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Abstract

Anomaly detection is the task of finding ab-
normal data that are distinct from normal be-
havior. Current deep learning-based anomaly
detection methods train neural networks with
normal data alone and calculate anomaly
scores based on the trained model. In this
work, we formalize current practices, build
a theoretical framework of anomaly detec-
tion algorithms equipped with an objective
function and a hypothesis space, and estab-
lish a desirable property of the anomaly de-
tection algorithm, namely, admissibility. Ad-
missibility implies that optimal autoencoders
for normal data yield a larger reconstruction
error for anomalous data than that for nor-
mal data on average. We then propose a
class of admissible anomaly detection algo-
rithms equipped with an integral probability
metric-based objective function and a class of
autoencoders, Lipschitz continuous autoen-
coders. The proposed algorithm for Wasser-
stein distance is implemented by minimizing
an approximated Wasserstein distance with a
penalty to enforce Lipschitz continuity with
respect to Wasserstein distance. Through
ablation studies, we demonstrate the effi-
cacy of enforcing Lipschitz continuity of the
proposed method. The proposed method
is shown to be more effective in detecting
anomalies than existing methods via appli-
cations to network traffic and image datasets
1.
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1 INTRODUCTION

Anomaly detection is the problem of identifying ob-
servations that deviate from the majority of the data
in the absence of labeled data (Chandola et al., 2009;
Hodge and Austin, 2004; Markou and Singh, 2003).
To identify alarming situations, anomaly detection
has been applied in fraud detection (Chan and Stolfo,
1998), medical diagnosis (Kononenko, 2001), net-
work security (Garcia-Teodoro et al., 2009), and visual
surveillance (Hu et al., 2004).

The goal of anomaly detection is to construct a clas-
sifier that distinguishes abnormal data from normal
data. Due to a lack of labeled abnormal observa-
tions, many anomaly detection algorithms use only
normal data to train a model and construct anomaly
scores utilizing the trained model (Chandola et al.,
2009; Khan and Madden, 2014). These methods as-
sume that all training data belong to the normal class,
and estimate the support (Schölkopf et al., 2001) or
likelihood function of observations (Laxhammar et al.,
2009). The data that are far from the support or have
low values of likelihood are then classified as anoma-
lies.

One approach to handle anomaly problems is to learn
autoencoders minimizing the expected reconstruction
error over the distribution of normal data, and uti-
lize reconstruction error-based anomaly scores. In
general, common elements of anomaly detection al-
gorithms include specifying a hypothesis space of
models with an objective function to obtain its op-
timizer and computing an anomaly score based on
the objective function value of a test datum evalu-
ated at the optimizer. With a similar focus, many
deep neural network-based anomaly detection meth-
ods have been proposed, utilizing various objective
functions to optimize neural networks with normal
data alone (Chalapathy and Chawla, 2019). Details
on deep learning-based anomaly detection algorithms
are in Section 2. These approaches have intuitive ap-
peal since the features from anomalies should show
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different behavior from those from normal, but their
theoretical properties have not been explored.

In this work, we formalize and build a class of anomaly
detection algorithms fully identified by an objective
function and a hypothesis space. Anomaly score can
be defined as the contribution of a test datum to the
objective function evaluated at the optimizer, which
is a by-product once the objective function and the
hypothesis space are determined. We show that given
the cost-based objective function and optimizer, the
anomaly score can be interpreted as an influence-like
function used in robust statistics, a Gateaux deriva-
tive of the expected cost perturbed in the direction
of a test datum. Using the constructed framework,
we characterize a desirable property of anomaly detec-
tion algorithms, namely admissibility. This property
in words implies that the expected cost for anoma-
lous data through the autoencoders optimized with
only normal data is larger than the expected cost for
the normal data. Existing methods are based on the
premise that admissibility holds, but we show that
this property does not hold in general. We then pro-
pose anomaly detection algorithms equipped with a
new class of objective function based on integral prob-
ability metric (IPM) and a new class of hypothesis
space for autoencoders, namely, Lipschitz continuous
autoencoders. The proposed algorithm is based on the
Lipschitz continuity of autoencoders with respect to
(w.r.t.) IPM to guarantee admissibility. Besides, the
anomaly score of proposed methods preserves rankings
of the distance of each datum from the distribution of
normal data and reflects the rate of change of the ob-
jective function by each datum. In particular, we take
Wasserstein distance and provide a specific algorithm
enforcing Lipschitz-continuity w.r.t. Wasserstein dis-
tance. Our contribution consists of four elements as
follows.

• We build a theoretical framework for anomaly de-
tection algorithms and characterize a desirable
property of the algorithms, namely, admissibility.
Admissibility implies that the expected cost for
anomalous data evaluated at an optimizer for nor-
mal data is higher than the expected cost for the
normal data. (Sections 3.1 and 3.2)

• We propose a class of autoencoders, Lipschitz
continuous autoencoders. Anomaly detection al-
gorithms equipped with an IPM-based objective
function and the proposed class of autoencoders
are admissible. (Section 3.3)

• We implement the proposed algorithm for Wasser-
stein distance by enforcing Lipschitz continuity of
autoencoders w.r.t. Wasserstein distance. (Sec-
tion 3.4)

• We demonstrate that the proposed method out-
performs existing alternatives in many appli-
cations, including network security and image
recognition-based anomaly detection problems.
(Section 4)

The remainder of the paper is organized as follows. In
Section 2, we review related works. Section 3 provides
the proposed method including admissible anomaly
detection algorithms via Lipschitz continuous autoen-
coders. Section 4 demonstrates the application of the
proposed method on network traffic and image data
and reports results from ablation studies. All proofs
of examples, propositions, and theorems are provided
in Appendix A of the supplementary material.

2 RELATED WORKS

Many deep learning-based anomaly detection meth-
ods have been proposed, including support vector-
based, generative adversarial network-based, and
autoencoder-based approaches. These methods first
train neural networks using the entire training data
and then compute anomaly scores based on extracted
features from the trained model.

Inspired by support vector data description (SVDD)
(Tax and Duin, 2004), deep SVDD (Ruff et al., 2018)
has been proposed, replacing kernel feature mapping
with neural networks mapping. The objective function
of deep SVDD is the expected distance of extracted
features from the centroid of the normal data cluster.
Though deep SVDD is motivated by support vector
algorithms, outputs of neural networks do not directly
relate to the kernel, and the performance on CIFAR-
10 (Krizhevsky and Hinton, 2009) is similar to kernel
density estimation (Parzen, 1962) which often does not
work well in high-dimensional cases.

Approaches based on generative adversarial networks
(GANs) (Goodfellow et al., 2014) have been proposed.
The generator minimizes the Jensen-Shannon diver-
gence between distributions of normal data and gener-
ated data. Anomaly detection with generative adver-
sarial networks (AnoGANs) is a state-of-the-art GAN-
based anomaly detection method, utilizing reconstruc-
tion error-based anomaly scores (Schlegl et al., 2017).
The performance on a clinical image was prominent,
but calculating reconstruction errors requires solving
an optimization problem for every test datum to find
the latent code. Zenati et al. (2018) proposed ad-
versarially learned anomaly detection (ALAD) based
on adversarially learned inference with conditional en-
tropy (Li et al., 2017), a kind of GANs including en-
coder networks which directly map a datum to la-
tent code. ALAD considers the composition of en-
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coder and generator as autoencoders, and introduces
a penalty term to enforce a better reconstruction. In
applications to KDD99 (Lichman, 2013) and CIFAR-
10, ALAD outperformed AnoGANs.

Various autoencoder-based anomaly detection meth-
ods have been proposed, minimizing the expected re-
construction error of normal data. Anomaly scores
are based on representations and the reconstruc-
tion error (Sakurada and Yairi, 2014; Xu et al., 2015;
Zhou and Paffenroth, 2017). Instead of the recon-
struction error, An and Cho (2015) proposed to use
the reconstruction probability from variational au-
toencoders (Kingma and Welling, 2013) as anomaly
scores. Deep autoencoding Gaussian mixture model
(DAGMM) is a state-of-the-art autoencoder-based
anomaly detection model (Zong et al., 2018), invok-
ing the Gaussian mixture assumption of the vector
that consists of representations. DAGMM utilizes a
likelihood-based energy function to identify anomalies.
Performances on the KDD99 and other benchmark im-
age datasets were not on a par with ALAD.

These approaches are based on the premise that the
objective function of abnormal data evaluated at opti-
mizers for normal data will be higher than the objec-
tive function of normal data, but their properties have
not been formally studied.

3 PROPOSED METHOD

In Section 3.1, we formulate a framework for anomaly
detection methods. Using the constructed framework,
we characterize a desirable property called admissibil-
ity in Section 3.2. Section 3.3 presents the proposed
anomaly detection algorithms with Lipschitz continu-
ous autoencoder (Definition 2), and shows that Lip-
schitz continuity on the autoencoders w.r.t distribu-
tion metric can guarantee admissibility (Theorem 1).
Throughout this section, we discuss Lipschitz conti-
nuity in three different contexts. To avoid confusion,
we provide basic notations and clarify the differences
upfront.

We denote random variables for input data, a com-
pact domain of input data, and the set of all Borel
probability measures defined on the domain by X, X ,
and ΠX , respectively. The distributions of normal and

abnormal data are denoted by P
(0)
X and P

(1)
X , respec-

tively, and the Dirac delta function that gives all mass
to x ∈ X is denoted by δx. The push-forward oper-
ation transferring a probability measure with a func-
tion h is denoted by h#. With this notation, for a
given random variable A following PA, h#PA is the
distribution of h(A). For given two distributions P

and Q, and a class of functions F , we denote IPM by

γF (P,Q) := sup
f∈F

|EX∼Pf(X)− EX∼Qf(X)|.

For given metric d on X and positive real number K,

1. We call a function h : X → X is K-Lipschitz
continuous w.r.t. d if d(h(x), h(y)) ≤ Kd(x, y)
for all x, y ∈ X .

2. Wasserstein distance is γF (P,Q) when F is Fd, a
set of 1-Lipschitz continuous functions w.r.t. d,
Fd := {f | d(f(x), f(y)) ≤ d(x, y) for all x, y ∈
X}.

3. We call a push-forward operation h# : ΠX →
ΠX is K-Lipschitz continuous w.r.t. γF if
γF (h#P, h#Q) ≤ KγF (P,Q) for all P,Q ∈ ΠX .

The first two are familiar ones to describe K-Lipschitz
continuity of h w.r.t. a metric d on X and to de-
fine Wasserstein distance in dual form as an objective
function in Section 3.4. The third is K-Lipschitz con-
tinuity w.r.t. IPM, to describe the Lipschitz continu-
ous autoencoders in Definition 2. Patrini et al. (2018)
defined the Lipschitz continuity w.r.t. Wasserstein dis-
tance. In this work, K-Lipschitz continuity w.r.t. γF
is newly defined and shown to be required to achieve
admissibility.

3.1 Formulation of Anomaly Detection

Methods

In this subsection, we build a theoretical framework of
anomaly detection algorithms. The goal of anomaly
detection is to sort out anomalies from normal data.
Many existing anomaly detection algorithms build
a model, train the model with a specific objective
function using the normal data alone, and construct
anomaly scores based on the trained model. Com-
mon elements of anomaly detection algorithms include
the objective function and the hypothesis space. Ta-
ble 1 shows some examples. Except for variations due
to regularization in the objective function, the listed
methods use the specified objective functions and hy-
pothesis spaces to derive the anomaly scores.

We formalize current practices as follows. The hypoth-
esis space is denoted by H and the objective function
is denoted by T : ΠX ×H → R, where R is the set of
all real numbers. First, objective functions utilized in

anomaly detection methods are expressed as T (P
(0)
X , h)

where h ∈ H. The next step is to find h(0) that min-

imizes T (P
(0)
X , h). The final step is to construct the

anomaly score for a test datum x0 by utilizing h(0). In
many cases, anomaly score is T (δx0

, h(0)), the objec-
tive function value at the test datum evaluated at h(0),
so anomaly detection procedures can be fully charac-
terized by T and H.
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Table 1: Objective functions and hypothesis spaces of various anomaly detection methods.

Method Objective function Hypothesis space
Laxhammar et al. (2009) Expected negative log-likelihood Probability density functions
Ruff et al. (2018) Expected distance from the centroid Neural networks
Sakurada and Yairi (2014)

Expected reconstruction error Autoencoders
Xu et al. (2015)

Zenati et al. (2018) Jensen-Shannon divergence
Pairs of encoder,
discriminator, and generator.

With the constructed framework, anomaly scores in
current practices can be interpreted as the rate of
change of the objective function in the direction of
a test datum. Many anomaly detection algorithms

use objective functions expressed as Tc(P
(0)
X , h) :=∫

X
c(x, h)dP

(0)
X (x) where c is a cost function such as

negative log-likelihood, distance from the centroid of
the data cluster, and reconstruction error. We show in
the following proposition that given the objective func-
tion Tc and optimizer h(0), anomaly score, Tc(δx, h

(0))
reflects the rate of change of the expected cost in
the direction of a test datum, a limit of which is
known as an influence function in robust statistics
(Cook and Weisberg, 1980). Influence function is a
kind of Gateaux derivative and quantifies the effect of
a datum to a functional whose input is a probability
measure.

Proposition 1. For any x ∈ X , cost function c, ν ∈
(0, 1] and h ∈ H,

Tc(δx, h) =
Tc(νδx + (1− ν)P

(0)
X , h)− Tc(P

(0)
X , h)

ν

+ Tc(P
(0)
X , h).

That is, the anomaly score of algorithms identified by

Tc(P
(0)
X , h) and H can be decomposed by Tc(P

(0)
X , h)

and the rate of change of the expected cost in the di-
rection of δx.

3.2 Admissibility: A Desirable Property Of

Anomaly Detection Algorithm

In this subsection, we characterize a desirable prop-

erty of T (P
(0)
X , h) and H, thus of anomaly detection

methods, namely, admissibility. Admissibility implies
that optimal autoencoders for normal data yield a
larger reconstruction error for anomalous data than
that for normal data on average. We give heuristic
and theoretical motivations of admissibility. Heuris-
tically, current practices find h to minimize the ob-
jective function for normal data, construct anomaly
scores using the values obtained from the training,
and declare anomaly if the anomaly score of respec-
tive method is large. Since anomaly scores can be

viewed as a contribution of a datum to the objec-
tive function, the property of anomaly scores being
larger for anomalous datum should be reflected in the
characteristic of the objective function and hypoth-
esis space. This requirement is one form of admis-
sibility (Proposition 3). Theoretically, for a special
case presented in Proposition 2, admissibility, formally
defined in Definition 1, holds. We denote Kullback-
Leibler divergence between distributions P and Q by
DKL(P||Q) :=

∫
X
log

(
(dP(x)/dx)/(dQ(x)/dx)

)
dP(x),

and Shannon entropy of a distribution P by S(P) :=∫
X
− log(dP(x)/dx)dP(x). Then, the expected neg-

ative log-likelihood evaluated with a distribution P

and a probability density function h can be expressed
as TL(P, h) = DKL(P||H) + S(P) where H a dis-
tribution function associated to h. We also denote
P
(ν)
X

:= (1− ν)P
(0)
X + νP

(1)
X .

Proposition 2. Let TL be the expected negative log-
likelihood and H be the set of all probability den-

sity functions defined on X . If S(P
(1)
X ) ≥ S(P

(0)
X ),

then for any ν ∈ (0, 1) satisfying DKL(P
(1)
X ||P

(ν)
X ) >

DKL(P
(0)
X ||P

(ν)
X ), we have

TL(P
(ν)
X , h(0)) > TL(P

(0)
X , h(0)).

Roughly speaking, when normal data are clustered so

that S(P
(1)
X ) ≥ S(P

(0)
X ), and the contamination pro-

portion is small enough so that DKL(P
(1)
X ||P

(ν)
X ) >

DKL(P
(0)
X ||P

(ν)
X ), then TL(P

(ν)
X , h(0)) > TL(P

(0)
X , h(0)).

Motivated by Proposition 2, we present the formal def-
inition of admissibility as follows.

Definition 1. Anomaly detection algorithm equipped
with an objective function T and a hypothesis space

H is said to be admissible when T (P
(ν)
X , h(0)) >

T (P
(0)
X , h(0)) for some ν ∈ (0, 1] and any h(0) ∈ H

satisfying T (P
(0)
X , h(0)) ≤ T (P

(0)
X , h) for all h ∈ H.

That is, an anomaly detection algorithm is admissible
if the objective function evaluated at h(0) for some con-
taminated data is larger than that for uncontaminated
data. For the subclass of anomaly detection algorithm
equipped with Tc, the following proposition shows the
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condition for admissibility, that is, the objective func-
tion for abnormal data is larger than that for normal
data.

Proposition 3. The anomaly detection algorithm
equipped with Tc and H is admissible if and only if

Tc(P
(1)
X , h(0)) > Tc(P

(0)
X , h(0)) for any h(0) ∈ H satisfy-

ing Tc(P
(0)
X , h(0)) ≤ Tc(P

(0)
X , h) for all h ∈ H.

Although admissibility seems to be a natural property
that any anomaly detection algorithm can enjoy, it is
not guaranteed. Below we present a simple example of

anomaly detection methods equipped with Tc(P
(0)
X , h)

and a set of autoencoders H, where the admissibility
may not hold.

Example 1. Let P
(0)
X and P

(1)
X be distributions of two

dimensional Gaussian random variables, denoted by
X(0) ∼ N2(02, I2) and X(1) ∼ N2(µ, I2), respectively,
where 02 = (0, 0)T , I2 is the 2×2 identity matrix, and
µ ∈ R2. Let H be the set of all autoencoders that con-
sist of an input layer with two nodes, one hidden layer
with one node, and an output layer with two nodes,
without any activation function. When c is squared
L2-norm, the anomaly detection algorithm equipped
with Tc and H is not admissible for all µ.

3.3 Admissible Anomaly Detection via

Lipschitz Continuous Autoencoders

In this subsection, we propose admissible anomaly
detection algorithms equipped with a new objective
function and a new hypothesis space of autoencoders.
Hereafter we focus on h : X → X and call h au-
toencoders for convenience. Both proposed objective
function and hypothesis space are based on IPM, a
family of distribution metrics based on the compari-
son of integrals w.r.t. probability measures (Müller,
1997). IPM includes many novel metrics such as
Wasserstein distance and maximum mean discrepancy
(Sriperumbudur et al., 2009). Again, for a given class
of functions F , the IPM is denoted by γF . The the-
oretical strength of the proposed algorithm consists
of three parts; The proposed algorithm is admissi-
ble (Theorem 1), the anomaly score has the rank-
preserving property as described in Theorem 2, and
the anomaly score reflects an influence-like function as
in the cost-based objective function (Proposition 4).

We first describe a special kind of hypothesis space
for autoencoders, namely, Lipschitz continuous
autoencoders. The notion of Lipschitz continuous
autoencoders is based on the Lipschitz continuity in a
metric space (ΠX , γF ). Now, we define the Lipschitz
continuous autoencoder as follows.

Definition 2. An autoencoder h : X → X is said to

be K-Lipschitz continuous w.r.t. γF if h# : ΠX →
ΠX is K-Lipschitz continuous w.r.t. γF , which can
be expressed as γF (h#P, h#Q) ≤ KγF (P,Q) for any
P,Q ∈ ΠX .

We denote the set of all K-Lipschitz continuous au-

toencoders w.r.t. γF by H
(K)
F . Again, we emphasize

that usual Lipschitz continuity w.r.t d is different from
Lipschitz continuity w.r.t γF . Lipschitz continuity
w.r.t Wasserstein distance is defined in Patrini et al.
(2018) but w.r.t. γF has not been defined to the best
of the authors’ knowledge.

We then define an IPM-based objective function, a
distance between the distribution of input data and
that of reconstructed data measured by γF , expressed
as

TF (P, h) := γF (P, h#P). (1)

Theorem 1 shows that with a properly chosen h in

H
(K)
F , the anomaly detection algorithm equipped with

TF (P, h) and H
(K)
F is admissible.

Theorem 1. If there is h ∈ H
(K)
F satisfying

TF (P
(0)
X , h) < ǫγF (P

(0)
X ,P

(1)
X ) for some K ∈ (0, 1)

and ǫ < (1 − K)/2, the anomaly detection algorithm

equipped with TF and H
(K)
F is admissible. In addition,

for all ν ∈ (0, 1],

TF (P
(ν)
X , h) > TF (P

(0)
X , h)+

(
ν(1−K)−2ǫ

)
γF (P

(0)
X ,P

(1)
X ).

Theorem 1 states that with h that is K-Lipschitz

continuous w.r.t. γF , TF (P
(0)
X , h) is smaller than

TF (P
(ν)
X , h), which is the definition of admissibility.

A lower bound for the difference is proportional to

γF (P
(0)
X ,P

(1)
X ) and reflects the level of contamination

ν.

Example 2. (Revisit Example 1) Let P
(0)
X and P

(1)
X be

distributions defined in Example 1. Let H
(K)
F be the

all K-Lipschitz continuous autoencoders that consist
of an input layer with two nodes, one hidden layer
with one node, and an output layer with two nodes,
without any activation function. When d is Euclidean
distance and F is Fd, the anomaly detection algorithm

equipped with TF and H
(K)
F is admissible if ||µ||2 >

4
√
1 + (1−K)2/(1−K) where || · ||p denotes the Lp-

norm.

In contrast to Example 1 where plain autoencoders
are applied, admissibility is gained by choosing K-
Lipschitz continuous autoencoders.

Following the scheme presented in Section 3.1, the
anomaly score is TF (δx, h

(0)) = γF (δx, h
(0)#δx),

where h(0) ∈ H
(K)
F minimizes TF (P

(0)
X , h). In the fol-

lowing theorem, we describe properties of the proposed
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anomaly score, TF (δx, h
(0)). Theorem 2 roughly states

that if γF (δx,P
(0)
X ) is larger than γF (δx′ ,P

(0)
X ) with the

margin γF (P
(0)
X ,P

(1)
X ), that is if δx′ is closer to P

(0)
X than

δx, the anomaly score for x′ is smaller than that for x.

Theorem 2. Let K ∈ (0, 1) and h ∈ H
(K)
F satisfy

TF (P
(0)
X , h) < ǫγF (P

(0)
X ,P

(1)
X ) for some ǫ < (1 −K)/2.

If two data x and x′ satisfy γF (δx,P
(0)
X ) > (1+K)/(1−

K)γF (δx′ ,P
(0)
X ) + γF (P

(0)
X ,P

(1)
X ), then TF (δx, h

(0)) >
TF (δx′ , h(0)).

In addition, the following proposition shows that the
anomaly score reflects the contribution of each data to
the objective function as in cost-based objective func-
tion (Proposition 1).

Proposition 4. For any x, class of functions F , ν ∈
(0, 1] and h ∈ H,

TF (δx, h) ≥
TF (νδx + (1− ν)P

(0)
X , h)− TF (P

(0)
X , h)

ν

+ TF (P
(0)
X , h).

That is, the anomaly score has a lower bound that
increases as the rate of change of the objective function
in the direction of datum increases.

3.4 Implementation of The Proposed

Algorithm for Wasserstein Distance

In this subsection, we provide an implementation of
proposed anomaly detection algorithms when γF is

the 1-Wasserstein distance, i.e., γFd
(P

(0)
X , h#P

(0)
X ) :=

sup
f∈Fd

|E
X∼P

(0)
X

f(X)−E
X∼h#P

(0)
X

f(X)|. Again, Fd is the

set of all 1-Lipschitz continuous functions w.r.t. d to
define Wasserstein distance, and h is a K-Lipschitz
continuous autoencoder w.r.t. γFd

.

The proposed algorithm utilizes an autoencoder h

that minimizes TFd
(P

(0)
X , h) := γFd

(P
(0)
X , h#P

(0)
X ) un-

der the constraint that h is in H
(K)
Fd

, a set of K-
Lipschitz continuous autoencoders w.r.t. Wasserstein
distance. This procedure is admissible. To enforce the
K-Lipschitz continuity w.r.t. Wasserstein distance, we
employ the Lemma A.1 of Patrini et al. (2018) that
links the Lipschitz continuity w.r.t. a metric on X
and Lipschitz continuity w.r.t. Wasserstein distance.

Lemma 3. (Lemma A.1 of Patrini et al. (2018)) For
any autoencoder h : X → X that is K-Lipschitz con-
tinuous w.r.t. d, h is a K-Lipschitz continuous au-
toencoder w.r.t. γFd

.

By Lemma 3, Theorem 1 stays true when we replace

(TF ,H
(K)
F ) with (TFd

,H
(K)
d ) where H

(K)
d is the set of

Lipschitz continuous autoencoders w.r.t. d. Motivated

by Lemma 3, we propose to build autoencoders that

minimize TFd
(P

(0)
X , h) with a penalty term enforcing

K-Lipschitz continuity of h w.r.t. d. To handle the

intractability of TFd
(P

(0)
X , h), we employ the approach

of Tolstikhin et al. (2017) based on the primal form of
Wasserstein distance, inf

π∈Π(P,Q)
E(A,B)∼πd(A,B) where

Π(P,Q) is the set of all couplings of P and Q. We
minimize an approximated primal form of the Wasser-
stein distance. Let PZ be a user-specified distribu-
tion defined on Z, the space of low-dimensional rep-
resentation. We denote encoder and decoder of h by
hEnc : X → Z and hDec : Z → X , respectively. Using
the primal form of Wasserstein distance, an approx-

imation of TFd
(P

(0)
X , h) with penalty term R(P

(0)
X ,K)

that enforces Lipschitz continuity is

TFd
(P

(0)
X , h) + φR(P

(0)
X ,K)

≈

∫

X

d(x, h(x))dP
(0)
X (x) + λMMD(PZ , hEnc#P

(0)
X )

+ φE
(X,X′)∼P

(0)
X

×P
(0)
X

max
(d(h(X), h(X ′))2

d(X,X ′)2
−K2, 0

)
,

(2)

where MMD denotes the maximum mean discrepancy,
λ and φ are hyperparameters. The first two terms
on the right-hand side of (2) appear because we use
the primal form with a constraint for the encoded val-
ues as in Tolstikhin et al. (2017), and the final term
is for the K-Lipschitz continuity of h. In implementa-

tion, we use
∫
X
d(x, h(x))2dP

(0)
X (x), a common choice

for reconstruction error, instead of the first term on
the right-hand side of (2). This enforces to minimize∫
X
d(x, h(x))dP

(0)
X (x) by Jensen’s inequality. The Al-

gorithm 1 presents the process of training K-Lipschitz
continuous autoencoders w.r.t. γFd

where d is Eu-
clidean distance. Here, Adam denotes the Adam opti-
mizer (Kingma and Ba, 2014).

After training theK-Lipschitz continuous autoencoder
h(0), for a given test datum x, the anomaly score is
TFd

(δx, h
(0)) = d(x, h(0)(x)), the reconstruction error

by the trained autoencoder. We propose to declare
x to be abnormal datum when TFd

(δx, h
(0)) is larger

than a preset threshold such as a specific quantile of
anomaly scores for normal data.

4 EXPERIMENTS

We demonstrate the efficacy of the proposed method
with three experiments2: (i) illustration of the pro-
posed method, (ii) an ablation study to evaluate the

2The implementation code is provided in
https://github.com/kyg0910/Lipschitz-Continuous-
Autoencoders-in-Application-to-Anomaly-Detection.
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Algorithm 1 Learning K-Lipschitz continuous au-
toencoder w.r.t. γFd

where d is Euclidean distance.

Input: Training dataset X, prior distribution PZ ,
batch size B, positive definite kernel k, encoder
hEnc(·;wEnc), decoder hDec(·;wDec), and hyperpa-
rameters λ > 0, φ > 0, and 0 < K < 1.
Output: A K-Lipschitz continuous autoencoder
w.r.t. γFd

.

1: Initialize (wEnc, wDec).
2: while (wEnc, wDec) not converges:
3: Sample x1, ..., xB from X

4: Sample z1, ..., zB following PZ

5: z̃i ← hEnc(xi;wEnc) for i = 1, . . . , B
6: x̃i ← hDec(z̃i;wDec) for i = 1, . . . , B

7: ReconError ← B−1
∑B

i=1 ||xi − x̃i||
2
2

8: MMD ← B−2
∑B

i,j=1

(
k(zi, zj) − 2k(zi, z̃j) +

k(z̃i, z̃j)
)

9: LipschitzPenalty ← B−1(B − 1)−1
∑B

l 6=j max(

||x̃l − x̃j ||
2
2/||xl − xj ||

2
2 −K2, 0)

10:
(
wEnc, wDec

)
← Adam(ReconError + λMMD+

φLipschitzPenalty)

effect of Lipschitz continuity, and (iii) a comparison
with the existing anomaly detection algorithms. In
the first experiment, we visualize the effect of the pro-
posed autoencoders on anomalies by comparing abnor-
mal images and their reconstructions. For the second,
we compare anomaly detection performances from var-
ious levels of regularization in (2). For the third, we
compare performances of deep SVDD, ALAD, and the
proposed method. We also consider the case where
the training dataset is contaminated by anomalies to
validate the robustness of algorithms.

4.1 Dataset Description

We conduct experiments with four datasets; KDD99
(Lichman, 2013), MNIST (LeCun, 1998), Fashion-
MNIST (Xiao et al., 2017), and CelebA (Liu et al.,
2015). KDD99 is a large-scale network-traffic dataset,
widely used benchmark dataset in anomaly detection
(Zenati et al., 2018; Zong et al., 2018). MNIST and
Fashion-MNIST are image datasets commonly used to
evaluate the anomaly detection performance on im-
age recognition-based anomaly detection (Ruff et al.,
2018; Zenati et al., 2018). CelebA is a face image
dataset and used to evaluate the applicability in face
recognition-based anomaly detection. A detailed de-
scription of the datasets is attached in Appendix B.1.

4.2 Experiment Setting

We set normal and abnormal classes as follows. In
KDD99, since “attack” flow is the majority, “nor-

mal” flow is treated as the abnormal class, as in
Zong et al. (2018) and Zenati et al. (2018). In MNIST
and Fashion-MNIST, we employ a one-class classifica-
tion setup (Ruff et al., 2018; Zenati et al., 2018). For
each class, we set one class to normal and all other
classes to abnormal. In CelebA, we set images with
and without glasses to be abnormal and normal, re-
spectively, to evaluate the ability to detect unexpected
objects. Since wearing glasses highly depends on gen-
der, only images of male celebrities are used.

The proportion of training, validation, and test set
is 50%, 25%, and 25%, respectively, for KDD99 and
CelebA, and 60%, 20%, and 20%, respectively, for
MNIST and Fashion-MNIST. We control the propor-
tion of abnormal data on training and validation sets
by randomly removing some anomalies. The level of
contamination is chosen from {0, 0.05}. We call experi-
ments for proportions of 0% and 5% as uncontaminated
training dataset and contaminated training dataset, re-
spectively.

We compare the proposed method with two state-of-
the-arts anomaly detection methods, deep SVDD and
ALAD discussed in Section 2. As in deep SVDD and
ALAD papers, all the models are trained in unsuper-
vised fashion. The labels of the validation set were also
not used, and only the objective function is used to
avoid overfitting. For each method, we report the per-
formance evaluated with test data. Evaluation metrics
are the area under the receiver operating characteris-
tic curve (AUC) and the area under the precision-recall
curve (AUPRC).

4.3 Architecture

For the proposed method, we use plain autoencoder ar-
chitectures for KDD99 and convolutional autoencoders
architectures for image datasets. For other methods,
we use almost the same architecture in published work.
For a given dataset, all methods use similar size of net-
works in terms of the number of layers and parameters.
Implementation details are provided in Appendix B.2.

4.4 Results

We visualize the effect of Lipschitz continuous autoen-
coders on anomalies. Figure 1 presents randomly sam-
pled abnormal images and their reconstructed images
by the proposed autoencoders from CelebA dataset.
The reconstruction process removes the anomalous
part (glasses) of abnormal data.

Table 2 and 3 show AUCs and AUPRCs, respectively,
of ablation study to evaluate the effect of Lipschitz
continuity imposed on autoencoders. The penalty
term to enforce Lipschitz continuity in (2) has hyper-
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Figure 1: Visualization of the effect of Lipschitz con-
tinuous autoencoders on anomalies. The first row
presents abnormal images sampled from the test set of
CelebA, and the second row presents the correspond-
ing reconstruction.

Table 2: Average AUCs on KDD99 of the proposed
method for various φ and K are provided in % with
standard deviation. The number of replication is 10.

φ K

0.6 0.7 0.8 0.9
0 98.6±0.6 98.6±0.6 98.6±0.6 98.6±0.6
5 99.2±0.1 99.3±0.1 99.3±0.1 98.1±1.1
10 99.2±0.1 99.4±0.1 96.9±1.3 95.3±2.4
20 96.6±0.6 89.4±1.6 91.9±0.3 96.8±1.8

parameters K and φ, and the level of enforcement in-
creases as φ increases or K decreases. The ablation
study is conducted with the uncontaminated dataset.
To control noises from the approximation part, λ is
set to 0. The baseline model, where φ is 0, is a
plain autoencoder without enforcing Lipschitz conti-
nuity. Compared with the baseline model, a moder-
ate level of Lipschitz continuity significantly enhances
performance. The mean AUC is increased from 98.6
to 99.4, and the mean AUPRC, from 93.0 to 96.4
due to Lipschitz continuity. The standard deviation
of AUC decreased from 0.6 to 0.1, and of AUPRC,
from 2.6 to 0.3 due to Lipschitz continuity. Addi-
tional results for λ ∈ {0, 5, 10}, φ ∈ {0, 5, 10, 20},
and K ∈ {0.1, 0.2, . . . , 0.9} are given in Appendix C
in the supplementary material. For every λ, an ade-
quately chosen φ and K significantly increased AUC
and AUPRC.

Table 4 shows a comparison of AUC and AUPRC
of deep SVDD, ALAD, and the proposed method
in cases of the uncontaminated and contaminated
training dataset. The proposed method achieves the
best mean AUC and the best mean AUPRC in all
cases with KDD99 and CelebA. Besides, the pro-
posed method outperforms in most of the cases for
MNIST and Fashion-MNIST dataset. Performances
on MNIST and Fashion-MNIST are presented in Ap-
pendix D in the supplementary material.

Table 3: Average AUPRCs on KDD99 of the proposed
method for various φ and K are provided in % with
standard deviation. The number of replication is 10.

φ K

0.6 0.7 0.8 0.9
0 93.0±2.6 93.0±2.6 93.0±2.6 93.0±2.6
5 95.4±0.8 96.2±0.8 95.8±0.8 92.8±2.3
10 95.6±0.6 96.4±0.3 89.6±2.4 88.0±4.4
20 86.5±1.9 73.8±3.8 81.0±0.8 89.9±3.1

Table 4: Average AUCs and AUPRCs of deep SVDD,
ALAD, and the proposed method are provided in %
with standard deviation. The number of replication is
20 for KDD99 and 5 for CelebA.

Dataset Method AUC AUPRC
Uncontaminated training dataset (0%)

KDD99
deep SVDD 98.7±2.4 95.6±3.5

ALAD 98.2±1.3 86.6±7.1
Proposed 99.3±0.2 96.2±1.0

CelebA
deep SVDD 54.9±7.2 16.6±4.6

ALAD 53.9±0.7 14.8±0.6
Proposed 65.7±0.4 22.0±0.3

Contaminated training dataset (5%)

KDD99
deep SVDD 75.9±19.7 52.4±16.5

ALAD 96.4±1.6 76.8±8.1
Proposed 97.7±0.2 80.8±1.6

CelebA
deep SVDD 52.4±5.7 14.1±1.6

ALAD 53.8±0.7 14.8±0.6
Proposed 62.3±0.6 18.8±0.5

5 CONCLUSION

In this work, we formalize anomaly detection meth-
ods with an objective function and a hypothesis space
and characterize a desirable property of anomaly de-
tection algorithms, admissibility. We then propose ad-
missible anomaly detection algorithms equipped with
an IPM-based objective function and a class of au-
toencoders, Lipschitz continuous autoencoders. By im-
plementing the proposed method for Wasserstein dis-
tance, we present an admissible anomaly detection al-
gorithm. The proposed algorithm outperforms state-
of-the-art anomaly detection methods on KDD99,
MNIST, Fashion-MNIST, and CelebA datasets.
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Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-
Erfurth, U., and Langs, G. (2017). Unsupervised
anomaly detection with generative adversarial net-
works to guide marker discovery. In International
Conference on Information Processing in Medical
Imaging, pages 146–157. Springer.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola,
A. J., and Williamson, R. C. (2001). Estimating the



Lipschitz Continuous Autoencoders in Application to Anomaly Detection

support of a high-dimensional distribution. Neural
computation, 13(7):1443–1471.

Sriperumbudur, B. K., Fukumizu, K., Gretton, A.,
Schölkopf, B., and Lanckriet, G. R. (2009). On inte-
gral probability metrics,\phi-divergences and binary
classification. arXiv preprint arXiv:0901.2698.

Tax, D. M. and Duin, R. P. (2004). Support vector
data description. Machine learning, 54(1):45–66.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf,
B. (2017). Wasserstein auto-encoders. arXiv
preprint arXiv:1711.01558.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747.

Xu, D., Ricci, E., Yan, Y., Song, J., and Sebe, N.
(2015). Learning deep representations of appearance
and motion for anomalous event detection. arXiv
preprint arXiv:1510.01553.

Zenati, H., Romain, M., Foo, C.-S., Lecouat, B., and
Chandrasekhar, V. (2018). Adversarially learned
anomaly detection. In 2018 IEEE International
Conference on Data Mining (ICDM), pages 727–
736. IEEE.

Zhou, C. and Paffenroth, R. C. (2017). Anomaly de-
tection with robust deep autoencoders. In Proceed-
ings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 665–674. ACM.

Zong, B., Song, Q., Min, M. R., Cheng, W.,
Lumezanu, C., Cho, D., and Chen, H. (2018). Deep
autoencoding gaussian mixture model for unsuper-
vised anomaly detection. In In Proceedings of the
6th International Conference on Learning Represen-
tations.


	INTRODUCTION
	RELATED WORKS
	PROPOSED METHOD
	Formulation of Anomaly Detection Methods
	Admissibility: A Desirable Property Of Anomaly Detection Algorithm
	Admissible Anomaly Detection via Lipschitz Continuous Autoencoders
	Implementation of The Proposed Algorithm for Wasserstein Distance

	EXPERIMENTS
	Dataset Description
	Experiment Setting
	Architecture
	Results

	CONCLUSION

