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Background
The basic preparation for an orthodontic treatment plan 
comprises taking radiographic films such as cephalomet-
ric and posteroanterior films, impressions of a patient’s 
study stone model, and a series of clinical photos. Clini-
cal intraoral and facial photos are useful for ortho-
dontists and are essential [1, 2] in the initial diagnosis 
procedure. Intraoral photographs provide a variety of 
information about tooth shape, alignment, and gingival 
status. Facial photos provide esthetic features of facial 
shape and relationship with teeth. Clinical photos can be 
used independently to check the conveying clinical fea-
tures, or they can be used with a combination of other 
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Abstract
Background  Taking facial and intraoral clinical photos is one of the essential parts of orthodontic diagnosis and 
treatment planning. Among the diagnostic procedures, classification of the shuffled clinical photos with their 
orientations will be the initial step while it was not easy for a machine to classify photos with a variety of facial and 
dental situations. This article presents a convolutional neural networks (CNNs) deep learning technique to classify 
orthodontic clinical photos according to their orientations.

Methods  To build an automated classification system, CNNs models of facial and intraoral categories were 
constructed, and the clinical photos that are routinely taken for orthodontic diagnosis were used to train the models 
with data augmentation. Prediction procedures were evaluated with separate photos whose purpose was only for 
prediction.

Results  Overall, a 98.0% valid prediction rate resulted for both facial and intraoral photo classification. The highest 
prediction rate was 100% for facial lateral profile, intraoral upper, and lower photos.

Conclusion  An artificial intelligence system that utilizes deep learning with proper training models can successfully 
classify orthodontic facial and intraoral photos automatically. This technique can be used for the first step of a fully 
automated orthodontic diagnostic system in the future.
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diagnostic materials like stone models and radiographic 
image measurements.

Most studies on artificial intelligence related to ortho-
dontics have focused on two [3–5] or three dimensional 
[6] digital radiograph films or numerical analyses with 
numbers which were already generated by humans [7, 
8]. However, to the best of our knowledge, only few stud-
ies [9] to date have focused on digital orthodontic pho-
tographs. Thus, this study might be in the first group 
regarding artificial intelligence to classify orthodontic 
digital clinical photos. Among the future automated diag-
nostic steps, the automated orientation classification of 
facial and intraoral photos fed in a randomized order will 
be the first step to apply artificial intelligence into digital 
orthodontics.

As artificial intelligence has emerged to provide a new 
paradigm in the dental and medical fields, deep learning 
technique, a subset of artificial intelligence that uses con-
volutional neural networks (CNNs) system, has gained 
popularity in the area of graphic image analysis. Deep 
learning is a part of machine learning that is designed 
to mimic the recognition system of the human brain 
while harnessing computing power of graphic processing 
units [10, 11]. It utilizes artificial neurons that calculate 
weighted inputs to generate a single integrated output 
value by a simple classifier model that is similar to human 
pattern recognition [12]. To date, numerous studies on 
deep learning with medical images have already been 
published, and some techniques (i.e., simple classifica-
tion of skin cancers by photos) are said to be as accurate 
as human experts [13, 14]. In the field of dentistry, stud-
ies on the automated detection of dental plaque [15] and 
radiographic cephalometric landmarks even up to 80 
landmarks [16], have been published. Among the algo-
rithms of deep learning, CNNs are reported to be com-
monly used [12] and well-suited for image processing 
including that of medical images [17, 18]. In particular, 
CNNs utilize a hierarchical structure for passing infor-
mation about prominent features to following layers 
while exploiting the spatially local correlations between 
them [19].

The aim of this study was to build a CNNs model for 
the image type classification of clinical orthodontic pho-
tos one by one including four facial photos (front, smile, 
three-quarter, and right profile) and five intraoral photos 
(front, upper, lower, left buccal, and right buccal). Com-
puterized training and validation of the model was per-
formed, followed by testing the prediction accuracy.

Methods
Subjects
In this study, total 4448 clinical photos from 491 patients 
who visited the Seoul National University Dental Hospi-
tal for orthodontic treatment were included. There were 

213 male and 278 female subjects, and the mean age was 
21.3, ranging from 5 to 51. The photos were extracted 
from the database according to their categories. Only 
patient’s age and sex were obtained from the meta-data. 
The raw files were stored in a separate storage in a single 
workstation without any personally identifiable informa-
tion. For the facial photos, the upper portion including 
the eye region was cropped to protect subject’s privacy.

Photographic procedure
Several different doctors took the digital photos and 
there exists no reference about which doctor took each 
set of photos; in other words, different doctors could 
have taken photos of the same patient. This may give a 
randomization power of diversity in photo quality. Facial 
photos in a single set consist of front, front smile, right 
profile, and three-quarter profile. The intraoral photo sets 
contain front, left buccal, right buccal, maxillary occlu-
sal, and mandibular occlusal views. All of these photos 
comprise the basic set of clinical photos taken in the 
Department of Orthodontics at Seoul National Univer-
sity Dental Hospital and include the recommended set of 
diagnostic orthodontic photography [20]. To encompass 
a variety of real clinical situations, dental conditions such 
as missing teeth, braces, removable appliances, or any 
kind of prosthesis were not excluded (Fig. 1).

Deep learning system settings
For computational processing, Python 3.6.4 program-
ming language was used in Microsoft Windows operat-
ing system. The deep learning model was constructed by 
using Keras 2.2.2 which utilizes Tensorflow-GPU 1.6.0 as 
a backend. An NVIDIA GeForce GTX1080 (8 GB RAM) 
with 16 GB system RAM workstation was used.

Datasets
The gathered learning set consists of 1,396 facial pho-
tos and 2,152 intraoral photos, and the prediction set 
consists of 400 facial photos and 500 intraoral photos 
(Table  1). Data labeling was initially performed by J.R., 
then K.L. manually confirmed the labeled assets. There 
was no confliction. The original photos were randomly 
transformed to expand the number of photos numerically 
that a maximum six graphically random processed pho-
tos were generated from each original photo. The trans-
formations involved one or more processes of translation, 
blurring, magnification, and rotation, yet the ranges were 
limited so as not to make it difficult for clinicians to dis-
tinguish them. In detail, a range from 0% to a maximum 
of 8% of shear, magnification, horizontal shift, vertical 
shift, and Gaussian blur with a radius of five pixels was 
applied. The validation set, consisted of individual photo 
data, was automatically and randomly divided from the 
total learning dataset without human intervention by 
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using internal functions of Keras and Python Scikit-learn 
package. This splitting was done by each photograph 
object. The ratio of the training and validation sets was 
75 to 25, which yielded 8,355 facial and 12,902 intraoral 
training images.

CNNs model architecture
Figure 2 depicts the overall CNNs model architecture for 
both facial and intraoral photo recognition. The train-
ing model is originally created which did not imple-
ment any pre-existing model. In the facial photo CNNs 
architecture, following the input layers, there are four 

Table 1  Number of photos of each category
Category Original Augmented Learning Set Prediction Test Set
Facial Front 322 2244 2566 100

Front Smile 349 2435 2784 100

Three-quarter 358 2497 2855 100

Right Profile 367 2569 2936 100

Mean 349 2436 2785 100

Total 1396 9745 11,141 400

Intraoral Upper 458 3206 3664 100

Lower 451 3157 3608 100

Right 415 2903 3318 100

Front 371 2588 2959 100

Left 457 3197 3654 100

Mean 430 3010 3441 100

Total 2152 15,051 17,203 500

Fig. 2   A basic network model structure consists of convolutional, pooling, dense, and dropout layers

 

Fig. 1  Examples of input photos. The different arrangements, alignments, appliances and statuses of teeth are shown
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convolution layers. All convolution layers follow with 
max pooling and dropout layers. Flatten, dense, drop-
out, and dense layers are present in sequence in the next-
to-last convolution layer group. For the intraoral photo 
CNNs architecture, the layers are connected in the fol-
lowing order: single convolution, max pooling, dropout, 
flatten, dense, dropout, and another dense layer. The 
original data is put through a series of two-dimensional 
convolution layers with a stride parameter of three. All 
activation methods are rectified linear units algorithms 
(ReLU) [21]. The max pooling layer is then used to shrink 
the dimensions of the input layer that reduces the flowing 
data size. The two-dimensional 128-by-128-pixel input 
data is reduced to 64 by 64 pixels and then transformed 
through a flattened layer and categorized into four or five 
classifications with a Softmax activation layer according 
to the facial or intraoral input data type.

Training and validation
Training the raw data sets were processed separately 
according to the facial and intraoral group. The Adam 
optimization method [22] and Categorical Cross-entropy 
loss function [18] were used. The training image data was 
fed to the model with a batch size of 32 and epoch of 50 
cycles. After the training process was completed, the vali-
dation process was conducted with the rest of the learn-
ing image data, which were different from the training 
data.

Prediction
The prediction procedure was performed with 100 clini-
cal photos in each category individually, which were 
not duplicates from either the training or the validation 
sets. The prediction dataset contains intraoral photos 
with orthodontic appliances such as braces, screws, and 
transpalatal arches. There were 24 out of 100 patients 
having any intraoral orthodontic appliances in the 

prediction group. The testing photos were analyzed one 
by one as a single object, not as a set of patient case. The 
photos fed were neither arbitrarily flipped nor rotated. 
The predicted results were printed out as plain text with 
the label of the most likely photo category.

Results
Training and validation procedure
At the end of the training procedure, the training accu-
racy reached 99.3% for facial photos and 99.9% for intra-
oral photos (Fig. 3). The numbers of photos in the total 
validation set were 2,786 for facial photos and 4,301 for 
intraoral photos, which were randomly divided from the 
original mixed set. The validation accuracy values were 
99.8% for both facial and intraoral photo classification.

Prediction procedure
The prediction procedure was performed independently 
from the learning procedure, which means there were 
no duplicated photos for learning and prediction testing. 
Therefore, it is possible to evaluate the real situation of 
classifying never-trained new clinical photos. Every pre-
diction test set consisted of photos from one hundred 
randomly picked patient cases that no patient case over-
lapped in the training dataset. The selection was made by 
patient case, not by photo object; hence the images were 
from one hundred different patients.

The mean rates of the successfully classified facial and 
intraoral photos were both 98.0%. Each successful clas-
sification rate is summarized in Table  2. In the classifi-
cation of the facial photos, the highest success rate was 
100.0% in detecting the right profile photos, and the low-
est success rate was 97.0% in recognizing the front and 
smile photos. For the intraoral photos, the upper and 
lower photo detection rates were 100.0%, which were the 
highest, while the intraoral front photo had a detection 
rate of 94.0%, which was the lowest.

Fig. 3  The learning curve of the training process. (A) Facial photo classification. (B) Intraoral photo classification
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Discussion
There have been attempts to use machine learning meth-
odology to help solve orthodontic problems like auto-
mated cephalometric landmarking and surgery versus 
non-surgery determination [8]. However, there had been 
a single study [9], to the best of our knowledge, to rec-
ognize and classify orthodontic clinical photos. In this 
study, we used a data augmentation technique with a 
lesser number of original photos compared to the previ-
ous study while maintaining a lightweight model struc-
ture. As labeling and annotating a large number of objects 
is a labor-intensive task, it would be a reasonable strategy 
to take a small number of samples for future practical 
implementation. This augmentation procedure was suit-
able for photo orientation classification because those 
photos are well standardized in general. In addition, the 
composition of patients’ photographs is also different 
from the previous article in that our dataset includes var-
ious conditions like orthodontic braces, screws, custom 
appliances, and combinations of them from any point 
during the treatment time.

Unlike a machine learning problem that calculates 
number data, problems regarding flat photos needs a 
different approach. To train a simple machine learn-
ing model to diagnose whether or not a patient needs 
a teeth extraction, for example, the operator may put 

previously calculated cephalometric analysis indices that 
are commonly used for deciding extractions, like an angle 
between A and B point (“ANB”), maxillary central inci-
sor to Sella to Nasion line angle (“SN”), and upper lip to 
E-line, etc. [23]. However, deep learning technique work 
with two-dimensional chromatic photos composed of 
multitudinous pixels gathered together to make one sin-
gle photo to be processed.

There will always be overfitting problems in the deep 
learning approach. Overfitting is generally expressed 
as good results on the training and validation sets but 
rather significantly decreased rates on the prediction set. 
This occurs when the model learns idiosyncratic features 
and memorizes parameters in more complicated pat-
terns, which fit well to the training data, but fails to gen-
eralize the feature patterns [12]. To minimize this issue 
while improving the success rate, this training model uses 
the dropout technique to intentionally reduce the best-
matching connection features, and augmentation of the 
input data as well [24]. For the augmentation, we imple-
mented some degree of random transformation to inflate 
the sample photo number from 1,396 to 11,141 for facial 
photos and from 2,152 to 17,203 for intraoral photos.

The reason for the relatively lower success rate in dis-
tinguishing the front facial and smile photos among the 
other facial photos may be attributed to the only minor 
difference between smiling and non-smiling, espe-
cially because we request patients to pose a light smile 
(Fig.  4A). Although the exact underlying mechanism of 
how the deep learning model makes its decisions has 
been barely known due to its nature [25], we assume that 
the model recognizes at least morphological differences 
like an outline of objects or color differences, lip contour, 
or white teeth exposure when smiling, which might not 
truly understand what ‘smiling’ means.

In addition, though still more than nine out of ten, the 
relatively lower resulting detection rate for front intraoral 
photos may be due to classification predisposition toward 
the left or right side, and due to the fact that the model 
may not explicitly distinguish the central incisors, which 
can be used for a reference vertical line. For example, in 
Fig. 4B, the unusual arrangement of anterior teeth images 

Table 2  Prediction test success rate. Total mean 98.0%
Category Test Photos Success 

Count
Suc-
cess 
Rate 
(%)

Facial Front 100 97 97

Front Smile 100 97 97

Three-quarter 100 98 98

Right Profile 100 100 100

Mean 98.0

Intraoral Upper 100 100 100

Lower 100 100 100

Right 100 99 99

Front 100 94 94

Left 100 97 97

Mean 98.0

Fig. 4  Examples of wrong predictions. (A) Facial smile photo that was classified as a front photo (cropped from the raw image). (B) Intraoral front photo 
that was classified as an intraoral right photo. (C) Intraoral left photo that was classified as an intraoral front photo
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is sparsely fed so that it may reduce the probability of the 
correct prediction. A poorly taken clinical photo also 
could be one of the factors for prediction failure (Fig. 4C). 
However, the incorrectly predicted photos did not show a 
significant disposition of errors.

Most patients visiting orthodontic clinics have clinical 
photos taken at least once [26]. Unquestionably, clinical 
photos are key in diagnosing patients along with radio-
graphs and study cast models [27], and in this decade, 
such diagnostic procedures are being replaced with digi-
tal processes. For example, using an intraoral scanner to 
acquire three-dimensional data with an automatically 
generated digital orthodontic study cast is equivalent 
to taking impressions. Taking three-dimensional cone-
beam computed tomography to automatically extract 
lateral, posterior-anterior cephalograms, and even pan-
oramic view is equivalent to taking each specific modal-
ity of radiograph. Automated segmentation and labeling 
of each tooth on radiograph images [28] and study casts 
[29] are being researched and applied in industries. Auto-
mated tracing and landmarking online services using 
artificial intelligence like WebCeph (AssembleCircle; 
Gyeonggi-do, South Korea) and CephX (ORCA Den-
tal AI; Herzliya, Israel) are already being serviced. The 
purposes of these services are not only to save time for 
doing traditionally time-consuming procedures, but also 
to help improve human diagnosis by harnessing artificial 
intelligence.

Some limitations of this study are that the entire photos 
consisted of subjects from a single institution in South 
Korea, and the samples were manually preprocessed 
including cropping, resizing, and adjusting brightness 
and contrast by clinicians. To ensure further generaliza-
tion of the prediction model, external validation with dif-
ferent institutions is needed [30]. Because CNNs process 
with color data, the colors of hair and skin and the gen-
eral morphology of the face could affect the model. How-
ever, this can easily be overcome later by adding photos 
of other ethnic races because this deep learning model 
has the capability of learning regardless of varied inputs. 
In this study, for example, the learning model successfully 
detected photos with or without braces, with anterior 
teeth extracted, teeth malformations, removable appli-
ances, etc. This could be done because the model learned 
the patterns of the data with key features that were also 
generated in the training process. Second, to avoid both 
complexity and divergency, and to get consistency and 
better explanations, we used the manually edited photos 
for real diagnosis situations that may influence the suc-
cess rate [31]. However, such modification is not uncom-
mon to orthodontists and may not be a limiting factor 
for the training data. Moreover, to overcome the variabil-
ity of human interference, the photos were augmented 
with randomized preprocessing. In the same context, 

the datasets comprise clinical photographs taken in the 
department of orthodontics, which means there exist 
rather standardized formats like orientations and types, 
for example, consistently taking a patient’s right profile 
without a left profile. This can be regarded as a charac-
teristic of orthodontic photo. As flipped asymmetric 
images put into the CNNs model may result in differ-
ent outcomes [32], it needs a different model structure, 
dataset, and training strategy to make more generalized 
models that can distinguish those mirror images. Yet, in 
this study, we have narrowed the types of photos to be 
non-flipped ones both in the training and prediction pro-
cesses, like in ordinary clinical circumstances.

This kind of two-dimensional deep learning classifica-
tion study is only the first step in the field of automated 
orthodontic dentistry. In the future, deep learning artifi-
cial intelligence systems could be used for more diverse 
aspects of diagnoses by parameterizing clinical photos 
including molar and canine key detection, overjet and 
overbite estimation, etc. Moreover, like the three-dimen-
sional automatic analysis of computerized tomography, 
it seems that automatic analysis of three-dimensional 
facial scans including treatment planning and soft tissue 
prediction would be possible someday. Altogether, better 
diagnosis and treatment planning can be accomplished in 
a more efficient and accurate manner for patients.

Conclusions
Using a deep learning system with an artificial intel-
ligence CNNs model, the facial and intraoral clinical 
photos that are routinely taken for orthodontic diagnos-
tic purposes were automatically classified with an over-
all success rate of 98%. This study suggests that artificial 
intelligence can be applied to digital color photos to assist 
in the automation of the orthodontic diagnosis process.
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CNNs	� Convolutional neural networks.
ReLU	� Rectified linear units algorithms.
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