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Abstract 

Since many single-cell RNA-seq (scRNA-seq) data are obtained after cell sorting, such as when investigating immune 
cells, tracking cellular landscape by integrating single-cell data with spatial transcriptomic data is limited due to cell 
type and cell composition mismatch between the two datasets. We developed a method, spSeudoMap, which utilizes 
sorted scRNA-seq data to create virtual cell mixtures that closely mimic the gene expression of spatial data and trains 
a domain adaptation model for predicting spatial cell compositions. The method was applied in brain and breast can-
cer tissues and accurately predicted the topography of cell subpopulations. spSeudoMap may help clarify the roles of 
a few, but crucial cell types.
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Background
Spatial transcriptomics has been widely adopted as a 
tool to explore genome-wide spatial RNA expression 
in various tissues [1]. It paves the way to thoroughly 
investigate the spatial context of cells and their interac-
tions in an unbiased manner [2]. One of the limitations 
of spatial transcriptomics data is the fact that spots are 
not directly interpreted as cells. Therefore, multiple com-
putational approaches have been suggested for accurate 
spatial mapping of cell types by integrating spatial and 

single-cell transcriptomics [3–12]. They can be further 
utilized to speculate the spatial infiltration pattern of a 
few cell types that play a key role in the pathophysiology 
of various diseases [13–16]. In this case, certain cell pop-
ulations, such as immune cell subtypes, can be described 
in detail by jointly analyzing spatial data with single-cell 
RNA sequencing (scRNA-seq) data acquired from cell 
sorting strategies such as fluorescence-activated cell sort-
ing (FACS) and magnetic-activated cell sorting (MACS) 
based on cell surface markers [17]. However, there is a 
major drawback in the practical usage of spatial mapping 
methods employing scRNA-seq data. The majority of the 
methods are based on the assumption that cell types and 
proportions are similar between the two transcriptomic 
datasets [3–11], and cell type-specific signatures defined 
from the single-cell data are translated to decipher spatial 
cell compositions. When the sorted scRNA-seq data are 
utilized as a reference, the data explain only part of the 
cell types from the spatial data. Besides, certain cell types 
can be depleted or enriched during the cell dissociation 
procedure [18], and cell composition may vary across 
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the tissue acquisition sites. Therefore, the integration of 
single-cell and spatial datasets creates a bias in estimating 
the cellular fraction. There is a need for the development 
of a computational model that flexibly integrates scRNA-
seq data of cell subpopulations with spatial transcrip-
tomic data.

In this regard, we created a model, spSeudoMap, which 
utilizes sorted scRNA-seq data to create a cell mixture 
resembling the spatial data and predicts the spatial cell 
composition based on CellDART [10], a domain adapta-
tion approach. More specifically, the cell types exclusively 
present in the spatial data, named the pseudotypes, and 
the cell types shared between the two transcriptomic 
data, named the target types, are defined. Then, the frac-
tion and expression profiles of the pseudotypes in the 
cell mixture are assigned by referencing the spatial and 
single-cell datasets. The rest of the mixture, the portion 
for the target types, is filled with randomly sampled cells 
from single-cell data. As a result, the cell mixture and 
spatial transcriptomic data are jointly analyzed based on 
domain adaptation to obtain a spatial map of the cell sub-
population. Our approach adjusts the discrepancy of cell 
type and proportion in single-cell and spatial data and is 
capable of precisely estimating the spatial distribution of 
the minor cell types.

Methods
Composition of public datasets
Human brain cortex
Spatial transcriptomic datasets of postmortem human 
DLPFC tissues were acquired from a 30-year-old sub-
ject without neurological disorders. Two Visium slides, 
named “151673” and “151676”, which are 300 μm apart 
were selected for the analysis [19]. The count matrix 
(151673: 33,538 genes across 3639 spots; 151676: 33,538 
genes across 3460 spots) and cortical layer informa-
tion of the spatial spots were utilized. The spots were 
assigned to a specific cortical layer [ranging from lay-
ers 1 to 6 and white matter (WM)] based on the spatial 
expression pattern of layer-specific marker genes and the 
expert’s opinion, as described in the paper [20]. The spots 
for which the layer could not be determined were clas-
sified as not available (NA). For the integrative analysis, 
a single-nucleus dataset obtained from the DLPFC of 
postmortem healthy individuals was adopted [21]. The 
count matrix (30,062 genes across 35,212 cells) and the 
cell type annotations defined based on the well-known 
marker genes were used [22]. Among the 33 cell types, 
10 layer-specific excitatory neurons (from Ex_1_L5_6 to 
Ex_10_L2_4) were selected. This subpopulation of the 
single-nucleus dataset was considered a simulation of 
scRNA-seq data acquired by physically sorting excitatory 
neurons and was provided as an input for spSeudoMap.

Mouse brain coronal section
The Visium spatial transcriptomic dataset of the mouse 
brain coronal section was obtained from a C57BL/6 
mouse that was at least 8 weeks old. The dataset, named 
“V1_Adult_Mouse_Brain,” was downloaded from the 
data repository provided by 10x Genomics [23]. Addi-
tionally, single-nucleus data extracted from mouse brain 
coronal tissue were included in the joint analysis [24]. 
The brains of a female and a male C57BL/6 mouse, both 
56 days old, were sectioned and processed for sequencing 
analysis. The count matrices were composed of 32,285 
genes and 2702 spots for spatial data and 31,053 genes 
and 40,532 cells for single-cell data. The cell types of the 
single-cell data were defined using reported marker genes 
[25, 26] and an in  situ hybridization dataset from the 
Allen Brain Atlas (https://​mouse.​brain-​map.​org/​static/​
atlas) [27], as described in the paper [11]. Among the 59 
cell types, 23 region-specific neuron types were selected, 
and the subpopulation of single-nucleus data was utilized 
for the generation of the cell mixture.

Human breast cancer
Both spatial and single-cell transcriptomics data for 
breast cancer were extracted from an 88-year-old female 
subject (ID: 4290) without a previous history of treat-
ment [28–30]. The cancer tissue was invasive ductal car-
cinoma (IDC) with ER-positive (90%, 3+), PR-positive 
(30%, 2+), and HER2-negative (1+) profiles, and cancer 
had invaded the adjacent skin and chest wall (pathologic 
T stage: T4b). The single-cell data (5789 cells and 29,733 
genes) from the same patient were composed of cancer 
or normal epithelial cells, perivascular-like (PVL) cells, 
cancer-associated fibroblasts (CAFs), endothelial cells, 
and immune cells. This unsorted data was considered ref-
erence datasets for the prediction of spatial cell composi-
tion. In addition, CD45+ sorted single-cell data (29,900 
cells and 31,993 genes) acquired from ER-positive IDC 
patients (n=4, ID: BC1, BC2, BC4, BC6) were utilized 
[31, 32], and the spatial immune cell composition was 
estimated using spSeudoMap.

Clustering and annotation of single‑cell and spatial data
The clustering and visualization of transcriptomics data-
sets were implemented using Seurat (v.4.0.5) [33] in 
R (v.4.1.1). First, count normalization was performed, 
and the total count was set to 10,000 across all cells 
and spots. Then, the count matrices were natural log-
transformed [ln(1 + X)], and the top 2000 highly vari-
able genes (HVGs) were chosen by standardizing counts 
with the mean-variance relationship (vst method) [4]. 
Next, the matrices were regressed against the total count 
and scaled such that the mean and standard deviation 
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for HVGs were 1 and 0, respectively. After reducing the 
dimensionality of the dataset using principal compo-
nent analysis (PCA), the top 30 PCs were selected for 
the downstream analysis. A shared nearest neighbor-
hood (SNN) graph was constructed based on pairwise 
cell-cell distances calculated on PC space. The Louvain 
community detection algorithm [34] was applied with a 
resolution of 0.5, and the resulting clusters were visual-
ized with uniform manifold approximation and projec-
tion (UMAP) plots [35].

For human and mouse brain single-nucleus datasets, 
the cell annotation information offered by the paper 
was adopted and visualized on UMAP plots. In the 
unsorted human breast single-cell data, the cell anno-
tation was originally obtained from the pooled single-
cell data of all patients, and each cell type of one of the 
patients (ID: 4290) contained only a small number of 
cells. Therefore, the cells were reannotated based on 
the Louvain cell clustering results by an automatic cell 
type assignment tool [36] and cell type information 
from the paper [28]. Additionally, the cells from the 
CD45+ sorted breast dataset were annotated by the 
automatic cell type annotation method [36].

Meanwhile, for mouse brain spatial data, the spot 
clusters were named according to the correspond-
ing anatomical structure (amygdala, caudoputamen, 
cortex, ependyma, hypothalamus, meninges, piriform 
cortex, thalamus, and white matter) defined in Allen 
Brain Reference Atlases (https://​mouse.​brain-​map.​org/​
static/​atlas) [27].

spSeudoMap: spatial mapping of the transcriptomics 
of the cell subpopulations
To estimate a spatial map of cell types for single-cell 
data of cell subpopulations such as sorted or enriched 
single-cell datasets, a synthetic cell mixture that con-
tains all cell types from spatial data is defined (Fig. 1). 
It is intended to create a reference dataset that is highly 
similar to the spatial transcriptomic data. For each 
mixture, the fraction of the exclusive cell types from 
the spatial data is assigned, and their synthetic gene 
expression profiles are created. The rest of the cell mix-
ture is generated from the single-cell data. The process 
is implemented in Scanpy (v.1.5.1) [37] and Numpy in 
Python (v.3.7).

Fig. 1  Mapping cell subpopulations to the spatial transcriptomic data with spSeudoMap. The cell types of the single-cell transcriptomic data 
acquired from cell sorting experiments can be spatially mapped to the tissue using spSeudoMap. The single-cell data of cell subpopulations are 
composed of sorted cells from the tissue, and the cell types cover only part of those in the spatial transcriptomics data. To create the reference 
dataset that mimics the spatial data, virtual cell mixtures, pseudospots, are defined in which all cell types from the tissue are included. First, the 
cell types exclusively present in the spatial data are aggregated and named pseudotypes. The virtual markers for the pseudotypes are selected 
from the top genes highly expressed in spatial pseudobulk compared to single-cell pseudobulk data. Then, the pseudotype fraction in the spatial 
spots is estimated from the module scores (sc.tl.score_genes in Scanpy) of the top 20 pseudotype markers. The fraction and gene expression of the 
pseudotypes are assigned based on the presumed pseudotype fraction and expression of a randomly selected spatial spot. Lastly, the target type 
proportion of the pseudospot, explained by cell types in the single-cell data, is filled with the randomly sampled cells from the single-cell data of 
cell subpopulations. Finally, the pseudospot is considered a reference dataset for the domain adaptation method CellDART [10]
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RCsc: raw count matrix for single-cell data, RCsp: raw 
count matrix for spatial data, NCsc: total normalized sin-
gle-cell count matrix, NCsp: total normalized spatial count 
matrix, x, y: number of cells and genes in single-cell data, 
u, v: number of spots and genes in spatial data, C: set of 
the index for overlapping genes between single-cell and 
spatial data. The gene index in set C is shared between the 
two transcriptomic data (for example, a2c1 and b2c1 indicate 
the counts of the same gene with index c1 in the second cell 
and spot, respectively).

First, a fixed number of cells (n; brain: 8 and breast: 
10) and cell type annotations are randomly sampled 
from single-cell data with random weights, and a cell 
mixture named sub-pseudospot is created as with 
CellDART [10]. The cell types that overlap between 
the single-cell and spatial data are called “target types.” 
These cell types are assumed to be identical to the cell 
types from single-cell data. The Wilcoxon rank-sum 
test is performed, and the top l markers for each tar-
get cell type are pooled. A marker panel (total number 
of genes: m) is curated by extracting intersecting genes 
with the total gene list of spatial data. For each sub-
pseudospot, the composite gene expression profiles of 
the marker panel are calculated.

RCsc =

a11 · · · a1y
...

. . .
...

ax1 · · · axy
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. . .
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n: total number of the cells to be randomly sampled 
from the single-cell data, m: total number of marker 
genes from single-cell data: S: randomly selected index 
of the cells, T: index of the marker genes in the single-
cell count matrix (RCsc), F: proportion of each sampled 
cell in the cell mixture, G: composite gene expression 
profiles of the cell mixture (named sub-pseudospot).

Next, the cell types present in the spatial data but 
absent in the single-cell data are aggregated, and the 
aggregate is named the “pseudotypes.” The pseudotype 
markers are extracted from pseudobulk analysis of both 
transcriptomic data. It can be assumed that the genes 
showing greater pseudobulk expression in spatial data 
than single-cell data are pseudotype markers. There-
fore, the summed counts for each gene are divided by 
the total counts, and the normalized counts are com-
pared between the two datasets. The ratio of the nor-
malized counts between spatial to single-cell data is 
log2-transformed, and the genes are sorted in descend-
ing order of the log fold change. The top k genes not 
overlapping with the target type markers are selected as 
pseudotype markers, and the top 20 genes are used as 
predictors of the pseudotype fraction. The target types 
and pseudotype markers are combined and named the 
“composite marker panel.”

BCsc: pseudobulk count matrix for single-cell data, 
BCsp: pseudobulk count matrix for spatial data, logFC: 
log fold change between the pseudobulk counts, w: 
index number for the top k genes with the highest 
logFC.

Then, the pseudotype fraction in a given spot of 
the spatial data is presumed to be correlated with an 
enrichment score for the top 20 pseudotype markers 
(scanpy.tl.score_genes in Scanpy). The genes of spatial 
data are divided into 25 bins according to the log-nor-
malized expression level. For each marker gene, a total 
of 50 control genes are selected from the same bin and 
pooled. The enrichment score is calculated by subtract-
ing the average expression of control gene pools from 

BCsc =
(

pj
)h

j=1
=

(

x
∑

i=1

aic1 ,⋯

x
∑

i=1

aich

)

BCsp =
(

qj
)h

j=1
=

(

u
∑

i=1

bic1 ,⋯

u
∑

i=1

bich

)

logFC(j) = log2

�

qj∕
∑h

k=1
qk

pj∕
∑h

k=1
pk

�

w = arg topk
j∈Cj∉T

�

logFC(j)
�

=
�

r1, r2,⋯ , rk
�



Page 5 of 13Bae et al. Genome Medicine           (2023) 15:19 	

that of pseudotype markers [38]. The distribution of a 
created module score is scaled to have a given mean 
(M′) and standard deviation (σ′). The values over 1 and 
less than 0 are replaced with 1 and 0, respectively. The 
scaled module score is considered as a pseudotype frac-
tion of a spatial spot, assuming a linear relationship 
between the two.

MSsp: module scores for the top 20 pseudotype mark-
ers calculated in spatial data, M, σ: mean and standard 
deviation of MSsp, M′, σ′ : mean and standard deviation 
of the presumed pseudotype fraction in spatial tran-
scriptomic spots, Zsp: presumed pseudotype fraction.

To create a reference dataset, a sub-pseudospot is 
aggregated to the pseudotype portion of a randomly 
chosen spot, and the combined gene expression for the 
composite marker panel is calculated (Additional file 1: 
Fig. S1). The resulting cell mixture is named the pseu-
dospot. Since pseudotype markers are selected accord-
ing to the log fold change in the pseudobulk approach, 
the expression of pseudotype markers in pseudotypes 
is expected to be significantly higher than that of target 
type markers. Additionally, for simplicity, the expression 
of all pseudotype markers in a spot is assumed to be 
directly proportional to that in the pseudotypes of the 
spot. Thus, the target type marker expression in pseudo-
types is set to 0, and the pseudotype marker expression 
is assigned by multiplying the normalized count of the 
selected spot by the presumed pseudotype fraction.

T′: index of the marker genes and pseudotype markers 
in the single-cell count matrix (RCsc), G′: composite gene 
expression profiles of the modified cell mixture (named 
pseudospot), β: randomly selected index of the spot

Finally, the gene expression profiles of the pseu-
dotypes and the sub-pseudospot are summed with 
the pseudotypes to target type ratio as a weight, and 
the integrated expression of a pseudospot is obtained 
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(Additional file  1: Fig. S1). Of note, the pseudotype 
fraction is extracted from the same spatial spot that 
the expression profile is referenced. The algorithm for 
generating a pseudospot is summarized with the above 
formulae. The pseudospots and spatial transcriptomic 
data are jointly provided as inputs for the domain 
adaptation in CellDART [10].

Performance evaluation of spSeudoMap
The capability of spSeudoMap to predict the spatial 
composition of cell subpopulations was assessed in the 
three different datasets. In human DLPFC tissue, the 
accuracy of the model to localize 10 layer-specific excit-
atory neuron types to corresponding cortical layers was 
measured by receiver operating characteristic (ROC) 
analysis. The layer annotation of each spatial transcrip-
tomic spot (layers 1 to 6 and WM) offered by the paper 
was considered a gold standard of spot identity [20]. 
The area under the ROC curve (AUROC) was calculated 
to explain the performance across all neuron types. For 
instance, a fraction of Ex_3_L4_5, the cell type known 
to be highly localized in layers 4 and 5 is predicted in 
all spots, and the “sensitivity” and “1 – specificity” 
of classifying a spot as belonging to layers 4 and 5 are 
plotted for every threshold value. The AUROC is calcu-
lated and it represents the performance of the model in 
Ex_3_L4_5. In the case of the mouse brain sample, the 
spot clusters were named after the anatomical region, 
and the spatial distribution of region-specific excita-
tory neuron types across the clusters was examined. To 
further assess the performance of spSeudoMap in brain 
tissues, the spatial distribution of pseudotype fraction 
estimated from spSeudoMap was compared with the 
spatial expression pattern of missing cell type markers. 
The missing cell type markers were discovered by per-
forming differential gene expression analysis between 
excitatory neurons and others in unsorted single-cell 
data containing whole cell types. Wilcoxon rank-sum 
test was implemented and the Bonferroni method was 
applied for multiple comparison corrections. The top k 
(the number of pseudotype markers) genes showing the 
highest log2 fold change were selected and the module 
score was calculated. Spearman’s correlation coefficient 
was computed between the predicted pseudotype frac-
tion and the module score across all spots. Finally, in 
human breast tissue, the spatial localization patterns of 
the top immune cell subpopulation were mapped. The 
spatial correlation patterns were evaluated by Spear-
man’s correlation coefficient and visualized with a 
heatmap.

The performance of spSeudoMap was compared in 
two different aspects. First, the spSeudoMap was tested 
whether it is superior to existing cell type decomposition 
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methods (CARD, CellDART, Cell2location, DSTG, 
RCTD, and SPOTlight) in mapping the cell types in 
the situation that single-cell transcriptomic data only 
has subpopulation of cell types. The count matrix for 
selected cell types from the single-cell dataset of human 
DLPFC was provided as an input for the decomposition 
tools. CARD predicts spatial cell composition based on 
non-negative matrix factorization (NMF) and considers 
spatial correlation by a conditional autoregressive model 
[12]. Spots with a total count of less than 100 and genes 
with the number of spots showing a non-zero count of 
less than 5 were excluded from the analysis. CellDART 
decomposes spatial cell proportions based on domain 
adaptation [10]. The numbers of sampled cells in the 
cell mixture were set to 8 and 10 in brain and breast 
cancer tissues, respectively. The number of markers per 
cell cluster was set to 20. Cell2location predicts spatial 
cell proportion based on the Bayesian statistical model 
[11]. The expected cell abundance in each spatial spot 
was set to 8 in the brain tissue. The number of iterations 
was 30,000, and default values were given to the rest of 
the parameters in the model. DSTG constructs a linked 
graph between the spatial data and cell mixture created 
from single-cell data and applies a graph neural net-
work to estimate spatial cell fraction [9]. RCTD predicts 
spatial cell compositions using maximum-likelihood 
estimation based on Poisson distribution [6]. The dou-
blet mode was set to “full mode” which does not limit 
the number of cell types in the spots. SPOTlight utilizes 
NMF with regression to estimate the spatial distribution 
of cell types [8]. A total of 100 cells were randomly sam-
pled from each cell cluster in single-cell data to enhance 
the computational speed. For all methods, the default 
parameters suggested in the user guide were applied for 
analyses.

Second, cell subpopulation mapping results by spSeu-
doMap were compared with the reference spatial map of 
cell types. As a surrogate to the real spatial distribution, 
the reference map was defined as spatial cell composition 
predicted using the unsorted single-cell dataset covering 
all cell types. It was presumed that the closer the spatial 
distribution of cell types obtained from spSeudoMap 
is to the reference map, the higher the performance of 
spSeudoMap. CellDART and Cell2location were selected 
as methods for obtaining the reference map since they 
showed similar high accuracy in localizing the layer-spe-
cific excitatory neurons [10, 11].

Exploration of optimal parameter range in spSeudoMap
The key parameters for spSeudoMap are the number of 
markers per single-cell cluster (n), the ratio of the total num-
ber of single-cell to pseudotype markers (m/k ratio), and the 
mean and standard deviation of the presumed pseudotype 

fraction in spatial spots (M′ and σ′). The performance of the 
spSeudoMap was tested across the various parameters in 
human DLPFC datasets (slide number: 151676). Since the 
proportion of 10 layer-specific excitatory neurons was 0.53 
among the single-cell data, M′ was set to 0.47. The cortical 
layer annotation in spatial data was used as a reference, and 
the layer discriminative accuracy of the predicted neuron 
fraction was assessed by AUROC. In general, spSeudoMap 
was capable of stably predicting the spatial distribution of 
neuron subpopulations with a median AUROC over 0.5 
with n larger than 20, m/k larger than 1, and σ′larger than 
0.05 (Additional file 1: Fig. S2). The corresponding param-
eter ranges were selected for the downstream analyses. For 
the human brain (slide 151673) and mouse brain tissues, 
n was set to 80, the m/k ratio to 4, and σ′to 0.1. In human 
breast cancer tissue, n was set to 40, the m/k ratio to 2, and 
σ′to 0.1. In brain tissues, M′ was assigned based on the pro-
portion of non-excitatory neurons in the unsorted single-
cell data containing all cell types and in breast cancer tissue, 
based on the proportion of non-immune cells (human 
brain: 0.47, mouse brain: 0.67, and breast cancer: 0.83). 
Other parameters for the domain adaptation were given as 
the user guidelines of CellDART [10].

Results
Scheme of spSeudoMap
spSeudoMap estimates the spatial map of the cell popu-
lation by integrating spatial transcriptomic data with 
unmatched single-cell data which explains the subpopu-
lation of cells in the tissue. The cell type and composi-
tion unmatch between the two datasets are modeled by 
creating a cell mixture, “pseudospot,” that contains not 
only cell types in single-cell data (“target types”) but 
also cell types exclusively present in spatial data (“pseu-
dotypes”). Then, the proportion and expression of the 
pseudotypes are designated based on both transcrip-
tomics data (Fig.  1). First, pseudobulk gene expression 
profiles are computed from both datasets. The top genes 
highly expressed in spatial transcriptomics data com-
pared to single-cell data are selected as virtual pseudo-
type markers. These markers represent cell types that 
are not included in scRNA-seq data. Next, a pseudotype 
fraction in spatial spots is estimated by calculating mod-
ule scores of pseudotype markers. Then, the pseudotype 
proportion and expression profiles in the cell mixture 
are designated by referencing the presumed pseudo-
type fraction and expression in a randomly selected spa-
tial spot. The target cell type portion of the mixture is 
filled with randomly sampled cells from single-cell data. 
Finally, the pseudospot is considered a reference dataset 
for the domain adaptation model CellDART [10].

In contrast to CellDART, even when single-cell 
data only explains a portion of cell types in the tissue, 
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spSeudoMap estimates information of missing cell type 
in single-cell compared to spatial transcriptomic data-
sets to create pseudospots that closely mimic real spa-
tial spots. It is expected to minimize the domain shift 
between spatial data and pseudospots and maximize 
the performance of the domain adaptation suggested in 
CellDART.

Mapping the excitatory neuron subpopulation 
in the human brain with spSeudoMap
The capability of the method, spSeudoMap, was 
assessed in the Visium spatial transcriptomic data of the 
human dorsolateral prefrontal cortex (DLPFC). First, 
10 layer-specific excitatory neuron types were selected 
from the single-cell data of the human brain (for con-
venience, single-nucleus RNA-seq data were also called 

single-cell data) (Additional file 1: Fig. S3), and the cell 
subpopulation was jointly analyzed with the spatial 
data (slide no. 151673). Notably, the physical sorting of 
excitatory neurons did not precede scRNA-seq. Instead, 
for simulation purposes, excitatory neuron subpopula-
tions were manually selected from the whole scRNA-
seq data, and the cell types were mapped to the spatial 
transcriptomic data. Overall, the cell types were highly 
localized to the corresponding cortical layers (e.g., lay-
ers 4 to 5 for Ex_3_L4_5), although Ex_1_L5_6 and 
Ex_8_L5_6 showed uneven distribution patterns within 
the same layer (Fig. 2A).

Performance stability of spSeudoMap in the human brain
The capability of spSeudoMap to stably predict the spa-
tial map of cell subpopulations using single-cell data 

Fig. 2  Decoding spatial maps of layer-specific excitatory neurons in the human brain. A The composition of ten excitatory neuron types in the 
human brain was predicted by spSeudoMap. The estimated cell fraction was spatially mapped to the tissue and visualized with colored bars. 
Overall, the spatial distribution of layer-specific neuron types was restricted to the corresponding cortical layer (layers 1 to 6). B The performance 
was measured by calculating the layer discriminative accuracy of the predicted layer-specific neuron fraction. It was represented by the area under 
the receiver operating characteristic curve (AUROC). The AUROC values of spSeudoMap in 10 cell subtypes were visualized with barplots and 
compared with those of CARD, CellDART, Cell2location, DSTG, RCTD, and SPOTlight. All methods were implemented using the simulated single-cell 
data of excitatory neuron subpopulations. In contrast to other methods, spSeudoMap showed a more stable performance represented by AUROC 
over 0.5 across all neuron types
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with varying cell composition. To test whether spSeu-
doMap is stable even when the composition of single-
cell data deviates from that of spatial data, cells are 
randomly sampled from the excitatory neuron subpop-
ulation of single-cell data with unequal probabilities. 
The number of cells in each cell type is altered within 
the range of ±30% and the probability of a cell being 
selected is assigned proportionally to the modified cell 
numbers of the cell types. Also, the number of cells 
sampled from the single-cell dataset (n) is modified (4, 
8, 16, and 32) to test the stability of the performance. It 
is to mimic the condition in which certain cell types are 
depleted or enriched due to cell dissociation or to simu-
late spatial heterogeneity of the tissue [18]. The stability 
was tested for 20 different cell sampling probabilities in 
each n value. When n was from 4 to 32, which is a plau-
sible range of the number of cells in each spatial tran-
scriptomic spot, the layer discriminative accuracy of 
predicted cell fraction represented by median AUROC 
was above 0.5 for all excitatory neuron types (Additional 
file 1: Fig. S4). In summary, spSeudoMap presented sta-
ble performance although cell composition and diversity 
in single-cell data were altered across the wide range.

Comparison across cell type mapping tools using 
subpopulations in the human brain
The 10 excitatory neuron subpopulation of single-cell 
data and spatial data were integrated using spSeudoMap, 
CARD, CellDART, Cell2location, DSTG, RCTD, and 
SPOTlight tools, and the spatial composition of neurons 
was predicted (Additional file 1: Fig. S5). It was intended 
to compare the performance of spSeudoMap with the 
existing cell type deconvolution methods when there is 
a mismatch of cell types between both transcriptomic 
datasets. First, in CellDART, Ex_3_L4_5 and Ex_10_L2_4 
had lower cell fractions in the corresponding corti-
cal layers than in other layers. Second, in Cell2location, 
Ex_1_L5_6 and Ex_9_L5_6 had opposite patterns of dis-
tribution, with higher cellular abundance in layers other 
than 5 and 6. Third, in SPOTlight, Ex_3_L4_5 and Ex_9_
L5_6 revealed nonspecific patterns of spatial distribution. 
Last, in CARD, DSTG, and RCTD, more than half of the 
cell types showed lower cell fractions in the expected lay-
ers than in other locations.

To measure the layer discriminative accuracy of the 
predicted cell fraction, an AUROC was calculated, con-
sidering layer annotation as a reference. The AUROC 
was compared across the seven methods (Fig.  2B), and 
spSeudoMap showed superior performance than CARD, 
CellDART, Cell2location, DSTG, RCTD, and SPOTlight 
in 100, 80, 70, 70, 90, and 70% of cell types. In summary, 
within the optimal parameter range, spSeudoMap pre-
sented more stable performance across all cell types in 

the neuron subpopulation compared to other existing 
computational methods.

Deciphering the excitatory neuron composition 
in the mouse brain with spSeudoMap
The performance of spSeudoMap was evaluated in cor-
onal sections of the mouse brain (Additional file  1: Fig. 
S6). First, the two cell type deconvolution tools, Cell-
DART and Cell2location, which showed comparable 
high performance in the previous study [10], were tested 
on the original single-cell data containing all cell types 
(Additional file  1: Fig. S7A). The two prediction results 
were considered reference standards for assessing spSeu-
doMap. In both methods, the region-specific neurons 
showed spatially restricted patterns according to their 
expected spatial predominance (Additional file 1: Fig. S8).

The excitatory neuron subpopulation was selected 
as a simulation of sorted scRNA-seq data (Additional 
file  1: Fig. S7B) and spatially mapped to the brain with 
spSeudoMap (Fig. 3A). The 8 cell types showed a highly 
restricted distribution with a similar spatial predomi-
nance as the reference results (Fig.  3B and Additional 
file  1: Fig. S9). Other cell types were also mapped on 
the mouse coronal section data and compared with 
the reference results (Additional file  1: Fig. S10). Some 
of the neuron types having a low fraction (<0.05) esti-
mated by spSeudoMap were distributed not only in the 
expected regions but also in the regions outside of inter-
est. According to the results, spSeudoMap was capable of 
precisely predicting the spatial compositions of the main 
cell types composing the cell subpopulation.

Elucidating cellular heterogeneity in human breast cancer 
with spSeudoMap
spSeudoMap was assessed in breast cancer tissue, 
which has a high level of heterogeneity. We mapped cell 
types of spatial transcriptomics of human breast can-
cer using two different scRNA-seq datasets: one data-
set with unsorted whole-cell types and another dataset 
obtained after CD45+ cell sorting. The prediction 
results of CellDART obtained using all cell types in the 
unsorted single-cell data were considered a reference 
(Additional file  1: Fig. S11A). Immune cell types from 
CD45+ sorted single-cell data (Additional file  1: Fig. 
S11B) were spatially mapped to human breast cancer 
tissue using spSeudoMap. For macrophages, which are 
the immune cell type with the highest proportion in the 
tissue (Additional file 1: Fig. S11B), the spatial cell com-
positions were similar between spSeudoMap and the 
reference results from CellDART (Fig. 4A, B). Addition-
ally, CD4+ T cells and B cells showed similar spatial pat-
terns with positive spatial correlation (Fig. 4C), although 
B cells in the two single-cell datasets indicated different 
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cell subtypes. However, the spatial localization patterns 
of CD8+ NKT-like cells, one of the minor cell types in 
scRNA-seq data, were different between spSeudoMap 
and the reference. Finally, to investigate the spatial 
interaction between the immune cells, the pairwise cor-
relations between the cell fractions predicted by spSeu-
doMap were computed and visualized with a heatmap 
(Additional file 1: Fig. S12). Spatial correlation patterns 
were highly similar between one of the macrophage 
subtypes and memory CD4+ T cells. Additionally, high 
proximities were observed between another subtype of 

macrophages and CD8+ NKT-like cells. These findings 
implicate the spatial interaction of macrophages with T 
cells in the tumor tissue [39]. In short, spSeudoMap can 
be applied to decipher complex tumor microenviron-
ments and to understand spatial interactions between 
cell subpopulations.

Discussion
Exploring the spatial composition of infiltrating cells in 
tissues provides a key to understanding the molecular 
mechanism underlying the functional changes. In recent 

Fig. 3  Predicting the spatial composition of region-specific neuron types in the mouse brain. A The proportion of the representative region-specific 
neuron types was estimated by spSeudoMap and mapped to the mouse brain. Overall, the 8 neuron types presented were predominantly 
localized to the corresponding anatomical locations. B Spatial spots were clustered based on their gene expression profiles, and the spot clusters 
were named after the anatomical locations. The predicted neuron fraction was highly distributed according to anatomical location. Ext_L25 
to the mid-cortical layer, Ext_23 to the outer cortical layer, Ext_L56 to the inner cortical layer, Ext_Hpc_CA1, Ext_Hpc_CA3, and Ext_Hpc_DG1 
to the hippocampus, Ext_Thal_1 to the thalamus, and Ext_Pir to the amygdala or piriform cortex area. Amy: amygdala, Amy_Pir: amygdala or 
piriform cortex, Cor_out: outer cortex, Cor_mid: mid cortex, Cor_in: inner cortex, CP: caudoputamen, EP: ependyma, Hippo: hippocampus, Hypo: 
hypothalamus, Men: meninges, Thal_lat: lateral thalamus, Thal_med: medial thalamus, and WM: white matter
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years, the crosstalk between immune cells and cancer 
cells has been highlighted as a major player in the devel-
opment of tumor microenvironments [14]. Additionally, 
the complex interactions between the peripheral and 
central immunities are considered crucial for the pro-
gression of various neuroinflammatory diseases [15]. As 
a breakthrough to the research questions, the integration 
of spatial transcriptomics with the single-cell data of cell 
subpopulations can provide a cellular landscape of the 
few cell types, such as immune cells, in highly heteroge-
neous tissues.

Compared to the existing approaches, spSeudoMap, 
which is specialized in tracking the spatial distribution 

of subclusters of specific cell types, is more appropri-
ate for capturing the transcriptomic changes in a few 
cell populations. The main contribution of the method 
is that it enables the mapping of cell subtypes explained 
in sorted scRNA-seq data to spatial transcriptomic data 
based on the pseudobulk approach of modeling the miss-
ing information in single-cell data. First, spSeudoMap 
was assessed in brain tissues, and the main region-spe-
cific excitatory neuron types could be accurately mapped 
according to anatomical locations (Figs. 2 and 3). Particu-
larly in human brain tissue, the prediction results were 
stable even when the cell compositions deviated in sin-
gle-cell data (Additional file 1: Fig. S4). The application of 

Fig. 4.  Exploring the spatial heterogeneity of immune cells in human breast cancer tissue. A The spatial composition of immune cells in human 
breast cancer was predicted by integrating spatial data with single-cell data covering all cell types. The results from CellDART were considered a 
reference for comparison with spSeudoMap. B The spatial composition of the immune cell types was predicted by spSeudoMap using CD45+ 
sorted single-cell data and visualized on the tissue. Macrophages (sum of macrophage_1, macrophage_2, and macrophage_3), memory CD4 T 
cells, and B cells showed similar spatial distributions, while CD8 NKT-like cells presented different patterns. C The scatter plots show the correlation 
between the cellular proportion predicted by spSeudoMap with sorted single-cell data and that estimated by CellDART with an unsorted 
single-cell dataset covering all cell types (reference). Spearman’s correlation coefficients and statistical significance (p-value) were calculated and 
are presented in the top-left corner of each plot. The correlation between CellDART and spSeudoMap was the highest in macrophages (the sum of 
macrophage_1, macrophage_2, and macrophage_3). Other cell types also showed weak but positive correlations except for CD8+ NKT-like cells, 
which showed a negative correlation
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spSeudoMap could be extended to human breast cancer 
tissue to estimate the spatial distribution of immune cell 
types (Fig. 4). The predicted spatial patterns of the major 
immune cell populations were well correlated with the 
reference results, in which original single-cell data with 
all cell types were utilized for integration.

One of the key features of spSeudoMap is that it 
assumes the virtual cell types, pseudotypes, which are 
absent in single-cell data but present in the spatial data. 
Then, it finds markers of the pseudotypes by considering 
single-cell and spatial data as bulk sequencing datasets 
(Fig. 1). Moreover, spSeudoMap predicts the pseudotype 
fraction in each tissue domain and adopts the informa-
tion to model the reference dataset, pseudospots. These 
processes along with domain adaptation estimate the 
missing information in single-cell transcriptomic data, 
thereby correcting the cell types and composition mis-
match between single-cell and spatial data. This capa-
bility of the spSeudoMap could be further validated in 
brain datasets. The unsorted single-cell datasets from the 
brain contain whole cell types in the tissue, and missing 
cell type markers can be acquired by finding differential 
expressed genes between excitatory neurons and other 
populations. The spatial enrichment patterns of missing 
cell type markers of the single-cell data showed a posi-
tive correlation with the pseudotype fraction predicted 
by spSeudoMap (Additional file 1: Fig. S13). In contrast 
to spSeudoMap, most of the existing methods utilize cell 
type signatures solely extracted from the single-cell data-
sets of cell subpopulations, and it will be biased to select 
the genes differentially expressed inside of the cell sub-
set. Thus, the signatures would not well represent the real 
expression profiles of cell types in the tissue. This may 
result in an imprecise estimation of the cellular composi-
tion. In this regard, some layer-specific excitatory neuron 
types showed nonspecific distribution when the single-
cell data of cell subpopulations was directly given as an 
input to the existing methods (Additional file 1: Fig. S5). 
Although CARD utilizes spatial correlation of cell com-
position and adjusts the mismatch between single-cell 
and spatial data, many of the neuron types did not show 
layer-specific patterns of distribution.

As in the aforementioned simulation examples (Figs. 2 
and 3), spSeudoMap can be applied to investigate the 
spatial compositions of the cell subtypes of a certain 
cluster. When the original single-cell data are composed 
of finely defined clusters and the clusters are closely 
located in terms of gene expression, their marker genes 
will largely overlap. It may interfere with the precise com-
putation of cell fractions with the existing deconvolu-
tion tools. In that case, spSeudoMap can be applied as an 
alternative, and the selected cell subtypes and their count 
matrix are provided as inputs to the model. Furthermore, 

spSeudoMap can be directly applied to enriched single-
cell data in which certain cell types are collected from 
multiple samples by cell sorting strategies, e.g., immune 
cells using CD45+ sorting. Otherwise, cell types that are 
not of interest are removed during data processing and 
specific clusters of single-cell data are selected to create 
the spatial map of the specific cell types.

There are additional considerations when implement-
ing spSeudoMap to predict the spatial composition of 
the cell subpopulation. Among the main parameters 
of the model, the mean of the presumed pseudotype 
fraction (M′) must be given to generate pseudospots. 
For the single-cell data obtained from the cell sorting 
experiments, M′ can be considered a fraction of the 
negative population during the sorting. Alternatively, 
M′ can be determined based on the literature evidence 
that explains the cell type proportion. In fact, spSeu-
doMap is a generalized form of CellDART, and it flex-
ibly models various situations. If the single-cell and 
spatial transcriptomic datasets have highly similar cell 
types, the mean and standard deviation of the pseudo-
type fraction can be set to 0, and then spSeudoMap is 
identical to CellDART. When both datasets have sig-
nificantly different cell types, only the shared cell types 
can be selected, and their proportions and expression 
profiles can be given as inputs. In that case, M′ will 
be closer to 1 than 0. Meanwhile, in spSeudoMap, the 
distribution of the pseudotype fraction is assumed to 
be linearly proportional to the gene set enrichment 
score of the top pseudotype markers. Although the 
real distribution may be different, the domain adapta-
tion process could manage the discrepancy between 
the pseudospots and spatial datasets (Additional file 1: 
Fig. S13). In addition, there may be a concern that 
the pseudotype markers extracted by the pseudobulk 
approach may contain nonspecific housekeeping genes 
which account for a major proportion of the total count 
in the tissue. When the Gene Ontology (GO) analysis 
was performed for the estimated pseudotype markers 
in brain and breast cancer tissues [40, 41], the markers 
were not associated with housekeeping gene sets such 
as cell proliferation and metabolism (Additional file  1: 
Fig. S14). In addition, since the pseudotype marker is 
used to determine approximately how much propor-
tion the cell types of single-cell data occupies in a spot, 
the purpose is to estimate the approximate amount of 
the “target cell types” rather than to identify the genes 
not included in single-cell data. Last, when the rare 
cell types are mapped to the tissue, the cellular frac-
tion may be overestimated in the regions outside those 
of interest, and the region-specific localization pat-
terns may be less prominent. In addition, when the 
single-cell data contain additional cell types compared 
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to the spatial data, as in the basophils and effector 
CD8 T cells in sorted single-cell data of breast cancer 
(Additional file  1: Fig. S11B), the prediction of minor 
immune cell fraction may be affected. Thus, caution is 
required when interpreting the results for the rare cell 
population.

Conclusions
The spSeudoMap is a robust model to estimate the spa-
tial configuration of cell subtypes explained by sorted 
scRNA-seq data in tissues with a high level of heteroge-
neity. It can be further utilized to describe the perturba-
tion of complex intercellular interactions during disease 
progression, therefore capturing the spatial dynamics of 
pathophysiology.
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