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Abstract
We study pointwise convergence of the fractional Schrödinger means along
sequences tn that converge to zero. Our main result is that bounds on the maximal
function supn |eitn(–�)α/2 f | can be deduced from those on sup0<t≤1 |eit(–�)α/2 f |, when
{tn} is contained in the Lorentz space �r,∞. Consequently, our results provide
seemingly optimal results in higher dimensions, which extend the recent work of
Dimou and Seeger, and Li, Wang, and Yan to higher dimensions. Our approach based
on a localization argument also works for other dispersive equations and provides
alternative proofs of previous results on sequential convergence.
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1 Introduction
Let α > 0. We consider the fractional Schrödinger operator

eit(–�)α/2
f (x) = (2π )–d

∫
Rd

ei(x·ξ+t|ξ |α )̂f (ξ ) dξ . (1.1)

A classical problem posed by Carleson [5] is to determine the optimal regularity s for
which

lim
t→0

eit(–�)α/2
f = f a.e. ∀f ∈ Hs, (1.2)

where Hs denotes the inhomogeneous Sobolev spaces of order s with its norm ‖f ‖Hs(Rd) =
‖(1 + | · |2)s/2̂f ‖L2(Rd). The case when α = 2 has been extensively studied previously. When
d = 1, it was shown by the work of Carleson [5] and Dahlberg and Kenig[10] that (1.2)
holds true if and only if s ≥ 1/4. In higher dimensions, the problem turned out to be more
difficult. Progress was made by the contributions of numerous authors. Sjölin [32] and
Vega [39] independently obtained (1.2) for s > 1/2. In particular, further improvement on
the required regularity was made by Moyua, Vargas, and Vega [26] and Tao and Vargas
[38] when d = 2, and convergence for s > (2d – 1)/4d was shown by Lee [19] for d = 2
and Bourgain [3] in higher dimensions. Bourgain [4] showed that (1.2) holds only if s ≥
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d/2(d + 1). The lower bound was shown to be sufficient for (1.2) by Du, Guth, and Li [12]
for d = 2, and Du and Zhang [14] for d ≥ 3 except for the endpoint case s = d/2(d + 1)
(also, see [23] for earlier results and references therein).

In general, (1.2) continues to be true for α > 1 if s > d/2(d + 1) (see, e.g., [7, 32], also see
[25]). If α = 1, it is easy to show that (1.2) holds if and only if s > 1/2 in all dimensions
([9, 41]). When 0 < α < 1, it is known that (1.2) holds if s > α/4 and the convergence fails
if s < α/4 in R

1. However, only partial results are known in higher dimensions, i.e., (1.2)
holds true for s > α/2 and fails for s < α/4 when d ≥ 2 (see [40, 41]).

1.1 Convergence along sequences
Recently, pointwise convergence along sequences was considered by several authors [11,
34–37]. More precisely, the problem under consideration is to determine the regularity
exponent s such that, for a given sequence {tn} satisfying limn→∞ tn = 0,

lim
n→∞ eitn(–�)α/2

f (x) = f (x) a.e. x,∀f ∈ Hs. (1.3)

Naturally, one may expect that the more rapidly the sequence {tn} converges to zero, the
less regularity is required to guarantee almost-everywhere convergence. To quantify how
fast the sequence converges to zero, the sequences in �r(N) and �r,∞(N) were considered,
where �r,∞(N) denotes the Lorentz space

�r,∞(N) :=
{

tn : sup
δ>0

δr#
{

n ∈N : |tn| ≥ δ
}

< ∞
}

for r < ∞. Note that {n–b} ∈ �r,∞(N) if and only if b ≥ 1/r. In particular, Dimou and
Seeger [11] studied the almost-everywhere convergence problem in R

1 using �r,∞(N).
They proved that (1.3) holds for all f ∈ Hs if and only if s ≥ min{ rα

4r+2 , 1
4 } (when α > 1),

s ≥ rα
4r+2 (when 0 < α < 1), and s ≥ r

2(r+1) (when α = 1) for a strictly decreasing convex se-
quence {tn} ∈ �r,∞(N). There are also results in higher dimensions by Sjölin [34] and Sjölin
and Strömberg [35–37]. Recently, Li, Wang, and Yan [21], relying on the bilinear approach
in [19], obtained some partial results for the case d = α = 2 without assuming that {tn} de-
creases.

1.2 Maximal estimates
In the study of pointwise convergence the associated maximal functions play important
roles. By a standard argument (1.2) follows if we have

∥∥∥ sup
0<t≤1

∣∣eit(–�)α/2
f
∣∣∥∥∥

L2(B(0,1))
≤ C‖f ‖Hs , (1.4)

where B(x, r) = {y ∈R
d : |x – y| < r}. Likewise, (1.3) follows from the estimate

∥∥∥sup
tn

∣∣eitn(–�)α/2
f
∣∣∥∥∥

L2(B(0,1))
≤ C‖f ‖Hs , (1.5)

which is, in fact, essentially equivalent to (1.3) by Stein’s maximal principle. Our first result
shows that the maximal estimate (1.5) can be deduced from (1.4) when {tn} ∈ �r,∞(N).
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Theorem 1.1 Let d ≥ 1, α > 0, s∗ > 0 and 0 < r < ∞. Suppose (1.4) holds for s ≥ s∗. Then,
if {tn} ∈ �r,∞(N), (1.5) holds provided

s ≥ min

{
rα

r min{α, 1} + 2s∗
s∗, s∗

}
. (1.6)

Thanks to Theorem 1.1 we can improve the previous results and obtain seemingly op-
timal results for the convergence of sequential Schrödinger means in higher dimensions.
For {tn} ∈ �r,∞(N) and d = 1, the known estimates (1.4) ([5, 32, 40]) and Theorem 1.1 give
(1.5) for s ≥ min(rα/(4r +2), 1/4) when α > 1, and for s > rα/(4r +2) when 0 < α < 1. This re-
covers the result (sufficiency part except the endpoint case when 0 < α < 1) in [11] without
the assumption that {tn} decreases.

In higher dimensions d ≥ 2, by combining Theorem 1.1 and recent progress on the max-
imal bounds, i.e., (1.4) for α > 1 and s > d

2(d+1) [7, 12, 14], we have the estimate (1.5) for

s > min

{
α dr

2(d + 1)r + 2d
,

d
2(d + 1)

}
(1.7)

whenever {tn} ∈ �r,∞(N). As a consequence, we have the following result on pointwise
convergence.

Corollary 1.2 Let d ≥ 2, α > 1 and 0 < r < ∞. For any sequence {tn} ∈ �r,∞(N), (1.3) holds
for all f ∈ Hs(Rd) if (1.7) holds.

This improves the previous results in [21, 36]. We expect that the regularity exponent
given in (1.7) is sharp up to the endpoint case. However, we are not able to verify this for
the moment.

Remark 1.3 As mentioned before, when 0 < α < 1 and d ≥ 2, it is known that (1.2) holds if
s > α/2 ([41]). Thus, Theorem 1.1 yields (1.3) for s > rα

2(r+1) . The implication in Theorem 1.1
also works for more general operators (see Remark 2.3). In particular, one can also recover
the result of Li, Wang, and Yan [22] for the nonelliptic Schrödinger operator by combining
Theorem 1.1 with the results in [29].

Remark 1.4 For the wave operator, i.e., α = 1, (1.3) holds true if and only if s ≥ r
2(r+1) for

{tn} ∈ �r,∞(N). When d = 1, this was shown in [11]. In higher dimensions, one can show
this using Theorem 1.1 (also Corollary 3.2). The sharpness can be obtained by following
the argument in [11]. We remark that (1.3) is closely related to Lp boundedness of the
spherical maximal operator given by taking the supremum over more general sets (see
[1, 30, 31]).

1.3 Localization argument
The proof of Theorem 1.1 relies on a localization argument. We briefly explain our ap-
proach. From Littlewood–Paley decomposition, the proof of (1.3) can be reduced to show-
ing

∥∥∥sup
tn

∣∣eitn(–�)α/2
f
∣∣∥∥∥

L2(B(0,1))
≤ CRs‖f ‖L2(Rd), (1.8)
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where f̂ is supported in AR := {ξ : R ≤ |ξ | ≤ 2R} (see Sect. 3). In the previous work [11,
34–36] the estimate (1.8) was obtained by relying on the kernel estimates. In contrast, we
deduce (1.8) directly from (1.4). Clearly, (1.4) gives

∥∥∥ sup
0<t≤1

∣∣eit(–�)α/2
f
∣∣∥∥∥

L2(B(0,1))
≤ CRs‖f ‖L2(Rd) (1.9)

for R ≥ 1 whenever f̂ is supported in AR. Using the estimate and a localization argument,
we first obtain from (1.9) a temporally localized maximal estimate

∥∥∥sup
t∈I

∣∣eit(–�)α/2
f
∣∣∥∥∥

L2(B(0,1))
≤ C′(1 + Rα|I|)max{s, s

α }‖f ‖L2(Rd) (1.10)

for R ≥ 1 and any subinterval I ⊂ [0, 1] with |I| ≤ R1–α when f̂ is supported in AR. More-
over, the converse implication from (1.10) to (1.9) is also true as long as R–α < |I| ≤ R1–α

(see Lemma 2.2 for detail). Once we have (1.10), we can obtain (1.5) by following the ar-
gument in [11].

If the exponent s in the estimate (1.9) is sharp, then the same is true for the estimate
(1.10). For instance, when α = 2, (1.9) holds for s > d/2(d + 1), which is optimal up to the
endpoint case, and hence so does (1.10) for the same s. When α > 1 and |I| ≥ R1–α , one
can see the exponent s in (1.10) can not be smaller than that in (1.9) using the localization
lemma in [19] (cf. [8, 20, 28]).

To show the implication from (1.9) to (1.10), we adapt the idea of the temporal localiza-
tion lemma in [8, 19]. We establish a spatial localization lemma (Lemma 2.4), which plays
a crucial role in proving Theorem 1.1. More precisely, we show that the local-in-spatial
estimate (1.9) can be extended to the global-in-spatial estimate with the same regularity
exponent. After a suitable scaling, we obtain the temporal localized estimate (1.10) from
the global-in-spatial estimate.

1.4 Extension to fractal measure
Maximal estimates relative to general measures (instead of the Lebesgue measure)
have been used to obtain a more precise description on the pointwise behavior of the
Schrödinger mean eit(–�)α/2 f . For a given sequence {tn} converging to zero, we consider

Dα,d(f , {tn}
)

=
{

x ∈R
d : eitn(–�)α/2

f (x) �→ f (x) as tn → 0
}

and set

D
α,d(s, r) = sup

f ∈Hs ,{tn}∈�r,∞
dimH Dα,d(f , {tn}

)
,

where dimH denotes the Hausdorff dimension. One can compare Dα,d(s, r) with the di-
mension of the divergence set

D
α,d(s) = sup

f ∈Hs
dimH

{
x ∈ R

d : eitn(–�)α/2
f (x) �→ f (x) as t → 0

}
.

The bounds on Dα,d(s) can be obtained by the maximal estimate relative to general mea-
sures (see, for example, [2, 14, 17]), to which the fractal Strichartz estimates studied in
[6, 13, 18] are closely related (also see [15, 24, 42]).
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The implication in Theorem 1.1 also extends to the maximal estimates relative to general
fractal measures, so we can make use of the known estimates for the L2-fractal maximal
estimates and the fractal Strichartz estimates to obtain the upper bounds on Dα,d(s, r),
0 < r < ∞. We discuss this in detail in Sect. 3.2.

1.4.1 Organization of the paper
In Sect. 2, we deduce from (1.4) temporally localized maximal estimates in Lemma 2.2
(relative to the general measure) that are to be used to prove Theorem 1.1. We prove The-
orem 1.1 and discuss upper bounds on the dimension of divergence sets in Sect. 3.

1.4.2 Notations
Throughout this paper, a generic constant C > 0 depends only on dimension d, which may
change from line to line. If a constant depends on some other values (e.g., ε), we denote it
by Cε . The notation A � B denotes A ≤ CB for a constant C > 0, and we denote by A ∼ B
if A � B and B � A. We often denote L2(Rd) by L2, and similarly Hs(Rd) by Hs.

2 Temporally localized maximal estimates
In this section, we prove that the estimates (1.9) and (1.10) are equivalent. For later use, we
consider the equivalence in a more general setting, that is to say, in the form of estimates
relative to fractal measures (Lemma 2.2). To do this, we recall the following.

Definition 2.1 Let 0 < γ ≤ d and let μ be a nonnegative Borel measure. We say μ is γ -
dimensional if there is a constant Cμ such that

μ
(
B(x, r)

) ≤ Cμrγ , ∀(x, r) ∈R
d ×R+. (2.1)

By 〈μ〉γ we denote the infimum of such a constant Cμ.

We first deduce a temporally localized maximal estimate from the estimate

∥∥∥ sup
0<t≤1

∣∣eit(–�)α/2
f
∣∣∥∥∥

L2(B(0,1),dμ)
≤ CR

d–γ
2 +s〈μ〉 1

2
γ ‖f ‖L2 , (2.2)

which holds whenever f̂ is supported on AR.

Lemma 2.2 Let p ≥ 2, R ≥ 1, α > 0, 0 < γ ≤ d. Let I ⊂ [0, 1] be an interval such that |I| ≤
min{R1–α , 1}. Suppose that (2.2) holds for some s whenever f̂ is supported in AR and μ is
a γ -dimensional measure in R

d . Then, for any γ -dimensional measure μ̃ in R
d , there is a

constant C′ > 0 such that

∥∥∥sup
t∈I

∣∣eit(–�)α/2
f
∣∣∥∥∥

L2(B(0,1),dμ̃)
≤ C′〈μ̃〉 1

2
γ R

d–γ
2

(
1 + Rα|I|)max{s, s

α }‖f ‖L2 (2.3)

holds whenever f̂ is supported on AR. Conversely, if (2.3) holds for f̂ supported on AR, μ̃

is γ -dimensional, and interval I ⊂ [0, 1] satisfies R–α < |I| ≤ min{R1–α , 1}, then there exists
C > 0 such that (2.2) holds whenever f̂ is supported on AR and μ is γ -dimensional.



Cho et al. Journal of Inequalities and Applications         (2023) 2023:54 Page 6 of 14

Remark 2.3 By a simple modification of our argument, Lemma 2.2 can be extended to a
class of evolution operators eitP(D) as long as

∣∣∂β

ξ P(ξ )
∣∣ � |ξ |α–|β|, ∀β

and |∇P(ξ )| � |ξ |α–1 hold (see [8]). Hence, an analog of Theorem 1.1 holds true for
eitP(D). A typical example of such an operator is the nonelliptic Schrödinger operator
eit(∂2

x1 –∂2
x2 ±∂2

x3 ±···±∂2
xd ).

The rest of the section is devoted to the proof of Lemma 2.2, for which we first consider
spatial localization.

2.1 Spatial localization
By adapting the argument in [8, 19], we prove a spatial-localization lemma exploiting rapid
decay of the kernel.

Lemma 2.4 Let α > 0, r ≥ 1, and 0 < γ ≤ d. Let μ be a γ -dimensional measure in R
d . For

R ≥ 1, we set IR = [0, R]. Suppose that

∥∥eit(–�)α/2
f
∥∥

L2
x(B(0,R),dμ;Lr

t (IR)) ≤ CRs〈μ〉 1
2
γ ‖f ‖L2 (2.4)

holds for some s ∈ R whenever f̂ is supported in A1. Then, there exists a constant C1 > 0
such that

∥∥eit(–�)α/2
f
∥∥

L2
x(Rd ,dμ;Lr

t (IR)) ≤ C1Rs〈μ〉 1
2
γ ‖f ‖L2 (2.5)

holds whenever f̂ is supported in A1.

Proof Let P be a projection operator defined by F (Pg)(ξ ) = β(|ξ |)̂g(ξ ), where β ∈
Cc(2–1, 22) and β = 1 on [1, 2]. Let {B} be a collection of finitely overlapping balls of
radius R that cover R

d . Denote B̃ = B(a, 10α22|α–1|R) if B = B(a, R). Then, we note that
‖F‖2

L2(Rd) �
∑

B ‖F‖2
L2(B).

Since Pf = f , by Minkowski’s inequality we have

∥∥eit(–�)α/2
f
∥∥2

L2
x(Rd ,dμ;Lr

t (IR)) � (L1 + L2),

where

L1 =
∑

B

∥∥eit(–�)α/2
P(χB̃f )

∥∥2
L2

x(B,dμ;Lr
t (IR)),

L2 =
∑

B

∥∥eit(–�)α/2
P(χB̃c f )

∥∥2
L2

x(B,dμ;Lr
t (IR)).

Note that eit(–�)α/2 Pf = K(·, t) ∗ f , where K is given by

K(x, t) =
∫

ei(x·ξ+t|ξ |α )β
(|ξ |)dξ .



Cho et al. Journal of Inequalities and Applications         (2023) 2023:54 Page 7 of 14

By integration by parts, it is easy to see that |K(x, t)| ≤ CN R–N (1 + |x|)–N for any N ≥ 1 if
|x| > 10α22|α–1|R and |t| ≤ R. Thus, we have

∥∥eit(–�)α/2
(χB̃c f )(x)

∥∥
Lr

t (IR) ≤ CN R–N(
1 + | · |)–N ∗ |f |(x)

for any N ≥ 0 whenever x ∈ B. Taking N large enough, we obtain

L2 ≤ CR2s∥∥(
1 + | · |)–(d+γ ) ∗ |f |∥∥2

L2
x(Rd ,dμ).

By Schur’s test, it follows that ‖(1 + | · |)–(d+γ ) ∗ |f |‖L2
x(B,dμ) ≤ C〈μ〉 1

2
γ ‖f ‖2. Therefore, we only

need to consider L1.
Applying (2.4) on each B, we obtain

L1 � R2s〈μ〉γ
∑

B

‖χB̃f ‖2
L2 ≤ CR2s〈μ〉γ ‖f ‖2

L2 .

The last inequality follows since the balls B̃ overlap finitely. This completes the proof. �

2.2 Proof of Lemma 2.2
To prove Lemma 2.2, we invoke an elementary lemma.

Lemma 2.5 ([17]) Let μ be a γ -dimensional measure in R
d . If F̂ is supported on B(0, R),

then ‖F‖L2(dμ) ≤ CR
d–γ

2 〈μ〉 1
2
γ ‖F‖L2(Rd).

By translation and Plancherel’s theorem, we may assume that I = [0, δ] with δ ≤
min{R1–α , 1}. We may further assume R–α < δ since (2.3) follows by the Sobolev embedding
and Lemma 2.5 if δ ≤ R–α .

For a given γ -dimensional measure μ, we denote by μR the measure defined by the
relation1

∫
F(x) dμR(x) = Rγ

∫
F(Rx) dμ(x), F ∈ C0

(
R

d). (2.6)

It is easy to see that μR is a γ -dimensional measure in R
d such that

μR
(
B(x, r)

) ≤ C〈μ〉γ rγ

for some C > 0. Changing variables (x, t) → (R–1x, R–αt) and ξ → Rξ , we see that (2.2) is
equivalent to

∥∥∥ sup
t∈[0,Rα ]

∣∣eit(–�)α/2
fR

∣∣∥∥∥
L2(B(0,R),dμR)

≤ CRs〈μ〉 1
2
γ ‖fR‖L2 , (2.7)

where f̂R(ξ ) = R d
2 f̂ (Rξ ). Note that ‖fR‖2 = ‖f ‖2 and f̂R is supported on A1. Let us denote

R′ = min{R, Rα}. We claim that the estimate (2.7) is equivalent to the seemingly weaker

1μR is a positive Borel measure by the Riesz representation theorem.
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estimate

∥∥∥ sup
t∈[0,R′]

∣∣eit(–�)α/2
g
∣∣∥∥∥

L2(B(0,R′),dμR)
≤ CRs〈μ〉 1

2
γ ‖g‖L2 (2.8)

for R ≥ 1 whenever ĝ is supported on A1. To show this, we only need to prove that (2.8)
implies (2.7) since the converse is trivially true. When α > 1, the implication from (2.8) to
(2.7) was shown in [8] (also, see [19]) when μR is the Lebesgue measure and α is an integer.
It is easy to see that the argument in [8] works for the general γ -dimensional measure μR.
When 0 < α ≤ 1, using Lemma 2.4 with R replaced by Rα , we obtain (2.7) from (2.8). This
proves the claim.

We now show that (2.2) and (2.3) are equivalent. Recall that we are assuming that R–α < δ.
Changing variables (x, t) → (R–1x, R–αt), ξ → Rξ in (2.3) as above, we see that (2.3) is
equivalent to

∥∥∥ sup
t∈[0,Rαδ]

∣∣eit(–�)α/2
fR

∣∣∥∥∥
L2(B(0,R),dμ̃R)

≤ C′(Rαδ
)max{s, s

α }〈μ̃〉 1
2
γ ‖fR‖L2 . (2.9)

By Lemma 2.4 with R replaced by Rαδ, (2.9) follows from

∥∥∥ sup
t∈[0,Rαδ]

∣∣eit(–�)α/2
fR

∣∣∥∥∥
L2(B(0,Rαδ),dμ̃R)

≤ C′(Rαδ
)max{s, s

α }〈μ̃〉 1
2
γ ‖fR‖L2 . (2.10)

Thus, (2.10) and (2.9) are trivially equivalent. Therefore, to show the equivalence of (2.2)
and (2.3), it is enough to prove that of (2.8) and (2.10). Indeed, it is clear that (2.10) follows
from (2.8) by replacing R′ in (2.8) with Rαδ. Conversely, if we replace Rαδ in (2.10) with R′,
we obtain (2.8) as long as δ > R–α .

3 Maximal estimate for sequential Schrödinger means
In this section, we prove Theorem 1.1 and obtain results regarding upper bounds on the
dimension of the divergence set of eitn(–�)α/2 f . The results are a consequence of extension
of the maximal estimates to a general measure, see Sect. 3.2.

3.1 L2-Maximal estimates
Making use of Lemma 2.2, we deduce the maximal estimates for the sequential Schrödin-
ger mean from the estimate (2.2).

Proposition 3.1 Let R ≥ 1, α > 0, and 0 < r < ∞. Suppose that (2.2) holds for some s = s∗ >
0 whenever μ is a γ -dimensional measure in R

d and supp f̂ ⊂ AR. Let

s̃∗ =
rα

r min{α, 1} + 2s∗
s∗. (3.1)

Then, if {tn} ∈ �r,∞, there is a constant C > 0 such that

∥∥∥sup
n

∣∣eitn(–�)α/2
f
∣∣∥∥∥

L2(B(0,1),dμ)
≤ CR

d–γ
2 +s〈μ〉 1

2
γ ‖f ‖L2 (3.2)

holds for s ≥ min{s∗, s̃∗} whenever μ is γ -dimensional and supp f̂ ⊂AR.
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When α > 1, Proposition 3.1 is meaningful only for r < 2s∗/(α – 1).

Proof of Proposition 3.1 We may assume s̃∗ ≤ s∗ since (3.2) trivially holds for s ≥ s∗ by the
maximal estimate (2.2). For 0 < δ < 1, let us set

N(δ) = {n ∈N : tn < δ}.

Since {tn} ∈ �r,∞(N), there is a uniform constant C0 > 0 such that

∣∣N(δ)c∣∣ ≤ C0δ
–r . (3.3)

Then, it follows that

∥∥∥sup
n

∣∣eitn(–�)α/2
f
∣∣∥∥∥

L2(B(0,1),μ)
≤ I + II ,

where

I =
∥∥∥ sup

n∈N(δ)

∣∣eitn(–�)α/2
f
∣∣∥∥∥

L2(B(0,1),dμ)
,

II =
∥∥∥ sup

n∈N(δ)c

∣∣eitn(–�)α/2
f
∣∣∥∥∥

L2(B(0,1),dμ)
.

We consider I first. Since supn∈N(δ) |eitn(–�)α/2 f | ≤ sup0<t≤δ |eit(–�)α/2 f |, by Lemma 2.2 we
have

I ≤ CR
d–γ

2
(
Rαδ

)max{s∗ , s∗
α }〈μ〉 1

2
γ ‖f ‖L2 (3.4)

provided that supp f̂ ⊂AR and R–α ≤ δ ≤ min{R–α+1, 1}. To deal with II , we first note that

∥∥eitn(–�)α/2
f
∥∥

L2(B(0,1),dμ) � R
d–γ

2 〈μ〉 1
2
γ ‖f ‖2,

which follows by Lemma 2.5 and Plancherel’s theorem. Hence, by the embedding �2 ⊂ �∞,
combining the above estimate and (3.3), we obtain

II �
( ∑

n∈N(δ)c

∥∥eitn(–�)α/2
f
∥∥

L2(B(0,1),dμ)

)1/2

� C
1
2

0 δ– r
2 R

d–γ
2 〈μ〉 1

2
γ ‖f ‖L2 .

Now, we prove (3.2) by optimizing the estimates with a suitable choice of δ. When α ≥ 1,
we take δ = R–2s∗α/(r+2s∗), which gives (3.2) for s ≥ rs∗α/(r + 2s∗). When 0 < α < 1, we choose
δ = R–2s∗α/(rα+2s∗) and obtain (3.2) for s ≥ rs∗α/(rα +2s∗). In both cases, one can easily check
R–α ≤ δ ≤ min{R–α+1, 1} for r and s∗ satisfying s̃∗ ≤ s∗. Indeed, if α > 1, then δ ≤ R–α+1 since
2s∗ + r ≥ rα. When 0 < α ≤ 1, we have δ ≤ 1 since s∗ > 0. �

Theorem 1.1 is an immediate consequence of the following.
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Corollary 3.2 Let 0 < γ ≤ d and 0 < r < ∞. Suppose

∥∥∥ sup
0<t<1

∣∣eit(–�)α/2
f
∣∣∥∥∥

L2(B(0,1),dμ)
≤ C〈μ〉 1

2
γ ‖f ‖

H
d–γ

2 +s∗ (3.5)

holds for some 0 < s∗ whenever μ is a γ -dimensional measure in R
d . Then, if {tn} ∈ �r,∞,

there is a constant C′ > 0 such that

∥∥∥sup
n∈N

∣∣eitn(–�)α/2
f
∣∣∥∥∥

L2(B(0,1),dμ)
≤ C′〈μ〉 1

2
γ ‖f ‖

H
d–γ

2 +s (3.6)

holds for s ≥ min{s∗, s̃∗}, where s̃∗ is given by (3.1).

The estimate (3.5) clearly implies (2.2). However, to prove Corollary 3.2, we need to
remove the frequency localization in the estimate (3.2) so that the right-hand side of (3.2)
is replaced by C〈μ〉 1

2
γ ‖f ‖

H
d–γ

2 +s . This can be achieved by adapting the argument in [11].

Proof of Corollary 3.2 As before, we may assume s̃∗ ≤ s∗. It suffices to show (3.6) for s ≥ s̃∗.
Let us choose a smooth function β ∈ C∞

0 ((1/2, 2)) such that
∑

k β(2–k·) = 1 and set β0 =∑
k≤0 β(2–k·). Let Pk , k ≥ 0, be the projection operator defined by P̂kf (ξ ) = β(2–k|ξ |)̂f (ξ ),

k ≥ 1, and P̂0f (ξ ) = β0(|ξ |)̂f (ξ ).
For � ≥ 0, we set

N� =
{

n ∈N : 2–2(�+1)s̃∗/r < tn ≤ 2–2�s̃∗/r}.

For each � ≥ 0, we write f =
∑

0≤k<� Pkf +
∑

k≥0 P�+kf . Hence, we have

∥∥∥sup
n∈N

∣∣eitn(–�)α/2
f
∣∣∥∥∥

L2(B(0,1),dμ)
≤ I + II,

where

I = sup
�≥0

∥∥∥∥ sup
n∈N�

∣∣∣∣eitn(–�)α/2
( ∑

0≤k<�

Pkf
)∣∣∣∣

∥∥∥∥
L2(B(0,1),dμ)

,

II = sup
�≥0

∥∥∥∥ sup
n∈N�

∣∣∣∣
∑
k≥0

eitn(–�)α/2
P�+kf

∣∣∣∣
∥∥∥∥

L2(B(0,1),dμ)
.

We consider II first. Since {tn} ∈ �r,∞, it follows that |N�| � 22s̃∗�. As before, by the em-
bedding �2 ⊂ �∞ and then applying Lemma 2.5 and Plancherel’s theorem, we obtain

sup
�≥0

∥∥∥∥ sup
n∈N�

∣∣∣∣
∑
k≥0

eitn(–�)α/2
P�+kf

∣∣∣∣
∥∥∥∥

L2(B(0,1),dμ)
� 〈μ〉 1

2
γ

∑
k≥0

(∑
�≥0

2(d–γ )(�+k)+2s̃∗�‖P�+kf ‖2
L2

) 1
2

.

Thus, we obtain

II � 〈μ〉 1
2
γ

∑
k≥0

2–s̃∗k‖f ‖
H

d–γ
2 +s̃∗ � 〈μ〉 1

2
γ ‖f ‖

H
d–γ

2 +s̃∗ . (3.7)
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We now turn to I. Note that 2s̃∗ < rα by definition of (3.1), and decompose

∑
0≤k<�

Pkf =
∑

0≤k< 2s̃∗
rα �

Pkf +
∑

0<k≤ rα–2s̃∗
rα �

P�–kf .

By the Minkowski inequality, we have I ≤ Ia + Ib, where

Ia =
∑
k≥0

∥∥∥ sup
�> rα

2s̃∗ k
sup
n∈N�

∣∣eitn(–�)α/2
Pkf

∣∣∥∥∥
L2(B(0,1),dμ)

,

Ib = sup
�≥0

∥∥∥∥ sup
n∈N�

∣∣∣∣eitn(–�)α/2
( ∑

0<k≤ rα–2s̃∗
rα �

P�–kf
)∣∣∣∣

∥∥∥∥
L2(B(0,1),dμ)

.

Regarding Ia, note that
⋃

�> rα
2s̃∗ k N� ⊂ [0, 2–αk]. By (3.5) and Lemma 2.2 with R = 2k and

I = [0, 2–αk], we obtain

Ia � 〈μ〉 1
2
γ

∑
k≥0

2
d–γ

2 k‖Pkf ‖2 � 〈μ〉 1
2
γ ‖f ‖

H
d–γ

2 +s (3.8)

for s > 0.
To deal with Ib, we note that tn ∈ J� := [0, 2–2�s̃∗/r] if n ∈ N�, and 2(�–k)α|J�| ≥ 1 since

k ≤ rα–2s̃∗
rα �. By Lemma 2.2 with R = 2�–k and I = J�, it follows that

Ib � 〈μ〉 1
2
γ sup

�≥0

∑
0≤k≤ rα–2s̃∗

rα �

(
2�–k) d–γ

2
(
2(�–k)α–2�s̃∗/r)max{s∗ , s∗

α }‖P�–kf ‖L2 .

Using (3.1) and the fact that min{α, 1} × max{s∗, s∗
α
} = s∗, one can easily see that

(2(�–k)α–2�s̃∗/r)max{s∗ , s∗
α } = 2–kα max{s∗ , s∗

α }2�s̃∗ . Hence, by the embedding �2 ⊂ �∞ and Min-
kowski’s inequality, we obtain

Ib � 〈μ〉 1
2
γ

∑
k≥0

( ∑
�> rα

rα–2s̃∗ k

(
2�–k)d–γ 22�s̃∗2–2k max{αs∗ ,s∗}‖P�–kf ‖2

L2

)1/2

� 〈μ〉 1
2
γ

∑
k≥0

2(s̃∗–max{αs∗ ,s∗})k‖f ‖
H

d–γ
2 +s̃∗ .

Thus, we have Ib � 〈μ〉 1
2
γ ‖f ‖

H
d–γ

2 +s̃∗ . Combining this and the estimates (3.7) and (3.8), we
obtain (3.6). �

3.2 Dimension of divergence set
From the implication in Corollary 3.2, we can obtain upper bounds on the divergence
set Dα,d(s, r) making use of the known estimates for the maximal Schrödinger operator
f → sup0<t≤1 |eit(–�)α/2 f |. We start by recalling the following lemma ([17, 27]).

Lemma 3.3 Suppose

∥∥eit(–�)α/2
f
∥∥

L2(B(0,1),dν) ≤ C′〈ν〉 1
2
γ R

d–γ
2 +s‖f ‖L2(Rd), (3.9)
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holds for some s ∈ R whenever supp f̂ ⊂ AR and ν is a γ -dimensional measure in R
d+1.

Then, there exists C > 0 such that (2.2) holds whenever μ is a γ -dimensional measure in
R

d .

In what follows, we summarize the currently available maximal estimates (2.2) that
can be obtained by the best-known fractal Strichartz estimates (3.9) combined with
Lemma 3.3.

Proposition 3.4 Let d ≥ 1, α ∈ (0, 1) ∪ (1,∞), and μ be a γ -dimensional measure in R
d .

Then, (2.2) holds for s > sα(γ , d) where

sα(γ , d) =

⎧⎨
⎩

min{max{0, γ

2 – d
4 }, γ

2(d+1) }, when α > 1,

min{max{0,α( γ

2 – d
4 )}, α

2 }, when 0 < α < 1.

When α > 1, the estimates (2.2) and (3.9) for s > sα(γ , d) were already obtained in [2, 14,
24]). The estimate for 0 < α < 1 also can be shown by the standard argument in [15, 33]
and Lemma 3.3. However, since the latter case is less well known, we provide the proof for
the convenience of the reader.

Proof of Proposition 3.4 for 0 < α < 1 By Lemma 3.3 we only need to prove (3.9) for s >
sα(γ , d).

Let σ be the surface measure on {(ξ , |ξ |α) : 1/2 ≤ |ξ | ≤ 2}. In [15, 33], it was shown that

∫ ∣∣̂ν(Rη)
∣∣2 dσ (η) � Iγ (ν)R–β (3.10)

holds for β = max{min{γ , d
2 },γ – 1} whenever ν is a γ -dimensional measure in R

d+1. Here,
Iγ (ν) denotes the γ -dimensional energy of ν . Let νλ be the rescaled measure defined by
the relation (2.6) with d replaced by d + 1. Then, it is easy to see (see, e.g., [17, 18]) that
(3.10) implies the estimate

∥∥eit(–�)α/2
g
∥∥

L2(B(0,λ),dνλ) ≤ Cλs〈ν〉 1
2
γ ‖g‖2 (3.11)

for s > (γ – β)/2 whenever ν is γ -dimensional and ĝ is supported on A1 ([16, 42]). There-
fore, we have (3.11) for s > sα(γ , d)/α.

Now, we take λ = Rα in (3.11). Then, applying Lemma 2.4 with R replaced by Rα , we have

∥∥eit(–�)α/2
g
∥∥

L2(B(0,R)×[0,Rα ],dνRα ) ≤ CRs〈ν〉 1
2
γ ‖g‖2

for s > sα(γ , d). By rescaling ξ → R–1ξ and (x, t) → (Rx, Rαt), we see that (3.9) holds for
s > sα(γ , d). �

We recall the maximal estimate (2.2) for the wave operator shown in [2, 17]. (See also
[8, 18] for the fractal Strichartz estimates (3.9)).
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Proposition 3.5 Let I be a subinterval in [0, 1]. Then, (2.2) holds with α = 1 for s > s1(γ , d)
where

s1(γ , d) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 < γ ≤ 1
2 ,

γ

2 – 1
4 , 1

2 < γ ≤ 1,
γ

4 , 1 < γ ≤ 2,

for d = 2;

s1(γ , d) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 < γ ≤ d–1
2 ,

–d+1+2γ

8 , d–1
2 < γ ≤ d+1

2 ,
γ –1

2(d–1) , d+1
2 < γ ≤ d,

for d ≥ 3.

By Proposition 3.1, the estimates in Propositions 3.4 and 3.5 give the corresponding es-
timates for supn |eitn(–�)α/2 f | with {tn} ∈ �r,∞ relative to γ -dimensional measures. Then, by
a standard argument (see [2]), one can obtain upper bounds on the Hausdorff dimension
of the divergence sets. We summarize the results as follows:

Corollary 3.6 Let α > 0, d ≥ 1, r ∈ (0,∞), and 0 < γ ≤ d. Let s∗ = sα(γ , d), which is given
in Propositions 3.4 and 3.5. Then, Dα,d(s, r) ≤ γ if s > 2–1(d – γ ) + min{s∗, s̃∗}.
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