
GraphArchive

An Online Graph Data Store

Philip E�nger1, Michael Kaufmann1,
Sascha Meinert2, Matthias Stegmaier1

WSI-2011-03

ISSN 0946-3852

1 Arbeitsbereich Algorithmik 2 Lehrstuhl Algorithmik I
Wilhelm-Schickard-Institut für Informatik Institut für Theoretische Informatik
Mathematisch-Naturwissenschaftliche Fakultät Karlsruher Institut für Technologie
Eberhard Karls Universität Am Fasanengarten 5
Sand 14, 72076 Tübingen, Germany 76131 Karlsruhe, Germany
Email:
{e�nger,mk,stegmaie}@informatik.uni-tuebingen.de meinert@kit.edu

c©WSI, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/56756971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




1 Introduction

One of the most powerful tools to model a problem is a graph. It allows for an abstract
representation of objects that are related to each other. This representation can then
be used to solve the problem at hand and makes graphs so powerful that researchers
all over the world work on problems that are modeled using graphs. Often, their
task is to improve the quality of the solution, to solve new problems or at least solve
known problems faster than it was possible before. However, if approaches should be
compared experimentally they have to be tested on the same data set.
Sharing graphs among researchers might be an obvious solution to distribute data sets
and indeed, various approaches exist that tackle the problem of distributing data sets,
e.g., Stanford GraphBase [4], Matrix Market [5] DIMACS [2] or UF SMC [1].
However, our approach is neither dedicated to a speci�c area of application nor to pro-
vide single benchmark sets. We aim at establishing a central repository that contains
valuable data for every interested researcher. Therefore, we present GraphArchive in
this report, which is our approach of a central graph repository.
GraphArchive is a web-based platform for sharing graphs. The back-end of this system
consists of a database that stores the graphs. GraphArchive automatically computes
images of graph layouts and analyzes basic graph properties. As already mentioned
GraphArchive is no special purpose graph repository but allows for arbitrary domains
of interest. Hence, the system also provides a search mechanism, which allows for a free
search on multiple attributes. GraphArchive follows the basic principles of GraphDB1,
which is also a platform for sharing graphs in a central place, but its development has
been discontinued.
GraphArchive ports the approach of GraphDB to the web including the bene�ts from
online platforms, e.g., user-interactivity, email noti�cations or automatic graph analy-
sis and layout. Our major goal is to provide an easy-to-use and yet minimalist platform
to maximize the usability, which is a main criterion for user acceptance. To this end,
we work with and support users that often have to deal with graphs, e.g., researchers
from the GraphDrawing (GD) community.
In the following we present details on our approach GraphArchive, which allows for
storing graphs in a central place. We start by brie�y describing the idea of a graph
archive and the history of GraphDB in Section 2. Then, we will present the underlying
architecture, supported features and principles that build the foundation of our new
approach GraphArchive in Section 3. In Section 4, we show the usability of our system
by the demonstration of a user's typical work �ow. We conclude this report with future
topics in Section 5.

2 History of the GraphDB

In this section we give an overview of the history of the GraphDB. First, we start with
the motivation and the origin of the idea to build a graph archive. Then, the features
of the system as well as their intended interplay are presented. Finally, we analyze the
acceptance-rate of GraphDB, which led to the conclusion that an update of GraphDB
would not be su�cient and that a new graph archive system had to be developed.

1Information on GraphDB can be found at http://www.graph-archive.org, last-accessed 2011-07-
30

3

 http://www.graph-archive.org


2.1 Motivation and Origin

Several working groups participated in the Priority Programme no. 1126 �Algorith-
mics of Large and COmplex Networks� (ALCON) of the Deutsche Forschungsgemein-
schaft (DFG, Germany's largest research funding organisation). Within this Priority
Programme many participants started collaborations with each other, if not already
present. Working groups that were interested in experimental algorithmics needed to
exchange their data sets and results. First, this was done via e-mail or, due to the size
of the data sets, via servers on each working group's sites. Doing so does not preserve
the reliability and the repeatability of experiments, which renders both exchange meth-
ods questionable. For example, if data is exchanged that way, no possibility exists to
version the graphs, or to prevent neither data corruption nor data losses. In addition
to the problems that may occur when handling the data, the acquisition of data sets
itself can become a problem, too. Sites that provide data sets are scattered and ac-
quiring data can often be a tedious and long lasting task, which distracts researchers
from their scienti�c work.
All this led to the idea to develop and maintain a central repository, where people can
exchange and archive their data and results at the same time. Several participants of
the Priority Programme ALCON worked together to specify the demands on such a
graph archive. The early approach of a system should:

• allow to exchange and archive graphs in heterogeneous systems

• work via the Internet despite the presence of �rewalls

• be persistently stored in a central place

• allow to add, maintain, query and download graphs

2.2 GraphDB

The �rst system that realized the above demands on a graph archive was GraphDB,
which was designed by Sascha Meinert within the scope of his master thesis. The
three-tier architecture consists of a downloadable client, a server and a database. In
the context of his master thesis, a prototype system was developed to validate whether
the system was capable to ful�ll the given requirements.
In 2004, when the development of GraphDB started, technologies that allowed for
running an application within a browser, were not available. In particular, the AJAX
technology was presented in 2005 [3]. Hence, we decided to develop a stand-alone
client. To ful�ll the requirement to work in heterogeneous systems the client and the
server were written in Java. The communication between client and server is based
on web-services to allow for secure message transportation in the internet despite
the presence of �rewalls. Additionally, this XML-based form of communication allows
third-party applications to directly access the graph archive, e.g., automated test tools.
The central server uses as back-end a database to persistently store business objects
and binary data.

GraphDB elements As already mentioned, the GraphDB system should allow par-
ticipants to exchange and archive large graphs and results. To realize this demand,
the prototype system allowed the user to interact with the following elements:

graph: an atomic element that represents binary data

4



graph groups: a container element that groups graphs

meta-data: a (key, type, value) triple, e.g., (directed, boolean, true)

result: a (key, type, value) triple, e.g., (max degree, integer, 500)

Both meta data as well as results can be created or reviewed in the corresponding
administration panel; see Figure 1b. During the creation of such an element the key
and the type is speci�ed. Note that meta data and results look identical but are
separated to clarify their semantic usage. Graphs and graph groups can be added
to the system, each getting a permanent unique ID (UID). Both graph groups and
graphs can be further speci�ed by attaching meta data to them. While attaching a
meta-data element, its value has to be speci�ed. If a graph is speci�ed to be part of
a graph group, the graph inherits the graph group's meta data. To allow for sharing
�ndings on a speci�c graph, results can be attached to a graph similar to meta-data
elements. A query mechanism allows to search the system for graphs or graph groups
by UID, meta data or results. Figure 2a shows the query panel after a query has been
performed. The detailed information of a selected graph group can be seen as well
as the graphs that are members of the graph group. The detailed information of a
graph can be seen in Figure 2b. Note that in this example all meta data is inherited
from the parent graph group. The graphs or graph groups found by such a query
can be downloaded afterwards. This prototype implementation was able to ful�ll the
requirements and it was presented to the participants of ALCON.
This resulted in the decision to further develop the prototype to release the �rst stable
version with �nancial support from the Priority Programme. In the following time
several bugs were removed that occured during heavy load and multiple user tests,
e.g., race conditions. Additionally, the overall performance as well as the usability of
the application was greatly improved. The resulting �nal version 1.0 of GraphDB was
advertised within ALCON and access was given to all of its participants, which led to
a rather hesitent usage.

GraphDB licensing extension Some members of ALCON were also participants of
the project �Algorithms for Robust and online Railway optimization: Improving the
Validity and reliAbility of Large scale systems� (ARRIVAL), which is supported by the
Future and Emerging Technologies Unit of EC (IST priority - 6th FP), under contract
no. FP6-021235-2. One aim of the project was to bring results from academic research
to the industry. Hence, many participants of ARRIVAL collaborated with national
railway companies, which provided con�dential data. So ALCON members came up
with the idea to extend the demands on a graph archive by security and licensing
elements that whould allow to use a graph archive within ARRIVAL. Hence, with the
�nancial support of ARRIVAL GraphDB was further developed. The system already
contained the concept of users but no direct interaction was possible. The features of
this extension are:

user: used for authentication and identi�cation of server interactions

user group: a container element that groups users

visibility: type of the visibility of the data, one of:

� public: data can be seen by everyone

� semi-private: data can be seen by certain groups

� private: data can only be seen by its creator

5



(a) GraphDB client standard view after login

(b) GraphDB overview and administration screen of meta data

Figure 1: The standard view of the GraphDB client after the successful login (a). The
features of the client can be quickly accessed via icons.
The bottom �gure (b) shows the overview and administration screen of the meta data.
This screen allows for either reviewing already existing meta-data elements or creating
new elements. On the left-hand side the existing meta-data elements are listed. On the
right-hand side the detailed information of the selected meta-data element is shown.

6



(a) GraphDB query screen with a selected graph group

(b) GraphDB query screen with a selected graph

Figure 2: The top �gure (a) shows a query result on the left-hand side of the panel,
where one graph group has been selected. The detailed information of this selected
graph group is shown on the right-hand side of the panel.
The bottom �gure (b) shows the detailed information of the selected graph, which is
a member of the previously selected graph group.

7



Now, users can be assigned to be members of user groups. This has to be done by
the administrating authority. The implementation reduces the visibility of data to its
users. Thus, when data sets are created, the creator has to assign the visibility level.
Depending on that choice he also has to assign who may view his data. The server-side
query mechanism additionally checks the visibility of the data and delivers only the
subset the requesting user may access; see Figure 2a. After the new security require-
ments had been added, access to GraphDB was given to the members of ARRIVAL,
who could now use the system to exchange their data in a safe way.

2.3 Lessons learned

One of the basic reasons to build a graph archive is the long lasting and tedious task of
gathering data � especially when dealing with real-world data sets. Often, companies
fear that competitors might get access to this data and might thus gain a competitive
advantage. Other reasons that might prohibit data sharing are licensing policies or
data privacy policies.
In order to become a primary resource, the graph archive needs two things. The �rst
is a valuable and large collection of data sets. The second, which is an immediate con-
sequence of the former, is a strong community that participates by not only acquiring
but also providing data. A large pool of data sets will attract people and if they �nd
valuable data, they are willing to give something back.
For several reasons GraphDB was not accepted by the community in the way we hoped
for. From our experience with GraphDB, we conclude the following recommendations
for a follow-up system:

• access: access to the data should be as easy as possible. Users prefer websites
over downloadable clients. Additionally, the method to get access to the system
itself should be easy too.

• rights management: The latest security requirements for GraphDB did not
allow for an automated registration system (only guests were allowed, which had
very limited download rights). Users do not want to care about licensing policies,
they prefer open-source data. This allows for an easy trade of data to give and
data to get.

• data formats and conversion: Users do not want to care about �le formats.
If there is no common base �le format they will in most cases not spend time on
a conversion tool. Hence, a graph archive should support multiple �le formats
and, possibly, their conversion.

• graph analysis: Users do not want to spend time on computing or maintaining
basic properties of data sets. Thus, an automated property test, which is run for
uploaded data sets can do the job.

All of these aspects in�uenced the requirements and design decisions done with our
new system, which is presented in the next section.

3 Features of the new GraphArchive

In the following, we will provide a list of the main features of our new approach and
present our system architecture. Then, we will present selected key features in more
detail.

8



3.1 Main features of GraphArchive

All features are chosen supporting the guideline that our major goal is to provide an
open and easily accessible system. In the following, we present the main features of
the new system:

• web-based user interface: All user interaction is done online via a browser. A
web portal o�ers all functionality that is needed to handle a graph from uploading
data, inspection of existing graphs and search for others and, �nally, downloading
a found graph.

• automated registration (email opt-in): Registration is performed online
using a registration form, which is handled automatically. The system sends
immediately a registration link via email after submitting the form.

• limited rights management: There are no groups of users that de�ne rights
for small circles of users. Licenses for graphs limiting usage are not encouraged in
our open approach, thus, if necessary, a license can be attached to single selected
graphs.

• open access to all graphs after registration: After con�rming registration
by ful�lling the email opt-in process, a user has access to all graphs and can
initiate queries without restrictions.

• categorization of graphs (e.g., �elds of application): For search, graphs
can be assigned to the �eld(s) of application that they derive from. This enables
researchers from di�erent �elds to use GraphArchive as a common platform.

• automatic graph analysis after upload (for graphs with < 100.000 nodes):
After upload, graphs are analyzed in order to provide consistent data. The con-
sistency is very important for search queries on graph properties. Also, automatic
analysis might reveal more properties than manual assignment.

• search for graphs using multiple criteria: Search queries can be executed
on multiple parameters, among them are graph properties, categories, author,
name and upload date. Also, parameters can be combined to further narrow
down the result set.

• support of user-de�ned tags attachable to graphs: Users can de�ne indi-
vidual tags to identify special attributes of graph(s). All user-de�ned tags are
made fully searchable.

• support of grouping of graphs: Graphs can be grouped to mark their re-
lation, e.g., graphs that stem from a speci�c test data set. Graphs that are
uploaded as a single zip �le are also grouped using one distinct tag, e.g. the zip
�le's name.

• support of graph layouts to create visualizations (images) of graphs:
An image of a graph is valuable if a user quickly wants to inspect visually a
graph's properties. Layouts are computed automatically in the background and
also can be changed after upload.

• support for creating comments and references: Commenting on graphs
might initiate discussions on certain graphs. Also, descriptions can be stored as
comments. References can be assigned to a graph in order to highlight publica-
tions and/or websites that made use of any kind of this graph.

• unique links to a graph (URI) for referencing in publications: A URI
allows for a permanent reference in publications. Stating the URI in a publication

9



enables the reader to quickly �nd the used graph data set.

• 'multiview' for comparing multiple graphs on a single page: For quickly
comparing multiple graphs at a time, we support the presentation of various
graphs at a time. Properties are displayed for all graphs. Boolean properties,
e.g., directed/undirected, are presented visually on a scale (property can be
ful�lled by (a) no graph, (b) a subset of the displayed graphs or (c) all graphs).

• support of various graph �le formats: Since it is impossible to decide on
a speci�c �le format when supporting many �elds of applications, we aim at
providing support for as many formats as possible. Our system allows to add
further formats in the future.

• support of graph �le format conversion for downloads: For downloading
graphs, a user can choose the format that �ts best to his/her work environment.
We provide cross conversion (the users can select any supported format and the
system starts the conversion automatically).

• support of zipped �les for import/export of multiple graphs: When
handling a test data set of graphs, we allow to upload/download several graphs
at a time using zip compression. In an upload process, each �le in the compressed
�le can optionally be processed individually (for properties analysis and layout
computation). When downloading several �les, the system automatically creates
a compressed �le containing all selected graphs.

• graph authorship management featuring my graphs for graph authors:
An author of graphs can easily manage his/her graphs using the view 'my graphs'
where inspections and actions, e.g., deletions of multiple graphs, are quickly
accessible because the author rights in this view are limited to the current user.

• guest access for non-registered users: If a user wants to check a speci�c
graph, he/she can access a detailed view on the graph using the URI. All proper-
ties and attributes of the graph are made visible entering via the guest account.
However, actions, e.g., commenting, changing properties, download, are disabled
in this view.

3.2 Architecture

Our system architecture is built similar to a common Web-browser application includ-
ing a couple of necessary extensions for handling of graphs. The application is written
in PHP5 2 using Apache2 3 for online presentation. For graph analysis and layout
computation, we make use of the java graph library yFiles 4, which is handled in
the background via PHP/JAVA Bridge 5. Data storage is provided by a PostgreSQL
database 6. A schema of the system architecture is depicted in Figure 3.

3.3 Presentation of selected key features:

Rights management In the former approach, many graphs were not public by de-
fault. Thus, rights handling was a major issue. A hierarchy of rights was integrated,

2see project homepage: http://www.php.net, last accessed 2011-07-12
3see project homepage: http://www.apache.org, last accessed 2011-07-12
4developed and maintained by yWorks GmbH: http://www.yworks.com, last accessed 2011-07-29
5Online source to the SourceForge project available at:
http://php-java-bridge.sourceforge.net/pjb/index.php, last accessed 2011-07-12

6see project homepage: http://www.postgresql.org/, last accessed 2011-07-12

10

http://www.php.net
http://www.apache.org
http://www.yworks.com
http://php-java-bridge.sourceforge.net/pjb/index.php
http://www.postgresql.org/


Figure 3: Architecture of GraphArchive.

involving group rights and user rights for a graph. Download of a graph was allowed
only if a user was granted the appropriate rights. If a user was not speci�cally granted
the right for a graph, and the user was also not assigned to a group that had access
to the graph, access and download of the graph was denied.
Our system pushes rights for access and downloads towards an open-access approach.
After registration, all graphs are accessible and may be inspected, e.g., to analyze
graph properties. When uploading a graph to GraphArchive, the author of a graph
needs to con�rm that he/she holds/obtained the rights to publish the graph. Also, the
author agrees that the graph is shared in GraphArchive.
Since some graphs come with usage limitations and/or demands, it is possible to inte-
grate a license to a graph when uploading as graph author. In this case, a later graph
download demands con�rmation of the license before �le transfer is started. Due to the
fact that GraphArchive is intended to be an open-access platform we restrict licenses
to be assignable on a 'per-graph' base only.

Tagging For assigning properties to graphs, we use the principle of tags. Tags consist
of a (key, value) pair, whose value is of type boolean, integer or double. Since the
principle of tags is general, we can use it for several purposes:
Tags allow . . .

• . . . graph categorization, for instance assignment to �eld(s) of application (e.g.,
metabolic networks, electrical circuit, class diagrams and many others).

• . . . assigning of graph properties, e.g., acyclic, directed or degree.

• . . . graph grouping, e.g., graphs of one group have the same tag set.

• . . . user-de�ned properties, e.g., user can create new tags and assign them to
graphs.

11



Graph analysis and visualization Graph analysis can be a tedious task when done
manually, it even may prevent users to upload graphs. However, graph properties are
of essential importance when it comes to search for speci�c properties. To provide a
valuable query mechanism, an archive depends on su�ciently set properties.
To free the user from this task, we perform an automatic graph analysis on the graphs
after upload. Graphs are analyzed for a pre-de�ned default set of properties. The set
comprises the following:

node count edge count biconnected bipartite
connected cyclic forest multiple edge free
planar rooted tree self loop free simple
strongly connected tree component count minimum degree
maximum degree average degree median degree

In parallel to the graph analysis, layouts of the graph are created and stored as images
for later presentation on the graph's detail page. The images are created using a
standard layout algorithm provided in yFiles, a Java library to work with graphs. The
default layout is computed by a spring layout algorithm [6]. The library is integrated
into the system with the help of the PHP/Java Bridge, which allows to connect JAVA
classes to PHP scripts. The layout algorithm can be changed later on the graph detail
page where new layouts can be created (e.g. orthogonal/hierarchical/spring/circular
layout).
Since the computation for some properties and layouts is very time consuming, we
perform a complete analysis only for graphs with < 100.000 nodes. The analysis is
done in the background to not disturb the user while browsing in GraphArchive; this
also holds for the computation of layouts. For the analysis, we use data structures and
algorithms provided by the yFiles library.

Referencing graphs Often, researchers use sets of graphs to perform experiments.
In order to render such experiments repeatable for other researchers it is preferable
that these data sets are referenced in the corresponding publication. To allow this,
we introduced the possibility to add references to a graph in our system. A reference
consists of a description and an optional link to the relating publication. For each
graph, multiple references are possible. The references are also searchable to be found
easily via the main page.
Additionally, we create a unique description for each graph (URI). Given the URI of
a graph, it can be reached online by adding the URL of our system, e.g.,

http://algo.inf.uni-tuebingen.de/forschung/graphdb/graphs/showgraph.php?

graph=bdc3639a

where bdc3639a represents a graph's URI. URIs are considered static such that they are
not supposed to undergo changes even in case that the underlying system is modi�ed
heavily. Also, given the URI, one can view the corresponding graph as a non-registered
user. Thus, readers of a publication given a URI of our GraphArchive can have a look
at the graph. This is provided by our guest access. The guest access is entered
by browsing to a URL as described above. Major di�erences between a guest and
registered users are: guests can only view a single graph, they have no access to the
main page; guests are not allowed to perform actions, e.g., search, upload or download.

12

http://algo.inf.uni-tuebingen.de/forschung/graphdb/graphs/showgraph.php?graph=bdc3639a
http://algo.inf.uni-tuebingen.de/forschung/graphdb/graphs/showgraph.php?graph=bdc3639a


Search for graphs The query mechanism of our system allows to search for graphs
by selecting and specifying query parameters. The parameters can be combined. A
picture of the search form is given in Figure 4. Main search criteria are:

• graph properties: when searching for a graph property, e.g., number of nodes,
a distinct value is supported as well as a given range or upper/lower bound, e.g.,
graphs with more that 10 nodes but less than 100 nodes.

• graph categories: the categories are stored using tags. Thus, graphs with a
speci�c �eld of application carry the name of their �eld as an attributed keyword.

• author/graph name: search for graphs uploaded by a special user or named
by a speci�c name, e.g., Metro map.

• upload date: search for graphs according to an upload date, we provide search
for speci�c dates but also for periods of dates, if the exact date is unknown.

• additional keywords (tags): user-de�ned keywords are treated as tags and
are searchable by selecting the appropriate keyword in the search form.

• references: graphs can also be found by a lookup according to the references
that are connected to them or their speci�c URI.

Figure 4: Query form of the free search: retrieving graphs by giving a range of upload
dates is also among the possible search queries.

File formats In the �eld of Graph Drawing, there are numerous tools with very di�er-
ent �le formats. The reasons for the usage of a distinct �le format can be multifaceted,
e.g., text graph format (tgf) can be favoured for its simplicity.
The reasons why a �le format is preferred over others depends on the �eld of applica-
tion. One aim of GraphArchive is to become a central graph repository for all domains
of interest. Therefore, we do not favor one of the �le formats but try to achieve sup-
port of as many �le formats as possible. We are convinced that limitation to a few �le
formats might prevent people to use the GraphArchive. We also support conversion
between our supported formats when the user wants to download a graph. As we con-
tinuously improve our approach, we are open for source code contributions to enlarge
our set of supported �le formats. Currently, the following formats are supported:

13



Description Abbreviation
Text graph �le format .tgf
GraphML .graphml
Compressed GraphML .graphmlz
Graph Markup Language .gml
Graph Markup Language (XML) .xgml
Y Graph Format .ygf

If a graph is uploaded in an unknown format, it is left unprocessed and stored as a
binary �le. However, graph analysis and layout computation as well as conversion for
export is not possible in this case.
For ease of import/export and the handling of graph libraries with numerous graphs,
we also support zip �les. When uploading a zip �le, the compressed �le is optionally
extracted and each contained �le is processed individually as a graph �le. Downloading
several graphs (without format conversion) is facilitated by compressing them using
zip compression before download.

4 Presentation of the new system

In this section, we want to give an impression of the design and online appearance
of GraphArchive by taking a virtual walk through a typical use case. The reader is
encouraged to make a tour on his own by browsing to the current GraphArchive via
our institute entry page:

http://algo.inf.uni-tuebingen.de/?site=forschung/graphdb/grapharchive

In Figure 5 (attached at the end of this document), the main page is depicted, graphs
are displayed in a table. The table is sortable ascending/descending in any of the
columns. For a quick overview on the main page, the user may show detailed infor-
mation of the displayed graphs, where key facts of the graphs are given, see Figure 6.
The details single graph page is shown in Figure 7 including an image visualization
and the attributes of the graph. On the details page, comments or references can be
updated and users may add additional tags. The default set of tags that is analyzed
automatically and the insertion for user-de�ned keywords is presented in Figure 8.
The upload form provides multiple features for specifying information on the graph to
be uploaded, see Figure 9. Additional to references, comments, �eld(s) of application,
the author has to con�rm his/her right to upload and share the graph. Here, licenses
may be added to the graph. In case of multiple graph upload, keywords, comments
and references can be set for all uploaded graphs at a time.
The multiview feature is presented in Figure 10. Details pages of multiple graphs are
presented in a combined fashion on a single page. Properties are either marked grey
or bold black depending on whether the property is matched by all graphs or only
a subset. Comments and references are handled similarly; changes performed on a
multiview page are passed to all displayed graphs. A download that is initialized on a
multiview page starts the creation of a zip �le that contains all displayed graphs.
The limited view of a guest access on a graph using the graph's unique URI is depicted
in Figure 11. Note that actions such as download or layout form are disabled for guests.

14

http://algo.inf.uni-tuebingen.de/?site=forschung/graphdb/grapharchive


5 Summary

In this report, we presented our system GraphArchive. It enables the community to
exchange graphs in a central place. Also, it provides a data store for archiving graphs,
e.g., graphs that are used in test suites.
We discussed the reasons and bene�ts of a central graph repository. This need was
already identi�ed earlier and led to the now discontinued system GraphDB. Further, we
analyzed the reasons that might have led to the rather hesitant usage of the GraphDB.
With our new approach GraphArchive we tackle the identi�ed weak spots of GraphDB.
The new application is developed as an online tool supporting and exploiting modern
web technologies. The portal is fully accessible via a common browser. The goal was
to provide an easy-to-use and powerful yet simple graph data platform.
GraphArchive enables interested researchers to �nd, share and store graphs of various
�elds of applications, e.g., social networks, road networks, class diagrams or metabolic
networks. Additionally, it provides a persistency mechanism, which allows for storing
data sets and permanently referencing them by a URI. This allows to reference data
sets in future publications, which makes experiments more transparent, repeatable and
thus, more reliable.
Also, the automated analysis of graphs increases usability and data consistency. In-
tegrated layout computations provide visualizations for quickly grasping mental maps
of graphs.
As a matter of course, development of the tool is not completed. In the future, we will
keep improving the running system and adding new features to it, e.g., allowing an
image gallery for a graph to integrate di�erent visualizations uploaded by users. We
will use http://www.graph-archive.org as a platform to post news and development
progress of our system. We hope that our system succeeds in providing a helpful service
and is being promoted and supported by the community to establish a central place
to go for sharing graphs. The rise and fall of the system depends on user acceptance
and its regular usage.

References

[1] T. Davis and Y. Hu. The University of Florida sparse matrix collection. http:

//www.cise.ufl.edu/research/sparse/matrices/, May 2011.

[2] 10th DIMACS implementation challenge - graph partitioning and graph clustering.
http://www.cc.gatech.edu/dimacs10/downloads.shtml, May 2011.

[3] J. J. Garrett. Ajax: A new approach to web applications. online: http:

//adaptivepath.com/ideas/ajax-new-approach-web-applications, February
2005. last accessed (2011-07-27).

[4] D. Knuth. The Stanford GraphBase. ACM Press, 1994.

[5] Matrix market. http://math.nist.gov/MatrixMarket/, National Institute of
Standards and Technology, May 2011.

[6] R. Tamassia, G. DiBattista, P. Eades, and I. Tollis. Graph Drawing. Prentice Hall,
1999.

15

http://www.graph-archive.org
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cc.gatech.edu/dimacs10/downloads.shtml
http://adaptivepath.com/ideas/ajax-new-approach-web-applications
http://adaptivepath.com/ideas/ajax-new-approach-web-applications
http://math.nist.gov/MatrixMarket/


Figure 5: Screenshot of the GraphArchive main page.

Figure 6: Expanded view of the main page with quick facts of graphs.

16



Figure 7: Graph detailed page; downloads can be initialized here and layout calcu-
lation can be selected. On the right, attributes are listed; at the bottom, user-de�ned
tags can be added, as shown in Figure 8.

Figure 8: Complete display of default graph tags, the user-de�ned tags can be set
at the bottom and will be added immediately to the tags.

17



Figure 9: Upload page: (multiple) �les can be selected and various attributes can be
assigned to the uploading graph: name, comment, publication or website references,
up to 3 �elds of applications are available, individual properties can be determined
and licenses might be attached. Before upload, a user has to ensure that he agrees to
share the graph and has the right to do so.

Figure 10: MultiView: view of multiple graphs at a time. Common properties are
displayed in bold black font colors; properties that are matched by a subset are marked
in grey. On mouse-over, the IDs are shown of the graph(s) that match the selected
properties.

18



Figure 11: This display is shown when a graph is accessed using the guest view
via a link containing the graph's URI. Information on the graph is displayed in full;
performing changes or actions, e.g. downloads, is deactivated.

19


	Introduction
	History of the GraphDB
	Motivation and Origin
	GraphDB
	Lessons learned

	Features of the new GraphArchive
	Main features of GraphArchive
	Architecture
	Presentation of selected key features:

	Presentation of the new system
	Summary

