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Abstract 

Background:  Acidosis frequently occurs in severe acute kidney injury (AKI), and continuous renal replacement 
therapy (CRRT) can control this pathologic condition. Nevertheless, acidosis may be aggravated; thus, monitoring is 
essential after starting CRRT. Herein, we addressed the longitudinal trajectory of acidosis on CRRT and its relationship 
with worse outcomes.

Methods:  The latent growth mixture model was applied to classify the trajectories of pH during the first 24 hours and 
those of C-reactive protein (CRP) after 24 hours on CRRT due to AKI (n = 1815). Cox proportional hazard models were 
used to calculate hazard ratios of all-cause mortality after adjusting multiple variables or matching their propensity 
scores.

Results:  The patients could be classified into 5 clusters, including the normally maintained groups (1st cluster, 
pH = 7.4; and 2nd cluster, pH = 7.3), recovering group (3rd cluster with pH values from 7.2 to 7.3), aggravating group 
(4th cluster with pH values from 7.3 to 7.2), and ill-being group (5th cluster, pH < 7.2). The pH clusters had different 
trends of C-reactive protein (CRP) after 24 hours; the 1st and 2nd pH clusters had lower levels, but the 3rd to 5th pH 
clusters had an increasing trend of CRP. The 1st pH cluster had the best survival rates, and the 3rd to 5th pH clusters 
had the worst survival rates. This survival difference was significant despite adjusting for other variables or matching 
propensity scores.

Conclusions:  Initial trajectories of acidosis determine subsequent worse outcomes, such as mortality and inflamma‑
tion, in patients undergoing CRRT due to AKI.
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Introduction
Acute kidney injury (AKI) is a critical factor in increas-
ing the mortality of critically ill patients admitted to 
the intensive care unit (ICU) [1–5]. Continuous renal 
replacement therapy (CRRT) is a rescue measure for 

patients with both unstable vital signs and severe AKI. 
The number of AKI cases requiring CRRT has increased 
to more than 150,000 in the United States over the past 
few decades [6]. Despite advances in CRRT technology, 
the patient outcomes of CRRT due to AKI are still worse 
[4, 5, 7–10]. Although guidelines exist for CRRT imple-
mentation [11–13], CRRT-related complications can 
occur, and initiating CRRT does not always guarantee a 
survival advantage, which indicates the importance of an 
individualized approach [14–17].
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Metabolic acidosis is an important feature in severe 
AKI [7, 18]. This pathologic condition is attributable 
to decreased excretion of nonvolatile acids via urina-
tion and decreased renal synthesis of bicarbonates 
[19]. CRRT can successfully control metabolic acido-
sis, and exogenous bicarbonates may be added during 
CRRT. Nevertheless, incomplete correction frequently 
occurs, perhaps because of less correction by CRRT or 
high production of acids by patient aggravation. Previ-
ous studies have investigated the correlation between 
pH and mortality in patients receiving CRRT [7, 18], 
and initial pH on CRRT was related to subsequent 
high mortality.

To date, no studies have considered the acidosis 
trend and its relationship with outcomes after starting 
CRRT. Herein, we aimed to address this issue by clus-
tering the first 24-hour trajectories of pH on CRRT, 
and identified that certain trajectory groups had high 
mortality outcomes despite adjusting multiple vari-
ables or matching propensity scores. Furthermore, 
the pH trends determined the subsequent trend of 
systemic inflammation evaluated with high sensitivity 
C-reactive protein (CRP) levels, which might contrib-
ute to mortality differences.

Methods
Patients and data collection
A total of 2397 patients undergoing CRRT due to AKI 
were retrospectively reviewed at Seoul National Uni-
versity Hospital from June 2010 to December 2020. 
Patients who were aged < 18 years (n = 24) and who 
had end-stage kidney disease at the time of initiating 
CRRT (n = 91) were excluded. Patients who underwent 
arterial blood gas analysis less than 5 times in the first 

24 hours after the initiation of CRRT (n = 467) were also 
excluded. Accordingly, 1815 patients were included in 
the analyses (Fig. 1). The study design was approved by 
the institutional review board of Seoul National Uni-
versity Hospital (No. H-2110-085-1262) and compiled 
with the Declaration of Helsinki. Informed consent was 
waived under approval.

Baseline data were collected, such as age, sex, weight, 
cause of AKI (e.g., septic and nonseptic), ICU division, 
use of inotropes, application of mechanical ventilation, 
type of central catheter, setting of CRRT (e.g., blood flow 
rate, target dose, and ultrafiltration), use of bicarbonate 
ampoules, and anuria status. The severity of illness was 
evaluated using the Charlson comorbidity index (CCI) 
[20], sequential organ failure assessment (SOFA) [21], 
and acute physiology assessment and chronic health eval-
uation (APACHE) II [22]. The primary outcome was all-
cause mortality after starting CRRT. The high-sensitivity 
CRP levels were measured after 24 hours until 72 hours 
to determine the correlation with the first 24-hour pH 
trends.

Statistical analysis
Baseline characteristics are described as proportions 
and means ± standard deviations when categorical and 
continuous variables were normally distributed and 
as medians with interquartile ranges when they were 
not normally distributed. The normality of the distri-
bution was analyzed using the Kolmogorov–Smirnov 
test. A chi-square test or Fisher’s exact test was used 
to compare categorical variables. Student’s t test or the 
Mann–Whitney U test was used for continuous vari-
ables with or without a normal distribution, respec-
tively. ANOVA with post hoc analysis was used to 

Fig. 1  Flow diagram for study subjects. ABGA, artery blood gas analysis
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evaluate the difference in baseline characteristics. The 
latent growth mixture model was applied to classify 
the trajectory of change in pH and CRP. To reflect the 
goodness of fit of the linear-linear latent growth mix-
ture model, the Akaike information criterion, Bayesian 
information criterion, and sample-adjusted Bayesian 
information criterion were used. Cox proportional 
hazard models with and without stepwise adjustment 
of multiple variables were used to calculate the haz-
ard ratio (HR) of mortality outcomes. We tested the 
proportional hazard assumption using the Schoenfeld 
test. Kaplan–Meier survival curves were drawn, and 
differences in the curves were determined using a log-
rank test. Because many baseline parameters differed 
between groups, propensity score-based matching 
with inverse probability treatment weighting was addi-
tionally performed. All baseline variables were used to 
calculate propensity scores. A two-tailed P value less 
than 0.05 was considered statistically significant. All 
statistical analyses were performed using R software 
(version 4.1.2; R core team, Vienna, Austria).

Results
Baseline characteristics
The baseline characteristics are presented in Table 1. The 
mean age was 64 ± 15 years, and 62.8% of the patients 
were male. The proportion of septic AKI was 47.0, and 
51.7% of the patients were hospitalized in the medical 
ICU. Half of the patients used inotropes and approxi-
mately 80% of patients were supported by mechanical 
ventilations. Half of the patients used femoral catheters 
as vascular access. Their SOFA and APACHE II scores 
were 11.9 ± 3.7 and 26.2 ± 7.8, respectively. In total, 
pCO2 was 35.6 ± 12.5 mmHg. Partial pressure of carbon 
dioxide (pCO2) was significantly higher in the 5th clus-
ter compared to the 1st cluster (Table  S2), indicating 
that respiratory acidosis was superimposed or respira-
tory compensation was not performed in the 5th cluster. 
Anion gap and serum lactate level were 17.7 ± 7.9 mmol/l 
and 6.4 ± 5.1 mmol/l, respectively. Serum anion gap and 
lactate were highest in the 5th cluster among clusters. 
However, in contrary to pCO2, serum anion gap and 
lactate showed abnormal levels even in the 1st cluster, 

Table 1  Baseline characteristics of the patients

AKI Acute kidney injury, ICU Intensive care unit, MICU Medical intensive care unit, SICU Surgical intensive care unit, CPICU Cardio-pulmonary intensive care unit, EICU 
Emergency intensive care unit, DICU Disaster intensive care unit for covid-19 infection, UF Ultrafiltration, CCI Charlson comorbidity index, SOFA Sequential organ 
failure assessment, APACHE Acute physiologic and chronic health evaluation

Variables Total
(n = 1815)

1st cluster
(n = 575)

2nd cluster
(n = 748)

3rd cluster
(n = 186)

4th cluster
(n = 188)

5th cluster
(n = 118)

P for trend

Age (years) 64.1 ± 14.9 63.6 ± 15.7 64.0 ± 15.0 63.8 ± 14.9 65.1 ± 14.0 62.0 ± 15.1 0.567

Male (%) 62.8 61.6 61.8 58.6 68.6 72.9* 0.072

Weight (kg) 61.8 ± 13.3 61.6 ± 12.9 61.8 ± 13.0 60.3 ± 12.5 63.3 ± 13.2 66.0 ± 17.1† 0.046

Septic AKI (%) 47 41.7 45.2 58.2‡ 54.0* 53.2* < 0.001

ICU division (%) 0.069

  MICU 51.7 47.8 51.1 58.6‡ 57.4† 54.2‡

  SICU 19.1 21.2 19.4 11.8 18.1 19.5

  CPICU 12.7 17.2 14.6 4.3 6.4 1.7

  EICU 16.3 13.2 14.8 24.7 18.1 24.6

  DICU 0.3 0.5 0.1 0.5 0 0

Inotropics use (%) 48.9 49.9 46.8 52.2 48.9 51.7 0.892

Mechanical ventilator (%) 79.4 72.2 80.5‡ 86.0‡ 85.6‡ 88.1‡ < 0.001

Catheter (%) < 0.001

  Intrajugular 37.6 43.3 36.2* 33.3* 35.1 29.7*

  Femoral 52.2 48.3 53.6 53.8 52.7 59.3

  Others 10.1 8.3 10.2 12.9 12.2 11

Blood flow rate (ml/min) 110.9 ± 24.5 110.0 ± 25.2 111.4 ± 25.6 113.8 ± 25.7 112.7 ± 24.2 110.1 ± 23.8 0.986

Target dose (ml/kg/hr) 42.2 ± 15.2 41.3 ± 15.2 41.3 ± 14.7 43.6 ± 14.4 42.3 ± 13.3 41.8 ± 14.1 0.988

Target UF (ml/d) 0 (0–500) 0 (0–500) 0 (0–1000) 0 (0–500)† 0 (0–500) 0 (0–500)‡ < 0.001

Bicarbonate use (ample/d) 0 (0–4) 0 (0–0) 0 (0–4)‡ 4 (0–8)‡ 4 (0–8)‡ 4 (0–8)‡ < 0.001

Anuria (%) 27.9 23.3 24.9 38.3† 37.6† 35.5* 0.002

CCI score 3.3 ± 2.3 3.2 ± 2.2 3.4 ± 2.3 3.4 ± 2.4 3.5 ± 2.5 3.1 ± 2.3 0.849

SOFA score 11.9 ± 3.7 11.1 ± 3.6 11.9 ± 3.5‡ 12.2 ± 3.7‡ 13.0 ± 3.1‡ 13.2 ± 3.4‡ < 0.001

APACHE II score 26.2 ± 7.8 23.6 ± 6.8 25.5 ± 7.3‡ 28.8 ± 8.1‡ 29.1 ± 7.0‡ 30.9 ± 6.7‡ < 0.001
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Fig. 2  Clustering of pH trajectories during the first 24 hours after starting continuous renal replacement therapy. 1st cluster, consistently normal pH 
levels on CRRT; 2nd cluster, suboptimal pH trajectory with initial pH 7.3, and gradually approached 7.4; 3rd cluster, recovering acidosis from pH 7.2 to 
7.3; 4th cluster, aggravating tendency of acidosis from pH 7.3 to 7.2; 5th cluster, uncorrected pH trajectory less than 7.2

Fig. 3  Kaplan–Meier survival curves of pH clusters for all-cause mortality. 1st cluster, consistently normal pH levels on CRRT; 2nd cluster, suboptimal 
pH trajectory with initial pH 7.3, and gradually approached 7.4; 3rd cluster, recovering acidosis from pH 7.2 to 7.3; 4th cluster, aggravating tendency 
of acidosis from pH 7.3 to 7.2; 5th cluster, uncorrected pH trajectory less than 7.2
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suggesting that nonvolatile acids, such as lactate and 
phosphate, accumulated in all clusters (Table S2).

Clustering of acidosis trajectories
Patients were classified into 5 clusters based on the dis-
tinctive trends of pH (Fig. 2). The 1st cluster, accounting 
for 31.7% of patients, showed consistently normal pH 
levels on CRRT. The 2nd cluster, accounting for 41.2% 
of patients, had suboptimal pH trajectory with initial 
pH 7.3, and gradually approached 7.4. The 3rd cluster, 
accounting for 10.2% of patients, had recovering acido-
sis from pH 7.2 to 7.3. The 4th cluster (10.4% of patients) 
had an aggravating tendency of acidosis from pH 7.3 to 
7.2 in spite of performing CRRT. The 5th cluster (6.5% of 
patients) also had uncontrolled pH trajectory less than 
7.2 despite implementation of CRRT.

The variables of age, sex, ICU division, inotrope use, 
blood flow rate, target dose, and CCI score were not dif-
ferent among the 5 clusters (Table  1). Septic AKI was 
most common in the 3rd cluster, explaining 58.2% of the 
total number. The SOFA and APACHE II scores tended 
to increase in the groups with low pH values, such as the 
4th and 5th clusters. Mechanical ventilation was applied 
in 72.2% of the 5th cluster.

Association between acidosis trajectory and survival
During a median follow-up period of 10 days (inter-
quartile range, 3–28 days), 1193 patients (65.7%) died. 
The mortality incidence was 26.7 deaths per 1000 
patient-days. The all-cause mortality rates were 44.3, 
55.7, 74.2, 78.2 and 82.2% from the 1st cluster to the 5th 
cluster, respectively (P < 0.001). Fig.  3 shows Kaplan–
Meier survival curves of 5 clusters, and their curves 
were separated (P < 0.001). The mortality risk increased 
from the 1st cluster to the 5th cluster, irrespective of 
adjusting for multiple variables (Table  2). Because 
several baselines differed between the clusters, we 
matched propensity scores with two methods. Despite 
matching propensity scores, the mortality rates were 
different, similar to the above results (Table 3).

Association between acidosis and inflammation 
trajectories
To evaluate the subsequent inflammatory status, clus-
tering was performed using the CRP values between 1 
and 3 days on CRRT. A total of 3 clusters were identi-
fied by distinctive trends of CRP (Fig. 4). The 1st clus-
ter had a stationary trend of CRP, and the 2nd and 3rd 
clusters had an increasing trend of CRP. The Kaplan–
Meier curves showed the best survival rate in the 1st 
cluster. In contrast, survival rate was worst in 3rd clus-
ter (Fig. 5). As the pH trajectory approached the normal 

value of 7.4, the proportion of patients with a low CRP 
trajectory increased (Fig.  6). The results suggest that 
the association between acidosis trajectories and mor-
tality was partly attributable to subsequent inflamma-
tory status.

Discussion
Since AKI patients who require CRRT are in critical 
condition, clinicians need to consider the patient status, 
including vital signs, biochemical results, imaging tests, 
and medical history. Among these, acidosis is one that 

Table 2  Risk of mortality according to the acidosis trajectories

Model 1: Unadjusted

Model 2: Adjusted for age and sex

Model 3: Model 2 plus weight, septic AKI, ICU division, anuria, CCI, SOFA and 
APACHE II

HR Hazard ratio, CI Confidence interval

Models Groups HR (95% CI) P

Model 1 1st cluster Reference

2nd cluster 1.433 (1.220–1.683) < 0.001

3rd cluster 2.291 (1.816–2.890) < 0.001

4th cluster 2.700 (2.152–3.389) < 0.001

5th cluster 3.037 (2.254–4.093) < 0.001

Model 2 1st cluster Reference

2nd cluster 1.430 (1.217–1.680) < 0.001

3rd cluster 2.297 (1.820–2.899) < 0.001

4th cluster 2.716 (2.164–3.411) < 0.001

5th cluster 3.057 (2.269–4.120) < 0.001

Model 3 1st cluster Reference

2nd cluster 1.240 (1.010–1.521) 0.039

3rd cluster 1.542 (1.131–2.103) 0.006

4th cluster 1.842 (1.370–2.476) < 0.001

5th cluster 1.802 (1.208–2.686) 0.003

Table 3  Comparison of mortality after matching propensity 
scores

HR Hazard ratio, CI Confidence interval, IPTW Inverse probability treatment 
weighting, XG boost Extreme gradient boosting

Matching method Groups HR (95% CI) P

IPTW-logistic 1st cluster Reference

2nd cluster 1.120 (1.014–1.415) 0.034

3rd cluster 1.673 (1.217–2.299) 0.002

4th cluster 2.327 (1.781–3.040) < 0.001

5th cluster 2.138 (1.550–2.948) < 0.001

IPTW-XGboost 1st cluster Reference

2nd cluster 1.193 (1.011–1.408) 0.037

3rd cluster 1.640 (1.165–2.309) 0.005

4th cluster 2.348 (1.822–3.025) < 0.001

5th cluster 1.925 (1.328–2.789) 0.001
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Fig. 4  Clustering of trajectories in high sensitivity C-reactive protein between 24 and 72 hours after starting continuous renal replacement therapy. 
1st cluster, stationary trend of CRP less than 10 mg/dL; 2nd cluster, increasing trend of CRP between 15 and 20 mg/dL; 3rd cluster, increasing trend 
of CRP between 30 and 50 mg/dL

Fig. 5  Kaplan–Meier survival curves of high-sensitivity C-reactive protein clusters for all-cause mortality. 1st cluster, stationary trend of CRP less than 
10 mg/dL; 2nd cluster, increasing trend of CRP between 15 and 20 mg/dL; 3rd cluster, increasing trend of CRP between 30 and 50 mg/dL
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reflects hemodynamics, respiration, and tissue oxygena-
tion at once [23, 24]. Herein, acidosis trajectories were 
associated with subsequent mortality and inflammatory 
trends after starting CRRT. The relationship between aci-
dosis trajectories and outcomes was independent of other 
variables; thus, monitoring both initial and subsequent 
trends of acidosis is important in this patient subset.

The detrimental effect of acidosis on patient outcome 
has been documented, particularly in chronic kidney 
disease [25–27]. There is a consensus that metabolic aci-
dosis leads to insulin resistance, breakdown in skeletal 
muscle mass, and cardiovascular complications in addi-
tion to progression of kidney disease [28–30]. Obser-
vational studies have shown that metabolic acidosis is 
associated with risks of doubling of serum creatinine and 
all-cause mortality compared to the counterpart normal 
status [25, 29, 31, 32]. Small sample-sized clinical trials 
on alkali supplementation and dietary intervention have 
demonstrated the beneficial effect of correcting meta-
bolic acidosis on preserving kidney function in patients 
with chronic kidney disease [33–35].

Similar to chronic kidney disease, metabolic acidosis 
may be associated with poorer outcomes in AKI patients 
[36–39]. Acidosis would be both the cause and result 
of AKI [40]. Despite the complex relationship between 
acidosis and AKI, a linear relationship was observed 
between baseline pH and outcome in most studies [7, 
18]. Here, pH trajectories after starting CRRT were 
diverse, and some cases could not be recovered from aci-
dosis despite the same protocol on CRRT. Accordingly, 
the relationship between acidosis trajectories and mor-
tality outcomes was prominent, which indicates that the 

acidosis trend, in addition to initial acid-base status, is 
also important for determining the patient outcomes.

The process of acidosis begins with the formation of 
free radicals, which leads to oxidative stress and results 
in endothelial dysfunction; finally, cytokines are released 
that make it difficult to maintain an appropriate blood 
pressure level [41–44]. Furthermore, acidosis causes mal-
nutrition, which is primarily related to poor survival in 
patients with septic shock [45–47]. This pathophysiology 
of metabolic acidosis in AKI is similar to that of CKD, 
where persistent renal acidosis leads to cardiovascular 
complications, bone mineral disease, and CKD progres-
sion [25–27, 29, 30, 48, 49].

The present study has strengths, such as no miss-
ing values and concrete statistical analyses. Nonethe-
less, there are certain limitations to be discussed. First, 
because the study design was retrospective in nature, 
the results could not determine causality between aci-
dosis trajectories and outcomes. Selection bias and 
residual confounding factors might exist, although we 
used matching methods to overcome them. Second, 
other pH-related biochemical parameters, such as 
pCO2, anion gap, and lactic acid, were not traced, mak-
ing it difficult to interpret the independent relationship 
with outcomes. Nevertheless, we collected information 
such as baseline pCO2, anion gap, and lactate to dif-
ferentiate the early causes of acidosis in each pH clus-
ter. Finally, time-varying ICU cares, including shifts in 
catheter site, changes in CRRT settings, and inotropic 
dosage were not considered in the analysis.

In conclusion, acidosis trajectories determine subse-
quent worse outcomes, such as high mortality and systemic 

Fig. 6  Distribution of high-sensitivity C-reactive protein (CRP) clusters according to pH clusters. 1st cluster, stationary trend of CRP less than 10 mg/
dL; 2nd cluster, increasing trend of CRP between 15 and 20 mg/dL; 3rd cluster, increasing trend of CRP between 30 and 50 mg/dL
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inflammatory response in patients starting CRRT due to 
AKI. Accordingly, precise monitoring of acidosis on CRRT 
may be helpful to predict patient outcomes. However, 
randomized clinical trial is needed to determine whether 
pH correction during CRRT improves the survival rate 
in patients with specific pH groups and to overcome the 
limitation of retrospective nature. Future trials will address 
other clinical outcomes, such as renal recovery and venti-
lator weaning. Hopefully, the present results will be a con-
ceptual rationale for clinical trials with acidosis correction.
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