
Albatross analytics a hands‑on into practice: 
statistical and data science application
Rezzy Eko Caraka1,2*   , Youngjo Lee2*, Jeongseop Han2, Hangbin Lee2, Maengseok Noh3, Il Do Ha3, 
Prana Ugiana Gio4 and Bens Pardamean5,6 

Introduction
The application of statistical data processing has grown during the last decade, starting 
from traditional methods to advanced methods, including machine learning and exten-
sive data analysis. The objective of statistical inference is to draw conclusions about a 
study population based on a sample of observations. Recently, subjective specific beliefs 
have been developed by introducing random effects in various components of mod-
els [1]. Different study problems involve specific sampling techniques and a statistical 
model to describe the analyzed situation.

Albatross Analytics is a statistical and computational data analysis program belonging 
to the open-source software class built after the R program package with the S program-
ming language. Albatross Analytics is currently under a project by HGLM’s worldwide 
group. In particular, it provides a new unified state-of-the-art statistical package from 
basic analysis to advance analysis including various random-effect models (HGLMs, 
DHGLMs, MDHGLMs, and frailty models) whose implementations are generally 
difficult.

Meanwhile, the basis of Albatross analytics in R software is clear R software was first 
worked on by Robert Gentleman and Ross Ihaka of the University of Auckland’s Statis-
tics Department in 1995 [2, 3]. Most of the functionality and capabilities of Albatross 
Analytics can be obtained through Add—packages/libraries.
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A library is a collection of commands or functions that can perform specific analyses. 
For instance, this implements double hierarchical generalized linear models in which the 
mean, dispersion parameters for the variance of random effects, and residual variance 
(overdispersion) can be further modeled as a random-effect model may use DHGLM [4], 
MDHGLM by Lee [5–7]. This package allows various models for multivariate response 
variables where each response is assumed to follow double hierarchical generalized lin-
ear models. See also further HGLM applications for machine learning [4], schizophrenic 
behavior data [8], variable selection methods [9], non-Gaussian factor [10], factor analy-
sis for ordinal data [11], survival analysis [12], longitudinal outcomes and time-to-event 
data [13], and recent advanced topics [14–17].

The FRAILTYHL package fits semi-parametric frailty and competing risk models 
using the h-likelihood. This package allows lognormal or gamma frailties for random-
effect distribution, and it fits shared or multilevel frailty models for correlated survival 
data. Functions are provided to format and summarize the FRAILTYHL results [18]. The 
estimates of fixed effects and frailty parameters and their standard errors are calculated. 
We illustrate the use of our package with two well-known data sets and compare our 
results with various alternative R-procedures. Refers to the application of semi-compet-
ing risks data [19], and clustered survival data [20, 21]. This paper addresses and explains 
what Albatross Analytics is and include how to use it in statistical and data science appli-
cation. The advantage of Albatross Analytics is the user can analyze and interpret the 
data easily. Meanwhile, Fig. 1 shows the feature of Albatross Analytics, including funda-
mental analysis, random effect, regression, survival analysis, and multiple response anal-
ysis. This paper aims to express the application of Albatross Analytics software to handle 
statistical analysis in broad areas. Long story short, we provide illustrative examples. A 

Fig. 1  Features in albatross analytics
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hands-on various applications including HGLM, DHGLM, MDHGLM, Survival Analy-
sis, Frailty Models, Support Vector Machine, and Structural Equation Models.

Illustrative examples

Data management

In today’s world, data is the driving factor behind all establishments. As institutions keep 
collecting so much data, there is a need to handle the quality of the data becoming more 
notable by the day. Data Quality Management is the set of measures applied by a techni-
cal team or a database management system to enable good new knowledge [22–24]. The 
above collection of techniques is decided to carry out during the data management path-
way, from data capture to execution, dissemination, and interpretation [24–26]. In line 
with this, the data management is the process of processing, managing, and maintaining 
data quality [27, 28]. Effective data management can increase the efficiency of research 
work [26, 29]. Figure 2a describes the main features available in Albatross Analytics. In 
the import data section, users can maximize this feature to upload data to be processed 
where the possible files are in excel and txt formats, respectively. For instance, Fig. 2b 
explains how to make a new variable feature, merge the dataset, and add new variables.

Each expression or variable has a data type such as numeric, integer, complex, logical, 
and character. The data types in Albatross analytics are expressed in class. A class is a 
combination of data types and the operations performed against the dataset type. The 
Albatross analytics look at the data as objects having attributes or properties. Data prop-
erties are defined by data type.

Fig. 2  Main feature (A) and Data management in albatross analytics (B)
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Basic analysis and GLMs

Descriptive statistics have been used to identify the specific characteristics of the data 
in the interpretation. We provide simple details of the findings and the procedures fol-
lowed in Fig. 3. Alongside primary frequency distribution, we form the basis of almost 
all quantitative analyses of the results. Descriptive statistics shall be used to present 
practical explanations understandably. Descriptive statistics allow one to interpret enor-
mous amounts of data in a structured way.

The t-test can be used to compare the means of two groups of data with the type of 
interval scale variable. Sometimes We will come across a study that aims to compare 
the mean of a sample with the mean of the entire population. Research models like this 
are rare, but the researcher can still provide valuable assumptions. We can do two kinds 
of tests, including z-test and a t-test. The condition we need to pay attention to is the 
population’s standard deviation. If we know the standard deviation, we get it using the 
z-test. This will be found very rarely or never. Therefore, the most frequently used test is 
the t-test because we do not need to know the standard deviation of the population we 
study.

Furthermore, the use of the t-test on two samples is divided into two types based on 
the characteristics of the two samples. The first is the t-test on two independent samples. 
This means that the two samples to be studied came from two different groups and were 
given further treatment.

During the research, the use of analysis of variance is fundamental. One of the assump-
tions that must be met is that the population variances are the same, so we need to test 
the hypothesis. The purpose of the analysis of variance (ANOVA) is to determine the 
similarity of several population means. One-way ANOVA may be used if only one fac-
tor is involved. Two types of tests can be used in ANOVA testing, including formal and 
visual tests.

Meanwhile, the statistical test can be conducted by model checking plot. If the plot 
does not form a specific pattern, it is said that the homogeneity of the variance is ful-
filled. We know the characteristics of each variable using descriptive analysis. In addi-
tion, we may see the relationship between variables, either normal or non-normal data 
[30]. With this correlation test, we want to know the similarity of the trends of the 
two variables. When the value of variable increases, it will also be accompanied by an 
increase or decrease in the value of other variables [31].

One main factor determines the test method used, namely the distribution of the data 
to be tested. We can use the parametric correlation test if the data distribution is normal, 

Fig. 3  Basic analysis and regression
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including Pearson’s correlation coefficient. Besides, if the data distribution is not normal, 
we can use Kendall’s rank correlation and Spearman’s rank correlation, which are non-
parametric correlation tests.

Regression analysis tests the causal relationship between variables—one variable as 
the independent variable and one other variable as the dependent variable. Numerous 
regression approaches, including Poisson regression, were used during the 1970s. Linear 
regression and logistic regression require a unique estimation algorithm by maximizing 
the likelihood. Figure 4 explains that Albatross Analytics provides features for using the 
Linear model, GLM Logit Model, GLM Probit Model, Log-linear Model, and joint GLM.

GLM describes a family of models where the response comes from the exponential 
family of distributions. The method used to t-test or F-test and inferences of these mod-
els is maximum likelihood (ML). In the GLM family of models, an IWLS algorithm can 
compute the ML estimates and their standard errors. Hence, the computational machin-
ery developed for least-squares estimation for linear models can fit GLMs, but the statis-
tical method is based on ML.

Fig. 4  HGLM algorithm (A), and DHGLM algorithm (B)
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Hands‑on and application albatross analytics

Hierarchical generalized linear models (HGLMs)

Albatross Analytics’ distinct advantage is its unified analysis of random effect models. 
Various random effect models can be represented as HGLMs and estimated by h-likeli-
hood procedures [32]. HGLMs are defined as follows:

(1)	 Conditional on random effects u , the responses y follows a GLM family, satisfying

for which the kernel of the log-likelihood is given by

where θ = θ(µ) is the canonical parameter. The linear predictor takes the form in 
Eq. (1):

where v = v(u) , for some monotone function v(·) and the link function g(µ).
(2)	 The random component u follows a (conjugate) distribution to a GLM family of 

distributions with parameter �.

To infer the HGLM, Lee and Nelder [32] proposed using the h-likelihood. The h (log-) 
likelihood is defined as Eq. 2:

The GLM attributes of an HGLM are summarized in Fig. 4.
In Bissell’s fabric study, the response variable y is the number of faults in a bolt of the 

fabric of length l . Table 1 represents the results of the fabric study. Figure 6 illustrates 
the negative binomial model fitted via Poisson-gamma HGLM with saturated random 
effects for the complete response. In addition, the model checking plot is presented in 
Fig. 5.

E
(
y|u

)
= µ and var

(
y|u

)
= φV (µ),

∑{
yθ − b(θ)

}/
φ,

(1)η = g(µ) = Xβ + Zv,

(2)h = log fβ ,φ(y|v)+ log f�(v).

Table 1  Results for fabric study

Estimates from the mean model

Estimate Std.error t-value p-value

Intercept − 3.77988 0.01443 − 2.61933 0.00881

log (l) 0.94236 0.00226 4.17445 0.00003

Estimates from the dispersion model

Estimate Std.Error

log (�) − 2.07637 0.02103

Likelihood

− 2ML − 2RL cAIC Scaled Deviance df

175.75601 179.91906 172.76006 14.33786 14.43461
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Fig. 5  Model checking plots of DHGLM for mean (A), and model checking plots of DHGLM for dispersion (B)
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Double hierarchical generalized linear models (DHGLMs)

HGLM can be extended by allowing additional random effects in their various compo-
nents. Lee and Nelder [32] introduced a class of double HGLMs (DHGLMs) in which 
random effects can be specified in both the mean and the residual variances. Heterosce-
dasticity between clusters can be modeled by introducing random effects in the disper-
sion model as heterogeneity between clusters in the mean model. With DHGLMs, it is 
possible to have robust inference against outliers by allowing heavy-tailed distribution. 
Many models can be unified and extended further by the use of DHGLMs. These also 
include models in the finance area such as autoregressive conditional heteroscedastic-
ity (ARCH) models, generalized ARCH (GARCH), and stochastic volatility (SV) models. 
Models can be further extended by introducing random effects in the variance terms. 
Suppose that conditional on the pair of random effects (a,u) , the response y satisfies.

The critical extension is to introduce random effects into the component φ:

(1)	 Given u , the linear predictor for µ takes the HGLM form in Eq. 1 where g(·) is the 
link function, X and Z are model matrices, v = gM(u) for some monotone func-
tion, gM(u) are the random effects, and β are the fixed effects. Moreover, dispersion 
parameters � for u have the GLM form in Eq. 3

where hM() is the link function, GM is the model matrix and γM is fixed effects.
(2)	 Given a , the linear predictor for φ takes the HGLM form as described in Eq. 4

where h() is the link function, G and F  are model matrices, b = gD(a) for some mono-
tone function, gD(a) are the random effects, and γ are the fixed effects. Moreover, dis-
persion parameters α for a have the GLM form, as shown in Eq. 5.

where  hD(·) is the link function, GD is the model matrix and γD is fixed effects. Here, the 
labels M and D stand for mean and dispersion, respectively. The GLM attributes of a 
DHGLM are summarized in Fig. 4.

However, We illustrate an example of how to fit the DHGLM. Hudak [33] presented 
crack growth data, listed in Lu [34]. Each of 21 metallic specimens was subjected to 
120,000 loading cycles, with the crack lengths recorded every 10,000 cycles. Let lij be 
the crack length of the i-th specimen at the j-th observation and yij = lij − lij−1 be the 
corresponding increment of crack length (response variable) measured in inches, which 
always has a positive value. A detailed description of the model can be found in Table 2, 
and Fig. 5a and b represent the mean and the dispersion, respectively [5]. Compared to 
an HGLM, DHGLM gives model checking plots for mean and dispersion, respectively.

E
(
y|a,u

)
= µ and var

(
y|a,u

)
= φV (µ).

(3)ξM = hM(�) = GMγM ,

(4)ξ = h(φ) = Gγ + Fb,

(5)ξD = hD(α) = GDγD
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Multivariate double hierarchical generalized linear models (MDHGLM’s)

Using h-likelihood, multivariate models are directly extended by assuming correlations 
among random effects in DHGLMs for different responses. The use of h-likelihood 
indicates that interlinked GLM fitting methods for HGLMs can be easily extended to 
fit multivariate HGLMs (MDHGLMs). Moreover, the resulting algorithm is numerically 
efficient and gives statistically valid inferences. In this paper, we present the example for 
MDHGLM. For more details, see [35] Meanwhile, Price et al. [36] presented data from a 
study on the developmental toxicity of ethylene glycol (EG) in mice. Table 3 summarizes 
the data on malformation (binary response) and fetal weight (continuous response) and 
shows clear dose-related trends concerning both responses.

To fit the EG data, the following bivariate HGLM is considered:

(1)	 y1ij|wi ∼ N
(
µij ,φ

)
,µij = x1ijβ1 + wi,

(2)	 y2ij|ui ∼ Ber
(
pij

)
, logit(pij) = x2ijβ2 + ui , and

(3)	 (wi,ui)
T ∼ BVN (0,�), cor(wi,ui) = ρ.

Table 2  Results of DHGLM for crack growth data

Estimates from the mean model

Estimate Std. error t-value p-value

intercept − 5.64457 0.00007 − 429.0492 0.00000

crack 2.40596 0.00005 238.59171 0.00000

Estimate Std. error

log (�) − 3.44556 0.00983

Estimates from the dispersion model

Estimate Std. error

Intercept − 3.01495 0.00735

Cycle − 11.44552 0.07700

Estimate Std. error

log (α) − 0.40365 0.00229

Likelihood

− 2ML − 2RL cAIC Scaled deviance Df

− 1910.493 − 1602.520 − 1620.783 215.58663 215.58663

Table 3  Descriptive Statistics for crack growth data

Dose (g/kg) Dams Live Malformations Weight (g)

No % Mean S.D

0.00 25 297 1 0.34 0.972 0.0976

0.75 24 276 26 9.42 0.877 0.1041

1.50 22 229 89 38.86 0.764 0.1066

3.00 23 226 129 57.08 0.704 0.1238
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Figure  6 shows the path diagram of the model for the EG data. The malformation 
model information is given in Table 4, with cAIC for the evaluation models. In line with 
this, we get the result for the weight model in Table 5 and correlation in Table 6.

Fig. 6  Path diagram for MDHGLM towards weight and misinformation

Table 4  Results for malformation model

Estimates from the mean model

Estimate Std. error t-value p-value

Intercept 0.97800 0.01410 69.36273 0.00000

Dose − 0.16300 0.02537 − 6.42366 0.00000

Dose2 0.02500 0.00794 3.14776 0.00165

Estimate Std. error

log (�) − 4.95674 0.21902

Estimates from the dispersion model

Estimate Std. error

Intercept − 4.95674 0.21902

Likelihood

− 2ML − 2RL cAIC Scaled deviance df

− 2173.975 − 2150.607 − 2330.449 942.09806 942.09806

Table 5  Results for weight model

Estimates from the mean model

Estimate Std. error t-value p-value

Intercept − 5.85700 0.77059 − 7.60063 0.00000

Dose 4.74202 0.94058 5.04161 0.00000

Dose2 − 0.88501 0.23378 − 3.78563 0.00015

Estimate Std. error

log (�) 0.61297 0.33902

Likelihood

− 2ML − 2RL cAIC Scaled deviance df

719.47338 724.13384 689.55801 606.88179 986.66086



Page 11 of 25Caraka et al. Journal of Big Data            (2022) 9:70 	

Survival analysis

Albatross Analytics also provides features for survival analysis, which represent in Fig. 7 
by including incomplete data caused by censoring in survival time (time-to-event) data 
including Kaplan–Meier Estimator, Cox Model, Frailty Model [7], and Competing Risk 
Model [19, 37]. More instances of the Kaplan Meier curve describe the relationship 
between the estimated survival function at time t and the survival time. The vertical axis 
represents the estimated survival function, and the horizontal axis represents the sur-
vival time.

Cox proportional hazards (PH) regression is used to describe the relationship between 
the hazard function of survival time and independent variables which are considered 
to affect survival time. Cox regression is a common regression used in survival analysis 
because it does not assume a particular statistical distribution (e.g., baseline hazard) of 
the survival time.

Cox’s PH model is widely used to analyze survival data. This method is helpful with 
its semi-parametric existence, whereby baseline hazards are non-parametric, and treat-
ment effects are estimated parametrically. A partial likelihood has usually been used to 
accommodate such a semi-parametric form. However, it can also be fitted with Poisson 
GLM methods. Moreover, they are sluggishly led to many nuisance parameters induced 
by non-parametric measurement hazards. Meanwhile, using the h-likelihood theory, we 
can prove that Poisson HGLM methodologies could be used for such kinds of modeling 
techniques. That being said, this method is again sluggish since the number of nuisance 
parameters in non-parametric baseline hazards grows with the number of events.

Table 6  Correlation towards crack growth

Estimates for correlation wi ui

wi 1 − 0.61933

ui − 0.61933 1

Fig. 7  Survival analysis feature
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Example 1 using incomplete data caused by censoring in survival data

In Fig.  7, we study the analysis of incomplete data caused by censoring survival data. 
Cox’s PH model is widely used to analyze survival data. Frailty models with a non-para-
metric baseline hazard extend the PH model by allowing random effects in hazards and 
have been widely adopted for the analysis of correlated or clustered survival data using 
h-likelihood theory; we can show that Poisson HGLM algorithms can be used to fit the 
frailty models [12, 38–43].

Data consist of right-censored observation from q subjects, with  ni observations 
each ( i = 1, . . . , q) , n = �ini as the total sample size, Tij as survival time for the j-th 
observation of the i-th subject ( j = 1, . . . , ni) , Cij as the corresponding censoring time, 
yij = min

{
Tij ,Cij

}
, δij = I(Tij ≤ Cij) , and ui as observed frailty for the i-th subject. The 

conditional hazard function of Tij given ui is of the form in Eq. 6

Here �0(·) is an unspecified baseline hazard function and β =
(
β1, . . . ,βp

)T is a vec-
tor of regression parameters for the fixed covariates xij . Here, the term xTij β does not 
include an intercept term because of identifiability. Then, we assume that the frailties 
ui are i.i.d random variables with a frailty parameter α . We often assume gamma or log-
normal distribution for ui ; that is, it is gamma frailty with E(ui) = 1 and var(ui) = α and 
log-normal frailty with vi = logui ∼ N (0,α) . Meanwhile, the multi-component frailty 
models can be expressed in Eq. 7, with the linear predictor

X is n× p model matrix for β , andZr is n× qr model matrices corresponding to the 
frailties vr . At the same time, v(r) and v(i) are independent for r  = I . Also, Zr has indi-
cator values such that Z(r)

st = 1 if observation s is a member of the subject t in the r-th 
frailty component, and 0 otherwise.

To the illustration, below we present two examples. Example 1 considers the dataset 
of the recurrence of infections in kidney patients using a portable dialysis machine. The 
data consist of the first and second recurrences of kidney infection in 38 patients. The 
catheter is later removed if the condition occurs and can be removed for other reasons, 
which we regard as censoring (about 24%).

In Example 1, the variables consist of 38 patients (id), time until infection since the 
catheter insertion (time), and a censoring indicator (1, infection; 0, censoring) for status, 
age of the patient (age), sex (sex) of the patient (1, male; 2, female), disease types (disease) 
following GN, AN, PKD, other, and estimated frailty (frail). The survival times (1st and 
2nd infection times) for the same patient are likely to be correlated because of shared 
frailty describing the common patient’s effect. We thus fit log-normal frailty models with 
two covariates, sex, and age. Here, we consider the patient as frailty. Figure 8 presents 
the Kaplan–Meier plot for the estimated survival probability of the sex (sex1, male; sex2, 
female). This shows that the female group has overall higher survival (i.e., less infectious) 
probabilities than ones in the male group. Table 7 summarizes the estimated results of 
the log-normal frailty model. We show the estimated frailty in Fig. 9. For further discus-
sions in survival analysis, see [18].

(6)�ij(t|ui) = �0j(t)exp
(
xTij β

)
ui

(7)η = Xβ + Z1v1 + Zkvk + · · · + Zkvk
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Example 2 placebo‑controlled rIFN‑g in the treatment of CGD

Example 2, in the following case examples, consists of a placebo-controlled rIFN-g in 
the treatment of CGD [44, 45]. One hundred twenty-eight patients from 13 centres were 
tracked for around 1 year. The survival times are the recurrent infection times of each 

Fig. 8  Survival probability towards sex

Table 7  Model description FOR LOG-normal frailty

Model description

Model Number of data Number of events Method

1 Log normal frailty model 76 58 HL (0,1)

Estimates from the mean model

Estimate Std.error t-value p-value

Sex − 1.38043 0.43082 − 3.20419 0.00135

Age 0.00488 0.01209 0.40412 0.6812

Estimates from the dispersion model

Estimate Std. error

Id 0.53448 0.38842

Likelihood

− 2 h0 − 2 hp − 2 pβ ,v
(
hp
)

330.40166 390.7718 371.54037

AIC

cAIC mAIC rAIC

362.45706 370.70076 373.54037
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patient. Censoring occurred at the last observation for all patients, except one, who 
experienced a severe infection on the date he left the study. About 63% of the data were 
censored. The recurrent infection times for a given patient are likely to be correlated. 
Also, each patient belongs to one of the 13 centres. The correlation may be attributed 
to the patient effect and centre effect. Meanwhile, the recurrent infection times of each 
patient or censoring time (tstart–tstop), 128 patients (id), 13 centers (center), rIFN-g or 
placebo (treat), censoring indicator (1, infection observed; 0, censored) for status, data 
of randomization (random) information about patients at study entry (sex, age, height, 
weight), the pattern of inheritance (inherit), use of steroids at study entry 1(yes), 0(no) 
(steroids), use of propylac antibiotics at study entry. 1(yes), 0(no) (propylac), categoriza-
tion of the centers into four groups (hos.cat), and observation number within-subject 
(enum). We fit multilevel log-normal frailty with two frailties and a single covariate, 
treatment. Here, the two frailties are random center and patient terms, with their struc-
tures given in Eq. 8.

(8)

η = Xβ + Z1v1 + Z2v2

v1 ∼ N
(
0,α1Iq1

)

v2 ∼ N
(
0,α2Iq2

)

Fig. 9  Estimated frailty in the kidney infection data
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Here v1 is center frailty, and v2 is patient frailty. For testing the need for a random com-
ponent i.e.,(α1 = 0 or α2 = 0) we use the deviance − 2pβ ,v

(
hp
)
 and fit the following four 

models.
M1 Cox’s model without frailty (α1 = 0 or α2 = 0) : − 2pβ ,v

(
hp
)
= 707.48

M2 model without patient effect (α1 > 0 or α2 = 0) : − 2pβ ,v
(
hp
)
= 703.66

M3 model without center effect (α1 = 0 or α2 > 0) : − 2pβ ,v
(
hp
)
= 692.99

M4 multilevel model (α1 > 0orα2 > 0) : −2pβ ,v
(
hp
)
= 692.95.

Table 8 represents the model description. The deviance difference (692.99 − 692.95 = 0.04) 
between M3 and M4 (0.04 < 2.71 = χ2

0.10(1)) indicates the absence of the random center 
effects, and the deviance difference between M2 and M4 (10.71) shows the necessity of ran-
dom patient effects. In addition, the deviance difference between M1 and M3 (14.49) pre-
sents the random patient effect with or without random center effects. All of the three criteria 
(cAIC, mAIC and rAIC) also choose M3 among the M1–M4. Figure 10 presents the esti-
mated frailty effects of this study. The explanations of model evaluation toward these three 
criteria can be seen in the Appendix.

Support vector machine using H likelihood

Support Vector Machine (SVM) is a supervised learning method for classification and 
regression using non-linear boundaries by feature space [4, 46–49]. We present a Sup-
port Vector Machine (SVM) based on the HGLM method [4]. The match between the 
observed response and the model output is optimized. The output model is a feature or 
prognostic function also referred to as a utility function and more specifically in medical 
research it is called the prognostic index or health function, defined in Eq. 9:

Table 8  Model description for log normal frailty

Model description

Model Number of data Number of events Method

1 Log normal frailty model 203 76 HL(1,1)

Estimates from the mean model

Estimate Std.error t-value p-value

treatIFN-g − 1.18425 0.34065 − 3.47642 0.00051

Estimates from the dispersion model

Estimate Std.Error

center 0.03003 0.15720

id 1.00206 0.50880

Likelihood

− 2 h0 − 2 hp − 2 pv
(

hp
)

− 2 pβ,v
(

hp
)

603.31409 853.69944 692.62963 692.94167

AIC

cAIC AIC rAIC

684.91665 698.62963 696.94167
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Here u : Rd → R , w is a vector of unknown d parameters and  ϕ(x) is the transforma-
tion of the covariates x. In non-linear SVM, the transformation function used is "Kernel 
Trick", see: [50–52] Kernel Trick calculates the scalar product in the form of a kernel 
function. The SVM model is implied with a constraint function that will get the right 
margin. The constraint function of the SVM model is shown in Eq. 10. If there is an error 
in ranking it is given by the slack variable ξij ≥ 0 . The formulation of the SVM model is 
described in Eq. 10: cantered depression, and the latent person-

with a regularization parameter γ ≥ 0 . vij is an indicator function of whether or not two 
subjects with observations i and j are comparable; it is 1 if i and j are comparable and 
0 otherwise. In this paper, we use the dataset of the anatomy of an Abdominal Aortic 
Aneurysm (AAA), Aortic Anatomy on Endovascular Aneurysm Repair (EVAR), see [53]. 
The variables are described as follows: Y = Sex, X1 = Age, X2 = Aortic type Fusiform (1), 
Saccular (2), X3 = Proximal neck length, X4 = Proximal neck diameter, X5 = Proximal 
neck angle, and X6 = Max. Aneurysmal sac. We set the response variable towards simu-
lation by following the Bernoulli distribution with 500 observations. In each scenario, 

(9)u(x) = wTϕ(x)

(10)

min
w,ξ

1

2
wTw +

γ

2

∑

i<j

vijξij

constraint function

{
wTϕ

(
xj
)
− wTϕ(xi) ≥ 1− ξij , ∀i < j

ξij ≥ 0, ∀i < j

Fig. 10  Estimated frailty effects in the CGD recurrent infection data
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the process of generating data is repeated 100 times. The parameter values used are: 
γ = 0.7,Cost = 8 . Verbose takes advantage of a per-process runtime setting. Meanwhile, 
the SVM parameter setting is as follows:

•	 First simulation:
	 Cluster method: “kmeans”, cost = 8, lambda = 1, centers = 2, verbose = 0.
•	 Second simulation:
	 Cluster method: “kernkmeans”, cost = 8, lambda = 1, centers = 2, verbose = 0.
•	 Third simulation:
	 Cluster.method = "kernkmeans", cost = 8, lambda = 1, centers = 3, verbose = 0.
•	 Fourth simulation:
	 Cluster.method = "kernkmeans", cost = 8, lambda = 1, centers = 4, verbose = 0.
There are two types of model evaluation criteria: the classification stage and the 

HGLM analysis stage. Evaluation of the model’s goodness at the classification stage uses 
AUC and is determined using the values contained in the confusion matrix, with

This simulation shows that HGLM performs better with high sensitivity because some 
of the data used is a binary case that SVM cannot handle. For more information on step 
construction using hierarchical likelihood towards SVM. Table 9 represents that the use 
of Ensemble SVM reduces the accuracy and other measures. When the mixture patterns 
exist in the predictor, Ensemble SVM improves SVM performance in two scenarios. 
Ensemble SVM performed almost as well as logistic regression, except for sensitivity. 
There is a decrease in performance in the Ensemble SVM model in the multicollinearity 
condition and linear combination between the predictor variables. Meanwhile, HGLM 
still has a good performance, which is represented in Fig. 11a and b, respectively.

Sensitivity =
True Positive

True Positive + False Negative

Specitifity =
True Negative

False Positive + True Negative

Table 9  Models accuracy compariso

Methods AUC​ Accuracy Sensitivity Specificity

hglm 0.9877261 0.98922 0.9843113 0.9925881

svm 0.9753548 0.98356 0.9774139 0.9857814

kern_csvm2 0.9842441 0.98828 0.9797909 0.9918297

kmean_svm2 0.9862619 0.99012 0.9840275 0.9925610

kern_csvm3 0.9852699 0.98816 0.9760351 0.9929982

kmean_svm3 0.9874062 0.99046 0.9823998 0.9937159

kern_csvm4 0.9860299 0.98870 0.9768563 0.9932874

kmean_svm4 0.9894770 0.99046 0.9769520 0.9956495
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Fig. 11  AUC, accuracy, sensitivity, and specificity (A), and accuracy of all scenarios (B)
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Using H‑likelihood to structural equation model (HSEMs)

The is widely used in multidisciplinary fields [41]. To account for the information, 
[42, 43] performs the style of frequentist model averaging in structural equation mod-
eling, non-linear structural equation modeling towards ordinal data [44] and partial 
least square [45, 46] and robust nonlinear with the interaction between exogenous and 
endogenous latent variables [47]. With an example we present a SEM method based on 
h-likelihood, called “hsem” [52].

In application, [48] uses two-level dynamic SEM on longitudinal data at Mplus. In this 
paper, we explicitly discuss how to use h-Likelihood in SEM. This data set consists of 
50 repetitions on regular time scales for 100 individuals. For the response variable, the 
urge to smoke is on a standardized scale so that 0 corresponds to the average where the 
standard deviation is 1. Smokers can feel drastic mood changes. Starting from feeling 
happy then turning into sadness, this can show the characteristics of a person who is 
depressed. For those addicted, smoking can give a calm mind for a moment. The second 
model will answer the question; latent person predicts smoke, mean cantered depres-
sion, and the latent person-mean centered lag-1 urge to smoke. The model Eq.  11 is 
given as follows:

Figure 12 represents the path diagram by using hsem. This same standard progression 
path across all respondents was defined through the fixed-effect model. In contrast, the 
person-specific random effects are used to catch the variance of each participant from 
the expected path. Meanwhile, the path diagram represents within-level and between-
level models. As more instance, we provide the R package hsem [54].

(11)

urgeti = β0i + β1iTimeti + eti,

β0i = γ00 + u0i

β1i = γ10 + u1i

ui =

(
u0i
u1i

)
∼ MVN

([
0
0

]
,

[
τ00 0
0 τ11

])

eti ∼ N
(
0, σ 2

)

Fig. 12  Path diagram
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Short review albatross analytics

This paper explains how Albatross software can be used for alternative multidiscipli-
nary data processing. We offer model estimation, model checking plots, and visualiza-
tion features to interpret information. Through data and R code, instances would further 
reveal the benefit of the HGLM model for particular statistical cases. The h-likelihood 
approach is distinct from both classical frequentist and Bayesian frameworks, while this 
encompasses inference of both fixed and random unknowns. The main benefit over clas-
sical frequentist approaches is that it would be possible to infer unobservable quantities, 
such as random effects, and therefore, observations could be rendered. Whenever a sta-
tistical model has been selected for the research, the likelihood contributes to the direc-
tion of inferential statistics.

Throughout direct ties with the establishment of h-likelihood, the nomenclature has 
already been used in which a wide variety of likelihoods have now been established. 
Most are through theoretical computation of GLM and GLMM, e.g., quasi-likelihood 
and extended quasi-likelihood. Many others are used to show the linkage of conven-
tional frequentist estimation and Bayesian inference by the following other terms such 
as joint likelihood, extended likelihood, and adjusted profile likelihood. We demonstrate 
whether h-likelihood was an essential likelihood that marginal and REML probabili-
ties and statistical probabilities are extracted. The extended probability theory under-
lies the h-likelihood system and demonstrates how it holds from classical and Bayesian 
probability.

Generalizations on random effects are of great application in simulations. For exam-
ple, a typical example is that there are frequent observations of hospital admissions by 
patients and that the life of these patients can be expected. This might include a survival 
experiment with unexpected results for patients, and the variance of the estimates indi-
cates the variability of the random effect.

During the first few examples, we demonstrate experiments using normal, log-normal, 
gamma, Poisson, and binomial HGLMs. Binary models are used to compare with appli-
cation areas, while the dhglm package is fast and yields consistent results. Descriptions 
using HGLMs, including organized dispersion, are given below. We also line up models 
including correlated random effects and structural equation models.

The likelihood implies that probability models will offer an effective way to interpret 
the data if the model is accurate. It is also necessary to validate the model to verify the 
interpretation of the results. That being said, it could be hard to ascertain all the model 
assumptions. During the simulation using h-likelihood, SEM’s normal assumption in 
binary GLMMs can give serious biases if the normal assumption on random effects is 
incorrect.

Conclusion and future research

The likelihood inferences for specific models may be susceptible to data leakage outliers. 
If the data size is limited, we can review the data carefully to detect outliers, but it can 
be difficult for large-scale data to identify outliers or degraded data. A commonly cited 
drawback of the probability approach is that it is not resilient to model distribution pre-
dictions or the existence of outliers or data degradation. It is advantageous to build mod-
els that are likely to have stable inferences against such violations. That’s also feasible 
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by believing that the model encompasses a wide variety of distributions. We are leaving 
future studies to combine h-likelihood in the deep learning [39, 40, 55–59], and using 
this framework towards spatial and remote sensing [60–64], hybrid forecasting [65–80], 
and more advanced disease detection cases using image detection [81–90].

Appendix A
H‑likelihood theory for the frailty model

The h-likelihood gives a straightforward way of handling non-parametric baseline haz-
ards. The h-likelihood under the frailty model is defined by:

Here,

The functional form of �0(t) is unknown. Hence, we consider ∧0(t) to be a step func-
tion with jumps at the observed event time/At the moment, y(k) is the k-th smallest dis-
tinct event time among the yij’s, and �0k = �0

(
y(k)

)
 . Thus, we proposed the use of the 

profile h-likelihood with �0 eliminated, r∗ = h|
�0=�̂0

, given by

Here,

where,

are solutions of the estimating equations, ∂h
∂�0k

= 0 . However, d(k) is the number of events 
at y(k) and R(k) =

{(
i, j
)
: y

ij
≥ y(k)

}
 is the risk set at y(k) . In consequences, we proposed 

h-likelihood, called penalized partial likelihood (PPL) hp , given by:

h = h(β , �0,α) = l0 + l1

l0 =
∑

ij
logf

(
yij , δij|ui;β , �0

)
=

∑
ij
δij
{
log

(
�0yij

)
+ ηij

}
−

∑
ij
∧0

(
yij
)
exp

(
ηij

)

l1 =
∑

ij
logf (vi;α)

r∗ = r∗(β ,α) = l∗0 + l1.

l∗0 =
∑

ij

logf ∗(yij , δij|ui;β) =
∑

ij

logf (yij , δij|ui;β , �̂0),

�̂0k(β , v) =
d(k)∑

ijǫRk
exp

(
ηij

)

hp(β , v,α) =
∑

ij
δijηij −

∑
k
dk log

{∑
ijǫR(k)

exp
(
ηij

)}
+ l1
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Appendix B
Calculation of scaled deviance test

The scaled deviance is defined by following equation:

Here, the estimated degree of freedom, d.f = n− tr
(
H−1H∗

)
, where H and H∗ are the 

Hessian matrices of (β , v) based on l0 and h, respectively.

Appendix C
Conditional Akaike information criteria towards DHGLM

The conditional Akaike information for double HGLMs is defined as follows:

Here f
(
y,u, a

)
= f1

(
y|u, a

)
f2(u)f3(a) is the true joint distribution of y,u, anda . Mean-

while, β̂
(
y
)
andv̂

(
y
)
 are the estimators of fixed and random effects ( β , ν ) for the mean 

model, respectively. Here, γ̂
(
y
)
 and b̂

(
y
)
 are also the estimators of fixed and random 

effects(γ , b ) for the dispersion model, respectively. At the same time, another two evalu-
ation criteria are mAIC for marginal log-likelihood and rAIC for restricted log-likeli-
hood [5], defined by:

Here dfm is the number of fixed parameters and dfr is the number of dispersion param-
eters. When we compare models with different fixed parameters, mAIC can be used, 
whereas rAIC can be used for dispersion parameter model selection.
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.
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log g
{
y∗|β̂

(
y
)
, v̂
(
y
)
, γ̂

(
y
)
, b̂
(
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)}

=

∫
− 2 log g

{
y∗|β̂

(
y
)
, v̂
(
y
)
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(
y
)
, b̂
(
y
)}

f1
(
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f
(
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