
Hong et al. BMC Genomics          (2022) 23:284 
https://doi.org/10.1186/s12864-022-08469-w

RESEARCH Open Access

Secure tumor classification by shallow
neural network using homomorphic
encryption
Seungwan Hong1*, Jai Hyun Park1, Wonhee Cho1, Hyeongmin Choe1 and Jung Hee Cheon1,2

Abstract

Background: Disclosure of patients’ genetic information in the process of applying machine learning techniques for
tumor classification hinders the privacy of personal information. Homomorphic Encryption (HE), which supports
operations between encrypted data, can be used as one of the tools to perform such computation without
information leakage, but it brings great challenges for directly applying general machine learning algorithms due to
the limitations of operations supported by HE. In particular, non-polynomial activation functions, including softmax
functions, are difficult to implement with HE and require a suitable approximation method to minimize the loss of
accuracy. In the secure genome analysis competition called iDASH 2020, it is presented as a competition task that a
multi-label tumor classification method that predicts the class of samples based on genetic information using HE.

Methods: We develop a secure multi-label tumor classification method using HE to ensure privacy during all the
computations of the model inference process. Our solution is based on a 1-layer neural network with the softmax
activation function model and uses the approximate HE scheme. We present an approximation method that enables
softmax activation in the model using HE and a technique for efficiently encoding data to reduce computational
costs. In addition, we propose a HE-friendly data filtering method to reduce the size of large-scale genetic data.

Results: We aim to analyze the dataset from The Cancer Genome Atlas (TCGA) dataset, which consists of 3,622
samples from 11 types of cancers, genetic features from 25,128 genes. Our preprocessing method reduces the
number of genes to 4,096 or less and achieves a microAUC value of 0.9882 (85% accuracy) with a 1-layer shallow
neural network. Using our model, we successfully compute the tumor classification inference steps on the encrypted
test data in 3.75 minutes. As a result of exceptionally high microAUC values, our solution was awarded co-first place in
iDASH 2020 Track 1: “Secure multi-label Tumor classification using Homomorphic Encryption”.

Conclusions: Our solution is the first result of implementing a neural network model with softmax activation using
HE. Also, HE optimization methods presented in this work enable machine learning implementation using HE or other
challenging HE applications.
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Background
Cancer is a disease caused by the unlimited proliferation
of certain cells in the human body, and the exact cause
of cancer is not yet known. In 2020 alone, 19.3 million
new cases were reported worldwide, and 10million people
died because of cancer [1]. For this reason, the prediction
of cancer through genetic data analysis has been regarded
as one of the most important tasks since early treatment
can reduce the lethal effects of cancer on the human body.
Machine learning (ML) is one of the fields of artificial

intelligence that learns the process of finding solutions
on its own without human assistance to a given problem.
Due to the difficulty in the process of diagnosing tumors
through genes, tumor classification using ML-based on
large amounts of genetic data contributes to decisionmak-
ing to diagnose and treat cancer. Some cancer genome
studies using ML techniques on large-scale data have
shown the relationship between genetic modification and
specific cancer types [2–5].
Since genetic data contains a lot of personal information

and cannot be discarded or changed even if it is leaked,
it is essential to protect the privacy of information about
genetic data in the data analysis using ML. Various tech-
niques, including differential privacy [6, 7] or multi-party
computation [8], have been used to ensure privacy in the
data analysis process. However, each of these approaches
has the disadvantage of losing accuracy in the process of
anonymizing the data or requiring multiple phases in the
process of data sharing.
Homomorphic Encryption (HE) is a cryptographic

scheme that enables us to perform arithmetic opera-
tions between encrypted data without decryption. HE
has been considered one of the useful applications
for privacy-preserving ML, as it allows the computa-
tion of desired operations without disclosing informa-
tion about the data [9, 10]. However, most HE libraries
[11–14] mainly support only addition and multiplica-
tion of arithmetic operations. Although linear opera-
tion in ML, such as matrix-vector multiplication, can
be easily computed by using a suitable data packing
method [15], many activation functions widely used in
neural networks, such as sigmoid, ReLU, or softmax
functions, cannot be directly operated for encrypted
data. Most of the applications using HE overcomes
such problems by approximating non-arithmetic opera-
tions with a polynomial that minimizes the error in a
certain interval. The main problem with applying HE
is to minimize computational increases occurring dur-
ing the polynomial approximation process while limiting
errors.
Integrating Data for Analysis, Anonymization and

SHaring (iDASH) has held an annual secure genome anal-
ysis competition since 2014. Each year, important topics in
the field of genetic analysis are selected to compete for the

most effective solution. The problem of multi-label tumor
classification using HE was one of the three tasks for the
2020 iDASH competition. Given the dataset with a total of
2,713 patients and their 25,128 genes, participants had to
preprocess the given data, train the ML model with plain
data, and obtain the highest microAUC score [16] within
5 minutes when the inference step was performed with
encrypted test data of 909 patients.

Related works
Integrated analysis, which means integrating and clas-
sifying different types of data for samples in the same
cohort, was developed with the emergence of ML tech-
niques. Now various ML techniques are used in multi-
level omics data integration as reviewed in [17–22] and
classified depending on the learning method, data inte-
gration method, and feature selection method: supervised
and unsupervised learning; horizontal and vertical data
integration; supervised and unsupervised feature selec-
tion.
In the field of cancer type classification based on

somatic mutations, manyML techniques are used to build
suitable multi-label classifiers. Classifiers using unsuper-
vised learning method such as cluster analysis exists [23];
however, supervised learning-based classifiers are more
in our interest because accuracy can be increased sub-
stantially with the labeled data. Chen et al. [24] used
a supervised learning technique named Support Vector
Machine (SVM) to classify cancer types of given somatic
mutation samples.
Yuan et al. [4, 25] proposed DeepGene and DeepCNA,

which are multi-label cancer classifiers based on Deep
Neural Networks (DNN) and Convolutional Neural Net-
works (CNN), respectively. In particular, DeepGene uses
a feature selection technique called Clustered Gene Fil-
tering (CGF) based on cluster analysis. Sun et al. [26]
also used DNN model with 5 layers and reached 70.1%
classification accuracy. Some classifiers use multiple ML
techniques and ensemble them to reach higher accuracy.
Lee et al. [27] introduced a classifier named CPEM, an
ensemble of two ML techniques, Random Forest (RF) and
DNN, and reached 84.7% accuracy. However, these previ-
ous classification techniques do not consider privacy pro-
tection and sensitive genetic data leaks to the untrusted
classifier owner, unless the classifier owner gives his whole
model to the client.
As a solution of privacy-preserving ML for genetic data,

ML over encrypted data with HE is drawing attention with
the annual iDASH competition [9, 10, 28–35]. Kim et al.
introduced a privacy-preserving logistic regression model
over HE [28]. The model uses modified Nesterov’s accel-
erated gradient descent method to reduce the number of
iterations, since the depth of the homomorphic circuit
highly affects to the computational cost. The classifier was
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selected as the best solution of Track 3 at iDASH compe-
tition 2017, where similar approaches were also proposed
[9, 29, 30].
Some parallelized versions submitted for the second

track of iDASH 2018 competition [10, 31–34]. In 2019,
the HE task of iDASH competition was a secure genotype
imputation using HE. The solution showed “ultra-fast”
HE models to verify genotype imputation that took less
than 10 seconds for evaluation with only a 2–3% decrease
in accuracy [35]. The authors also have confirmed that
similar results can be obtained for various HE libraries,
including BFV [36], CKKS, and TFHE [37].

Difficulty of ML using HE
Some limitations of computation using HE make the gen-
eral ML techniques not directly applicable to the ML over
HE since they are yet insecure nor impractical for some
reasons. First, as mentioned above, most HE libraries
[11–14] mainly support only addition and multiplication
of arithmetic operations. Thus, HE requires a polyno-
mial approximation of non-polynomial functions such as
ReLU, Sigmoid, softmax, and even division and compari-
son and those greatly amplify the amount of computation
over HE. However, the supervised ML models [4, 25–
27] generally have large circuit depths for high accu-
racy and use non-polynomial functions such as ReLU
or max-pooling, which have high time complexity when
implemented with HE.
To overcome the above problems, the ML over HE is

being studied in various ways, such as replacing a non-
polynomial such as sigmoid in logistic regression with

a simple polynomial [28], or finding an algorithm con-
sisting of only polynomial operations although it is less
efficient than state-of-the-art algorithms involving non-
polynomials [9]. In our case, we propose the efficient
polynomial approximation of softmax function and our
algorithm with HE that operates within a reasonable time.
Secondly, preprocessing methods included in the clas-

sifiers can leak personal information. To prevent leakage,
preprocessing should be done by the client herself or the
server in an encrypted state. However, clients with low
computational capabilities cannot follow heavy prepro-
cessing methods [24, 27]. Also in the case of servers,
they should compute only with the data encrypted with
HE, so the preprocessing will be very impractical due
to logical/non-polynomial functions in the preprocessing
as in [4, 24–27] when using the CKKS [14] HE scheme.
Therefore, the classifiers with HE-friendly models and
light and secure preprocessing are important for privacy-
preserving classification.
In addition, if preprocessing method can be easily done

by the server using above properties, there is another
advantage to the client that does not have to compute pre-
processing. In this case, the data can be used for various
training models and so the client only needs to encrypts
the original data and share them.
Table 1 summarizes the previous multi-label tumor

type classifications and their weaknesses when applied to
the privacy-preserving classification scenario.HE-friendly
Model indicates the applicability of the model over HE,
and Client and Server (HE) indicate the hardness of secure
preprocessing as mentioned above.

Table 1 Multi-label classification of tumor type based on somatic mutation data. In the dataset, the numbers in parentheses are the
number of tumor types used in classifications. The hardness of the client-side preprocessing is mainly due to high memory use, and
the server-side preprocessing relies on the CKKS scheme

Reference Dataset (Class) Preprocessing in Train Model Acc
Preprocessing in Inference HE-friendly

Client Server (HE) Model

Chen et al. [24] COSMIC (17) filter & match to SVM 62% Hard Hard Yes

KEGG pathways

Yuan et al. [4] TCGA (12) filter (CGF) & DNN 65.5% Easy Hard No

sparsity reduction (ISR) (4 layers)

Yuan et al. [25] COSMIC (25) regularize (clip into [ 0, 10]) & CNN 57.4% Easy Hard No

reshape (1D ↔ 2D image) (7 layers)

Sun et al. [26] TCGA (12) filter & reference DNN 70.1% Easy Hard No

1000GP (healthy) with healthy (4 layers)

Lee et el. [27] COSMIC (31, 12) filter & various RF + DNN 84.1% Hard Hard No

feature constructions (3 layers) (84.7%)

Ours TCGA (11) filter SNN 85% Easy Easy Yes

(1 layer)
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Fig. 1 Illustration of our scenario for training and inference steps. In training step, our data filtering method reduces the size of raw data
dramatically. Then, we use 10-fold cross validation to train shallow neural network (SNN) model using filtered data. As a result, we get the optimized
parameters for both filtering and SNN model. In inference step, the protocol works as in the scenario using HE introduced in Background section.
Since we use filtering method in preprocessing, only some chosen genes are needed to be encrypted in ciphertext. Then, we run HE-friendly SNN
algorithm to evaluate our model. As a result, the client can receive the evaluated value using their private data without revealing any information

Scenario and security model
The scenario in this paper follows the model presented
in the HE task of iDASH 2020, which is also commonly
considered in standard HE application models. In our sce-
nario, two parties are involved in: the private data owner
and the service provider, and they are simply denoted by
client and server, respectively. The server trains the model
using his data(or public large-scale data) and wants to pro-
vide a service to generate inference results, the prediction
of the tumor type, from the client’s encrypted data. The
client has limited computational power and wants to out-
source the tumor type prediction; however, she does not
want to leak her sensitive data. In addition, the client’s
data needs to be preprocessed to fit the model compu-
tation while maintaining privacy in two possible ways:
by the client with limited computation power or by the
server in the encrypted state. Therefore, in our scenario,
the server should not be aware of the client’s data when
preprocessing as well as computing the inference results.
The detailed explanation of our scenario and method

is illustrated in Fig. 1. Our protocol can be performed by

using HE while ensuring client’s data privacy. Let m be
the client’s private data and f be a function that computed
the whole process of the model generated by the server.
First, the client encrypts m by her own secret key and
sends the ciphertext Enc(m) to server. Then, server eval-
uates his model using HE operations, so that he obtains
the encrypted evaluation output Enc(f (m)) and sends it
back to the client. Finally, the client performs HE decryp-
tion for Enc(f (m)) with the secret key to get the desired
output f (m). Since the server can only access encrypted
data, our protocol can achieve the desired security even
on malicious servers.
In our implementation, all ciphertexts have a 128-bit

security1 level regardless of the remained number of
operations. This means that the ciphertext will not leak
any information in a lifetime even if all the computing
power in the world is used. Our ciphertext is based on
the Ring-Learning with Error (LWE) problem which is
attracting attention as it seems secure although quantum
1which means that an attacker needs more than 2128 operations to recover
any secret message from a ciphertext with the current best algorithm.
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computers are developed. And we set the HE parameters
to achieve 128-bit security estimated by Albrecht’s LWE
estimator[38].

Goal of this work
Our goal is to perform privacy-protecting machine learn-
ing computations on encrypted tumor datasets. In gen-
eral, there are two main obstacles to achieving this goal.
The first point is the size of dataset. Most HE schemes
that support multi-encoding are able to contain at most
216 or less number of data in a ciphertext with a practical
parameter. Since typical genomic dataset consists of large-
scale matrix with millions of elements, a large number of
ciphertexts are required to encrypt data and a huge com-
putational overhead occurs in the operation. Therefore, a
preprocessing process that reduces the size while main-
taining the properties of the initial data is essential, and
because of the security problem, this method should be
performed in a HE-friendly manner.
The second point is that the machine learning model

should be performed using HE. Since the operations
allowed in HE is limited, especially addition and multi-
plication, most of deep and complex models cannot be
implemented using HE in practical time now. Even in
simple cases such as single-layer neural networks, since
most activation functions use non-arithmetic operations
such as comparison (ReLU) or exponential functions (sig-
moid, softmax), additional time consuming and accuracy
loss occurs in the process of computing approximation of
these functions with polynomials.

Results
Summary of results
In this paper, we propose a privacy-preserving multi-
label classifier using a shallow neural network with a
softmax activation function based on HE, which is also
an outstanding solution of the first track of the iDASH
2020 competition. Our method is a supervised parallel
integration method that uses unsupervised feature selec-
tion (cluster analysis) which provides the scalability on
the parameter depending on the computational bound of
HE. Our ideas can be categorized into three main sub-
jects. First, we suggest data filtering method to reduce
the size of the large raw data. This method is suit-
able for our scenario using HE because the data owner
does not require additional operations other than filtering
before encryption. Second, we modify the data packing
method for matrix-vector multiplication [15] by duplicat-
ing the data in encryption to make a trade-off between
the number of ciphertexts for packing and the number of
rotations to reduce computational cost for HE. In mul-
tiplication between encrypted matrix and plain vector,
the number of rotations occupies the most time cost,
so we minimize the total time by choosing an appro-

priate number of copies in the encryption step. Lastly,
we use elementary exponential approximation method
to evaluate the microAUC value. We minimize the loss
of the approximated microAUC from the real value not
by focusing on minimizing the error in the approxi-
mation of the exponential function, but by using an
approximation that shares properties with the exponential
function.

Dataset description
Our scenario focuses on the dataset originated from The
Cancer Genome Atlas (TCGA) database, which is widely
used in genomic research. The data of the somatic Single
Nucleotide Variation (SNV) and gene-level Copy Num-
ber Variation (CNV) information for TCGA samples are
downloaded from publicly available datasets [39] and [40],
respectively. The training and testing data are gener-
ated based on the sample metadata downloaded from the
TCGA project (available on 8/13/2020) and extracted the
cases for all available cancer types. The samples first are
filtered for the ones that exist in both SNV and CNV
datasets. For each of the remaining cancer types, the data
were randomly divided into training and testing datasets
with 75% and 25% of all samples for the correspond-
ing cancer type, respectively. Cancer types with less than
100 training samples are filtered out, and the resulting
dataset consists of cancers from 11 sites: Bladder, Breast,
Bronchus and Lung, Cervix uteri, Colon, Corpus uteri,
Kidney, Liver and Intrahepatic bile ducts, Ovary, Skin, and
Stomach.
The dataset consists of total 3,622 samples (2,713 for

train, 909 for test) and 25,128 genes, and each sample has
one cancer type out of 11 types of cancer, consists of two
types of data: Copy Number (CN) data and Variants data.
The dataset is available in [41] which is generated in the
same way with iDASH 2020 competition track I and the
details of dataset including the number of samples and the
number of mutation’s effects for each feature are disclosed
in Table 2.
CN data consists of the copy number of the genes.

The copy number data show the copy number variations
(CNVs) of the genes as numbers, representing the state of
the gene on the corresponding sample, whether the gene
has duplication or deletion of a considerable number of
base pairs. The data consist of 5 different levels 0, ±1, ±2
where the negative and positive values represent deletion
and duplication of the corresponding gene from the sam-
ple, respectively. Copy number with 0 means that the gene
has no considerable variation on the corresponding gene
from the sample.
Variants data consists of mutation data of selected pairs

of samples and genes for each tumor type with various
features: gene’s location on chromosomes, mutation type,
whether the mutation is Single Nucleotide Polymorphism
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Table 2 Sample and mutation statistics of the dataset on 11 cancer types. Note that the total number of genes are 25,128 and the
number in Mutation’s Effect column means that the number of non-zero values in Variants dataset (which is less than # of samples × #
of genes)

Cancer Site Samples (Train/Test)
Mutation’s Effect (Train/Test)

LOW MODERATE MODIFIER HIGH

Bladder 258 / 87 25,641 / 7,261 61,862 / 17,386 11,303 / 3,181 9,616 / 2,500

Breast 201 / 67 11,915 / 4,591 30,966 / 13,107 8,335 / 3,450 7,828 / 6,149

Bronchus / Lung 638 / 213 61,277 / 21,114 166,945 / 57,898 28,039 / 9,590 25,819 / 9,089

Cervix uteri 149 / 50 12,084 / 4,608 28,515 / 10,913 14,715 / 5,284 4,278 / 1,751

Colon 256 / 86 42,501 / 11,410 105,179 / 26,225 29,525 / 7,484 24,320 / 6,653

Corpus uteri 219 / 73 139,405 / 32,877 364,241 / 87,297 167,526 / 41,800 60,846 / 16,427

Kidney 149 / 50 5,425 / 1,794 13,772 / 4,697 3,684 / 1,185 3,155 / 1,025

Liver / Intrahepatic bile ducts 189 / 64 7,198 / 2,687 19,697 / 6,946 6,186 / 2,219 3,149 / 1,132

Ovary 151 / 51 6,477 / 2,808 17,218 / 6,811 3,569 / 1,311 3,663 / 1,020

Skin 254 / 85 107,923 / 40,326 197,015 / 72,248 34,699 / 13,123 22,051 / 7,830

Stomach 249 / 83 32,972 / 13,131 78,593 / 30,874 14,630 / 5,910 20,571 / 8,087

Total 2,713 / 909 452,818 / 142,607 1,084,003 / 334,402 322,211 / 94,537 185,296 / 61,663

(SNP), and mutation’s effects separately predicted by two
different methods.

Neural network model and parameter selection
For the training step, we first downsize each sample by
using our proposed filtering algorithms, and used it for the
training of our neural network model. More precisely, we
feed the downsized samples into our shallow neural net-
work model, which consists of one hidden layer with 64
nodes and linear activation function and output layer with
11 nodes. During the training step, we used batch size of
32, number of epochs of 50 and dropout rate of 0.9.
To suitably use the trained model in downstream tasks

over encrypted data, we varied (dcn, kvar), the parame-
ters for CN and variants dataset respectively, until the
size of downsized data are less or equal to 2B for each
B from 9 to 12. In our algorithm, the size of model is
determined by the size of filtered data under two param-
eters. For each B, we seek the best pair of parameters, dcn
among {0, 0.01, · · · , 0.24} and kvar among {0, 10, · · · , 590};
more precisely, we use 10-fold cross validation to find the
(dcn, kvar) pair with best microAUC such that the size of
model is less or equal to 2B. After selecting the parame-
ters, dcn and kvar, we train the model on the entire training
dataset, and feed it into the inference step over encrypted
data.
For the inference step over encrypted data, we adopt

HEaaN library, the implementation of CKKS scheme [14].
The CKKS parameters are chosen by the ring dimension
217 and the ciphertext modulus 22670. We used signed
binary secret, which satisfy more than 128-bit security
according to Albrecht’s LWE estimator [38]. For the scal-

ing factor of CKKS, we choose the scaling factor by 260 for
ciphertexts and 240 to encode plain vectors for constant
multiplication or masking vectors.
For the approximation of Softmax, we use Goldschmidt

algorithm with M = 80 and d = 30 for the inver-
sion, and for the exponential function, we use (r, L) =
(4, 32) for B = 9, 10 and (4, 64) for B = 11, 12, respec-
tively. All experiments were performed on Intel Xeon
CPU E5-2620v4 at 2.10GHz processor and used 8 threads.
The detailed description of CKKS parameters is stated
in Methods section and we refer Algorithm 4 for the
parameters used in our algorithms.
Our codes for the training step can be found in https://

github.com/jaihyunp/iDash2020, and those for the infer-
ence step can be found in docker repository swan-
hong/idash2020.

Experimental results
Trainingmodel with plain dataset
Gradually changing two parameters, our results are pre-
sented in Figs. 2 and 3. Figure 4 visualizes how (dcn, kvar)
pair determines the size of model. The model tends to
show the best performance in terms of microAUC on
dcn ≈ 0.08, and larger kvar tends to show a better per-
formance. However, to optimize the computational cost
on the privacy-preserving inference step based on homo-
morphic encryption, we seek the best parameters (dcn and
kvar) for the model of size less or equal to 2B for each
B = 9, 10, 11, and 12.
The best (dcn, kvar) pair for each size of model, 2B, and

its performance on 10-fold cross validation is given in
Table 3.

https://github.com/jaihyunp/iDash2020
https://github.com/jaihyunp/iDash2020
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Fig. 2 Illustration of microAUC of each model during 10-fold cross validation with given pair of (dcn, kvar) . The model tends to show a good
performance on dcn ≈ 0.08, and larger kvar shows a better microAUC near dcn = 0.08. As we visualize in the graph with contours, larger dcn and kvar
accompanies a larger size of the model

Encrypted inference results
Using filtered gene in preprocessing step and the model
built in training step, we compute inference step over
encrypted data as stated in previous sections. As a result,
we estimate the time cost for each round-trip step includ-
ing encryption, constant multiplication, rotate and sum-

mation, Approximate softmax evaluation, and decryption
step. The results are stated in Table 4. In the table, the
column Encoding Duplication means the parameter m
that we used as the number of duplication in encryp-
tion. As m increases, the number of required ciphertexts
increases linearly so the time cost for encryption also

Fig. 3 Illustration of accuracy of each model during 10-fold cross validation with given pair of (dcn, kvar) . The model tends to show a good
performance on 0.05 ≤ dcn ≤ 0.15, and larger kvar shows a better microAUC. As we visualize in the graph with contours, larger dcn and kvar
accompanies a larger size of the model
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Fig. 4 Illustration of the size of each model trained on the entire training set with given pair of (dcn, kvar) . To optimize the computational cost on
the privacy-preserving inference step based on homomorphic encryption, we seek the best parameters (dcn and kvar) with the model sizes of less or
equal to 2B for each B = 9, 10, 11, and 12

similarly increases and the number of rotations decreases
as O

( 1
m log 1

m
)
scale. With such trade-offs, denoting the

bound of the number of genes by 2B, we notice that the
time cost is minimized when m = 4 for B = 9, m = 2
for B = 10, 11, and m = 4 for B = 12, respectively. We
illustrate the scalability of time cost from m in Fig. 5 for
B = 10. Moreover, we state the final microAUc value and
accuracy for each B in the table. In summary, we get about
0.988 microAUC and 85% accuracy for test dataset, which
is the relatively better result compared to other works
using the dataset from same data source [4, 26].

Discussion
Our work in this paper was awarded fist place (with other
teams including Desilo, Inpher and SamsungSDS) in the
HE track of iDASH 2020 competition. Unlike other award
winners who obtained relatively low microAUC values

(close to 0.95) by performing linear activation within
a very short time, our result shows a high microAUC
value by proposing the only method for applying softmax
activation within a practical time. In addition, our pre-
processing method has scalability, making it possible to
obtain a higher microAUC value through additional time
consumption, which is different from other teams.
The main purpose of our data preprocessing is to

remove irrelevant genes in the data. The genes removed
have a similar effect to the remaining genes, or are have a
weak effect on the cancer type classification. CN data fil-
tering extracts the genes with the hamming distance of the
samples’ copy number, based on the fact that the adjacent
genes have copy number similarity. This filtering tech-
nique can be applied to other types of the genetic dataset
with an appropriate threshold dcn for each dataset. Vari-
ants data filtering can be also applied to other types of

Table 3 The performance of correctness with the best pair of (dcn, kvar) for each threshold of the size of the model among training
dataset. The best pairs are chosen from the result in Fig. 2 that shows best microAUC score in the same thresholds. We note that
10-fold cross validation is used on the training set

Threshold of the model size
dcn kvar Filtered genes

microAUC Accuracy
CN Variants

512 0.17 60 243 265 0.98179 0.83321

1024 0.13 90 358 404 0.98523 0.84317

2048 0.08 270 709 1198 0.98625 0.86827

4096 0.08 550 709 2364 0.98704 0.86974
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Table 4 Table of experiment results for inference step over encrypted state. For each threshold for the model size, the number of
chosen genes for CN and variants data are as in Table 3. Encoding Duplication means the number of duplications for X in encoding
step, refers the parameterm. For each case, we state the microAUC value and accuracy on the right columns. These results come from
the our trained model with test dataset

Threshold of
the model size

Encoding
Duplication

Computation Time (sec)
microAUC Accuracy

Encryption Const. Mult RotSum A. Softmax Decryption Total

512 1 6.7 16.8 61.0 130.5 0.1 215.1 0.9866 84.60

2 13.4 17.8 29.6 131.0 0.1 191.9

4 26.5 17.5 11.9 132.9 0.1 188.9

8 52.6 23.8 6.5 133.0 0.1 216.0

1024 1 13.5 32.3 62.0 132.9 0.1 240.8 0.9882 85.15

2 26.7 36.0 31.4 131.2 0.1 225.4

4 53.4 35.8 11.9 130.7 0.1 231.9

8 105.4 47.9 6.9 134.0 0.1 294.3

2048 1 26.7 64.9 63.2 132.1 0.1 287.0 0.9857 86.47

2 54.0 70.5 29.3 131.4 0.1 285.3

4 106.8 72.2 13.2 131.6 0.1 323.9

8 211.5 98.1 8.3 133.9 0.1 451.9

4096 1 53.8 129.4 63.6 130.7 0.1 377.8 0.9862 86.25

2 107.7 143.1 31.3 135.1 0.1 417.6

4 213.9 152.6 15.2 140.5 0.1 522.3

datasets that have a lot of empty information. Since var-
ious genetic datasets are ‘empty-sparse’, not sparse with
lots of 0s but no information, our filtering technique
can be used to efficiently extract the relevant features.
However, since our method focused only on the filtering
method to select meaningful genes, it cna be expected
that the high microAUC values can be obtained through
other methodologies that perform simple operations. In
future studies, combining our method with other HE-
friendly preprocessing methods [4, 26] would be able to
show better accuracy using the same dataset.
To our best knowledge, our softmax approximation

algorithm is the first approach to use the softmax activa-
tion function for the neural network implemented with

HE. However, the size of the input data must be adjusted
through normalization, and it should be preceded that
the process of predicting the range of the maximum
and minimum values of the matrix product XW as a
result of the train data to compute the approximation of
exponential function and the Goldschmidt algorithm. In
addition, our algorithm may not be suitable for comput-
ing deep neural network models with multiple softmax
activation functions for a limited time, as it consumes a
lot of HE depth in approximating the softmax. In fur-
ther research, we expect that other popular activation
functions, such as sigmoid or ReLU, can be combined
with our neural network model to improve the final
score.

Fig. 5 Illustration of time cost for each duplication numbers when the threshold of the model size is 1024 (B = 10). As encoding duplication
number increases, the time cost for Encryption increases linearly while the cost for RotSum decreases approximately by log scale, and the other
parts are stationary. In our implementation environment, the total time cost is minimal when duplication number is 2
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Conclusions
In this paper, we propose the first result of privacy-
preserving multi-label classification for tumor data using
neural network with softmax activation. To enable imple-
mentation using HE within a practical time, we suggest
filtering method to reduce the size of genes from 25,128
to pre-fixed bound 2B where B is in {9, 10, 11, 12}. For
encoding filtered dataset to ciphertexts, we suggest the
duplicating method that encodes same data multiple time,
which decreases the time cost for matrix-vector multipli-
cation for evaluating neural networkmodel and provides a
time cost trade-off between encryption step and message
rotation step. Also, our approximation method for the
softmax function enables to apply the softmax activation
function for shallow neural networkmodel. As a result, we
obtain inference results with microAUC values of about
0.988 to classify multi-label tumor data in 5 minutes. If
the time given for the inference step is not limited, our
preprocessing and approximation methods can be used as
building blocks for general deep neural networks.

Methods
Notations
All logarithms are base 2 unless otherwise indicated. The
vectors are denoted with upper arrow.We denote an entry
of the vector by using the same character with index. We
denote Hadamard multipcation between two vectors by
�a � �b. Also, for simplicity, we denote the [ x]n be the
number in {1, · · · , n} satisfying [ x]n = x mod n.
For a matrixA,A(i, j)means the i th row and j th column

element of A. Also, we denote the submatrix of A with i ∈
I th rows and j ∈ J th columns from A by A[ I, J]. In this
case, the colon(:) indicates the whole index set.

Approximate homomorphic encryption
Since HE enables anaylsis of encrypted data while preserv-
ing the privacy of message from operators, it is considered
as one of the beneficial tool to delegate operations that
requires sensitive data without revealing any information.
Unlike other popular cryptographic tools including multi-
party computation, which require protocol participants
to continuously interact to each other through the sce-
nario, HE has the advantage that no additional actions or
online processes are required for themessage owners after
they encrypts and transmits data to the operator. Through
these characteristics, HE has been exploited in various
field such asML that requires computation using sensitive
information such as genomic data [35, 42, 43] or financial
data [44]. Additionally, HE can also play an important role
in the protection of data in the computation process in
applications that require computations between real data,
such as ML [45] or cyber physics system [46].
Since Gentry firstly suggested in his blueprint [47] in

2009, a number of HE schemes have been proposed to

achieve useful properties for applications. Each scheme
has advantages in operations in a particular message
space, such as finite field operations [12, 36] or boolean
circuit [37]. However, many well-known deep learn-
ing algorithms [48, 49] cannot be directly implemented
because of some limitations of HE. First, since most HE
methods only support multiplication operations less than
fixed number of depths, it is difficult to implement a
method using a large number of layers in a neural net-
work. Therefore, most HE applications focus on imple-
menting shallow neural networks or logistic regression.
Although it is possible to recover the depth of the cipher-
text through an operation called bootstrapping, it requires
a very high computational overhead compared to other
basic operations. Second, each scheme does not sup-
port both common arithmetic operations and binary(or
logistic) operations at the same time. While many ML
algorithms require both operations such as matrix-vector
multiplication or ReLU function, the application of the HE
scheme requires the way to efficiently perform unfavor-
able operations.
The approximate HE scheme, namely as CKKS scheme,

is proposed by Cheon et al. [14]. The main feature of
approximate HE scheme is that it deals with operations
in complex numbers C and it supports fixed-point arith-
metic operations between encrypted data. It also supports
approximate arithmetic, which considers the noise of the
ciphertext as part of the message to increase the effi-
ciency of the operation. Since most ML algorithms mainly
use fixed-point operations on real data or noise-friendly
algorithms such as gradient descent, CKKS scheme takes
advantages of the most of ML applications compared to
other HE schemes.
We remark that the word approximate does not mean

that the homomorphic operations contain large errors and
result in data loss, but rather that the very small errors are
allowed in the message to increases efficiency of the oper-
ations in the scheme. In machine learning applications,
such errors does not ruin the message as the scheme guar-
antees a sufficiently large precision if practical parameters
are used.
For the rest of this section, we formally describe CKKS

scheme. Let L be a level parameter that a fresh cipher-
text is equipped with a modulus qL = (2�)L, and q� :=
(2�)� for 1 ≤ � ≤ L for some scaling factor �. Let
R := Z[X] /(XN + 1) be a cyclotomic ring for a power-
of-two N and Rq be a modulo-q quotient ring of R, i.e.,
Rq = R/qR. The distribution χenc and χerr denote the
discrete Gaussian distribution with some fixed standard
deviation. The distribution χkey outputs a polynomial of
{−1, 0, 1}-coefficient. We denote the rounding function
�·	 and modulo-q operation [ ·]q.
CKKS scheme uses a plaintext vector �m ∈ C

N/2 and
provides enrty-wise operation, called Single-Instrument-
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Multiple-Data (SIMD) operation, such as addition, substi-
tution, and Hadamard multiplication between vectors. To
encrypt complex value, CKKS uses a field isomorphism
τ : R[X] /(XN + 1) → C

N/2 called canonical embedding.

• KeyGen(params).

– Sample s ← χkey and Set the secret key as
sk = (1, s).

– Sample a ← U(RqL) and e ← χerr . Set the
public key as pk = (b, a) ∈ R2

qL where
b =[−a · s + e]qL .

• Encpk(m). Given a messagem ∈ R, sample v ← χenc
and e0, e1 ← χerr . Output the ciphertext
ct =[ v · pk + (m + e0, e1)]qL .• Decsk(ct). Given a ciphertext ct ∈ R2

q�
, output

m′ = 〈ct, sk〉.
• Add/Sub(ct, ct′). Given two ciphertext ct, ct′ ∈ R2

q�
,

output the ciphertext ctadd/ctsub =[ ct ± ct′]q�

encrypting a plaintext vector �m1 ± �m2.
• Multevk(ct, ct′). Given two ciphertexts ct, ct′ ∈ R2

q�
,

output a level-downed ciphertext ctmult ∈ R2
q�−1

encrypting a plaintext vector �m1 � �m2.
• Rotrk(ct; r). For a ciphertext ct encrypting a plaintext

vector �m = (m1, · · · ,mn), output a ciphertext ct′
encrypting a plaintext vector
�m′ = (mr+1, · · · ,mn,m1, · · · ,mr) which is the (left)
rotated plaintext vector of ct by r positions.

For the remind of the paper, we may denote the opera-
tions between ciphertexts or ciphertext and plain vector
by common symbols, such as Add(ct1, ct2) = ct1 + ct2 or
CMult(ct, �c) = ct · �c for simplicity.

Data preprocessing
Given more than 25,000 genes, meaningful gene selec-
tion is essential for efficient ML using HE. Therefore, we
introduce a new data preprocessing technique consist-
ing of a feature selection method modified from [4] to
obtain significant genes useful for tumor prediction. Our
data preprocessing method consists of two filtering algo-
rithms that extract specific features from two different
data types. The resulting filtered data matrix is concate-
nated as shown in Fig. 6(c) and inserted into our neural
network.

Fig. 6Workflow of the data preprocessing. (a) CN data filtering. CN data matrix C consists of s = 2713 samples and G = 25128 genes, where each
entry represents the copy number of the corresponding sample and gene in 5 levels: 0, ±1, ±2. The CN data filtering is based on the copy number
similarity of adjacent genes. (b) Variants data filtering. Variants data matrix Vt for each tumor type t = 1, 2, · · · , 11 consists of mutations’ effect data.
The data is encoded to real values 0, 0.2, 0.5, 0.9, and 1.0 where 0 is for the entry with no information. The Variants data filtering removes irrelevant
genes with ineffective mutations. (c) Input data to Shallow Neural Network. The filtered CN and Variants data is concatenated and input to our
Neural Network
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In the rest of paper, we denote the number of samples
and genes from original data by s andG and the number of
types of tumor by T. In our dataset, these notations con-
tain values s = 2,713(train) or 909(test), G = 25,128 and
T = 11. Using the abstract notation, the CN and Variants
data can be understood as a matrix of the size s × G and
the T number of set of information. Since the number of
genes G is too large to handle with HE efficiently, we pro-
pose the preprocessing method which is easy to compute
both client-side and server-side in our scenario to reduce
the number of filtered gene less than fixed bound.

CN data filtering
Ourmain approach for CN data filtering is to filter out the
irrelevant genes with cluster analysis based on the similar-
ity of the neighboring genes. Modified from CGF in [4],
we introduce a new cluster analysis using hamming dis-
tance instead of Jaccard distance. To reduce the number
of input features we take only one gene from each cluster,
unlike CGF.
Let C ∈ {0,±1,±2}s×G be the matrix of copy num-

ber data, where the s rows correspond to the s samples,
and the g columns correspond to G genes; C(i, j) is a
copy number that corresponds to gene j of sample i (see
Fig. 6(a)). We initially sort the raw CN data according to
the order of the gene positions on the chromosome.
Then, we cluster the genes into groups by their copy

number similarity (line 3-10 in Algorithm 1). For two gene
columns �p, �q ∈ {0,±1,±2}1×G, we use the Hamming
distance as the similarity measure

distH(�p, �q) = the number of i such that pi �= qi (1)

where pi and qi are the i th entry of vectors �p and �q, which
represents the copy numbers of each gene for ith sample.
Starting from the first gene inC, say a representative of the
first group, we calculate the hamming distance with the
following genes in order. Until the distance is less than the
predetermined threshold dcn, we merge each correspond-
ing gene to the first group. If the distance first reached the
threshold dcn, the first group ends and the corresponding
gene becomes a representative of the second group. Then
start from the new representative, calculate the hamming
distance with the following genes.
Repeating this algorithm until the genes are all clus-

tered, each gene is in a unique group with neighboring
genes. Finally, we filter the CN data with the represen-
tative genes, the first gene in each group, resulting in a
matrix C̃ ∈ {0,±1,±2}s×g̃cn where g̃cn is the number of
groups as the result of our filtering. Note that g̃cn is much
smaller than the number of original genes. We formally
state our CN data filtering algorithm in Algorithm 1 and
shown in Fig. 6(a).

Algorithm 1: CN data fitering
Input : CN data matrix C ∈ {0,±1,±2}s×G sorted by

gene location and threshold dcn.
Output: matrix C̃ ∈ {0, 1}s×g̃cn . (g̃cn � G)

1 geneList ←[ 1] // list of repre. genes
2 i ← 1
3 while i ≤ G do // group the genes
4 j ← i + 1
5 while (j ≤ G & distH(C[ :, i] ,C[ :, j] ) < dcn) do
6 j++
7 end
8 i ← j
9 geneList.append(i)

10 end
11 C̃ ← C[ :,geneList] // filter C with zero

padding

12 return C̃

Variants data filtering
For Variants data filtering, the feature selection mecha-
nism uses only a mutation’s effect data classified in 4 dif-
ferent levels: LOW,MODERATE,MODIFIER, andHIGH.
The Variants data filtering works based on the effective-
ness of the mutations. It filters out the genes with less
effective mutations.
In the Variants data, for each sample, only a few muta-

tion effect data of individually selected genes are given.
So the raw Variants data for whole samples and genes
is almost empty, which cannot be used immediately as a
neural network input. Hence our Variants data filtering is
separately applied to each cancer type to reduce the empty
spaces and fill in yet remaining spaces with zero.
Let Vt be the matrix of the raw data with mutation’s

effect corresponding to the tumor type t (1 ≤ t ≤ T). Vt
is a st × G matrix with mutation’s effect as strings, where
st rows correspond to st samples and G columns corre-
spond to whole G genes for each t. Vt(i, j) is the effect of
themutation in j th gene of i th sample with t (see Fig. 6(b))
. We first encode the string data to predetermined real
values between 0 and 1: LOW = 0.2, MODERATE = 0.5,
MODIFIER = 0.9, HIGH = 1.0, and 0 if no information
exists. The resulting encoded Variants matrix is sparse
matrix in Est×G, where E = {0, 0.2, 0.5, 0.9, 1.0} be a set of
encoding values.
Secondly, we sum Vt by each gene column and if the

sum is more than the predetermined threshold kvar, then
put the gene in the list of the selected genes (line 2-8 in
Algorithm 2). The column-wise summation

∑st
i=1 Vt(i, j)

is a mutation’s effect of jth gene to the st samples, so the
selected genes in list can be regarded as genes with consid-
erable mutation effects. The union of the selected genes
from each tumor type t is the set of filtered genes.
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Finally, we filter the whole Variants data with the filtered
genes for each t, resulting in a matrix Ṽ ∈ Es×g̃var with
much smaller genes to whole samples The workflow of the
Variants data filtering technique is shown in Fig. 6(b).

Algorithm 2: Variants data filtering
Input : encoded Variants data matrices Vt ∈ Est×G

for cancer types 1 ≤ t ≤ T , and threshold
kvar. (E = {encoded values})

Output: matrix Ṽ ∈ Es×g̃var . (s = ∑
st , g̃var � G)

1 geneList ←[ ]
2 for t = 1 to T do // pick genes from each Vt
3 for j = 1 to g do
4 if ColSum(Vt[ :, j] ) > kvar then
5 geneList ← geneList ∪ {j}
6 end
7 end
8 end
9 for t = 1 to 11 do // filtering Vts

10 Vt ← Vt[ :,geneList]
11 end
12 Ṽ ← Concatenate(V1, · · · ,VT , axis = 0)
13 return Ṽ

Roadmap for training step over training data
After preprocessing for CN and variants data, we get
the data matrix X =[ C̃|Ṽ ] with size s × g where g =
g̃cn + g̃var by concatenating two filtered results. Then, with
the tumor data Y, we train a neural network model from
(X,Y ) in plain while transform Y as the one-hot encoded
label matrix with size s × T . Here, we note that T is 11
in our dataset, which is relatively small than s and g. Our
neural networkmodel consists of one hidden layer with 64
nodes and linear activation function and output layer with
11 nodes. In the output layer, we use softmax activation
function to output their predicted value. During the train-
ing phase, we used Keras library [50] in Python with batch
size of 32, number of epochs of 50 and dropout rate of 0.9.
Note that we used sufficiently big dropout rate in order to
avoid overfitting since the layers in our model are small.
To select the best parameters, dcn and kvar, for the pre-

processing on the given train dataset, we train and eval-
uate shallow neural network models using 10-fold cross
validation with filtered data based on each pair of param-
eters. After selecting the best parameters, we train the
shallow neural network model on the entire train dataset
using the best parameters, and we use the trained model
for the inference step over encrypted test dataset.

Roadmap for inference step over encrypted data
From now on, we state the method to compute inference
step from our model with encrypted data. Precisely, input

data matrix X with size s × g and weight matrix W with
size g × T are given (recall that s, g and T refers the num-
ber of samples, genes, and tumors, respectively). Since T
is relatively small than s and g in practice, we consider the
matrix-matrix multiplication Y = X · W as matrix-vector
multiplications �yi = X · �wi for 0 ≤ i < T , where �wi is
the (i + 1)th column of W. Then, for each row Yj of Y
(0 ≤ j < s), we compute the softmax function to get final
score of our model. Since the matrix Y is still encrypted,
we need to compute an approximate function of softmax.
In short, our Method can be divided into three steps:

1. Data Packing : encrypt the matrix X to a number of
ciphertexts {cti}.

2. Matrix-Vector Multiplication : using {cti} and W,
compute matrix-vector multiplication to get the
ciphertext ctY that contains Y = X · W .

3. Softmax Evaluation : compute approximate softmax
function for ctY to obtain softmax output for each
row of Y.

We break the method down into the first two steps and
the other, and explain the main ideas in each section.

Data packing andmatrix multiplications
Although CKKS scheme supports SIMD operation
between vectors, the SIMD operation cannot be directly
applied to the matrix-vector multiplication operation.
Therefore, in order to efficiently perform a matrix-vector
multiplication operation using HE, a process of mapping a
matrix to a number of vectors is required. In this section,
focusing on the matrix multiplications in our scenario,
we first state the naive approach and then suggests our
optimization method.
The main idea of mapping a matrix to vectors for this

computation is suggested in [15], which is that X · �wi can
be understood as n times of slot-wise vectormultiplication
between diagonal part of X and wi. Concretely, we define
�xj by the j-th diagonal part of X so that �xj = (X(k, [ j +
k − 1]g )1≤k≤s for 0 ≤ j < g. For the repeated rotation
of each column �wi of W, we define with superscript with
parentheses as �w(j)

i = (�wi[ j + k − 1]g )1≤k≤s for 0 ≤ j < g.
Then, the matrix-vector multiplication can be computed
as �yi = X · �wi = ∑g−1

j=0 �xj � �w(j)
i . Hence, the multiplication

can be done if we encrypt �xj’s in several ciphertexts and
compute constant multiplication between ciphertext and
plain vector �w(j)

i (see Fig. 7(a)).

Warm-upwith toy example
Before we state our explicit method for encodings and
matrix-multiplications, we start with a toy example, sim-
plifying the parameters as s = 8, g = 4, and T = 4,
and assumsing that the number of slots in one ciphertext
is 4 times larger than the size of vector s. Then our goal
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Fig. 7 Illustration of data packing and matrix multiplication. To efficiently compute with encrypted data, data packing and matrix multiplication
method should be highly concerned. (a) We basically follow the method in [15] which breaks the matrix-matrix multiplication into matrix-vector
multiplications with vectors of special form. (b) Naïve packing method with 4 CMults and 8 Rots and (c) ours with 4 CMults and 2 Rots are given as a
toy example with s = 8 samples, g = 4 genes, T = 4 tumor types and ciphertext slot-size n = 32, when usingm = 2 duplication of �xis (See
Warm-up with Toy Example). If we use imaginary part for message space, we can even reduce the number of CMults to sg

2n · m� T
m 	 = 2, where the

number of Rots remains the same as log n
ms · � T

m 	 = 2 (See Putting It All Together)



Hong et al. BMC Genomics          (2022) 23:284 Page 15 of 19

is to compute �yi = ∑3
j=0 �xj � �w(j)

i for 0 ≤ i < 4. In
the naive approach, we encode and encrypt �xi’s by ct =
Enc(�x1‖�x2‖�x3‖�x4) and define w̃i = (�w(0)

i ‖�w(1)
i ‖�w(2)

i ‖�w(3)
i )

for each i. Then we can compute Hadamardmultiplication
by ctmult

i = ct·w̃i, which contains themessage vector (�x0�
�w(0)
i )‖ · · · ‖ (�x3� �w(3)

i ). Hence, the final sum is obtained by
computing rotation twice as ct′i = ctmult

i + Rot(ctmult
i ; 2s)

and ctsumi = ct′i + Rot(ct′i; s), where the real parts of first s
slots in ctsumi contains �yi (see Fig. 7(b)).
From the naive approach, we need T number of the

matrix-vector multiplication, so that the CMult and Rot
should be computed T and 2T times, respectively. Here,
the implementation cost of Rot is larger than CMult, so
we suggest new packing method to reduce the number
of rotation in the whole algorithm. Our main idea is to
duplicate and encodeXmultiple times in each ciphertexts,
which reduces the number of rotations since the num-
ber of summation between the slots in one ciphertexts is
reduced.
Now, we propose a new approach for matrix-vector

multiplication to reduce the number of constant multipli-
cations and rotations. Our main idea is that we copy each
�xj’s several times in encoding step. For the same condition
as above example, we can encode the vectors �xi twice so
that we obtain two ciphertexts ct0 = Enc(�x0‖�x0‖�x1‖�x1)
and ct1 = Enc(�x2‖�x2‖�x3‖�x3). In this case, we define w̃k,l as
in Eq. (2).

w̃k,l =
(
�w(2l)
2k

∥
∥
∥�w(2l)

2k+1

∥
∥
∥ �w(2l+1)

2k

∥
∥
∥�w(2l+1)

2k+1

)
(2)

for 0 ≤ k, l < 2. Then we get ctmult
k,l = ctl · w̃k,l =

Enc(�x2l � �w(2l)
2k ‖ · · · ‖�x2l+1 � �w(2l+1)

2k+1 ). Thus, by rotating
and adding those ciphertexts as ctsumk = ∑1

l=0 ct
mult
k,l

and ctY ,k = ctsumk + Rot(ctsumk ; 2s), the result ciphertexts
contain message vectors as in Eqs. (3) and (4),

ctY ,0 = Enc

⎛

⎝
3∑

j=0
�xj � �w(j)

0

∥
∥
∥
∥
∥
∥

3∑

j=0
�xj � �w(j)

1

∥
∥
∥
∥
∥
∥

· · ·
⎞

⎠ , (3)

ctY ,1 = Enc

⎛

⎝
3∑

j=0
�xj � �w(j)

2

∥
∥
∥
∥
∥
∥

3∑

j=0
�xj � �w(j)

3

∥
∥
∥
∥
∥
∥

· · ·
⎞

⎠ , (4)

which are �yi’s that we desired. In this method, the opera-
tions we need are 4 CMults and 2 Rots, while 2 ciphertexts
are required for encryption instead of 1 (see Fig. 7(c)).

Using imaginary part of message space
The CKKS scheme supports operations between com-
plex numbers, but in applications using real numbers only
such as neural networks, the imaginary part is never used.
Here, we canmake the computation in the encrypted state
more efficient by using the imaginary part, which is not
used in the plain operation.

In [35], the authors suggested the method to reduce the
number of multiplications using CKKS scheme. For four
real numbers a, b, c, and d, the sum of the two prod-
ucts ab + cd is equal to the real part of one complex
product (a + ib)(c − id), where i = √−1. Since the
matrix-vector multiplication we need is also composed of
the sum of Hadamardmultiplications between vectors, we
can reduce the number of ciphertext and the number of
constant multiplications by half by combining each vector
by two and encoding it into one complex number.

Rotate and sum algorithm
For the matrix-vector multiplication, the addition
between data packed in one ciphertext is needed. We
use RotSum algorithm, which repeatedly computes rota-
tion and addition to get summation of desired slots in a
ciphertext.
Precisely, we define the algorithm RotSum(ct, s, t, d)

outputs the ciphertext ctout that is obtained by comput-
ing ctout ← ct and ctout ← ctout + Rotrk(ctout; stj) for j =
0, 1, · · · , d− 1 in order. As a result, if ct was an encryption
of the message vector �m = (mi)1≤i≤n, then ctout contains
the message vector �mout =

(∑td−1
j=0 m[i+js]n

)

1≤i≤n
.

Putting it all together
Combining all of the above methods, we explain the
explicit method used for our implementation. For the rest
of this section, we denote the concatenation of vectors by
‖ti=s�ai = (�as‖�as+1‖ · · · ‖�at) and the repeated concatena-
tion of the same vector by (�a)r = (�a‖�a‖ · · · ‖�a) (r times).
Also, we can embed matrices X andW into large matrices
with row and column lengths of power-of-2, respectively,
so we assume that s, g are power-of-2’s. Recall that our goal
is to compute �yj = ∑g

i=1 �xi � �w(i)
j for 0 ≤ j < t while �xi’s

are encrypted, so that the output �yj’s are also encrypted.
As explained before, we copy each �xi’s m times when

encoding, where m is a power-of-2. Since each vector has
the size s and the number of slots in a ciphertext is n,
each ciphertext will contain � = 2 · n

ms number of dif-
ferent vectors (in both real and imaginary parts). Thus
we need total g

�
= m · sg

2n number of ciphertexts for
encoding.
Precisely, we encode �xi’s to each ciphertext cti and plain

vector w̃ji by Eqs. (5) and (6) for 0 ≤ i ≤ g
�

− 1 and 0 ≤
j ≤ � T

m	 − 1, respectively. Note that the massage vector
in cti sequentially contains m copies of vector �xi·�+2q + i ·
�xi·�+2q+1 for each q. Here we define �wjm+r = �0 if jm+ r ≥
T .

cti = Enc
(

‖
�
2−1
q=0

(�xi·�+2q + i · �xi·�+2q+1
)m

)
, (5)

w̃ji = ‖
�
2−1
q=0

(
‖m−1
r=0

(
�w(i·�+2q)
jm+r − i · �w(i·�+2q+1)

jm+r

))
. (6)
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Next, we compute the multiplication step. For each j, we
multiply cti and w̃ji, add its conjugation and divide it by 2
to get ct′ji =

(
(cti · w̃ji) + (cti · w̃ji)

)
/2. Then, by adding

them to get ctsumj = ∑ g
�
−1

i=0 ct′ji, we get the ciphertext ctsumj
which is the encryption of the vector in Eq. (7) for each j.

‖
�
2−1
q=0

⎛

⎝‖m−1
r=0

⎛

⎝

g
�
−1∑

i=0

1∑

k=0
�xi·�+2q+k � �w(i·�+2q+k)

jm+r

⎞

⎠

⎞

⎠ . (7)

Finally, we compute the following summations using
RotSum so that the firstms slots contain the desired sums
and are copied to the remaining slots. The Eq. (8) indicates
the result of vector operation from Eq. (7) since the sum-
mation for (i · � +wq+ k)’s for all indices q, i, and k works
as the summation for all indices from 0 to q − 1. Hence,
the result is the desired vector �yjm+r .

�
2−1∑

q=0

g
�
−1∑

i=0

1∑

k=0
�xi·�+2q+k � �w(i·�+2q+k)

jm+r = �yjm+r . (8)

Then for each j, we compute the result ctY ,j that con-
tains jth group of m outputs {�yjm+r}0≤r<m using RotSum
operation. From Eq. (8), the resulting ciphertext ctY ,j can
be computed as Eq. (9).

ctY ,j = RotSum

⎛

⎝

g
�
−1∑

i=0
ct′ji,ms, 2, log

�

2

⎞

⎠

= Enc
((

‖m−1
r=0 �yjm+r

) �
2
)
. (9)

As a result, the desired vectors �yi = X · �wi are contained
in � T

m	 number of ciphertexts {ctY ,j}0≤j<� T
m 	. Note that the

number of rotations used in the Eq. (9) is log �
2 = log n

ms
for each j, so total log n

ms · � T
m	.

In summary, if we duplicate �xj’sm times for encryption,
then the required number of rotations is reduced by m
times, where the number of ciphertexts for encryption in
increased bym times. Exactly, the number of rotations and
multiplications are log n

ms · � T
m	 and sg

2n · m� T
m	, respec-

tively, while the number of ciphertexts for encryption is
increased to m · sg

2n (note that the value sg
2n implies the

minimum number of ciphertexts to encrypt X). Since the
number of multiplication does not change asymptotically
form, our method provides a time cost trade-off between
the number of rotations and encryptions. In our imple-
mentation environment, we can reduce the total time
cost by using more memory to encrypt data since the
rotation cost is the significant part in total matrix-vector
multiplication algorithm.

Approximation of softmax
While softmax layer substantially enhances the perfor-
mance of the classification, it cannot be directly com-
puted by CKKS scheme since it comprises several non-
polynomial operations. Recall that the softmax of a real
vector �v = (v1, · · · , vt) is defined as Eq. (10).

softmax(�v) = 1
∑t

i=1 exp(vi)
(exp(v1), · · · , exp(vt)) (10)

Both exponential function and division are not poly-
nomial, so we should replace them by their polyno-
mial approximation. We introduce a proper polynomial
approximation technique for each of exponential and divi-
sion function. In general, in order to approximate a non-
polynomial operation by a polynomial, minimax method
that minimizes the maximum error value within an inter-
val or Chebyshev approximation that express the function
by the series of Chebyshev polynomials are mainly used.
However, the minimax approximation loses the increasing
property of exponential and the division function, because
the sign of the error is not constant. Hence, this method
is not suitable in terms of calculating microAUC score.
Instead, we suggest an approximation method of the soft-
max layer that is more suitable for microAUC score. In
particular, our approximation method consists of a less
number of squaring operations, so it has an advantage to
be evaluated over homomorphically encrypted data.

Approximation of exponential function
Our approximation method for exponential function
comes from the elementary definition of exp(x). Precisely,
for some r, we approximately compute exp(x) as Eq. (11).

exp(x) = lim
n→∞

(
1 + x

n

)n ≈
(
1 + x

2r
)2r

. (11)

Note that this formula can be computed by squaring n
times, so it mitigates the computational overhead accom-
panied by the HE computation. Also, our approximation
of exp(x) is monotone on [−2r ,∞), so it is more appropri-
ate to approximate softmax functions in terms of getting
a high microAUC score compared to other polynomial
approximation techniques such as minimax and Cheby-
shev approximation.
Furthermore, to make the evaluation more stable, we

rather consider the approximation of scaled exponential
function, AEr,L(x) as Eq. (12). From the definition, we
expect this funciton to satisfy AEr,L(x) ≈ ( L

2r
)−2r exp(x). If

we carefully choose L large enough that satisfies | 2r+x
L | <

1 for the all possible choices of x, then the values will
not rapidly grow during the evaluation. This makes the
computationmore stable to theHE implementation which
usually supports fixed precision bits.
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AEr,L(x) :=
(
2r + x

L

)2r

(12)

Goldschmidt’s algorithm
Goldschmidt’s divison algorithm [51] is one of the most
popular approximation algorithm to compute the inverse
of a real number. For x ∈ (0, 2), Goldschmidt’s algorithm
uses the property as in Eq. (13).

1
x

= 1
1 − (1 − x)

=
∞∑

i=0
(1 − x)i

≈
2d−1∑

i=0
(1 − x)i =

d−1∏

i=0

(
1 + (1 − x)2

i
)

(13)

Note that the approximation converges rapidly as d grows,
and it uses 2d − 2 multiplications to evaluate the approx-
imate polynomial of degree 2d − 1. The small number
of multiplication gives a great advantage on implementa-
tion with HE, because HE multiplication between cipher-
text is hugely time consuming. The detailed algorithm is
described in Algorithm 3. Here, note that the Algorithm 3
quickly converges to 1/x since the ratio between the error
and true value is ad−1/x

1/x = (1 − x)2d+1 .

Algorithm 3: Goldschmidt Method [51]
Input : x ∈ (0, 2), number of iteration d ∈ N

Output: an approximate value of 1/x
1 a0 ← 2 − x
2 b0 ← 1 − x
3 for n ← 0 to d − 1 do
4 bn+1 ← b2n
5 an+1 ← an · (1 + bn+1)

6 end
7 return ad

Moreover, we can easily exploit Goldschmidt’s algo-
rithm Gol(·) to approximately evaluate 1/x on (0, 2M),
instead of (0, 2), by using the equation 1

x ≈ 1
MGol

( x
M

)
.

We note that the scaling factor M should be carefully
chosen since the error accompanied by Goldschmidt’s
algorithm becomes non-negligiblly large as the input is
near 0. Therefore, if we select an overly largeM, the input
values become smaller, resulting in an error that cannot
be ignored.
To put approximate exponential function and Gold-

schmidt’s algorithm together, we now can approximately
compute the softmax layer by using HE operations.
Denoting Lr = ( L

2r
)2r , we utilize the Eq. (14) to compute

approximate softmax function using HE.

Algorithm 4: Approximate Softmax Algorithm
Input : iteration number d ∈ N, the pre-determined

bounds r ∈ N and L,M ∈ R, a vector
�v = (v1, · · · , vt) ∈ (−2r , 2r)t

Output: an approximate output of softmax(�v)
1 for i ← 1 to t do
2 wi ← (vi + 2r)/L
3 for j ← 1 to r do
4 wi ← w2

i
5 end
6 end
7 inv ← 1/M · Goldschmidt (∑t

i=1 wi/M, d
)

8 for i ← 1 to t do
9 wi ← inv · wi

10 end
11 return (w1, · · · ,wt)

softmax(�v) =
( t∑

i=1

exp(vi)
Lr

)−1 (
exp(v1)

Lr
, · · · , exp(vt)

Lr

)

≈ Gol

( t∑

i=1
AEr,L(vi)

)
(
AEr,L(v1), · · · ,AEr,L(vt)

)
.

(14)

The detailed algorithm is described in Algorithm 4.
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