the only PMP used to determine 

complementation abilities is PEX14. Other PMPs (PMP70, PEX13) could be tested to 

show if the reduced complementation ability of the PEX3 L165N mutant, which carries 

the mutation in the hydrophobic groove, is not restricted to PEX14. This might indicate a 

general function of the hydrophobic groove during PMP insertion into the peroxisomal 

membrane. Furthermore, a dominant negative effect of the PEX3 L165N mutant might 

be detected in normal fibroblast cells. Therefore, the PEX3 mutant and a PMP are 

coexpressed in normal cells and the ability to import newly synthesized PMP in cells 

expressing the PEX3 mutant is determined. This would help to elucidate a direct 

participation of the hydrophobic groove in the PMP insertion process. 
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It is also unclear how the PMP is inserted into the lipid phase of the peroxisomal 

membrane. Therefore, full-length PEX3 would be required to test for a putative import 

complex formation. Full-length PEX3 can be recombinantly expressed in E. coli. 

However, it is obtained as inclusion bodies that cannot be refolded [129]. Therefore, 

other expression systems, such as yeast or mammalian cells, which naturally contain 

peroxisomes, could be tested. Then, PEX3 could be extracted from the membranes in the 

presence of detergents. The same could be done for native PEX3, which could be isolated 

from peroxisomes, although the amount of protein might be too low as PEX3 is not 

overexpressed. Purified full-length PEX3 must then be subjected to analytical size 

exclusion chromatography to determine the oligomeric state in the presence of lipids or 

detergents. However, it is likely that additional factors are involved in PMP insertion 

into the lipid phase of the peroxisomal membrane, which have to be identified in further 

proteomic approaches. 
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6 SUMMARY 

Peroxisomes are eukaryotic cellular organelles involved in metabolic functions such as 

the -oxidation of very long chain fatty acids, the synthesis of plasmalogens and the 

degradation of H2O2. The so-called peroxins (PEX) are proteins that mediate 

peroxisomal biogenesis. 14 human peroxins are known to date, of which PEX3, PEX16 

and PEX19 belong to the early peroxins responsible for the formation of the peroxisomal 

membrane. Cells lacking one of these three peroxins do not exhibit any detectable 

peroxisomal membrane structures. All three variants (PEX3-, PEX16- or PEX19-

cells) can be complemented upon introduction of the missing gene and are then able to 

generate peroxisomes de novo. 

PEX3 and PEX19 are engaged in the import of peroxisomal membrane proteins (PMPs). 

PEX19 serves as a cytosolic receptor for newly synthesized PMPs by binding to the 

membrane peroxisomal targeting sequence. In addition, PEX19 functions as a chaperone 

as it keeps PMPs in an import-competent form by shielding their hydrophobic regions 

from the aqueous environment. Cargo-loaded PEX19 is directed to the peroxisomal 

membrane, where its N-terminus interacts with the cytosolic domain of PEX3. PEX3 is 

anchored within the membrane via its N-terminus, which also serves as the peroxisomal 

targeting signal as well as the PEX16-binding site. In this work, the crystal structure of 

PEX3 in complex with a PEX19-derived peptide fragment was determined. Furthermore, 

the influence of specific mutations within surface exposed regions of PEX3 on PEX19-

binding and during peroxisomal biogenesis was elucidated in detail using in vitro and in 

vivo experiments. 

The crystal structure of the cytosolic part of PEX3 (sPEX3: aar 41-373, C235S) in 

complex with a PEX19-derived peptide (PEX19Pep: aar 14-33) provides first insights into 

the details of the PEX3-PEX19 complex formation at the peroxisome membrane. sPEX3 

exhibits an all -helical folding that lacks homology to previously known structures. Ten 

-helices and one 310-helix build a compact bundle with the N-terminal helix projecting 

towards the peroxisomal membrane in vivo. PEX19Pep forms an amphipathic -helix, 

which is engaged by sPEX3 with high affinity (Kd = 330 nM) calculated with isothermal 

titration calorimety. The PEX19-binding groove lies at the membrane-distal end and is 

composed of three distinct regions within sPEX3. The PEX3-PEX19 interaction is mainly 

mediated by hydrophobic interactions including several strictly conserved residues in 

both proteins. A thermal denaturation assay demonstrated that sPEX3 is stabilized upon 
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PEX19Pep-binding, shifting the melting point of sPEX3 about 10 °C towards higher 

temperatures. 

Three conserved regions were identified on the surface of sPEX3. In addition to the 

PEX19-binding groove, a hydrophobic groove on the base of sPEX3 and a cluster of 

acidic residues on the opposite side could be defined. Several amino acids within these 

conserved regions were mutated and analyzed in order to examine their function in 

PEX19-binding and in peroxisome biogenesis. Two mutations in the PEX19-binding 

groove (L93N, K324A) lower the affinity for PEX19 but localize correctly to peroxisomes 

in vivo. The ability to complement PEX3-cells is reduced for the mutant PEX3-myc 

K324A compared to native PEX3-myc, whereas PEX3-myc L93N has completely lost this 

characteristic feature. Furthermore, a functional PEX3-PEX19 complex is essential for de 

novo formation of preperoxisomal membranes. The mutation E266A, which is located in 

the acidic cluster, does not interfere with PEX19-binding. In addition, both mutations in 

the acidic cluster are properly targeted to peroxisomes and show either no (E266A) or 

only a small (D275A) effect on the complementation ability of PEX3-cells. The 

mutations in the hydrophobic groove (I140N, L165N and the double mutant 

I140N*L165N) do not influence PEX19-binding or the exact peroxisomal localization of 

PEX3-myc. However, the ability to complement PEX3-cells is reduced for PEX3-myc 

L165N and the double mutant compared to native PEX3-myc. As the mutation at 

position 165 is impaired neither in the formation of preperoxisomes in de novo 

biogenesis nor in the affinity to PEX19, the hydrophobic groove could conceivably 

mediate the insertion of PMPs into the lipid bilayer. This implies a direct participation of 

PEX3 during PMP insertion. The findings implicate a dual function of the PEX3-PEX19 

complex in peroxisome biogenesis. Further experiments are required to clarify the exact 

function of PEX3 and the detailed mechanism of PMP insertion. 
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7 ZUSAMMENFASSUNG 

Peroxisomen sind eukaryotische Zellorganellen, die wichtige metabolische Funktionen 

bei der -Oxidation langkettiger Fettsäuren, bei der Synthese von Plasmologenen sowie 

beim Abbau von H2O2 ausüben. Die an der peroxisomalen Biogenese beteiligten Proteine 

werden Peroxine (PEX) genannt. Von den 14 bisher bekannten humanen Peroxinen, 

zählen PEX3, PEX16 und PEX19 zu den frühen Peroxinen, die bei der Entstehung der 

peroxisomalen Membran benötigt werden. Zellen, denen eines dieser drei Peroxine 

fehlt, weisen keine detektierbaren peroxisomalen Membranstrukturen auf. Diese PEX3-, 

PEX16- oder PEX19-defizienten Zellen (PEX3-, PEX16- oder PEX19-Zellen) können 

durch Transfektion des entsprechenden Gens wieder komplementiert werden und sind 

danach in der Lage, de novo Peroxisomen zu bilden. 

PEX3 und PEX19 sind am Import peroxisomaler Membranproteine (PMP) beteiligt. 

PEX19 dient hierbei als cytosolischer Rezeptor für neu synthetisierte PMPs, indem es die 

peroxisomale Membranzielsequenz bindet. Zusätzlich wird PEX19 die Rolle eines 

Chaperons zugeordnet, da es hydrophobe Bereiche des Membranproteins bindet und sie 

auf diese Weise in einer Import-kompetenten Form konserviert. Beladenes PEX19 wird 

an die peroxisomale Membran dirigiert, indem der N-Terminus von PEX19 mit der 

cytosolischen Domäne von PEX3 interagiert. PEX3 ist in der peroxisomalen Membran 

mittels seines N-Terminus verankert, der zugleich die peroxisomale Zielsequenz als 

auch die Bindungsstelle für PEX16 darstellt. In dieser Arbeit wurde die Struktur von 

PEX3 in Verbindung mit einem PEX19-Peptid mittels Röntgenstreuung gelöst. Des 

Weiteren wurde der Einfluss spezifischer Mutationen in konservierten Oberflächen-

bereichen von PEX3 auf die Binding mit PEX19 in vitro sowie auf eine mögliche 

Beteiligung während der peroxisomalen Biogenese in vivo untersucht. 

Die hier beschriebene Kristallstruktur des zytosolischen Teils von PEX3 (sPEX3: aar 41-

373, C235S) im Komplex mit einem PEX19-Peptid (PEX19Pep: aar 14-33) ermöglicht 

einen ersten präzisen Einblick in die PEX3-PEX19-Bindung an der peroxisomalen 

Membran. sPEX3 weist eine rein -helikale Faltung auf, die keinerlei Homologien zu 

bisher bekannten Strukturen besitzt. Zehn -Helices und eine 310-Helix lagern sich zu 

einem kompakten Bündel zusammen, aus dem eine lange N-terminale Helix herausragt. 

Ihre Verlängerung würde in vivo die Verbindung zur peroxisomalen Membran 

herstellen. PEX19Pep bildet eine amphipatische Helix, die von sPEX3 mit hoher Affinität 

gebunden wird (Kd = 330 nM). Dies konnte mit Hilfe von kalorimetrischen Messungen 
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ermittelt werden. Die PEX19-Bindetasche liegt auf der Membran-abgewandten Seite und 

wird von drei verschiedenen Bereichen innerhalb von PEX3 gebildet. PEX19Pep 

interagiert fast ausschließlich über hydrophobe Wechselwirkungen mit sPEX3. Mittels 

eines thermischen Denaturierungsexperiments konnte gezeigt werden, dass PEX3 durch 

die Bindung von PEX19 stabilisiert wird, da der Schmelzpunkt des sPEX3+PEX19Pep-

Komplexes um 10 °C gegenüber freiem sPEX3 erhöht ist. 

sPEX3 weist mehrere hoch konservierte Bereiche auf, von denen drei auf der Oberfläche 

liegende Regionen darstellen: neben der konservierten PEX19-Bindetasche konnte eine 

konservierte hydrophobe Furche und ein konservierter Bereich mit einer Gruppe saurer 

Aminosäurereste identifiziert werden. Durch Mutation ausgewählter Aminosäuren 

innerhalb dieser Regionen wurde deren Beteiligung in Bezug auf die Bindung zu PEX19 

sowie ihre Rolle während der peroxisomalen Biogenese analysiert. Zwei Mutationen in 

der PEX19-Bindetasche (L93N, K324A) sind in ihrer Affinität zu PEX19 beeinträchtigt. 

Dennoch werden beide PEX3-Mutanten in vivo zu Peroxisomen gebracht. Im Vergleich 

zu nativem PEX3-myc ist die Fähigkeit von PEX3-myc K324A PEX3T-Zellen zu 

komplementieren, reduziert, während PEX3-myc L93N diese Eigenschaft sogar komplett 

verloren hat. Des Weiteren konnte gezeigt werden, dass ein funktionsfähiger PEX3-

PEX19-Komplex essentiell für die de novo Entstehung präperoxisomaler Membranen ist. 

Von den Mutationen im sauren Cluster (E266A, D275A) beeinträchtigt die Mutation 

E266A nicht die Affinität zu PEX19. Zusätzlich werden beide PEX3-myc Mutanten in 

Peroxisomen lokalisiert und zeigen keine (E266A) oder nur eine geringe (D275A) 

Auswirkung auf die Komplementationsfähigkeit von PEX3T-Zellen. Die Mutationen in 

der hydrophoben Tasche (I140N, L165N und die Doppelmutante I140N*L165N) wirken 

sich weder auf eine mögliche zusätzliche PEX19-Bindung noch auf die korrekte 

peroxisomale Lokalisation von PEX3 aus. Allerdings weisen PEX3-myc L165N und die 

Doppelmutante eine verringerte Komplementationsfähigkeit von PEX3T-Zellen auf. Da 

die Mutation an Position 165 keinen Einfluss auf die Bildung von Präperoxisomen 

während der de novo Biogenese hat und ebenso wenig die Affinität zu PEX19 beeinflusst, 

könnte die hydrophobe Furche die Insertion von PMPs in die peroxisomale Membran 

vermitteln. Da dies der erste Hinweis auf eine direkte Beteiligung von PEX3 während 

der Membraninsertion von PMPs ist, bedarf es weiterführender Experimente, um diese 

Ergebnisse zu untermauern und die genaue Aufgabe von PEX3 sowie den Mechanismus 

des PMP Imports zu klären. 
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9 APPENDIX 

9.1 Plasmids 

 

Figure 9.1: Plasmid pNT65. PEX326-373 (C235S) in pET32a with a preceding TEV protease cleavage site. 
The protein nPEX3 is expressed as an N-terminal His6-tagged thioredoxin fusion protein.  

 

 

Figure 9.2: Plasmid pFS122. PEX341-373 (C235S) in pET32a with a preceding TEV protease cleavage site. 
The protein sPEX3 is expressed as an N-terminal His6-tagged thioredoxin fusion protein. 
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Figure 9.3: Plasmid pNT45. PEX19 in pCOLDI with a preceding TEV protease cleavage site. The full-
length protein is expressed with a N-terminal His6-tag. 

9.2 DNA and protein sequences of PEX3 and PEX19 

9.2.1 sPEX3 

The DNA sequence and the amino acid sequence of the expressed fusion protein 

thioredoxin-His6-TEV-sPEX3 are shown here. The TEV protease cleavage site is 

highlighted in blue. TEV protease cleaves between Gln and Gly (underlined), leaving the 

glycine residue at the target protein sPEX3. The sPEX3 amino acid sequence is 

highlighted in green and begins at the glutamine that follows the cleavage sequence and 

corresponds to position 41 in full-length PEX3. The cysteine to serine mutation at 

position 235 is underlined and highlighted in bold. 

     atg agc gat aaa att att cac ctg act gac gac agt ttt gac acg  

1    Met Ser Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr  

     gat gta ctc aaa gcg gac ggg gcg atc ctc gtc gat ttc tgg gca  

16   Asp Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala  

     gag tgg tgc ggt ccg tgc aaa atg atc gcc ccg att ctg gat gaa  

31   Glu Trp Cys Gly Pro Cys Lys Met Ile Ala Pro Ile Leu Asp Glu  

     atc gct gac gaa tat cag ggc aaa ctg acc gtt gca aaa ctg aac  

46   Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys Leu Asn  

     atc gat caa aac cct ggc act gcg ccg aaa tat ggc atc cgt ggt  

61   Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg Gly  

     atc ccg act ctg ctg ctg ttc aaa aac ggt gaa gtg gcg gca acc  

76   Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr  

     aaa gtg ggt gca ctg tct aaa ggt cag ttg aaa gag ttc ctc gac  

91   Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp  
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     gct aac ctg gcc ggt tct ggt tct ggc cat atg cac cat cat cat  

106  Ala Asn Leu Ala Gly Ser Gly Ser Gly His Met His His His His  

     cat cat tct tct ggt ctg gtg cca cgc ggt tct ggt atg aaa gaa  

121  His His Ser Ser Gly Leu Val Pro Arg Gly Ser Gly Met Lys Glu  

     acc gct gct gct aaa ttc gaa cgc cag cac atg gac agc cca gat  

136  Thr Ala Ala Ala Lys Phe Glu Arg Gln His Met Asp Ser Pro Asp  

     ctg ggt acc gac gac gac gac aag gcc atg gaa aac ctg tat ttt  

151  Leu Gly Thr Asp Asp Asp Asp Lys Ala Met Glu Asn Leu Tyr Phe  

     cag gga cag gaa agg gag gct gca gaa tac att gcc caa gca cga  

166  Gln Gly Gln Glu Arg Glu Ala Ala Glu Tyr Ile Ala Gln Ala Arg  

     cga caa tat cat ttt gaa agt aac cag agg act tgc aat atg aca  

181  Arg Gln Tyr His Phe Glu Ser Asn Gln Arg Thr Cys Asn Met Thr  

     gtg ctg tcc atg ctt cca aca ctg aga gag gcc tta atg cag caa  

196  Val Leu Ser Met Leu Pro Thr Leu Arg Glu Ala Leu Met Gln Gln  

     ctg aat tcc gag agc ctc aca gct ctg cta aaa aac agg cct tca  

211  Leu Asn Ser Glu Ser Leu Thr Ala Leu Leu Lys Asn Arg Pro Ser  

     aac aag cta gaa ata tgg gag gat ctg aag ata ata agt ttc aca  

226  Asn Lys Leu Glu Ile Trp Glu Asp Leu Lys Ile Ile Ser Phe Thr  

     aga agt act gtg gct gta tac agt acc tgt atg ctg gtt gtt ctt  

241  Arg Ser Thr Val Ala Val Tyr Ser Thr Cys Met Leu Val Val Leu  

     ttg cgg gtc cag tta aac ata att ggt gga tat att tac ctg gat  

256  Leu Arg Val Gln Leu Asn Ile Ile Gly Gly Tyr Ile Tyr Leu Asp  

     aat gca gca gtt ggc aaa aat ggc act aca att ctt gct ccc cca  

271  Asn Ala Ala Val Gly Lys Asn Gly Thr Thr Ile Leu Ala Pro Pro  

     gat gtc caa cag cag tat tta tca agt att cag cac cta ctt gga  

286  Asp Val Gln Gln Gln Tyr Leu Ser Ser Ile Gln His Leu Leu Gly  

     gat ggc ctg aca gaa ttg atc act gtc att aaa caa gct gtg cag  

301  Asp Gly Leu Thr Glu Leu Ile Thr Val Ile Lys Gln Ala Val Gln  

     aag gtt tta gga agt gtt tct ctt aaa cat tct ttg tcc ctt ttg  

316  Lys Val Leu Gly Ser Val Ser Leu Lys His Ser Leu Ser Leu Leu  

     gac ttg gag caa aaa cta aaa gaa atc aga aat ctc gtt gag cag  

331  Asp Leu Glu Gln Lys Leu Lys Glu Ile Arg Asn Leu Val Glu Gln  

     cat aag tct tct tct tgg att aat aaa gat gga tcc aaa cct tta  

346  His Lys Ser Ser Ser Trp Ile Asn Lys Asp Gly Ser Lys Pro Leu  

     tta tcc cat tat atg atg cca gat gaa gaa act cca tta gca gtg  

361  Leu Ser His Tyr Met Met Pro Asp Glu Glu Thr Pro Leu Ala Val  

     cag gcc tgt gga ctt tct cct cga gac att acc act att aaa ctt  

376  Gln Ala Cys Gly Leu Ser Pro Arg Asp Ile Thr Thr Ile Lys Leu  

     ctc aat gaa act aga gac atg ttg gaa agc cca gat ttt agt aca  

391  Leu Asn Glu Thr Arg Asp Met Leu Glu Ser Pro Asp Phe Ser Thr  

     gtt ttg aat acc tgt tta aac cga ggt ttt agt aga ctt cta gac  

406  Val Leu Asn Thr Cys Leu Asn Arg Gly Phe Ser Arg Leu Leu Asp  

     aat atg gct gag ttc ttt cga cct act gaa cag gac ctg caa cat  

421  Asn Met Ala Glu Phe Phe Arg Pro Thr Glu Gln Asp Leu Gln His  
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     ggt aac tct atg aat agt ctt tcc agt gtc agc ctg cct tta gct  

436  Gly Asn Ser Met Asn Ser Leu Ser Ser Val Ser Leu Pro Leu Ala  

     aag ata att cca ata gta aac gga cag atc cat tca gtt tgc agt  

451  Lys Ile Ile Pro Ile Val Asn Gly Gln Ile His Ser Val Cys Ser  

     gaa aca cct agt cat ttt gtt cag gat ctg ttg aca atg gag caa  

466  Glu Thr Pro Ser His Phe Val Gln Asp Leu Leu Thr Met Glu Gln  

     gtg aaa gac ttt gct gct aat gtg tat gaa gct ttt agt acc cct  

481  Val Lys Asp Phe Ala Ala Asn Val Tyr Glu Ala Phe Ser Thr Pro  

     cag caa ctg gag aaa tga  

496  Gln Gln Leu Glu Lys * 

9.2.2 PEX19 

The DNA sequence and the amino acid sequence of the expressed fusion protein His6-

TEV-PEX19 are shown here. The TEV protease cleavage site is highlighted in blue. TEV 

protease cleaves between Gln and Gly (underlined), leaving the glycine residue at the 

target protein PEX19. The PEX19 amino acid sequence is highlighted in orange. The 

peptide sequence spanning Ala14 to Lys33 is underlined. 

     atg aat cac aaa gtg cat cat cat cat cat cat atc gaa ggt agg  

1    Met Asn His Lys Val His His His His His His Ile Glu Gly Arg  

     cat atg GAA AAC CTG TAT TTT CAG GGA atg gcc gcc gct gag gaa  

16   His Met Glu Asn Leu Tyr Phe Gln Gly Met Ala Ala Ala Glu Glu  

     ggc tgt agt gtc ggg gcc gaa gcg gac agg gaa ttg gag gag ctt  

31   Gly Cys Ser Val Gly Ala Glu Ala Asp Arg Glu Leu Glu Glu Leu  

     ctg gaa agt gct ctt gat gat ttc gat aaa gcc aaa ccc tcc cca  

46   Leu Glu Ser Ala Leu Asp Asp Phe Asp Lys Ala Lys Pro Ser Pro  

     gca ccc cct tct acc acc acg gcc cct gat gct tcg ggg ccc cag  

61   Ala Pro Pro Ser Thr Thr Thr Ala Pro Asp Ala Ser Gly Pro Gln  

     aag aga tcg cca gga gac act gcc aaa gat gcc ctc ttc gct tcc  

76   Lys Arg Ser Pro Gly Asp Thr Ala Lys Asp Ala Leu Phe Ala Ser  

     caa gag aag ttt ttc cag gaa cta ttc gac agt gaa ctg gct tcc  

91   Gln Glu Lys Phe Phe Gln Glu Leu Phe Asp Ser Glu Leu Ala Ser  

     caa gcc act gcg gag ttc gag aag gca atg aag gag ttg gct gag  

106  Gln Ala Thr Ala Glu Phe Glu Lys Ala Met Lys Glu Leu Ala Glu  

     gaa gaa ccc cac ctg gtg gag cag ttc caa aag ctc tca gag gct  

121  Glu Glu Pro His Leu Val Glu Gln Phe Gln Lys Leu Ser Glu Ala  

     gca ggg aga gtg ggc agt gat atg acc tcc caa caa gaa ttc act  

136  Ala Gly Arg Val Gly Ser Asp Met Thr Ser Gln Gln Glu Phe Thr  

     tct tgc cta aag gaa aca cta agt gga tta gcc aaa aat gcc act  

151  Ser Cys Leu Lys Glu Thr Leu Ser Gly Leu Ala Lys Asn Ala Thr  

     gac ctt cag aac tcc agc atg tcg gaa gaa gag ctg acc aag gcc  

166  Asp Leu Gln Asn Ser Ser Met Ser Glu Glu Glu Leu Thr Lys Ala  
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     atg gag ggg cta ggc atg gac gaa ggg gat ggg gaa ggg aac atc  

181  Met Glu Gly Leu Gly Met Asp Glu Gly Asp Gly Glu Gly Asn Ile  

     ctc ccc atc atg cag agt att atg cag aac cta ctc tcc aag gat  

196  Leu Pro Ile Met Gln Ser Ile Met Gln Asn Leu Leu Ser Lys Asp  

     gtg ctg tac cca tca ctg aag gag atc aca gaa aag tat cca gaa  

211  Val Leu Tyr Pro Ser Leu Lys Glu Ile Thr Glu Lys Tyr Pro Glu  

     tgg ttg cag agt cat cgg gaa tct cta cct cca gag cag ttt gaa  

226  Trp Leu Gln Ser His Arg Glu Ser Leu Pro Pro Glu Gln Phe Glu  

     aaa tat cag gag cag cac agc gtc atg tgc aaa ata tgt gag cag  

241  Lys Tyr Gln Glu Gln His Ser Val Met Cys Lys Ile Cys Glu Gln  

     ttt gag gca gag acc ccc aca gac agt gaa acc act caa aag gct  

256  Phe Glu Ala Glu Thr Pro Thr Asp Ser Glu Thr Thr Gln Lys Ala  

     cgt ttt gag atg gtg ctg gat ctt atg cag cag cta caa gat tta  

271  Arg Phe Glu Met Val Leu Asp Leu Met Gln Gln Leu Gln Asp Leu  

     ggc cat cct cca aaa gag ctg gct gga gag atg cct cct ggc ctc  

286  Gly His Pro Pro Lys Glu Leu Ala Gly Glu Met Pro Pro Gly Leu  

     aac ttt gac ctg gat gcc ctc aat ctt tcg ggc cca cca ggt gcc  

301  Asn Phe Asp Leu Asp Ala Leu Asn Leu Ser Gly Pro Pro Gly Ala  

     agt ggt gaa cag tgt ctg atc atg tga  

316  Ser Gly Glu Gln Cys Leu Ile Met *  

 

9.3 Calibration of SEC columns 

 

Figure 9.4: Calibration of SuperdexTM 200 10/300 column. 
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Figure 9.5: Calibration of SuperdexTM 200 PC 3.2/30 column. 

 

9.4 ITC experiments 

Table 13: Thermodynamic parameters of the PEX3-PEX19 interaction. 

PEX3 PEX19 Kd 

(nM) 

HBinding 

(kcal/mol) 

Molar ratio 

nPEX3a Full-length 9.3 -6.7 0.86 

sPEX3b Full-length 14.9 -9.3 0.89 

sPEX3 PEX19Pep c 330 -4.9 1.06 

sPEX3 PEX19Pep F29A n.b.d n.b. n.b. 

sPEX3 PEX19Pep A25L 410 -1.9 1.10 

sPEX3 PEX19Pep A25Y n.b. n.b. n.b. 

sPEX3 PEX19 124-136 n.b. n.b. n.b. 

sPEX3 L93N Full-length 3750 -10.4 0.90 

sPEX3 K324A Full-length 270 -8.0 1.03 

sPEX3 E266A Full-length 17.9 -9.4 0.94 

sPEX3 I140N Full-length 18.3 -7.8 1.25 

sPEX3 L165N Full-length 20.9 -5.6 0.87 

a PEX326-373 (C235S), b PEX341-373 (C235S), c PEX1914-33, d no binding 
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9.5 Initial crystallization screens 

Table 14: Screens tested for initial crystallization.  

Screens Temperature Concentration 

nPEX3 

Crystal Screen I, II 4 °C 3.0, 4.0 mg/mL 

Crystal Lite Screen 4 °C 4.0 mg/mL 

MembFac Screen 4 °C 4.0, 6.0 mg/mL 

Wizard Screen I, II, III 4 °C 4.0 mg/mL 

pHClear Screen I,II 4 °C, 20 °C 3.2 mg/mL 

Cation Suite 4 °C, 20 °C 3.2 mg/mL 

Anion Suite 4 °C, 20 °C 3.2 mg/mL 

JCSG Screen 20 °C 3.2 mg/mL 

nPEX3+PEX19 

Crystal Screen I, II 4 °C, 20 °C 5.0 mg/mL 

Crystal Lite Screen 20 °C 5.0 mg/mL 

Wizard Screen I, II, III 4 °C, 20 °C 5.0 mg/mL 

MembFac Screen 20 °C 5.0 mg/mL 

sPEX3 

Crystal Screen I, II 4 °C, 20 °C 2.6 mg/mL 

Wizard Screen I, II 4 °C, 20 °C 2.6 mg/mL 

pHClear Screen I, II 4 °C, 20 °C 2.6 mg/mL 

JCSG Screen 20 °C 2.6 mg/mL 

sPEX3+PEX19Pep 

Crystal Screen I, II 20 °C 2.8 mg/mL 

Wizard Screen I, II 20 °C 2.8 mg/mL 

pHClear Screen I, II 20 °C 2.8 mg/mL 

JCSG Screen 20 °C 2.8 mg/mL 
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9.6 Crystallization conditions 

Table 15: Initial and refined crystallization conditions for nPEX3 and sPEX3+PEX19Pep. 

Screen Condition 

nPEX3 (3.1 mg/mL) 

pHClearI_27 0.1 M MES, pH 6.0, 5 % (w/v) PEG 6000; 4 and 20 °C 
Refined: 0.1 M MES, pH 5.6-6.5, 2-12 % (w/v) PEG 6000; 4 and 20 °C 

pHClearI_34 0.1 M HEPES, pH 7.0, 10 % (w/v) PEG 6000; 4 and 20 °C 
Refined: 0.1 M HEPES, pH 6.5-8.0, 5-15 % (w/v) PEG 6000; 4 and 
20 °C 

pHClearII_27 0.1 M MES, pH 6.0, 5 % (v/v) isopropanol; 4 and 20 °C 
Refined: 0.1 M MES, pH 5.6-6.5, 2-7 % (v/v) isopropanol, 4 and 20 °C 

Cation_28 0.1 M NaAc, pH 4.6, 1.25 M LiAc; 4 °C  

Anion_19 0.1 M Tris, pH 8.5, 2.5 M NaAc; 4 °C  

Anion_25 0.1 M NaAc, pH 4.6, 3.5 M NaFormate; 4 °C  

sPEX3+PEX19Pep (2.5 mg/mL) 

JCSG_9 0.1 M NH4Cl, 20 % (w/v) PEG 3350; 20 °C 
Refined: 0.1-0.25 M NH4Cl; 17-20 % (w/v) PEG 3350 

JCSG_20 0.1 M Tris, pH 7.0, 10 % (w/v) PEG 8000, 0.1 M MgCl2; 20 °C 
Refined: 0.1 M Tris, pH 6.7-7.6; 7-12 % (w/v) PEG 8000, 0.1 M MgCl2; 

4 and 20 °C 

JCSG_90 0.1 M Bis-Tris, pH 5.5, 17 % (w/v) PEG 10000, 0.1 M NH4Ac; 20 °C 
Refined: 0.1 M Bis-Tris, pH 5.3-6.2, 14-19 % (w/v) PEG 10000,   
0.1 M NH4Ac; 4 and 20 °C 

JCSG_92 0.1 M Bis-Tris, pH 5.5, 25 % (w/v) PEG 3350, 0.2 M NaCl; 20 °C 
Refined: 0.1 M Bis-Tris, pH 5.3-6.2, 22-27 % (w/v) PEG 3350,     
0.1 M NaCl, 4 and 20 °C 

JCSG_94 0.1 M Bis-Tris, pH 5.5, 25 % (w/v) PEG 3350, 0.2 M NH4Ac; 20 °C 
Refined: 0.1 M Bis-Tris, pH 5.3-6.2, 22-27 % (w/v) PEG 3350,     
0.2 M NH4Ac, 4 and 20 °C 
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9.7 Transfection and complementation rates 

Table 16: Transfection and complementation rates for different PEX3-myc mutants. 

PEX3 Transfectiona 

(%) 

Complementationb 

(%) 

Preperoxisomesc 

(%) 

PEX3-myc 12.4 ± 1.7 4.7 ± 0.9 24.8 ± 3.7 

PEX3-myc L93N 2.7 ± 1.0 0 8.2 ± 0.7 

PEX3-myc K324A 6.4 ± 2.5 2.0 ± 1.1 9.8 ± 2.4 

PEX3-myc E266A 12.6 ± 2.9 4.6 ± 0.7 17.5 ± 1.2 

 PEX3-myc D275A 9.3 ± 3.1 2.4 ± 1.0 n.d.d 

PEX3-myc I140N 10.4 ± 3.7 3.9 ± 0.8 n.d. 

PEX3-myc L165N 3.5 ± 0.8 0.77 ± 0.06 19.2 ± 2.4 

PEX3-myc I140N*L165N 13.7 ± 4.4 0.93 ± 0.06 n.d. 

a normal fibroblasts with myc-positive staining after 2 days, b PEX3T fibroblasts with 
PEX14-positive staining after 7 days, c PEX3T cells cotransfected with PEX16-YFP, YFP-
positive punctate staining after 24 hours, d not determined. Values correspond to the 
mean of three independent experiments ± standard deviations. 
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