
A parallel portfolio SAT solver

with lockless physical clause sharing

Michael Kaufmann and Stephan Kottler

WSI-2011-02

Wilhelm Schickard-Institut für Informatik
Universität Tübingen, Sand 14, 72076 Tübingen
{mk,kottlers}@informatik.uni-tuebingen.de

c© WSI 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/56756892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A parallel portfolio SAT solver

with lockless physical clause sharing1

Michael Kaufmann and Stephan Kottler

Wilhelm–Schickard–Institut für Informatik
Universität Tübingen

{mk,kottlers}@informatik.uni-tuebingen.de

Abstract

Since multi–core architectures have become well–established the enquiry for
parallel SAT solvers has drastically increased. Meanwhile, several successful SAT
solvers have been presented that can be run in parallel mode. However, there are
only a few solvers that use the shared memory architectures for physical clause
sharing.
In this paper we present a parallel SAT solver that allows for sharing clauses be-
tween several threads logically and physically. Yet any thread is still able to keep
its own set of clauses.
We show how physical clause sharing can be used to propagate one thread’s im-
provements on the clause database to all solving threads. Despite the extensive
sharing of data our solver does not require any operating system lock.

1 Introduction

The engineering of practicable Satisfiability (SAT) algorithms and the intensive opti-
misation of SAT solvers have made the SAT problem feasible for many computational
real–world problems that can be transformed into SAT formulae. Since the improve-
ment of the primal DPLL algorithm [DP60, DLL62] by the conflict learning procedure
GRASP [MS99] many huge SAT instances can be solved in reasonable time. The design
of efficient data structures and optimised implementations [MMZ+01, ES03] have been
ground–breaking for the wide application of SAT solving.
In recent years parallel SAT solving has gained in importance to utilise the potential of
multi–threaded architectures. However, the parallelisation of SAT solving is an inter-
esting research area for a long time and many different approaches to parallelise SAT
have been studied:
A search procedure may split the entire search space into different subareas that may
or may not be disjunct. This approach seems to suggest itself in SAT solving where a
subset of variables can be preassigned to different values for different parallel solving
procedures. Preassigning variables forces any parallel process to search for a solution in
a different part of the search space. This divide–and–conquer approach, which is often
said to use a so–called guiding path [ZBH96], is widely–used in distributed parallel SAT
solving.
However, when a subset of k variables is selected to configure different guiding paths, a
total of 2k processes are required to explore the entire search space in parallel. Hence,

1This work is suported by the DFG grant SPP 1307 – Algorithm Engineering

1

the guiding path approach cannot convince on multi–core architectures, where the num-
ber of parallel processes is fairly limited.
On the contrary there is the parallel SAT solving approach that does not guide different
solving processes in any way. Even when running the same algorithm in parallel some
random decisions within the algorithm will lead each process in different directions.
Useful information that is globally valid for each solving process may be exchanged.
In [BSK03] the idea of exchanging learnt lemmata between parallel executions of the
DPLL algorithm has been proposed. These days most parallel state–of–the–art SAT
solvers apply this idea to a certain degree.

In the context of multi–threaded SAT solving sharing of learnt clauses is now widely
applied. However, the term sharing may be ambiguous. Most solvers run an instance of
the CDCL algorithm in each parallel thread. A copy of any learnt clause that conforms
to certain criteria is sent to (some of) the other parallel threads [HS09a]. Hence, in-
formation is shared among parallel threads, but a clause itself is not shared physically.
Each thread holds its own copy of each clause. To our knowledge the only solver that
shares a unique clause database physically is MiraXT [SLB05, LSB07].

In this paper we present the design and implementation of our parallel solver
SArTagnan as it successfully participated at the SAT Race 2010. All solving threads
are allowed to share clauses logically and physically. But the set of clauses in different
threads is not required to be identical. Any solving thread can still decide whether
it uses a shared clause of another thread and, whether it shares an own clause with
other threads. Even though data is shared by all threads the solver does not use any
operating system or OpenMP locks.
All threads of the solver can be configured to apply different search strategies. Due to
the physical sharing of clauses any solving thread can permanently improve the entire
set of clauses. Moreover, all threads may benefit from the improvement that was made
by one solving thread.

The paper is organised as follows: In Section 1.1 the basic CDCL procedure is
sketched. Section 2 presents the most important aspects of clause sharing and the
communication between threads. In Section 3 different search strategies of the solving
threads are explained. The subsequent Section 4 shows some experimental results and
gives an insight into configuration details. Section 5 finally concludes the work.

1.1 The CDCL Procedure

Algorithm 1 lists the basic CDCL procedure that has become predominant in industrial
state–of–the–art SAT solving. For detailed information on SAT and SAT solving the
reader is referred to [BHvMW09].
As long as there are unassigned variables a branching choice is made and all implications
are computed by the so-called Boolean Constraint Propagation (BCP). If an assignment
to a variable w ∈ V is implied that contradicts its current state, a new clause L is created
that expresses the conflict as a single condition. The solver jumps back to a previous
partial assignment so that one literal in L becomes unassigned. From time to time the
set of learnt clauses is reduced.

2

Algorithm 1: Sketch of the CDCL Approach
Require Formula F in CNF ;1

Function CDCL(F)2

A← ∅ /* current partial assignment */3

VU ← vars(F) /* unassigned variables */
4 while VU 6= ∅ do4

5 l← choose-next-decision(VU) ;5

6 A′ ← BCP(l) ;6

7 if A′ in conflict with A then7

8 L← analyze-conflict(A,A′) ;8

9 if L = ∅ then return ’Unsatisfiable’;9

F ← F ∪ L;A← backjump(L) ;10

else A← A ∪A′;11

VU ← VU \ {vars(A)};12

if Maximal number of learnt clauses reached then13

clean-set-of-clauses ();
return ’Satisfiable’ /* A satisfies F */14

2 Parallel Solving

Working on shared memory architectures motivates for sharing clauses physically, so
that shared information (i.e. each clause) exists only once in memory. This is motivated
by the fact that the set of literals of a clause is basically static. Moreover, sharing clauses
physically allows for a better exchange of additional information like subsumption or
backward subsumption of clauses.
We first present the basic concepts used to exchange and share information during SAT
solving. In Section 2.2 and 2.3 we then go into more detail.

2.1 Basic Concept for Multithreading SAT

We define the number of parallel threads to be t. And we refer to a particular thread
by Ti where i ∈ [0, t − 1]. During program execution each thread holds a unique user
Mask M(Ti) that is defined to be 2i. Each data object that is shared by several threads
has a bit mask usrs that indicates the set of users of this object. The value of usrs
can be formalised as usrs = ΣTi∈UjM(Ti) where Uj is the set of threads who links to
the object Oj .
In general, the usrs field of an object Oj is always initialised by the creating thread
before Oj is actually visible to the other sharing threads. After the creation of the
object Oj a reference to Oj is given to all sharing threads ∈ Uj . As soon as any sharing
thread of Oj wants to release the object it has to unsubscribe itself as a user of Oj .
The last user is responsible for the destruction of Oj . The release operation is listed in
Algorithm 2. Note that no thread can ever add itself as an user to an already created
and shared object.

The function bool exchangeIf(addr, assum, new) is a typical atomic operation that
replaces the content at the specified address addr by the value new but only if the

3

Algorithm 2: Release Object by Thread Ti

Require Reference of object O. Calling thread is Ti Function1

releaseObject(O, Ti)
inv msk ← ∼M(Ti)/* inverted M(Ti) */2

repeat3

curr ← O.usrs /* copy bit mask */4

rem← curr & inv msk/* remove M(Ti) */5

until exchangeIf (O.usrs, curr, rem) ;6

if rem = 0 then deallocate (O)7

current content is equal to assum. It returns true if the exchange operation was
successful2.
The application of user masks is actually very similar to the concept of semaphores
that use a simple counter initialised to the number of users. However, there is a good
reason for the user masks: For any shared object the set of its users can be determined
easily. This turns out to be extremely useful for heuristics on data exchange of different
threads.

2.2 Physical Sharing of Clauses

The concept of user masks as described in the previous subchapter is used to realise
sharing of clauses with more than two literals. Basically, in SAT solving each clause
represents a static set of literals. However, most state–of–the–art SAT solvers imple-
ment the two watched literals scheme [MMZ+01] in the way it was suggested in [VG02]:
The two watched literals of a clause are always placed at the first two positions of the
array of literals. Thus, the position of literals in a clause is permuted permanently.
This idea can not be implemented when a clause is shared, since the two watching
literals may differ in different solving threads. With the following observation the two
watched literals concept can be implemented by a small extension.

Observation 1 Whenever a clause C is addressed by the basic CDCL algorithm, at
least one of the two watching literals of C is known.

In the basic CDCL algorithm (see Algorithm 1) there are three main functions
where clauses are actually touched:

• Boolean Constraint Propagation (BCP)

• Cleaning the set of clauses

• Conflict Analysis

During BCP the literals that became false by the current partial assignment A are ex-
amined. Their watched lists are traversed to check for clauses that are unit or falsified
by the assignment A. Hence, when traversing the watched list of literal l all clauses

2The GNU compiler offers this functionality by the method
bool sync bool compare and swap(addr, assume, new val);

4

that are accessed have l as one of its watching literals.
Cleaning the set of clauses can also be done by traversing the watched lists of all liter-
als. So the argument form above also applies.
In Conflict Analysis the implication graph [MSS99] is traversed backwards. Any clause
C that becomes unit by a partial assignment A during BCP causes the remaining lit-
eral lc to be assigned to true. In doing so, C is stored as reason for the assignment
of lc. Moreover, lc is one of the two watchers of C when C is kept as reason for the
assignment. If C is traversed during Conflict Analysis it will only be accessed as reason
for the assignment lc. Thus, one watcher of C is known. With the observation above
the following corollary can be stated.

Corollary 1 The information on the two watchers lc1, lc2 of a clause C can be saved
by one value Cw := lc1 xor lc2.

Since in the process of accessing a clause C one watching literal lci is always known,
the other watching literal is given by lcj = Cw xor lci. This is similar to the concept
of static graphs [NZ02].
With Corollary 1 the set of literals of a clause can be shared among several parallel
solving threads. By keeping the value Cw of a clause C locally for each thread, the
set of literals of C needs only to be read but never to be written by any accessing
thread. Thus, in SArTagnan any clause C with more than two literals consists of value
Cw and a pointer to the shared set of literals L. To realise sharing and, in particular
destruction, each set of shared literals has a user mask as described in Section 2.1.
Note that for single threaded SAT solvers or, for solvers where clauses are not phys-
ically shared, Corollary 1 can be applied to reduce the memory usage of each clause:
Knowing value Cw allows for completely omitting the two watched literals3.

One motivation of sharing clauses in parallel SAT solving is to allow for sharing
additional important information on the state and the change of any clause among all
threads. If the set of literals of a clause is reduced by simplification techniques like
backward subsumption or on–the–fly clause improvement [HS09b] it is desirable that
any other thread can benefit from this information.
In SArTagnan we realise this by sending a new version of a clause to all threads that
share this clause. As soon as a new version Cn is sent the previous version Co of
the clause is marked to be redundant by setting a particular bit flag in the clause.
However, Co is still valid and can still be used by any thread. Redundant clauses are
released when a thread cleans its set of clauses. This requires that every thread is able
to communicate with any other thread by sending and receiving messages. For the
soundness of the solver two issues are crucial:

• Regard the order: New versions of clauses have to be sent before the previous
version is marked to be redundant. Furthermore, after the release of redundant
clauses a solver has to check for messages from all other threads.

• Messages between threads must never be lost. A message of any sender must be
3This idea is applied in the new version of SApperloT.

5

visible to all receivers immediately, so that a new version of a clause is guaranteed
to be visible not later than the old version is marked redundant.

The realisation of the message system is presented in the next subsection.

2.3 Communication of Threads

In this subsection we present the implementation of lossless queues that are used for the
communication between all threads. Moreover, receive and send operations are both
non–blocking.
There is a known concept to realise non–blocking queues for concurrent programs:
Sender and receiver use a shared array of fixed size n and the next writing and reading
positions (write/read) are both visible to the sender and to the receiver of the queue.
A write operation changes the value write ← write + 1 mod n. For read operations
analogously. The queue is empty if the values of write and read are equal. If the
queue contains n − 1 elements a push operation to the queue will not be successful
since this would empty the queue. However, this violates the soundness condition
of our solver. Based on the described concept, we present non–blocking queues that
allow for a thread–safe extension of memory to ensure that write operations are always
successful.

Linking Updates

If an object is shared among different threads it is often the case that some of the
object’s data cannot be modified concurrently, since there is no way to perform the
modification by an atomic operation. A straight solution to this problem is to provide
a link to a new version within the object itself.
A new version On of an object Oo is completely initialised before it is finally linked as a
new version. If only one thread is allowed to create new versions of a particular object,
an update can be simply linked without any violation. Destruction of old versions can
be handled by user masks as described in Section 2.1. Algorithm 3 shows the simple
procedure to load an updated version.

Algorithm 3: Load Update of Object Ok by a thread Ti

Require Reference of object O1

Return Next version of object O if availabe on time2

Function loadUpdate(O, Ti)3

/* object O has pointer O.udt initia- lised with null. Only the
owner of O may change this value. */

if O.udt = null then return O4

Onew ← O.udt/* copy reference */5

releaseObject (O, Ti)6

return Onew7

We use this concept to make a queue extendable by its writing thread. Basically
both, the reading and writing thread share the same data array for communication.
The write operation is sketched in Algorithm 4. If there is enough space in the queue

6

(check at line 8) writing can be performed immediately (lines 15,16). If data could not
be written a new version of the data array is created and linked as new version (lines
9-13). The new version of the data array may allocate more space than the previous
version (line 9).

Algorithm 4: Non–blocking push to queue
Class DataArray1

udt; /* Pointer to a new version */2

read; /* next read operation in data */3

write; /* next write operation in data */ size; data . . . ; /* actual4

queue data */

/* A queue has 2 references of type DataArray: C,P
consume/produce */

Require Thread Ti pushes data D to queue5

Function pushQueue(Ti, D)6

next w ← P.write+ 1 mod P.size7

if next w = P.read then8

N ← construct new DataArray9

N.data[0]← D;10

N.read← 0;N.write← 1;11

P.udt← N ; /* Link new version */12

P ← releaseObject (P, Ti)13

else14

P.data[P.write]← D;15

P.write← next w;16

The reading thread only checks for new versions if all data from its actual data
array has been read. The read operation is sketched in Algorithm 5. The crucial point
to notice about Algorithm 5 is the double check in lines 4 and 6 whether the queue is
empty. If the reading thread cannot pop any data from the queue (in line 4) it checks
for an update of its data array C. If no update is available it returns in line 5. However,
if an update is available it is not ensured that all data was fetched from its current
version of C. It might be the case that the writing process W performed several push
operations while the reading thread R was between lines 4 and 5 of Algorithm 5. If
R reaches line 6 it is ensured that W will only operate on newer versions of the data
array since it linked an update. Hence, in line 7 it can be ensured that no data was
missed by the reader.
The described course of events may appear unlikely at first glance but it really happens
in practice when (e.g.) one thread is being paused by the scheduler.

The described queue can be extended to serve more than one reading process. In
that case there is one reference of the data array C1 . . . Ck for each reading thread.
Thus, it is sufficient to have one queue for each solving thread where it can write
messages to all other threads concurrently. This implies that all messages of one sender
will be read by all other threads. This is desired and necessary if non–optional clauses

7

Algorithm 5: Non–blocking pop from queue

Require Thread Ti reads next data D from queue1

Return true if new data was read, false otherwise2

Function popQueue(Ti, Dout)3

while C.read = C.write do4

if C.udt = null then return false5

if C.read = C.write then6

C ← loadUpdate (C, Ti)7

Dout ← C.data[C.read]8

C.read← C.read+ 1 mod C.size9

return true10

are sent but may be undesirable for optional (learnt) clauses.
Thus, every message contains an additional recommendation, which is basically a user
mask where those users are marked, to whom the message should be interesting. For
messages that contain newly learnt clauses, no user is marked, and for non–optional
clauses every user is marked. However, if an optional (learnt) clause Co is improved
(e.g. reduced set of literals) a new clause Cn (|Cn| < |Co|) is created and sent to all
other threads. The recommendation is set to the user mask of Co. Cn is marked as
learnt if Co was learnt. Any receiver will consider the recommendation of a message
for the heuristics to decide whether a clause is imported or immediately released.

3 Portfolio Solving

The organisation of physical clause sharing and the lossless communication between
threads allows for heterogeneous SAT solving. The ability to share the entire set of
clauses of all threads allows for several simplification techniques. One advantage over
parallel solving where each thread has its own copy of each clause is clearly that every
thread may benefit from a simplification of the clause database. If e.g. a thread
reduces the set of literals of a clause by any simplification technique it can post this
simplification immediately to all other threads. In general, progress made by one
thread may be beneficial for several other threads. This motivates different solving
approaches in different threads. To avoid rewriting of similar code for each approach,
most functions and classes are parameterised using C++ templates.

3.1 Simplification Thread

One thread of SArTagnan is mainly dedicated to simplify the entire clause database.
It imports most clauses that it receives from all other threads. It performs basic sim-
plification techniques as subsumption and backward subsumption of clauses, and aims
for eliminating variables as it is done by common preprocessors [EB05]. Moreover, it
tries to detect blocked clauses [JBH10]. Equal variables are detected by searching for
strongly connected components in the graph of binary clauses [APT79].
Only this thread is allowed to decide on variable elimination, replacement of equal

8

variables and deletion of blocked clauses. All three techniques are critical in terms of
concurrent application. Granting these simplification techniques only to one thread is
a safe way to guarantee the soundness of the parallel solver. If e.g. two threads were
allowed to perform variable elimination, one had to ensure that the concurrent elim-
inations of different variables are independent of each other. So that the elimination
of a variable in one thread does not introduce any new clause that contains a variable
which is concurrently eliminated by another thread.
Clauses that are removed as blocked clauses or by variable elimination are kept in an
extra list η which can be read by any thread. If a thread finds an assignment which
satisfies all clauses it can reimport the clauses of η to compute the complete model for
the formula.
If a variable is eliminated or detected to be equal to another variable, new clauses are
constructed and sent to all other threads. In case of variable equality one variable r
is chosen to be representative for the set of variables Er that are equal to r. For each
clause that contains a variable of Er a new clause is created and send to all threads
and the original clause is marked to be redundant. As soon as all replacements are
performed a particular message is sent to the other threads.

One important task of the simplification thread is the detection of equal or subsum-
ing clauses. The fact that any thread is allowed to create and send improved versions
of a clause may introduce duplicate clauses. However, these duplicates will be detected
and removed by normal subsumption checks. But to avoid unnecessarily many dupli-
cates every solving thread obeys to the following rule: If a clause Co can be improved
the new version of the clause Cn is only sent to the other threads if Co was not already
marked to be redundant.

Guided search for Autarkies An Autarky is a partial variable assignment that
does not change the satisfiability state of a formula. However, it may change the set of
models for satisfying formulae [Kul00]. The simplification thread searches for Autarkies
whereas hints are given by other threads: When conflict analysis in the CDCL algorithm
determines to backjump over several decision levels, then it was figured out that none
of these decisions contributes to the conflict. At this point a CDCL thread sends a
particular message to the simplification thread including the variable assignments that
were jumped over. The simplification thread may check whether a subset of these
assignments is autarkic to the entire formula. However, these checks are performed
with little priority by the simplification thread.

3.2 Decision Making with Reference Points

Decision Making with Reference Points (DMRP) is an alternative SAT solving approach
that has been proposed by Goldberg [Gol06, Gol08]. It spends more time on decision
making than usual CDCL solving. The DMRP algorithm holds a complete assignment
(a so–called reference point) to the variables and considers those clauses for decision
making that are unsatisfied by the reference point. Therefore, it requires more com-
putational effort. In [Kot10] it was pointed out that clauses that are learnt during the
DMRP algorithm are often more valuable than clauses that are learnt during CDCL.

9

One thread solely applies DMRP solving as described in [Kot10]. In the parallel con-
text it implements a crucial modification at the initialisation of the reference point. At
every restart each variable value in the reference point is chosen to be the value that is
predominant for this variable in all other threads.

3.3 CDCL Threads

Most threads of SArTagnan apply conflict driven SAT Solving with clause learning
(CDCL). The use of class and function templates allows for diverse configuration in
each thread. If 8 or more threads are available, all but one CDCL thread use activities
for variables for the decision heuristic, whereas one thread uses activity for literals as
described in the original paper [MMZ+01].
All CDCL threads can be configured to apply hyper binary resolution [Bac02]. Binary
dominators [Bie09] are used to detect clauses for hyper binary resolution during BCP.
Most threads apply on–the–fly clause improvement [HS09b]. If a clause C can be im-
proved (i.e. its set of literals can be reduced) a new clause is created and sent to the
other threads. The message will be recommended to all users of C.
All CDCL threads use different restart settings. Most threads use the Luby restart
strategy [LSZ93] with different initial sizes. More details are listed in Section 4.

Extended Unit Propagation

In modern SAT solvers Boolean Constraint Propagation is mostly equal to Unit Prop-
agation. Basically, clauses that are unit (considering the current partial assignment)
imply the corresponding value for the remaining variable. In [KK11] two approaches
are analysed on how to extend Unit Propagation by considering clauses with more
than one unassigned literal. The heuristic approach that either uses the pessimistic or
optimistic sink tags technique is applied in almost all threads.

3.4 Handling incoming Messages

In Section 2 and Section 3.1 different types of messages were described to sent newly
created clauses and simplification notifications. Overall there are the following types
of messages:

• Unit and binary clauses

• Shared clauses with more than two literals

• Elimination of variables

• Replacement of equal variables

Any thread checks for new messages whenever its search process is at decision level
zero. However, the receive procedure may be also called at higher decision levels when
more than k conflicts happened without an application of the receive procedure. For
most threads k is equal to 256. Moreover, whenever the set of clauses has been cleaned,
i.e. clauses that are marked redundant are released, all incoming messages are handled
subsequently.

10

Unit and binary clauses are always imported and binary clauses are put in its own data
structure. Messages with shared clauses contain a recommendation to whom the clause
will be interesting. If a (learnt) clause C is not recommended to a receiving thread, it
may still decide to import C if the following two criteria are satisfied:

• The LBD of C is smaller than f · Λ, where Λ is the maximum LBD value of any
learnt clause that survived the previous garbage collection of learnt clauses.

• Not more than p percent of literals resp. variables of C have an activity value
that is smaller than Ψ

2 , where Ψ is the current maximum activity value of all
variables.

In [AS09] the LBD value of a clause is shown to be a successful criterion on how to
predict the quality of a learnt clause. However, since the LBD value is related to
a particular CDCL search, it does not have to be meaningful for a different search
procedure. Our experiments have shown that using the second criterion as similarly
presented in [HJS09] causes a more stable behaviour of the solver. In difference to
[HJS09], we do not yet apply control–based adaption for the input criteria. The values
f and p are static but different in each thread in the current solver version.

4 Evaluation

Our parallel SAT solver SArTagnan is implemented in C++ using the OpenMP library
for parallelisation. This chapter presents some results on solver’s performance and gives
a more detailed insight into some configuration details.

The data structure for clauses presented in Section 2.2 uses an additional indirec-
tion for clauses with more than two literals: A clause itself contains the xor value Cw

and a link to the shared set of literals. Figure 1 shows the effect of the indirection to
the shared set of literals on the solver’s speed. To disregard effects of parallelisation
and simplification techniques only one thread is used for this analysis that performs
the basic CDCL algorithm with the same heuristic settings.

The first configuration implements the common watching scheme keeping the two
watchers at the front of a clause [VG02]. The second configuration wraps a clause into
a data structure that contains the value Cw and a link to the set of literals (see 2.2).
Configuration 3 also uses this idea but extends the wrapping data structure to cache the
index idx of a literal in the clause. When a new watching literal has to be found during
BCP the literals in a clause are processed in the order [idx, . . . , |C| − 1, 0, . . . , idx− 1].
For comparison, configuration 4 uses the xor–idea to completely omit both watched
literals and replace them by the value Cw. As mentioned in 2 this reduces the memory
to represent a clause C effectively to (|C| − 1) times the size of one literal. But config-
uration 4 is not designed to share literals.
The drawback of indirecting clauses (2,3) compared to configuration 1 is clearly notice-
able. However, caching one literal’s index (3) is not significantly worse than applying
the standard scheme in 1. This motivates for physical clause sharing in parallel SAT
solving where the drawback may be compensated by the advantages of global simplifi-
cation.

11

Figure 1: Effects of different clause organisations for total runtime. Each curve rep-
resents one solver configuration. A plotted point x, y means that x instances can be
solved within y seconds per instance. The tests have been performed on all industrial
instances of the SAT competitions 2007 and 2009 and the SAT Races 2008 and 2010,
in total 614 instances.

Configuration 4 clearly outperforms the other configurations, and encourages the xor–
approach also for sequential solvers.

Determining proper settings and constants for sequential SAT solvers is a CPU-
Time consuming task. Each configuration has to be evaluated using different random
seeds. For parallel solvers this gets much worse. Running a parallel solver with the
same configuration twice, may show different performance results. It may be crucial
for the success of a solving thread to import a particular clause at a particular time.
We have run several tests on the instances of the SAT Race 2008 using 8 cores for each
instance. Figure 2 shows the configuration that performed best in several runs and was
thus used for the SAT Race 2010.

The first three lines of table 2 show the application of activity values, the percent-
age of random decisions and the polarity mode (Prev. means phase saving as proposed
in [PD07]). For the restart type the initial number of conflicts (for geometric also the
growth factor) is shown. Line 5 states the type of extended Unit Propagation (see. 3.3,
[KK11]). Lines 6 and 7 give the import criteria as explained in 3.4. In lines 8 and 9 the
use of on–the–fly clause improvement [HS09b] and hyper binary resolution [Bie09] is
indicated. The last three lines give the configuration for cleaning the set of clauses: the
initial number of learnt clauses, the increment after each clean up and the percentage
of clauses to keep.

An interesting observation that we made for several different configurations is the
influence of the two threads that apply DMRP and, CDCL with activities of literals:
In the best runs 95 of 100 instances were solved within a time limit of 1200 seconds.
Both threads together only solved 9 of these instances. However, if both are replaced
by CDCL threads using variable activity at most 88 instances could be solved.

12

Threads 1 2 3 4 5 6 7 8
Main Task Simplification CDCL CDCL DMRP CDCL CDCL CDCL CDCL

Activity of: Vars Vars Vas / Vars Lits Vars Vars
Decay 135/128 135/128 135/128 139/128 137/128 139/128 133/128

Rand. Decisions (%) 0.2 0.15 0.2 0.15 0.15 0.15 0.15 0.2
Polarity Mode Prev Prev Prev / Prev / False Prev
Restart type Static 100 Luby 32 Luby 64 Luby 100 Luby 16 Geo. 100; 1.5 Geo. 100; 1.5 Geo. 100; 1.3
Extended UP Opt. Pes. Opt. No Opt. Opt. No Pes.
LBD import 3/2 3/2 3/2 3/2 5/4 3/2 3/2 7/6

Activity import 90 70 80 70 70 80 70 80
OTF Clause improve yes yes yes no yes yes yes yes

Hyper Bin. Res. yes yes yes no yes yes yes yes
Garbage Coll. Init 35000 50000 35000 50000 50000 50000 50000 50000

GC Increment 200 200 200 200 200 200 200 1
GC Survive Fact. 0.75 0.5 0.75 0.5 0.5 0.5 0.5 0.5

Figure 2: Solver configuration with 8 threads, as used in the SAT Race 2010

5 Conclusion

In this work we have presented a design and implementation that allows for physical
clause sharing in parallel SAT solving. Clause sharing and the communication between
threads is used to let all threads benefit from the application of simplification and clause
minimisation techniques in any other thread. All communication and sharing of data
is realised without the use of operating system locks.
In the SAT Race 2010 the first version of our parallel solver could already compete
against state–of–the–art parallel SAT solvers. This motivates future research on how
to further utilise physical clause sharing in parallel SAT solving.

References

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A Linear-
Time Algorithm for Testing the Truth of Certain Quantified Boolean
Formulas. Inf. Proc. Lett., 8:121–123, 1979.

[AS09] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern sat solvers. In International Joint Conference on Aritifical
Intelligence IJCAI, pages 399–404, 2009.

[Bac02] Fahiem Bacchus. Enhancing Davis Putnam with Extended Binary Clause
Reasoning. In 18th AAAI Conference on Artificial Intelligence, pages
613–619, 2002.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations. IOS Press, 2009.

[Bie09] Armin Biere. Lazy hyper binary resolution. Algorithms and Applications
for Next Generation SAT Solvers, Dagstuhl Seminar 09461, Dagstuhl,
Germany, 2009.

[BSK03] Wolfgang Blochinger, Carsten Sinz, and Wolfgang Küchlin. Parallel
propositional satisfiability checking with distributed dynamic learning.
Parallel Computing, 29(7):969–994, 2003.

13

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. J. ACM, 7(3):201–215, 1960.

[EB05] Niklas Eén and Armin Biere. Effective Preprocessing in SAT Through
Variable and Clause Elimination. In SAT, pages 61–75, 2005.

[ES03] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT,
2003.

[Gol06] Eugene Goldberg. Determinization of resolution by an algorithm operat-
ing on complete assignments. In SAT 2006, 2006.

[Gol08] Eugene Goldberg. A decision-making procedure for resolution-based SAT-
solvers. In SAT 2008, 2008.

[HJS09] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Control-based clause
sharing in parallel sat solving. In Proceedings of the 21st international
joint conference on Artifical Intelligence, pages 499–504, San Francisco,
CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[HS09a] Youssef Hamadi and Lakhdar Sais. Manysat: a parallel sat solver. Journal
on Satisfiability, Boolean Modeling and Computation (JSAT, 2009.

[HS09b] HyoJung Han and Fabio Somenzi. On-the-fly clause improvement. In
SAT, 2009.

[JBH10] Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked Clause Elimi-
nation. In TACAS, pages 129–144, 2010.

[KK11] Michael Kaufmann and Stephan Kottler. Beyond Unit Propagation in
SAT Solving. In Symposium on Experimental Algorithms, 2011.

[Kot10] Stephan Kottler. SAT Solving with Reference Points. In SAT, pages
143–157, 2010.

[Kul00] Oliver Kullmann. Investigations on autark assignments. Discrete Applied
Mathematics, 107(1-3):99–137, 2000.

[LSB07] Matthew D. T. Lewis, Tobias Schubert, and Bernd Becker. Multithreaded
SAT solving. In 12th Asia and South Pacific Design Automation Confer-
ence, 2007.

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup
of las vegas algorithms. In ISTCS, pages 128–133, 1993.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: engineering an efficient SAT solver. In DAC,
2001.

14

[MS99] J. Marques-Silva. The impact of branching heuristics in propositional
satisfiability algorithms. In EPIA ’99: Proceedings of the 9th Portuguese
Conference on Artificial Intelligence, pages 62–74, London, UK, 1999.
Springer-Verlag.

[MSS99] Joao P. Marques-Silva and Karem A. Sakallah. Grasp: A search algo-
rithm for propositional satisfiability. IEEE Trans. Comput., 48(5):506–
521, 1999.

[NZ02] Stefan Näher and Oliver Zlotowski. Design and implementation of efficient
data types for static graphs. In Algorithms – ESA 2002, pages 157–164.
Springer, 2002.

[PD07] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component
caching scheme for satisfiability solvers. In SAT, pages 294–299, 2007.

[SLB05] Tobias Schubert, Matthew D. T. Lewis, and Bernd Becker. PaMira -
A Parallel SAT Solver with Knowledge Sharing. In MTV, pages 29–36,
2005.

[VG02] Allen Van Gelder. Generalizations of watched literals for backtracking
search. In Seventh Int’l Symposium on AI and Mathematics, Ft. Laud-
erdale, FL, 2002.

[ZBH96] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. PSATO: a dis-
tributed propositional prover and its application to quasigroup problems.
Journal of Symbolic Computation, 21:543–560, 1996.

15

