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Abstract

Fault response and severity-based fault diagnostic
method for polymer electrolyte membrane fuel

cell system

Jin Young Park
Department of Mechanical Engineering
The Graduate School

Seoul National University

In recent years, interest in hydrogen society has grown from the viewpoint
of a sustainable clean energy society. Hydrogen is the most abundant element
in the universe and can be easily produced. When hydrogen becomes a
commonly used fuel, an energy conversion device is needed. A polymer
electrolyte membrane fuel cell (PEMFC) system is the most widely distributed
device so far, with many advantages among many devices. However, there still

are some barriers to overcome for the commercialization of the PEMFC system;



reliability and durability. In order to improve the reliability and durability of the
fuel cell system, fault diagnosis technology is essentially required. Since the
performance and durability of the PFMFC highly depend on operating
conditions, faults in the system should be correctly detected in the early stage
for its protection.

Firstly, fault responses of a PEMFC stack and PEMFC system are
investigated in this study. A response of 1 kW PEMFC stack under insufficient
reactant supply or failure thermal management is investigated. Next, probable
fault scenarios in a 1 kW class PEMFC system are established. The fault
scenarios in air providing system, fuel providing system and thermal
management system are classified depending on their fault severity to the stack
or the entire system. Responses of control and sensing signals are investigated
and analyzed under each fault scenario.

Secondly, a fault diagnostic method for the PEMFC system is suggested
in this study. Considering that response time and magnitude differ depending
on fault severity, three neural networks that diagnose the critical fault,
significant fault and minor fault, respectively, are developed. The neural
networks together work as a ‘severity-based fault diagnosis algorithm.” The
algorithm can achieve both sensitivity and robustness by adjusting the moving

average time and standard deviation multiplication value that divides the



residual data. The residual data is acquired from the control and sensing signals
during the system operation. The severity-based fault diagnosis algorithm can
be developed using a tabularized expected fault response without experimental
data. As a result, the developed algorithm successfully diagnosed all the
considered fault scenarios.

Thirdly, a local current distribution prediction method is suggested in this
study. Local current distribution studies have been conducted experimentally or
numerically. Both approaches had limitations. In order to overcome the
limitations, a neural network-based local current distribution prediction model
is developed. Current distribution data is collected under various pressure,
temperature, reactant stoichiometric ratio and relative humidity conditions. The
model is developed with the data and successfully predicted local current
distribution. Using the model, the effect of the operating parameters is
investigated.

Lastly, a local current distribution prediction model under degradation and
fault is suggested in this study. The performance of the fuel cell inevitably
decreases over time. With the degradation, local current distribution also
changes. Therefore, understanding and predicting the current distribution
changes are important. An accelerated stress test (AST) is applied to the fuel

cell for fast degradation. With the AST, current distribution data is collected.
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Also, fault data under elevated temperature, reduced humidity and varying
cathode stoichiometric ratio condition are collected. With the collected data,
local current distribution model based on a neural network is developed. As a
result, the model predicted the current distribution under degradation and fault
with high accuracy.

In summary, a fault response of PEMFC is investigated from the viewpoint
of the system and local current distribution. A severity-based fault diagnosis
algorithm is suggested and validated with the PEMFC system fault
experimental data. Also, local current distribution prediction algorithm is
suggested and successively predicted the current distribution under PEMFC

degradation and faults.

Keyword: Polymer electrolyte membrane fuel cell system, Fault diagnosis,

Fault severity, Local current distribution, Degradation, Neural network
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Chapter 1. Introduction

1.1 Background of the study

World energy demand has been covered by the usage of fossil fuels since
the 19" century, which caused global warming. This global warming is the most
important issue we are facing now in the 21 century. Scientists have come up
with a concept of hydrogen society as a solution to this problem. Hydrogen is
the most abundant element in the universe and can be easily produced. When
hydrogen is liquefied or compressed, hydrogen can be used as a high-density
energy carrier. Most importantly, hydrogen as fuel leaves only pure water as a
by-product. To explore the potential for the hydrogen society, the United States
department of energy has suggested 'H2@Scale' concept as shown in Fig. 1.1
[1]. In this concept, hydrogen replaces fossil fuels and works both as the main
energy storage and energy source for electricity. In the case when electricity is
on-demand, hydrogen is consumed to produce electricity. In this process, an
energy conversion device is necessarily required. Among many devices,
polymer electrolyte membrane fuel cell (PEMFC) is the most widely distributed

device so far.
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PEMFC is basically a device that converts the chemical energy of hydrogen
into electricity. There are other types of fuel cells, but PEMFC is the most
widely applied and commercially used fuel cell for many reasons; high
efficiency, high power density, low operating temperature and fast response [2-
4]. Compared to conventional internal combustion engines, however, PEMFCs
still lack reliability and durability. According to the 2019 US national renewable
energy laboratory (NREL) document [5], on-boarded PEMFC systems in fuel
cell electric buses (FCEB) reported the average mean between road call (MBRC)
less than 20,000 miles. As shown in Fig.1.2, the MBRCs of the fuel cell system
are mostly higher than the 2016 department of energy (DOE) target since July
2016. However, the MBRC has not yet reached DOE's ultimate target. On the
contrary, compressed natural gas (CNG) engines in CNG buses reported
MBRCs more than 30,000 miles [6]. As the document says [S], PEMFC system
road calls are caused by balance of plant (BOP) components, not the PEMFC
stack.

A schematic diagram of a typical PEMFC system is shown in Fig. 1.3. The
PEMFC system includes fuel cell stack and BOP subsystems; hydrogen supply
system, air supply system, water management system, and thermal management
system. These BOP subsystems are controlled to maintain the stable operating

condition for the fuel cell stack. Unfortunately, however, faults occur in the
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subsystems from time to time. Since the PEMFC stack itself is a passive device,
its performance and durability are highly affected by the operating condition,
fault diagnosis technology for the PEMFC system is essentially needed [7,8].
With the fault diagnosis technology, faults can be properly detected fast and
maintenance procedures can be executed to extend both the reliability and

durability of the PEMFC system.



1.2 Literature survey

1.2.1 PEMFC fault diagnosis

According to Zheng and Petron [9,10], fault diagnosis methodologies can
be divided into two groups; model-based methods and non-model-based
methods. Firstly, model-based fault diagnosis methods simulate fuel cell system
behavior with an analytical model. Depending on the simulation approach,
models are classified into white-box models, grey-box models and black-box
models [10]. The white-box model approach includes multi-dimensional
mathematical and physical equations. While this seems to be an ideal approach,
it is not easy to apply in a real-time system. Due to the sophisticated two-phase
electrochemical reactions in PEMFC, it is not easy to develop a high-quality
model. Moreover, high computational power and time are other barriers to the
real-time system application. On the opposite, the black-box model approach
relies on the use of empirical data. It is a simple, fast and practical approach.
However, data dependency limits the genericity of the model. The grey-box
model implements empirical data or expert knowledge in the form of simplified
mathematical/physical equations or relations. By doing so, the grey-box model

approach takes advantage of both genericity and simplicity. For its advantages,



many researchers choose to use this approach.

Non-model-based fault diagnosis methods are classified into signal-based,
statistical-based and artificial intelligence (Al)-based methods based on their
operating principles [9]. The signal-based method usually analyzes the target
data on frequency and time domain. Applying mathematical techniques such as
Fourier transform or wavelet transform [11], the system's state is diagnosed.
The statistical-based method focuses on the correlation between the obtained
data. Principal component analysis (PCA), kernel principal component analysis
(KPCA) and fisher discriminant analysis (FDA) are widely used techniques [9].
The artificial intelligence (Al)-based method utilizes its pattern recognition
performance. The Al model classifies the unseen normal or fault data without
explicit design orders in the training process. Fuzzy logic (FL) [12,13], support
vector machine (SVM) [14-16] and neural network (NN) [17] are typically
favored Al techniques used in non model-based PEMFC fault diagnosis.

As well as PEMFC diagnosis methodology, PEMFC fault diagnostic target
and level vary. According to Lee et al. [7], PEMFC system fault diagnosis target
can be hierarchically divided into multiple stages (or levels), as shown in Fig.
1.4. In the first stage, PEMFC stack and balance of plant (BOP) subsystems are
listed. Subsystems are fuel supply system (FPS), air supply system (APS),

water management system (WMS), thermal management system (TMS).
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In the second stage, components that cause a fault in the subsystem are
listed; sensors, actuators and piping/equipment. In the third stage, the cause of
the fault is suggested at the elemental level.

Many of the previous studies so far have diagnosed the fault at the
subsystem level [4]. Frequently addressed water management faults in the stack
are flooding [18,19] and drying [20,21]. Shao et al. [22] diagnosed the faults of
fuel supply system (FPS), air supply system (APS) and thermal management
system (TMS). At the component level, Li et al. [16] diagnosed the low air
supply fault and pressure-related faults. Pahon et al. [23] classified
oversupplied air fault. Kamal et al. [24] detected the faults of air leakage,
compressor, and three sensors with simulation results. Lee [7] and Oh [§]
diagnosed more than ten component-level faults over the fuel cell system. At
the element level, Lira et al. [25] detected air compressor friction increase with
leakage of fuel and air. Escobet et al. [13] diagnosed increased compressor
friction and compressor overheating faults with several component level faults;
manifold air leakage, increased fluid resistance and control signal below the
operating range.

PEMFC system fault diagnosis technology has improved over the decades.
To the best of the author’s knowledge, however, only the works of Lee [7] and

Oh [8] suggest a diagnostic method for the entire PEMFC system with more

10



than ten different fault scenarios. As with the commercialization of the PEMFC
system, fault diagnostic algorithms should be able to deal with more possible
fault scenarios. Moreover, the fault diagnostic algorithm should be able to

detect the severity of the fault for fast system protection.

1.2.2 PEMFC local current distribution

Despite the PEMFC development history for decades [26], the non-
uniform current distribution issue has not yet been solved [27]. Non-uniform
current distribution over the fuel cell is a sign of poor reactant and catalyst
utilization. It reduces the performance of fuel cell. Also, the non-uniformity
may cause local gas starvation, local flooding or local hot spot that leads to
catalyst corrosion [28] or bipolar plate corrosion [29]. These corrosions
accelerate the degradation of the membrane electrode assembly (MEA) [30],
resulting in decreased durability. Local electrochemical reaction in PEMFC is
affected by local temperature, pressure, relative humidity, water concentration
and reactant concentration [31]. If these parameters are uniform over the fuel
cell, the current distribution should also be uniform. However, these parameters
vary. For instance, local temperature increases along with the coolant channel

flow direction and local reactant concentration decreases along with the gas
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flow channel. These inevitable local parameter variations cause uneven current
distribution over the fuel cell. To minimize the non-uniformity, an
understanding of PEMFC current distribution and its prediction are required.
For the understanding of local current distribution characteristics inside
PEMFC, many experimental research has proceeded. In the 2000s, studies with
the application of segmented fuel cell are reported focusing on the operating
parameter effects. Liu et al. [32] investigated the relationship between water
balance and fuel cell performance with segmented fuel cell data under low
pressure, low temperature and low humidity conditions. Yoon et al. [33]studied
the effects of reactant stoichiometry ratio (SR) and water management issues
(flooding and drying). They concluded that the drying spreads from reactant
inlet to outlet, whereas flooding proceeds from reactant the outlet region to the
inlet region. Ghosh et al. [34] introduced a 240 cm? large area segmented fuel
cell to scrutinize the effects of cathode SR and cathode inlet pressure on the
PEMFC performance. While the cathode SR critically affected local current
distribution, its effect on the performance was relatively low. With the pressure
elevation, the current distribution was more uniformed. Sun et al. [35]
investigated the influences of temperature, pressure, relative humidity (RH) and
reactants’ SR with a specially designed measurement gasket. Their

experimental result shows that cathode SR and RH affect the current
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distribution compared to anode SR and RH. Weng et al. [36] compared two
types of membranes (Nafion 112 and Nafion 117) under low reactants’
humidified conditions. As a result, Nafion 112 showed a more uniform current
distribution compared to Nafion 117. Also, they concluded that the use of
counter-flow channel design has an advantage over co-flow channel design in
the aspect of current distribution.

In the 2010s, more detailed experimental studies were reported focusing
on the effect of operating parameters. Jeon et al. [37] focused on the cathode
humidification effect. They checked that high cathode humidification
alleviates the non-uniformity of current distribution and increases fuel cell
performance. One step further, Lin et al. [38] attempted to stabilize the local
current density by optimizing the cathode relative humidity (RH). They
showed that the RH optimization reduces current oscillation and contributes
to better PEMFC performance. Lilavivat et al. [39] and Feng et al. [40] also
investigated the RH effects on both anode and cathode. Both studies
emphasize the impact of reactant humidification on the membrane water
content, which is closely related to fuel cell performance. More specifically,
cathode RH had a greater impact on both local current distribution and
performance than anode RH. Peng et al. [41] and Gerteisen et al. [42]

experimentally studied the effects of RH and SR on two different flow
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channels (counter-flow channel and co-flow channel). The reactant RH was
important regardless of the channel type. Also, the current distribution was
relatively sensitive to the air SR than hydrogen SR [41]. Behaviors of currents
distribution under starvations of fuel (hydrogen) and oxidant (oxygen) are
investigated in the work of Liang et al. [43] and Dou et al. [44], respectively.
One step further, Shao et al. [45] measured local temperature and local RHs in
PEMFC with locally inserted microsensors. Reshetenko et al. [46] studied the
local current distribution of PEMFC with the serpentine flow field type. Kim
et al. [47] studied the effect of clamping torques on the local current
distribution with a large active area (360 cm?) segmented fuel cell. They found
out that the curved end-plate is more effective in uniform current distribution
than the plain end-plate.

One step further, some researchers focused on the evolution of current
distribution with degradation. Weng et al. [48] investigated the aging effect with
current cycling using a segmented fuel cell. Spernjak et al. [49] applied 1.3 V
overpotential to the fuel cell and observed the change with a segmented fuel
cell. Lin et al. [50] applied 2.0 V voltage reversal to the segmented fuel cell.
Babu et al. [51] and Dillet et al. [52] repeated startup and shutdown cycles to
degrade the fuel cell. The current distribution change is observed with parallel

channel type segmented fuel cell. Lin et al. [53] observed changing current
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distribution by applying a dynamic driving cycle. Lao and Fly [54] applied a
mixed accelerated stress test cycle. Lin et al. [55] investigated the effect of the
startup and shutdown cycle with segmented fuel cell. Shan et al. [56]
investigated the durability of the fuel cell by applying a dynamic driving cycle.

Numerical works were also proceeded to predict PEMFC local current
distribution under various operating conditions. Chevalier et al. [57] developed
a pseudo-2D analytic model for predicting current density distribution. Wang
et al. [58] developed a temperature distribution prediction model along the fuel
cell channel and compared it with the experimental result. Askaripour et al. [59]
investigated the effect of pressure, temperature, SR and RH on current
distribution with a numerical simulation model. Yin et al. [60] studied the effect
of SR with a two-phase CFD model. They added a non-isothermal model for a
detailed investigation of the SR effect on RH, temperature distribution and
current distribution.

Overall, many experimental studies were carried out to understand the
characteristics of current local distribution since the 2000s, using a segmented
fuel cell. Numerical studies were also carried out to simulate the current local
distribution. While tendencies of most numerical simulation models match the
experimental results [57-61], there still are errors between the model

predictions and experiment results. Reminding that PEMFC electrochemical
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reaction includes sophisticated interactions between mass transfer, two-phase
flow and heat transfer mechanisms, numerical prediction error seems inevitable.
The error may be reduced with a delicate simulation model. However, its
complexity will increase computational time. In the viewpoint of commercial
PEMFC development, therefore, a numerical approach has limitations for
predicting local current distribution. An experimental approach also has
limitations since the number of test operating condition cases is limited. The
application of an artificial neural network (ANN) can be a solution in this case.
The ANN has proven its powerful modeling performance in many research
fields including PEMFC. The ANN model also shows a good performance with
limited model training data. Therefore, with the neural network approach,
limitations of both experimental approach and numerical approach seem to be
surmountable.

In this sense, numerous research papers have applied neural network
predicting the performance of PEMFC. Lee et al. [62] developed an empirical
neural network-based model to predict PEMFC performance. They used
temperature, pressure, SRs and RHs as input variables and achieved affordable
accuracy results. In some studies, the cathode outlet temperature is predicted as
well as its performance [63,64]. Jemei et al. [65] implemented a neural network-

based fuel cell performance prediction model into the system on-board. Seyhan
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et al. [66] predicted the performance of wavy serpentine flow channel fuel cell
with a neural network model. Qu et al. [67] developed both radial basis function
(RBF) network model and neural network model for PEMFC performance
prediction. Both models showed good prediction accuracy. A similar conclusion
was stated in another research predicting a 1.2 kW commercial PEMFC system
[68]. Han and Chung [69] compared the prediction result with a neural network-
based model and support vector machine (SVM). SVM, as a classic machine
learning technique, showed great performance. However, better result was
obtained with the neural network model. There were attempts to apply another
type of neural network techniques in the field of PEMFC. Vural et al. [70]
developed an adaptive neuro-fuzzy interference system (ANFIS) model for
performance prediction. Puranik et al. [71] developed a recurrent neural
network model for performance prediction. Both attempts showed that various
neural network techniques could work on the fuel cell model. Neural network
can be applied for different targets such as impedance model development [72]
and hydration state analysis [73]. As introduced, neural network has been
actively applied in the field of PEMFC for various targets with various
techniques. However, to the best of author’s knowledge, no current distribution
prediction research with application of neural network-based model has been

reported, except for the author’s published work. With the application of neural
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network, accumulated local current distribution data over decades could be
effectively used for understanding PEMFC and its local current distribution

prediction.

18



1.3 Objectives and scopes

Reliability and durability are two big barriers to overcome for the
successful commercialization of polymer electrolyte membrane fuel cell
(PEMFC) systems. A fault is one of the main reasons that reduce the reliability
and durability of the system. Therefore, fault diagnosis technology is essentially
required to protect the system.

The first purpose of this paper is to suggest a new fault diagnostic method
for PEMFC. When developing a fault diagnostic algorithm, the algorithm’s
robustness and sensitivity are in the trade-off position. The suggested method
achieves both robustness and sensitivity by applying multiple diagnostic neural
networks based on fault severity. Moreover, the method requires no
experimental fault data for the model development, which could help saving
development time for the commercial PEMFC system. The second purpose of
this paper is to suggest a modeling method for local current distribution. For
many years, experimental and numerical studies were conducted. However,
both approaches had limitations.

The suggested method in the paper overcomes this limitation by
introducing a neural network model with limited experimental data. This way,
acquired experimental data in the process of commercial PEMFC development
can be effectively utilized with little effort. The method also considers the
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change of local current distribution under faults and PEMFC degradation. The
detailed explanations for this research outline are suggested below.

In chapter 2, the fault response of the 1 kW PEMFC stack and 1 kW
PEMFC system are experimentally investigated. When a fault occurs, related
signals change. The faults are diagnosed based on these signal changes.
Therefore in this chapter, understandings of the fault response proceed before
the diagnostic algorithm development. In the first part of this chapter, fault
responses to the fuel supply failure, air supply failure, and thermal management
failure are investigated. In the second part, the PEMFC system designed for
fault experiments is introduced. Then, responses of 17 different BOP faults are
experimentally investigated.

In chapter 3, a severity-based fault diagnostic method for a PEMFC system
is suggested. The core idea of the algorithm is to separately diagnose the faults
depending on their severity. Three neural network classifiers diagnose the
critical faults, significant faults and minor faults, respectively. By separating
the fault diagnosis classifiers, fault diagnosis accuracy and robustness are
achievable at the same time. The development process of the severity-based
fault diagnosis algorithm is suggested in detail as well as its diagnosis results.

In chapter 4, local current distribution prediction model is suggested.

Local current distribution data is collected using segmented fuel cell under
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various operating conditions. Using the data, a neural network based current
distribution prediction model is developed. On step further, by switching the
inputs and outputs of the training data, a new model is developed. The model
suggests operating conditions for the uniform current distribution. The given
operating condition is verified with the current distribution prediction model.
In this chapter, pre-treatment and after-treatment of the data are described step
by step.

In chapter 5, local current distribution prediction under fuel cell
degradation and fault mode has proceeded. First, local current distribution
evolution data under the degradation is collected with the accelerated stress test.
Second, a fault experiment is performed between the accelerated stress test
cycle to collect current distribution changes under faulty conditions. Modifying
the method suggested in chapter 4, local current distribution model for

degradation and fault is developed and validated.
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Chapter 2. Fault response of PEMFC system

2.1 Introduction

Since a PEMFC system includes components with mechanical moving
parts, faults occur from time to time. When a fault occurs, the performance of
the system decreases. With a severe fault, the performance, as well as durability
of the system, decreases. So in order the detect faults, a diagnosis algorithm
should be developed. Before the development, however, fault characteristics
should be understood in advance.

Understanding the fault response and its effects on the stack should be
firstly considered. A fault experiment is performed with a 1 kW PEMFC stack
in this chapter. Reactant starvation and failure of thermal control are simulated
and physics between the faults and responses are briefly explained. Then, fault
response to the system and its effects on the system are investigated with a 2.4
kW stack included 1 kW PEMFC system. The fault responses are measured
with the sensors implemented in the system. The physics between the fault

scenarios and corresponding responses are discussed.
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2.2 Fault response of 1 kW stack

2.2.1 Experimental setup description

A single PEMFC consists of several components such as membrane
electrolyte membrane assembly (MEA), a couple of gas diffusion layers (GDL),
pair of gaskets and bipolar plates that include flow fields for fuel, oxidant and
coolant. In this sub-chapter 10-cell-stacked 1 kW PEMFC (Powercell, S1-1000)
is used for fault experiment. Experimental setup for the stack and its schematics
are shown in Fig. 2.1(a) and Fig. 2.1(b), respectively. In the center of the system,
the co-flow type stack is placed. Pure hydrogen gas with 99.999% purity is
supplied to the stack anode channel by a mass flow controller (MFC). Air is
supplied to the stack cathode channel with MFC. Both reactant gases are
humidified through the bubbler-type humidifiers. A closed-loop thermal
management system (TMS) is prepared for thermal control. The TMS consists
of'areservoir, water pump (Iwaki, RD-30), Coriolis type mass flow meter (Oval,
ULTRA mass MKII), and radiator (Heat exchanger: Wonsim, B-type, Fan:
Sanyo Denki, San Ace 172). Pressure transmitters (PA-21SR, Keller) and
thermocouples (T-type, Omega) are implemented between each TMS

component and stack and labeled as P1, P2, P3, P4, P5, T1, T2, T3, T4, TS.
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De-ionized water is used as a coolant for TMS. The current and voltage were
measured with an electric loader (PLZ-1205WZ&, Kikusui). Information of
mentioned components and sensors are organized in Table 2.1.

Table 2.2. shows the operating conditions for the normal state PEMFC
stack. The stack is operated under a non-pressurized condition with an entering
reactants’ temperature of 60°C. Both anode and cathode are fully humidified
through the bubbler-type humidifiers. Stoichiometric ratios (SR) for anode and
cathode are 1.5 and 2.0, respectively. The normal state stack coolant flow rate
is 3.3 liters per minute, which corresponds to the maximum performance of the
water pump. The stack outlet temperature is maintained at 65°C with the PID-
controlled radiator fan. Response of temperature control can slow when the
control target is stack outlet temperature. Since the reactants’ flow direction is
the same as the coolant, however, maintaining the outlet region temperature
contributes to preventing excessive flooding when a fault experiment in the
TMS is performed.

Under these conditions, a maximum designed current load of 200A is applied
to the stack. All the experimental conditions are controlled with the LabVIEW
program, as shown in Fig. 2.3. Fig. 2.3(a) shows a panel for the thermal

management control. Fig. 2.3(b) shows a panel for the load and reactants supply.
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Table 2.1 Components and sensors for stack experimental setup

Specification /

Component /
Model Manufacturer Measurement
Sensor
accuracy
Thermocouple  T-type Omega +0.5°C
Pressure
] PA-21SR Keller +0.5% of full scale
transmitter
Mass flow +0.5% of reading
] F-202AV Bronkhorst
controller (Air) +0.1% of full scale
Mass flow +0.5% of reading
F-201AC Bronkhorst
controller (Hz) +0.1% of full scale
Mass flow ULTRAMass .
Oval 10.2% of reading
meter (Water) MKII
Humidity i +0.015% of reading
] HMT-330 Vaisala
transmitter +1.0% of full scale
Water Pump RD-30 Iwaki BLDC motor
Radiator Heat ] ]
B-type Wonsim Fin-tube type
exchanger
. San Ace 172 .
Radiator Fan Sanyo Denki PWM controlled
9EH1724P5C01
200 cm? active area
Stack S1-1000 Power Cell
10 cells stacked
Data acquisition National
cDAQ-9172
board Instruments
Electric loader PLZ-1205WZ Kikusui
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Table 2.2 Stack operating conditions

Parameter Values
Operating pressure (bar) 1
Cathode(Air) stoichiometric ratio 2.0
Anode(H,) stoichiometric ratio 15
Cathode inlet temperature (°C) 60
Anode inlet temperature (°C) 60
Cathode Bubbler temperature (°C) 60
Anode Bubbler temperature (°C) 60
Normal state coolant flow rate (L min?) 3.3
Stack coolant outlet temperature (°C) 65
Current (A) 200
Stack cell number 10
Normal state stack power (W) 1050
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2.2.2 Fault response of stack

A PEMFC stack performance is only secured when sufficient hydrogen
and air are supplied with proper thermal management. In Fig. 2.4, responses of
three fault scenarios are suggested; insufficient hydrogen supply at the anode,
insufficient air supply at the cathode, insufficient coolant supply. Fig. 2.4(a)
represents the case when hydrogen SR is reduced 20% from 1.5 to 1.2. In the
normal state, the fuel cell stack maintains its voltage around 4.95 V. However,
when hydrogen flow decreases, the stack voltage declines for a couple of
minutes and fluctuates. As well as voltage decline, pressure difference over the
anode channel also reduces with the decreased flow rate. A similar trend is
shown with the fault case of reduced air SR 20% from 2.0 to 1.6 (Fig. 2.4(b)).
Stack voltage decreased as well as pressure difference over the cathode with
reduced air supply. Comparing the result of Fig. 2.4(a) and Fig. 2.4(b), the
cathode fault response is bigger and faster than the anode. In other words, the
cathode SR effect is more dominant and instantaneous than the anode SR effect.
This trend is reported in many previous studies [61]. In Fig. 2.4(c) [14], stack
inlet temperature (T2) and outlet temperature (T3) are shown instead of stack
voltage. Also, PWM (pulse with modulation) signal is shown instead of
pressure difference. This is because PEMFC operating temperature is not

always optimized for its performance. Durability and water management issue
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in the reactant channel is also affected by operating temperature. In the normal
state, the temperature difference between stack inlet and outlet temperature is
around 6°C. Under the reduced coolant state, the temperature difference spreads
to around 10°C. At both states, the radiator fan is PID controlled to maintain
stack outlet temperature (T3) at 65°C. Therefore, the PWM duty cycle signal of
the fan also changes with the reduced coolant. With lesser coolant flow in the
radiator heat exchanger part, air flow should be increased. This way, a similar
amount of heat generated from the stack under the fault can be removed.

The fault case of heat removal failure is shown in Fig. 2.4(a) [14]. The
case is simulated by disconnecting the fan power supply. Under the fault, the
stack inlet and outlet temperatures (T2&T3) increase within a minute. The
PWM duty cycle signal sent from the controller also increases but fails to
remove heat due to the disconnected power line. When the power line of the
water pump is disconnected, the coolant flow stops. Surprisingly, when the
coolant flow stops, stack inlet and outlet temperatures slowly decrease, as
shown in Fig. 2.4(b) [14]. The locations of thermocouples cause this distorted
phenomenon. Stack’s core temperature rises with the fault. However, the
temperature of the coolant contacting the thermocouple decreases due to the
dissipation to the ambient. In this case, therefore, the pressure transmitter
placed in the stack inlet (P1) reacts to the fault and drops immediately.

As checked in Fig. 2.3 and Fig. 2.4., when a fault occurs, there are changes.
The sensors implemented around the stack show these changes. It gives us
incites that fault can be detectable by carefully observing the characteristics of

these fault changes.
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2.3 Fault response of 1 kW PEMFC system

2.3.1 Description of 1IkW PEMFC system

The PEMFC system configuration picture is shown in Fig. 2.5. On the top
of the metal frame, a PEMFC stack (S2, Powercell) is located. The power load
is applied to the stack with an electric loader (PLZ1205WZ & PLZ2405WZ,
Kikusui). The balance of plant (BOP) system is placed below the stack. The
BOP system includes fuel providing system (FPS), air providing system (APS)
and thermal management system (TMS). A schematic diagram for the system
is suggested in Fig. 2.6. Details of each BOP subsystem are described below.

The FPS is designed to recirculate the fuel for high fuel efficiency. Five-
nine quality hydrogen is supplied from the hydrogen tank line. This hydrogen
is then pumped to the stack with the hydrogen blower (recirculation pump,
118720, Thomas). Unused fuel comes out from the stack with water included.
The liquid phase water is separated by the water trap. Then, fresh hydrogen gas
merges with the rest of the unused fuel again to enter the hydrogen blower.
While this circulation, purge is made through a purge valve to exhaust

accumulated nitrogen gas from the cathode.
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The APS uses an air blower (HP200, Hiblow) to pump air into the stack.
While the process, the airflow rate is check with a mass flow meter (MFM)
(CMS0200, Yamatake). The air is then humidified through the membrane-type
humidifier (FC125-240, PermaPure) and enters the stack. After the reaction
insider the fuel cell, high water concentrated exhaust air goes into the
humidifier for the elevation of the stack inlet air’ temperature and humidity.

The TMS consists of three main components; water pump (RD-30, Iwaki),
Radiator (Heat exchanger: B-type, Wonsim / Fan: Model, SanAce), mass flow
meter (Ultramass, Oval) and reservoir. De-ionized water is filled into the
system as a coolant. The coolant is supplied to the stack with a water pump
from the reservoir. The stack outlet coolant is then cooled with a radiator. Here,
a bypass line exists for the fast-startup process. After the cooling, the coolant
flow rate is measured and circulated back to the reservoir. The specification of
the components and sensors used in the system are listed in Table 2.3.

The system is controlled with the LabVIEW program. Each BOP
subsystem control panel and fault control panel are shown in Fig.2.7. Figure
2.7(a), Fig. 2.7(b) and Fig. 2.7(c) represents FPS, APS and TMS respectively.
Besides the mentioned components and sensors above, the location of
implemented pressure and temperature sensors are shown. Fault conditions are

simulated with the panel shown in Fig. 2.7(d).

37



Table 2.3 Components and sensors for system experimental setup

Specification /

Component /
Model Manufacturer Measurement
Sensor
accuracy
Air blower HP-200 HIBLOW 200 LPM at 20 kPa
Hydrogen
1182C20 Thomas 22 LPM at 50 kPa
blower
Air mass flow +3% of reading
CMS0200 Yamatake
meter +1% of full scale
Hydrogen mass
TSM-D220 MKP
flow meter +2% of full scale
Mass flow ULTRAmMass ]
Oval 1+0.2% of reading
meter (Water) MKII
Humidifier FC125-240 Perma pure Membrane type
] Centrifugal
Water Pump RD-30 Iwaki
BLDC motor
Radiator Heat . .
B-type Wonsim Fin-tube type
exchanger
. San Ace 172 .
Radiator Fan Sanyo Denki PWM controlled
9EH1724P5C01
200 cm? active area
Stack S2-2400 Power Cell
24 cells stacked
] PLZ-1205WZ ] ]
Electric loader Kikusui Max load 3.6 kW

PLZ-2405WZ




The operating conditions of the PEMFC system are shown in Table 2.4.
The cathode is operated under the non-pressurized condition with an SR of 2.0.
The airflow rate is measured with the mass flow meter (MFM) in Fig. 2.7(b)
and PID controlled with the air blower. In Fig. 2.7(a), FPS is provided with 0.1
bar (gauge) pressurized hydrogen gas from the regulator. This condition is set
to reduce nitrogen gas crossover from the cathode. However, nitrogen gas is
accumulated to the anode and stack voltage decreases with the operation.
Therefore, the purge valve is opened to release anode gas every ten minutes and
fills high-quality hydrogen gas. Like the APS, the hydrogen blower
(recirculation pump) is PID controlled to provide fuel SR at 1.5, and its flow
rate is checked with MFM. In TMS (Fig. 2.7(c)), the water pump is controlled
to maintain a temperature difference of 5°C between the stack inlet and outlet.
For example, when the temperature gap is less than 5°C, LabVIEW sends a
higher control signal to the pump to increase the gap. When the temperature
gap is more than 5°C, a lower control signal is sent to the pump. The radiator
fan speed is controlled to keep the stack inlet temperature at 60°C. The
LabVIEW sends pulse with modulation (PWM) signal from 0~100% to the fan.
When the stack inlet temperature is higher than 60°C, a higher PWM signal is

sent to the fan.
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Table 2.4 PEMFC system operating conditions

Parameter Values
Cathode operating pressure (bar) 1
Anode operating pressure (bar) 11
PID controlled cathode (Air) stoichiometric ratio 2.0
PID controlled anode (H2) stoichiometric ratio 15
Stack coolant inlet temperature (°C) 60
Stack coolant outlet temperature (°C) 65
Ambient temperature (°C) 15~25
Ambient relative humidity (%) 30~70
Purge period (minutes) 10
Stack active area (cm?) 200
Stack cell number 24
Stack current (A) 60, 80
Maximum stack power (W) 2400
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The stack’s maximum power (2,400W) is rated under the current load at
200 A. However, the stack is operated at two different current loads; 60 A and
80 A. As widely known, PEMFC’s fuel efficiency decreases with the power
increment. Also, with the power increment, heat dissipation load increases. It
leads to a higher TMS parasite power. Therefore, in the point of the system,
optimal load conditions with high fuel efficiency exist under low current region
density. Moreover, PEMFC is recommended to operate voltage higher than 0.6
V to prevent fast degradation. In this context, commercial residential fuel cell
system product (S-Fuel cell, Korea) operates between 0.2~0.4 A/cm?, which
corresponds to the expected voltage around 0.7 V. Targeting the 1 kW class
mobile distributed power generation system, the PEMFC system in this paper
operates under the current densities at 0.3 A/cm? and 0.4 A/cm?. The expected

stack voltage is between 16.6 ~17.2 V in normal operating conditions.
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2.3.2 Fault scenarios

PEMFC system consists of a stack and multiple BOP subsystems. Each
subsystem has probable faulty components that might bring failure to the
system. Possible fault scenarios in each subsystem are organized in Fig. 2.8.
The FPS and APS each have blower and mass flow meter (MFM) as faulty
components. Pipe clogging and leakage or reactant are considered. For the TMS,
faults on the water pump and fan are considered as well as the fault of
thermocouples in the stack inlet and outlet. Also, pipe clogging and leakage are
considered. Fouling of radiator and humidifier are considered as possible fault
scenarios.

Faults on the PEMFC system can be categorized depending on its damage
risk. In this paper, considered faults shown in Fig. 2.8 are categorized into three
groups; minor faults, severe faults and critical faults. Categorized fault
scenarios with fault severity are shown in Fig. 2.9. Since the purpose of the
BOP system is to provide target condition for the stack, component’s natural
degradation or minor failures rarely affects the stack’s performance or the
durability. For example, natural degradation of the air blower does not affect
the stack’s operating condition, because fixed air flowrate is always checked.
In this case, a higher control signal is sent to the air blower to compensate for

its degradation. Likewise, minor faults are often fixable. A list of minor fault
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Table 2.5 Minor fault scenarios and corresponding simulation

Fault scenario Fault label Simulation method

Fuel pipe clogging MF1 Increasing flow resistance using valve
Fuel flowmeter failure MF2 Decreasing sensing signal 10~20%
Fuel blower degradation MF3 Decreasing control signal 10~20%
Air pipe clogging MF4 Increasing flow resistance using valve
Air flowmeter failure MF5 Decreasing sensing signal 10~20%
Air blower degradation MF6 Decreasing control signal 10~20%
Humidifier fouling MF7 Increasing flow resistance using valve
Coolant pipe clogging MF8 Increasing flow resistance using valve
Coolant inlet temperature MF9 Decreasing sensing temperature 0.5~1°C
sensor failure

Coolant outlet MF10 Decreasing sensing temperature 1°C
temperature sensor failure

Coolant pump degradation MF11 Decreasing control signal 10~20%
Radiator fan degradation MF12 Decreasing control signal 10~20%
Radiator fouling MF13 Blocking heat transfer area 50%,

Increasing flow resistance using valve
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scenarios and their simulation methods are suggested in Table 2.5. The minor
faults in FPS (MFI~MF3), APS (MF4~MF7) and TMS (MF8~MF13) are
introduced.

Humidifier fault is grouped with APS faults because the humidifier is
included in the APS of this PEMFC system. Clogging faults in each subsystem
are simulated by increasing flow resistance with valves located in each
subsystem loop. Flowmeter faults in APS and FPS are simulated by reading 90%
of the signal sent from the flowmeter. Faults in TMS temperature sensors are
simulated by reading lower values (0.5~1°C) than the actual values.
Degradations of main mechanical moving components in each subsystem are
simulated by sending lower control signals to the components. Fouling of
humidifier is simulated by blocking the half area of the membrane path with
tape. Fouling of heat exchanger is simulated by blocking the heat exchange and
increasing the flow resistance with valves located at the inlet and outlet of the
radiator.

While the minor faults do not affect the stack or fixable by adjusting control
logic, the other faults might bring significant problems to the stack. Faults that
induce the unstable operating condition are categorized as significant faults and
are listed in Table 2.6. Severe degradation of the main components in each

subsystem threatens sufficient reactant supply (SF2&SF4) or stable thermal
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Table 2.6 Significant fault scenarios and corresponding simulation

Fault scenario Fault label Simulation method

Fuel leakage SF1 Opening venting valve in FPS

Fuel blower failure SF2 Decreasing control signal 65~75%
(Unable to satisfy anode SR 1.5)

Air leakage SF3 Opening venting valve in APS

Air blower failure SF 4 Decreasing control signal 25~55%
(Unable to satisfy cathode SR 2.0)

Coolant leakage SF5 Opening drain valve in TMS

Coolant pump failure SF6 Decreasing control signal 30~50%
(Unable to maintain 5°C temperature
difference)

Radiator fan failure SF7 Decreasing control signal 65%

(Unable to maintain stack inlet

temperature at 60°C)
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control (SF6&SF7). Failures of the components (SF2, SF4, SF6, SF7) are
simulated by sending the reduced control signal to the components. Hydrogen
leakage (SF'1) is related to safety issues and performance decrement of the stack.
Since the cathode SR is very crucial to the stack performance, air leakage (SF3)
reduces the performance and durability of the stack. When the coolant is
insufficient (SF5), MEA is expected to dry out due to the temperature rise.
Leakage faults are simulated by opening the valves in each subsystem.

Faults that bring complete failures to the stack are categorized as critical faults
in this system. Five different critical fault scenarios are list in Table 2.7. When
a critical fault occurs, the entire PEMFC system should be shut down
immediately. For example, when the fuel blower or air blower is disabled
(CF1&CF3), the stack cannot operate due to reactant starvation. Also, when the
fuel tank is empty (CF2), the reaction of the stack stops. In these cases, other
normal functioning subsystems should be stopped to prevent membrane drying
or reduce parasitic power consumption. Failure of the thermal control is also
critical to the stack. When the coolant pump or the radiator is disabled
(CF4&CF5), the temperature rapidly increases. Complete disability of the
components (CFI, CF3, CF4, CF5) is simulated by disconnecting the power
line using a relay. Depletion of the fuel is simulated by closing the fuel tank

valve.

50



Table 2.7 Critical fault scenarios and corresponding simulation

Fault scenario

Fault label

Simulation method

Fuel blower disabled

Fuel depletion

Air blower disabled

Coolant pump disabled

Radiator fan disabled

CF1

CF2
CF3

CF4

CF5

Disconnecting power supply to the fuel
blower with relay

Closing the fuel tank valve
Disconnecting power supply to the air
blower with relay

Disconnecting power supply to the pump
with relay

Disconnecting power supply to the fan

with relay
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2.3.3 Fault response of PEMFC system

The priority of the PEMFC BOP system is to secure the operating
conditions for the stack. Only when the operating condition is secured,
performance and durability of the stack are also secured. In this context, the
BOP system is controlled to satisfy the requirements for the stack operation.
Reminding the fact, the fault scenarios in Table 2.5, Table 2.6 and Table 2.7
simulated with the PEMFC system shown in Fig. 2.5. The fault responses are
investigated with the control/sensing signal changes in the form of standardized
residuals. The collected signals are transformed to the standardized residuals
(std residuals) with Eq. 2.1.

std residuals =

Signalopserved—StgNalnormal state 2.1)

Standard devitaioNpormal_state_signal

The fault responses in the FPS at 80 A are presented in Fig. 2.10. Fig.
2.10(a) represents the standardized residuals of the fuel blower control signal
fuel flow rate signal. Fig. 2.10(b) represents that of the regulator pressure, stack
inlet pressure and stack outlet temperature in FPS. The state of the FPS system
is repeatedly changed from a normal state to a fault state and a fault state to a

normal state. The state of the system is suggested below the graph.
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With the fuel blower degradation (MF3), the blower control signal
increased. The standardized residual of the signal increased step by step with
the increase of degradation rate from 10% to 20% and 65%. The performance
decrement of the blower is compensated with the overload. When the
degradation rate exceeded the control range (SF2), the fuel flow rate signal
(MFM signal) decreased with the stack inlet pressure and stack outlet
temperature. Lessen fuel flow rate induced the FPS pressure difference drop
and temperature drop. Under the failure of the fuel flowmeter (MF2), on the
other hand, the actual fuel flow rate increases and the signals move toward the
opposite. Under the FPS clogging (MF'1), pressure difference increases due to
the increased flow resistance, and overload is applied to the FPS blower. Lastly
under the situation of fuel leakage (SF1) between the FPS blower and FPS fuel
flow meter (MFM), overall FPS pressure decreases. Due to the decrement,
actual pressure at the FPS inlet decreases, and the pressure difference with the
regulator reduces. The control signal of the FPS blower increases to pump
additional fuel to the ambient. The fault response in the FPS system at 60 A

follows a similar trend to that of the 80 A.
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The fault responses in the APS at 80 A are presented in Fig. 2.11.
Responses of the air blower outlet pressure, stack inlet temperature, airflow rate
signal and blower control signal are mainly investigated. Same for the case of
APS, the fault experiments are performed by switching normal state and fault
states.

Under the normal state, standardized residuals of the signals are mostly
between -2.0 and 2.0. Under the degradation of air blower (MF6), only the air
blower control signal rises to compensate for its degraded performance. When
the degradation proceeds out of the control range (SF4), the APS MFM signal
decreases due to insufficient airflow. Reduced airflow is also reflected in the air
blower outlet pressure. In the case of air flowmeter failure (MF5), the APS
MFM signal under senses the flow rate. Therefore, the actual airflow rate
should be increased to satisfy the required airflow measure in the MFM. With
an elevated airflow rate level, the blower is overloaded and reflected in the
pressure sensor. Stack inlet air temperature increases due to the increased heat
and mass transfer in the humidifier.

Clogging in APS (MF4) shows a similar response to the clogging in FPS.
Pressure and blower control signal rises with the elevated flow resistance. Air
leak between the humidifier and stack (SF3) reduces the air supply to the stack.

Due to the leak, control signal and pressure decreases as well as temperature
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The fault responses in the TMS system at 80 A are presented in Fig. 2.12.
Responses of stack inlet pressure, stack inlet and outlet temperatures, pump and
fan control signals are mainly observed. The first-hour fault responses and the
second-hour fault responses are shown in Fig. 2.12(a) and Fig. 2.12(b).

Under the normal state, standardized residuals of the signals stay near zero.
With the degradation of the radiator fan (MF12), the control signal slowly
increases, but no significant changes are shown. It is my opinion that the
standard deviation of the fan control signal is relatively larger than that of the
other signals. So the change of the fan control signal residual is not clearly
shown. When the fan suffers from severe degradation (SF7), generated heat
from the stack is not sufficiently removed. Therefore, the fan control signal
rapidly increases, but the stack inlet and outlet temperatures rise (small
fluctuations are shown).

In the case of gradual pump degradation (MF11), the pump control signal
gradually increases to maintain the temperature gap over the fuel cell. When
the pump confronts its limitation due to the severe degradation (SF6), pressure
drops with the coolant flowrate decrement. Also, the stack outlet temperature
slowly increases. Under the TMS clogging (MF§), pressure and pump control
signal increase like the clogging faults in the FPS and APS. Under the radiator

fouling (MF13), both responses of fan degradation (MF'12) and clogging (MF§)
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are observed. Failure of the stack inlet temperature sensor (MFY)
underestimates the temperature. Under the situation, the actual temperature gap
is decreased, which means that the coolant flow rate should be increased. TMS
pressure is then increased. Also, the fuel's outlet temperature increases since the
FPS outlet is on the same side as the coolant inlet.

The fault responses in the FPS, APS and TMS show a similar response the
degradation, clogging, sensor failure. Also, when a fault degree is elevated, the
magnitude of responding signal residuals also elevates. Fault responses in the
TMS are relatively slower than fault responses in the FPS and APS.

The overall responses to the fault scenarios suggested in this chapter are
shown in Table 2.8, Table 2.9 and Table 2.10. The increase and decrease of the
signal changes in response to the faults are represented with plus and minus
symbols. Minor faults response, significant faults response and critical faults

response are shown in Table 2.8, Table 2.9 and Table 2.10, respectively.
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Table 2.8 Minor fault residual response
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Table 2.9 Significant fault residual response
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Table 2.10 Critical fault residual response
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2.4 Summary

In this chapter, fault responses of 1 kW PEMFC stack and 1 kW PEMFC
system are investigated. To observe the effect of the fault clearly, the 1 kW stack
is operated at its maximum performance. With the reduced hydrogen and air
supply, the performance of the stack decreased fast. Other than the voltage,
pressure sensors reacted to the faults. For the failure of the thermal management
case, pressure and temperature sensors reacted to the faults. With the stack fault
experiment, an insight that fault brings changes to the sensors in the system is
gained.

Fault experiments are also performed with the 1 kW PEMFC system.
Seventeen different fault scenarios are set and grouped depending on their fault
severity to the system. Fault response and reacting control and sensing signals
to the corresponding faults are analyzed. Overall, responses of thermal
management system faults are slower than those of the fuel providing system
and air providing system. Also, when a fault degree is more severe, the
corresponding response is faster and its magnitude is larger. The increments and

decrements of the control and sensing signals to the faults are tabularized.
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Chapter 3. Severity-based fault diagnosis of 1 kW

PEMFC system

3.1 Introduction

In general, maintenance actions are followed after the fault diagnosis.
Typical fault diagnosis procedures and following maintenance actions are
depicted in the flow chart Fig. 3.1. During a PEMFC system operation, the
system maintains its normal state. The sensing data or control signal data are
collected and transformed to put into the diagnosis algorithm. The diagnosis
algorithm then monitors the state of the PEMFC system. When a fault occurs,
the algorithm detects the abnormal state and classifies the fault. After the fault
type is known, a fault assessment is made. Depending on its severity,
maintenance decision also varies. If the fault is critical to the system, a decision
is made to stop the whole system immediately. If the fault has significant effects
on the system (or the stack), a decision can be made to change the operating
strategy or stop the system with proper procedure. If the system suffers from
minor faults, a maintenance decision can be made to overcome the problem
using a control strategy or maintain the state. While many research papers focus

on fault detection, fault classification and fault assessment, we have to remind
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that taking action to prevent further damage to the stack or the system is
important. Only when proper maintenance decisions and action proceed, the
system can be protected.

In this sense, therefore, the concept of designing the fault diagnosis
algorithm from the perspective of maintenance decisions is suggested and
validated in this chapter. The conceptual schematics of hierarchical fault
diagnosis and severity-based fault diagnosis are depicted in Fig. 3.2. The
hierarchical fault diagnostic method locates fault in the subsystem level firstly
[7]. Then, a faulty component is found. The severity-based fault diagnostic
method detects the critical fault, significant faults and minor faults in series.
This approach has several advantages. First, the fault assessment process can
be omitted. Diagnosis results can be directly led to the maintenance actions.
Second, the diagnosis algorithm can be designed considering the fault severity
characteristics. For example, critical faults are easily detected, but the diagnosis
results should be very accurate. Therefore, in this case, the algorithm can be
developed focusing on its robustness.

The detailed development process of the severity-based fault diagnosis
algorithm is explained in the chapter. Also, the diagnosis result with the

algorithm is validated with fault experiment data from chapter 2.
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3.2 Fault residual patterns
3.2.1 Input variables

Reminding chapter 2, when a fault occurs, its response is reflected in the
system's control signals or sensors. So, if we implement enough sensors at the
right point, any faults are detectable. Unfortunately, however, the number of
implemented sensors and their types are very limited in a commercial fuel cell
system. Increased sensors elevate the cost of the system. In this sense, sensors
used as input for the diagnosis algorithms in this paper are selected on a
minimum scale.

In FPS, pressure transmitters located at the regulator outlet (which is also
the position of the fuel blower inlet) and stack inlet are used. For the
temperature, stack outlet fuel temperature is sensed. Fuel flow rate from the
flow meter (target value) and fuel blower signal (control value) are also used as
inputs. In APS, the pressure transmitter located between the air blower and flow
meter is used. The thermocouple located between the humidifier and stack inlet
is used as input to diagnose APS. Airflow rate from the flow meter (target value)
and air blower signal (control value) are also used. In TMS, coolant pump outlet
pressure is monitored with a pressure transmitter and used as input. A signal

from the reservoir level sensor is also monitored in binary values. Temperatures
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at both stack inlet and outlet (target values) and control signals of the coolant

pump and radiator fan (control values) are used as inputs.

3.2.2 Normal state

As repeatedly mentioned, there are always changes to the sensing signals
or control signals with faults. Before the changes, there has to be a reference
state, which is the normal state of the PEMFC system. There are two methods
to acquire normal state data, as shown in Table 3.1.

The first method is using an empirical model. If the target current load is
set, corresponding target SRs are also fixed on both anode and cathode. So the
required reactant flow rates are obtained with simple equations. Then, pressure
drops due to the flows are acquired with the P-Q curves of anode and cathode.
The anode outlet temperature is affected by current load, fuel flow rate, stack
inlet operating temperature and ambient temperature. Since the PEMFC system
mostly operates under fixed conditions, the relation between the anode outlet
and those parameters can be expressed in simple equations. Using a neural
network model can also be another simple solution. Same for the APS, the
normal state cathode inlet temperature can be acquired with current load,

airflow rate, ambient temperature as inputs. For TMS, the coolant flow rate
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Table 3.1 Normal state prediction

Subsystem Input Output Sensor
Stack Current Voltage Voltage sensor
Current Fuel flow rate Fuel flow rate MFM

Fuel providing

system (FPS)

Air providing
system (APS)

Thermal
management

system (TMS)

Fuel flow rate

Fuel flow rate, Anode
pressure

Current, Anode pressure,
Fuel flow rate, Ambient

temperature

Current

Air flow rate

Air flow rate, Cathode
pressure
Current, Cathode

pressure, Air flow rate,

Ambient temperature

Current, Ambient
temperature

Coolant flow rate
Coolant flow rate, TMS
pressure

Coolant flow rate,
Ambient temperature,

Heat geration rate

Anode pressure difference

Fuel blower control signal

Fuel stack outlet

temperature

Anode pressure
Air flow rate

Cathode pressure difference

Air blower control signal

Air stack inlet temperature

Coolant inlet temperature
Coolant outlet temperature
Heat geration rate, Coolant
flow rate

TMS pressure

Pump control signal

Fan control signal

Coolant level

P_stack inlet (FPS)

Fuel blower control

signal

T_stack outlet (FPS)

P_regulator

Air flow rate MFM

P_blower outlet (APS)

Air blower control

signal

T_stack inlet (APS)

T_stack inlet (TMS)

T_stack outlet (TMS)

P_stack inlet (TMS)

Pump control signal

Fan control signal

Reservoir level sensor
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should be acquired. For that, the heat generation rate from that stack should be
calculated with current load, stack voltage and ambient temperature. The stack
voltage can be simply acquired from the stack polarization curve (I-V curve).
When the heat generation rate is calculated, the required normal state coolant
flow rate is also fixed. Then pressure drop of the TMS is acquired from the
TMS P-Q curve. The control signal of a water pump is a function of coolant
flow rate and pressure difference. The fan control signal is a function of the heat
generation rate, the coolant flow rate and the stack outlet temperature.

The second method is to acquire normal state data is using experimental
data. The reason for developing a fault diagnosis algorithm is to implement it
in the system. Therefore, the test data should exist in the process of system
development. The easiest method to obtain the normal state data is using the
test data. Either way, standard deviations of sensing/control values are also
required to develop the severity-based fault diagnosis algorithm. Therefore in

this study, this second method is used to set the normal state.
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3.2.3 Fault residual pattern table

Considering that the fault makes changes to the sensors, expected residual
patterns should be made into tables. Table 3.2 shows the expected fault response
to the minor fault scenarios in Table 2.5. Table 3.3 and Table 3.4 represents
expected fault responses to the significant faults and critical faults list in Table
2.6 and Table 2.7, respectively. When the signals are expected to increase with
the fault, the value one is put into the corresponding spot. When the signals are
expected to decrease, the value minus one is put into the corresponding spot.
The value zero means non-expected changes with the fault.

In Table 3.2, signals at the normal state are not expected to change. When
the flow resistance of FPS increases (MF'1), the pressure difference over the
fuel cell increases as well as the fuel blower control signal. In the case of fuel
flowmeter failure, the flow is measured less than its real value. Therefore, the
fuel blower signal has to rise for more fuel flow. Then, differential pressure over
the FPS rises. Also, stack outlet fuel temperature increases due to the increment
of fuel recirculated hydrogen portion and thermal inertia. Similar trends are
shown in the fault scenarios in APS (MF4, MF5, MF6). With the humidifier
fouling fault (MF7), air blower control signal and pressure difference increase
due to the increased flow resistance and stack inlet temperature of the air

decreases due to the reduced humidifying capability.

72



Table 3.2 Minor fault residual patterns
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Table 3.3 Significant fault residual patterns
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Table 3.4 Critical fault residual patterns
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Under TMS clogging (MFS§), pressure drop over the TMS increases and
the coolant pump signal rises to maintain its coolant flow rate. In case when the
coolant stack inlet thermocouple’s sensing value is lower than its true value
(MF9), the actual temperature gap over the stack decreases. Then, the coolant
flow rate should increase to remove the same amount of heat before the fault.
The pump signal and TMS pressure are expected to elevate. Also, since the
actual temperature is raised in the coolant inlet side, the outlet temperature of
hydrogen is expected to increase. On the contrary, when the coolant outlet
temperature sensor has a problem (MF10), the temperature gap over the stack
is increased. Then, the coolant pump control signal and the TMS pressure are
expected to decrease with a lower coolant flow rate. Also, if the actual stack
outlet temperature increases, cathode air outlet temperature increases. This
leads to the increased stack air inlet temperature due to the heat transfer in the
humidifier. In the case of coolant pump degradation (MFI) and radiator fan
degradation (MF'12), the corresponding control signal is expected to rise to
compensate for the degraded performance. With the radiator fouling (MF13),
the responses of both radiator fan degradation (MF12) and TMS clogging (MF'8)
are expected at the same time.

There are seven significant fault scenarios considered in Table 3.3. When

the fuel is leaked (SF'1), fuel blower control signal increases due compensate
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for the fuel loss to the ambient. Since the FPS is maintained at 0.1 bar gauge
pressure, the FPS pressure difference decreases with the fault. When the fuel
blower cannot sufficiently supply the required fuel (SF2), fuel flow rate and
pressure difference decreases. A similar trend is expected with the air blower
failure (SF4). Under SF4, stack inlet temperature can be decreased due to the
reduced heat transfer with reduced air flow. Shen the air is leaked after the
MFM (SF3), over all flow resistance decreases. Therefore, load on blower
decreases as well as APS pressure. With decreased air flow, heat transfer rate
can decrease and stack inlet temperature of the air can decrease. Leakage of
coolant in TMS (SF5) is sensed with level sensor. Severe degradation of the
coolant pump reduces the coolant flow rate. Pressure difference surely
decreases and stack outlet temperature increases due to the insufficient coolant.
Then, air outlet temperature increases and it elevates the inlet temperature of
the air with heat transfer at the humidifier. In case of fan failure (SF7),
temperatures at the TMS, FPS and APS all rise due to the heat removal failure.

There are five critical fault scenarios considered in Table 3.4. When the
fuel blower is completely disabled (CF1), fuel flow rate rapidly decreases. With
the decrement, pressure transmitter also senses the decreased pressure
difference. Fuel blower control signal rises up with the decreased target flow

rate but does not work. When the fuel is completely depleted (CF?2), anode
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outlet pressure decreases. In case of disabled air blower (CF3), disabled coolant
pump (CF4) and disabled radiator fan (CF5), similar responses are shown with
that of failure cases (SF4, SF6, SF'7). But the responses are expected to be faster

and have bigger residuals.
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3.3 Fault diagnosis algorithm development
3.3.1 Severity-based fault diagnosis concept

A comparison example of fault responses under normal, minor fault,
significant fault and critical fault are shown in Fig.3.3. Fig. 3.3(a) represents
normal and coolant pump fault responses of stack inlet temperature. Fig. 3.3(b)
represents normal and coolant pump fault responses of TMS pressure. (In the
case of Fig. 3.3, abrupt faults are simulated rather than gradual faults. For
instance, degradation of the fault is simulated by gradually decreasing the
control signal sent to the coolant pump in chapter 2. In the case of Fig. 3.3, 20%
of the control signal is reduced at once. The radiator fan is operated to maintain
stack outlet temperature rather than stack inlet temperature in this case. Overall
TMS line was shorter than the TMS loop in chapter 2.)

As shown, the residuals are faster and bigger as the fault gets severe. In
other words, responses will be fast and big when critical faults occur. On the
other hand, the system will response slow and relatively small to the minor
faults. Focusing on the characteristics of the fault response, over all concept of
the severity-based fault diagnosis algorithm is shown in Fig. 3.4. There are three
neural networks in the algorithm. The first neural network (NN1) detects

critical faults. The second neural network (NN2) detects the significant faults.
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The last neural network (NN3) detects minor faults and normal state. The real-
time residual data from the system firstly enters the NN1. If the NN1 detects no
the critical faults, the decision is passed on to the NN2. If the NN2 detects no
the significant faults, the decision is passed on to the NN3. Lastly, NN3 detects
minor faults or normal state. Diagnosis of each neural network is independently
processed. Therefore, there are three decisions at each neural network. However,
there are priorities to the higher severity class decision. For example, if NN2
detects leakage of air and NN3 detects clogging in the APS, the decision of
NN2 is the final decision.

3.3.2 Algorithm development

Bringing sensational results in numerous research fields, artificial neural
network (ANN) has proven to be a powerful pattern recognition tool and
became mainstream in machine learning [17] . ANN, shortly neural network
(NN), consists of multiple basic units; perceptron. A perceptron acts alone as a
regressor or a binary classifier. When multiple perceptrons are connected, they
become a strong classifier or regressor with high accuracy [17]. As introduced
in the first chapter, there are many type of neural network. In the field of
PEMEFC fault diagnosis, neural network is actively applied. In this study, fully-
connected multi-layer perceptron neural network (MLPNN), typical NN, is

applied to diagnose the state of PEMFC system.
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The fault scenarios and corresponding residual patterns are shown in
previous chapters. The overall residual patterns are based on triple values; 0,
+1 and -1. These fault residual patterns and corresponding fault classes are used
to train neural network. For example, schematic structure of a neural network
IT (NN2) in Fig. 3.4 is shown in Fig. 3.5. the neural network consists of input
layer, hidden layers and output layer. Input layer has 15 nodes (percenptrons),
which corresponds to the number of input values. Input values are the
control/sensor signal information in the PEMFC system. Output layer has eight
nodes, which corresponds to the number of significant faults including the
normal state. Hidden layer consists of three layers that each has 14, 12 and 10
nodes.

When the signal information is given to the NN2, each signal is
transformed in to an appropriate form. Then the NN2 makes output in a form
of 1 by 8 matrix. Each value in the matrix represents probability of normal and
significant faults. The final state is determined by applying soft-max function
to this matrix. In other words, the biggest value in the matrix represents the state
of the PEMFC system. The NN1’s hidden layer includes three layers (12-10-8)
and output layer with six nodes. The NN3’s hidden layer includes three layers

(14-12-10) and output layer with 14 nodes.
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The training and validation process for the severity-based fault diagnosis
algorithm is shown in the flow chart Fig. 3.6. For the algorithm training,
residual patterns are used as inputs and corresponding fault classes are used as
outputs. For the NN3, which diagnoses minor faults, only minor fault residual
data is used. For the NN2, significant data and minor data are used for the
training. In this point, minor fault residual data is trained as normal state. For
the NN3, all the fault residual data are used, but significant data and minor data
are both treated as normal state. Since the sensing data has up and down during
the real PEMFC system operation, the value ‘0’ in the pattern is randomly
transformed to the value between -0.5 to +0.5. With the randomness, the
patterns are repeated trained to set appropriate weights for the neural networks.
Also, since the NN3 should be very robust in detecting critical faults, significant
data and minor data are divided into the proportional value with their divided
standard deviations of input value to that of critical data. For instance, NN1
receives the data divided into 30 times of the data’s standard deviation. NN2
and NN3 receive the 30 times of the data’s standard deviations. Therefore,
when in training, +1s and -1s in the residual patterns of significant and minor
faults are trained with the value of +0.1 and -0.1.

To validate the diagnosis algorithm, system operation data is used. As

described in the previous subchapters, the sensing/control signals should be
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transformed into appropriate forms. The process is proceeded with pre-
conditioner. First, the data is transformed to the residuals. The residuals are put
into the all three neural networks (NN1, NN2 and NN3). Depending on the
neural network, residuals are sometimes averaged and divided into the multiple
value of standard deviation. For NN 1, real-time data is used after dividing the
residual with 30 times of its standard deviation. For NN2, 60 seconds averaged
data is used after dividing the residual with 3 times of its standard deviation.
For NN3, 180 seconds averaged data is used after dividing the residual with 3
times of its standard deviation. After the deviation, standardized residual is
lastly adjusted. The neural network is only trained in the boundary of value -1
to +1. Therefore, the standardized residuals are cut into value +1 if it is bigger
than the +1. If the value is smaller than the -1, the value is cut into -1.

Finally, the pre-conditioned data is put into the trained neural networks
and predicted fault class is acquired. The results are compared with the actual

state (actual class).
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3.4 Fault diagnosis results

The fault experiments are performed under current load of 60 A and 80 A
as explained in the chapter 2. The experiments are performed simultaneously
repeating normal state and fault states. Diagnosis results of FPS at 60 A are
presented in Fig. 3.7. Fig. 3.7(a) shows the diagnosis results of minor faults in
FPS. X-axis represents operation time and Y-axis represents state of the
PEMEFC system. Actual state of the system firstly starts with normal state. The
diagnosis algorithm detects the normal state after 180 seconds, due to the
averaged data as input. Then, the actual state is changed to degradation of
hydrogen blower (MF3). The algorithm also detects the MF3 after about three
minutes. When the system goes back to the normal state, diagnosis algorithm
also follows the normal state. After then, flow meter sensor offset of 10% (MF2)
is correctly diagnosed as well as FPS clogging (MF1). Overall, minor faults in
FPS at current load of 60 A are perfectly diagnosed. In Fig. 3.7(b), failure of
the hydrogen blower (SF2) and hydrogen flow meter offset of 20% (MF?2) are
simulated. In the simulation of SF2, its sending signal is reduced from 0% to
50% and then to 75%. Due to the delay between the hydrogen blower and fault
application, fault is miss-diagnosed in the transition from 0% to 50%. However,
the algorithm diagnosed the MF'3 and SF2 in turn. When the state is gradually
recovered, MF3 and normal state are correctly diagnosed. While the transition
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there is misdiagnosed state (SF/ and MF1I). Miss-diagnosis results can be
interpreted with standardized residuals for significant fault neural network (Fig.
3.8(a)) and minor fault neural network (Fig. 3.8(b)). Looking at the significant
fault residual pattern (Table 3.3), difference between SF/ and SF?2 is residual
of fuel flow rate. At about 800 seconds in Fig. 3.8(a), MFM signal rapidly rises
faster than the other signals. At this point, NN2 shortly diagnoses the state as
SF1. If the recovery from the SF2 to MF3 is proceeded slowly, this miss-
diagnosis would not happen. Also for the miss-diagnosed case in the transition
from MF3 to normal state at about 950 seconds, pressure and MFM signal
fluctuates upward. At the point, the residual pattern matches the FPS clogging
shortly. After then, the normal state is correctly diagnosed. But, these miss-
diagnosed results are no problem since our intention is to diagnose a fault state
from the normal state, not the opposite. When in transition from the normal
state to MF2, however, there is miss-diagnosis in the early stage. This is also
due to the fast performed fault experiment. When the MF?2 is applied to the
system, FPS stack outlet temperature changes slower than the hydrogen blower
signal or FPS pressure. The gap between the response time makes the
misdiagnosis of the algorithm. This is also not a problem, because real fault of
hydrogen mass flow meter occurs with a long time period. Therefore, the

response will be slow enough.
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Standardized residuals for significant fault

Standardized residuals for minor fault
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Figure 3.8 Standardized residuals for algorithm

(a) Residuals for NN2 (b) Residuals for NN3
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The FPS fault diagnosis results at current load 80 A are presented in Fig.
3.9. This time, reduced control signal is sent to the hydrogen blower in
gradual from 0% to 10%, to 20% and 65%. Then the reduced proportion is
recovered back to the normal state. While the process, the algorithm correctly
follows the actual state. When in transition from normal state to MF?2 at 1,260
seconds, miss-diagnosed states of MF3 and MF1 are shown before the MF2.
This is due to the different response time of control signal, pressure and
temperature. When the control signal rises first, MF3 is diagnosed. Then, when
the pressure follows the up, MFI is diagnosed. Finally, when the temperature
follows up, MF2 is diagnosed. In the case of normal state to SF' at about 2,400
seconds, control signal rapidly increases due to the sudden pressure drop over
the FPS. Until the fluctuation of the control signal stabilized and pressure
responses, MF3 is diagnosed before the SF'/.

The fault diagnosis results APS at 60 A are presented in Fig. 3.10. In Fig.
3.10(a), degradation of air blower (MF6) and clogging (MF4) are clearly
diagnosed. In the early stage of the transition from normal to 10% air mass flow
meter signal offset failure (MF5), the degradation (MF6) and the clogging
(MF4) are diagnosed in turn. This trend is similar to the fault case of MF2 in

FPS. Leakages at APS (SF3) are performed in two different spots; Between air
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Figure 3.9 Fault diagnosis result in FPS at 80 A
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blower and MFM, and between stack and humidifier. The latter case is clearly
diagnosed, but the former case is diagnosed as air blower degradation. When
the air leak occurs before the MFM, there are no other effects to the stack except
for the case when required air flow rate is not sufficiently provided. In the
situation, only air blower operates harder to compensate for the loss in the loop.
Therefore, it is reasonable for the algorithm to diagnose the state as MF6.

In Fig. 3.10(b), severity of the MFS5 is elevated to signal offset 20%. A
similar trend is observed in the case of signal offset 10%. This phenomenon
will be explained with the following 80 A case. After the MFS5, control signal
sent to the air blower is reduced from 0% to 55% gradually. In the process, MF6
is firstly diagnosed. When the air blower could not supply the air flow that
corresponds to the SR at 2.0, the algorithm diagnosed the state as SF4.

Fault diagnosis results in APS at current load 80 A are presented in Fig. 3.11.
The diagnosis results are interpreted with the standardized residuals for
significant fault neural network (Fig. 3.12(a)) and minor fault neural network
(Fig. 3.12(b)). Miss-diagnosis at 240 seconds is due to the abrupt fault
experiment from normal to blower degradation. Due to the abrupt incident,
control signal and pressure fluctuated and miss-diagnosed for a short time. The
miss-diagnosis at about 600 seconds in also due to the fluctuation. The

phenomenon of miss-diagnosis at the early stage of MF5 is due to the different
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response time of control signal, pressure and temperature. With the MF5, the
control signal firstly responses. Then, the pressure and the temperature is
followed. With the responses, degradation and clogging are diagnosed in turn.
Only after the temperature response is followed, the state is correctly diagnosed
as flow meter fault. Response time different is also the reason for the miss-
diagnosis at the early clogging (MF4). Over all, faults in APS are correctly

diagnosed except for the leakage before the MFM.
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Standardized residuals for significant fault

Standardized residuals for minor fault
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The fault experiment and corresponding fault diagnosis are also performed
in TMs. diagnosis results at current load 60 A is shown in Fig. 3.13. Degradation
of water pump (MF11), degradation of radiator fan (MF'12), clogging (MF8)
and radiator fouling (MF'13) are diagnosed in the Fig.3.13(a). Before the correct
diagnosis of MF13, radiator fan degradation is miss-diagnosed. Since the
radiator fouling is simulated by fan degradation and clogging in turn, this is
natural result. In Fig. 3.13(b), stack outlet temperature sensor fault (MF10) and
stack inlet temperature sensor fault (MF9) are simulated. Before the diagnosis
of MF9, water pump degradation (MF11) and clogging (MF$) is diagnosed. As
with the FPS and APS similarly, this is due to the different response time
between the control signal, pressure and temperature. However, overall
response time with TMS is much slower than the responses in FPS and APS. It
seems that the thermal response takes more time likely to the case in FPS and
APS. Therefore, diagnosis of a fault took more time in TMS than FPS and APS

at current load 60 A.
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The fault experiment and corresponding fault diagnosis of TMS are also
performed at current load 80 A. The results are shown in Fig. 3.14. In Fig.
3.14(a), degradation of radiator fan (MF12) and the fan failure (SF7) are
diagnosed during the first half hour. Then, degradation of the water pump
(MF11), and the pump failure (SF6) are diagnosed for the next half hour. After
the first hour, clogging (MF§), fouling (MF13), stack inlet temperature sensor
fault (MF9) are diagnosed in turn (Fig. 3.13(b)). The similar miss-diagnosis
patterns are shown in the early stage of MF8 and MFI3 to the patterns shown
with the 60 A miss-diagnosis cases. For MF9, the offset magnitude is adjusted.
First, the offset is -0.5°C. Under the situation, MF9 is miss diagnosed as MF§.
This is due to the increased coolant flow and pressure drop over the TMS, but
not enough increment of FPS stack outlet temperature. The temperature at FPS
did not increase above the threshold. The fault diagnosis result of coolant
leakage (SFI12) in TMS and humidifier fouling (MF7) are also clearly
diagnosed. About 30 seconds after the signal change of reservoir level sensor,
SF12 is diagnosed. For MF7, the system is stopped to simulate the fault. The
steady state of the MF?7 is clearly diagnosed with the increase of air blower
control signal, increase of APS pressure and decrease of stack air inlet

temperature.
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The critical faults are simulated at current load of 60 A. Their diagnosis
results are shown in Fig.3.15. The NNI1, which detects the critical faults,
diagnosed the all critical faults. Disabled state of air blower (CF3), hydrogen
blower (CF'I) and water pump (CF4) are diagnosed within the 10 seconds. Fuel
depletion state (CF?2) is diagnosed in 20 seconds. With the fault occurrences
form CFI to CF4, the control/sensing signals reacted fast and big. Since the

thermal response is very slow, CF5 took time to be diagnosed.
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3.5 Summary

In this chapter, a severity-based fault diagnostic method for PEMFC
system is suggested. The core idea of the algorithm is to separately diagnose
the faults depending on its severity. Fault scenarios are divided into three groups;
critical faults, significant faults and minor faults. Three neural network
classifiers diagnosed the state of the fuel cell in series, working as a severity-
based fault diagnosis algorithm. With the algorithm, critical faults, significant
fault, minor faults are successfully diagnosed in fuel providing system (FPS),
air providing system (APS) and thermal management system (TMS) under the
load condition of 60 A and 80 A. While responses and diagnosis of FPS and

APS were fast, that of TMS was relatively slow.
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Chapter 4. Current distribution prediction with

neural network!?

4.1 Introduction

This chapter presents the practical prediction method for PEMFC local
current distribution. Unbalanced current distribution may induce local
performance degradation and local hot spots, which may affect the fuel cell's
durability. Therefore, it is important to operate the fuel cell under conditions
that do not break the distribution balance. However, the current distribution is
hard to predict with an analytic model because the fuel cell includes
sophisticated multi-phase electrochemical reactions. Therefore, in commercial
product development, a segmented fuel cell is used to observe current
distribution inside the fuel cell. This chapter suggests a utilization method for
the data collected in this process. Firstly, a neural network-based PEMFC local
current prediction model is developed and validated. The effects of operating
parameters on current distribution and its standard deviation are investigated

with the model. Secondly, an idea of finding optimal operating conditions for

! The contents of chapter 4 are published in the International Journal of Hydrogen
Energy on 17 June 2021. [74]
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the uniform current distribution is suggested and evaluated. Additional neural
network model is developed by positioning local current distribution as inputs
and operating parameters as outputs. Feeding the uniform current distribution
profile as input, an optimal operating condition is acquired. This operating
condition is then evaluated with the current prediction neural network model
developed in the first step. The contents of this chapter are published in the

International Journal of Hydrogen Energy [74].
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4.2 Experimental setup

4.2.1 Experimental apparatus

The experimental setup is presented in Fig. 4.1(a). Its schematic diagram
is illustrated in Fig. 4.1(b). The test station for the fuel cell is typical. Air and
hydrogen are provided from the gas tanks and are humidified through the
bubbler type humidifier. The flowrates of the reactants are mass flow controlled
(EL-FLOW, Bronkhorst, Netherlands). Electric pressure controllers (EL-
PRESS, Bronkhorst, Netherlands) are located at the gas outlet. A segmented
bipolar plate flow channel is on the anode which consists of 25 isolated
segments. Each segment has 1 cm? active area. The areas are numbered from 1
to 25 following the anode flow direction, as shown in Fig. 4.2(a). Over all flow
channel shape is serpentine with 5-pass and 4-turn channels, horizontally
counter-flow and vertically parallel-flow.

The gold coated printed circuit board (PCB) collects the separate current
flows and transfers to the hall effect sensors. The PCB is located between the
end plate and the segmented channel. Twenty-five hall effect sensors (CY2-02B,
Nana Engineering Co., Japan) are located between the PCB and electronic load

(PLZ series, Kikusui, Japan). The hall effect sensors transmit local segment
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current flow data to the data acquisition system (NI cDAQ-9178 with NI 9205
and NI9206, National Instruments, USA). The membrane electrode assembly
(M815, Gore, USA) and gas diffusion layer (35BC, Sigracet, Germany) applied

to in this research.
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Figure 4.1 Experimental setup

(a) Fuel cell test station (b) Schematic diagram [74]
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Outlet

(b)
Figure 4.2 Segmented fuel cell

(a) Anode bipolar plate (b) printed circuit board [74]
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4.2.2 Experimental conditions

Local current flow, representing local electro-chemical reaction, varies
depending on multiple parameters such as temperature, pressure, gas
concentration and relative humidity on both anode and cathode. The local
current distribution profile data is collected under various operating conditions
(Table 4.1.). Within the acceptable operating conditions (temperature
(30~60°C), dew point (30~60°C), reactant stoichiometric ratio (1.2~3.5), and
pressure (1~3 bar)), 161 different experimental condition are tested. Of these
cases, current distribution profile of 125 cases are used for the model training
and the rest cases (25 cases) are used for the model validation. The conditions
for the train and validation are shown in the Table 4.1. The fuel cell is operated

under galvanostatic mode with a current load 25A (1 A/cm? for each segment).
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Table 4.1 Experimental conditions of train set and test set

Tem Dew Stoichiometric Pressure (bar)
perat | Point(°C) Ratio(SR)
ureé | H, | Air | H, | Air TRAIN SET TEST SET
(*C)
30 30 30 12 12 1.0,2.0,3.0
1.5 20 1.0,2.0,3.0 1.5(6.1%), 2.5(5.2%)
20 35 1.0,2.0,3.0
40 40 40 12 1.2 1.0,2.0,3.0
15 20 1.0, 2.0, 3.0 1.5(6.2%), 2.5(6.3%)
20 35 1.0,2.0,3.0
50 50 50 12 1.2 1.0,2.0,3.0
15 20 1.0, 2.0, 3.0 1.5(4.1%), 2.5(4.0%)
20 35 1.0,2.0,3.0
60 30 30 12 1.2 1.0,2.0,3.0
12 15 1.0,15,20,25,3.0
12 20 1.0,15,20,25,3.0
15 15 1.0,15,2.0,25,3.0
15 20 1.0,15,20,25,3.0
15 25 1.0,15,20,25,3.0
1.8 20 1.0,15,20,25,3.0
1.8 25 1.0,15,20,25,3.0
20 35 1.0,2.0,3.0
60 40 40 12 1.2 1.0,2.0,3.0
15 20 1.0,2.0,3.0
15 3.0 1.0(0.7%), 1.5(2.1%),
2.0(2.3%), 2.5(1.9%),
3.0(2.4%)
20 35 1.0,2.0,3.0
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Table 4.1 Experimental conditions of train set and test set (Continued)

Tem Dew Stoichiometric Pressure (bar)
p. Point(°C) Ratio(SR)
(°C) | Hz2 | Air | H2 | Air TRAIN SET TEST SET
60 45 45 12 12 1.0(3.5%), 2.0(3.3%),
3.0(3.4%)
15 20 1.0(3.7%), 2.0(3.0%),
3.0(3.4%)
20 35 1.0(3.6%), 2.0(3.1%),
3.0(3.4%)
60 50 50 12 12 1.0,2.0,3.0
15 20 1.0,2.0,3.0
1.5 3.0 1.0(0.7%), 1.5(1.2%),
2.0(1.8%), 2.5(1.9%),
3.0(2.2%)
60 52 52 20 35 1.0(3.5%), 2.0(2.5%),
3.0(2.4%)
12 12 1.0(3.7%), 2.0(2.8%),
3.0(2.5%)
15 20 1.0(3.6%), 2.0(2.7%),
3.0(2.5%)
60 60 60 12 1.2 1.0,2.0,3.0
12 15 1.0,15,20,25,3.0
12 20 1.0,15,20,25,3.0
15 15 1.0,15,20,25,3.0
15 20 1.0, 2.0, 3.0 1.5(1.8%), 2.5(2.2%)
15 25 1.0,15,20,25,3.0
1.8 20 1.0,15,20,25,3.0
18 25 1.0,15,20,25,3.0
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4.3 Model development

4.3.1. Neural network model

Proving its excellent pattern recognition performance, an artificial neural
network has been applied to many engineering fields recently. In fuel cell
engineering, the neural network has been mainly applied for fault detection and
performance prediction. One good advantage in applying the neural network is
the complexity of the fuel cell reaction. Fuel cell reaction is basically an
electrochemical reaction, but is affected by heat transfer, mass transfer and two-
phase flow in multi-scale. This complex reaction and multi-scale problem bring
errors in the analytic model despite the significant computational time and
power. The application of neural network technology can solve these problems.
If there is enough data to be trained, complex physics and correlations can be
replaced with the weight connections between the neurons. Replacement of
equations to matrix makes the calculation remarkably fast and precise. In this
sense, many researchers have developed PEMFC performance prediction
models using neural networks. In this chapter, I have extended neural network

application to the prediction of fuel cell current distribution.
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The neural network model structure developed to predict the PEMFC current
distribution is shown in Fig. 4.3. Each circle represents a single perceptron,
which is a basic unit that constructs a neural network. The perceptron is a binary
classier alone. When the perceptrons are connected, however, a ‘layer’ is
formed. When the layer is connected in series, a neural network is developed
and works as a powerful regressor or classifier. In this paper, the current
distribution prediction model (Fig. 4.3) uses feedforward fully connected multi-
layer perceptron (MLP) is applied.

The model consists of an input layer, hidden layers, and an output layer.
Seven nodes in the input layer correspond to the operating parameters (current
density, temperature, pressure, stoichiometric ratio (SR) of anode and cathode,
and their relative humidity (RH)). Twenty-five output nodes in the outlet layer
correspond to the locally measured current data. Each node matches the
segmented area shown in Fig. 4.2(a). The hidden layers are composed of three
layers with 10, 15, and 20 nodes each. There is no exact rule for the number of
layers or the nodes in each layer. Nevertheless, many articles recommend a
gradual increase or decrease in the number of nodes in each hidden layer. The
number of layers was varied between two to six. I have not tried all the
combinations with the variation in the number of nodes. However, three hidden

layers showed good performance overall in the case of experimental data in this
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chapter.

Aside from the structure of the neural network, pretreatment of the input and
output data is very important. Pretreatment processes of inputs and outputs,
each will be referred pre-conditioner and post-conditioner, are described in
subsection 4.3.2. The details of the current prediction model development
process will be explained in subsection 4.3.3. After then, the development
process for an operating condition prediction model, which suggests operating

conditions for the uniform current profile, will be introduced.

4.3.2. Data conditioning

Pre-conditioning

Neural network itself is originally a series of matrices, but the non-
linearity is added between the matrixes. The values in the matrices (correlations
between the inputs and outputs) are found automatically by renewing the values.
Therefore, in developing the neural network, setting the proper input and output
data in the right form is important. In normal, the given data to the neural
network should be adjusted between the range of minus one to plus one for
better performance. When the data is out of the range, the structure size of the

neural network model should be increased to achieve similar performance
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compared to the model trained with data in range. Considering this, operating
parameters (inputs) are rescaled. Eliminating the physical dimension effect,
each parameter is rescaled in the range of zero to plus one following the
equations below (Eq. (4.1) to Eq. (4.7)). The code that pre-conditions the input

data will be referred to as a scaling filter in the thesis

. _ lioad
lioad = Area (4.2)
t =
(4.2)
100
P
= — (4.3)
p 100
_ SRanode
STanode = 10 (4.4)
— RHgnode
rhanode =~ " 100 (4.5)
_ SRcathode
STcathode = 10 (4.6)
_ RHcqgthode
Theathode = 100 (4.7

Post-conditioning

Similarly, with the input data, local current data (output data) needs to be
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preprocessed. Since the process will help the outcomes of the neural network
transformed back to their original form, the procedure will be referred as a post-
conditioner. The post-conditioner consists of two functions. The first one
adjusts the measured current data from the hall sensors. It eliminates the small
difference (less than 1%) between the sum of the current flows at each segment
and the loaded current flow to the fuel cell. The current flow value at each
segment is then multiplied with the relative ratio between the actual sum
(loaded current) and the sum of the current flows from the hall sensors. Plus,
the current flow is divided with the active area, transforming into current
density (since the segment’s active area is 1 cm?, there is no difference in the
value). The explained process above is shown in Eq. (4.8), and referred as the

current sum filter.

_ Iy I10ad
I = o X-=2%=
Y1 Area

(4.8)
The second function rescales the adjusted current density data from the
first function in the form of residuals. If this process is skipped, outputs will be
within the specific current range that matches the input current load value. To
isolate the dependence on the input current load, output current data is

nondimensionalized. The current data is transformed into residuals and divided

with the loaded current density as shown in Eq. (4.9). The code that proceeds
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the Eq. (4.9) will be referred to as the residual filter.

T = (ik - iLoad) / lLoad (4.9)

4.3.3. Model training
Current distribution prediction model

Figure 4.4 explains the development process for the current distribution
prediction model shown in Fig. 4.3. The very first step for neural network
modeling is selecting a dataset. The list of used training data and test data is
shown in Table 4.1.

The second step is proper conditioning of the input and output training
data. The PEMFC operating condition, as an input, is preprocessed with the
scaling filter. The local current data, as an output, is preprocessed with the
current sum filter and the residual filter. Preprocessed input and output data are
then used to train the neural network (Fig. 4.3). For the training, a multi-layer
perceptron regression algorithm provided by the Scikit-learn software is used.
This ‘Scikit-learn’ is a Python programming language-based machine learning
library. This research suggests the methodology for the PEMFC current
distribution modeling, not the artificial intelligence modeling technique.

Therefore, this study utilized the open source library. Any commercial or self-
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developed neural network can be used following the method suggested in this
chapter. In the process of neural network model training, hyper-parameters
should be properly adjusted to achieve higher model performance. These hyper-
parameters are initial values that should be given for the training. Therefore,
hyper-parameter values are grid-searched and optimized with the combination
test.

As a third step, the developed model is evaluated. Operating conditions
listed as test set in the Table 4.1. are preprocessed with the pre-conditioner and
put into the trained neural network model. the outputs will be normalized local
current residual data. The outputs are then post-processed with the post-
conditioner. As final outcome, 25 local current data is acquired. Since the
outcomes are predicted values, the outcomes are finally compared with the

measured local current data as shown in the Fig. 4.4.

Uniform current prediction model

In this chapter, a novel method for finding optimal operating conditions
which can achieve uniform current distribution is proposed. The model that will
be developed using this method will be referred to as uniform current prediction
model. The overall process of the development and evaluation is depicted in

Fig. 4.5. The core idea of the development is to switch the inputs and outputs
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of the current distribution model. Then, the current distribution profile will be
input and operating condition will be the output. Since the inputs and outputs
are flipped, the structure of the neural network should also be flipped. To put it
simply, everything else stays the same, but the direction of the information is
reversed. While then, pre-conditioning and post-conditioning process are also
reversed, renamed as ‘reverse pre-conditioner’ and ‘reverse post-conditioner’.
The details are well described in Fig. 4.5. In the process of uniform current
prediction model, hyper-parameter values remain the same with the values from
the current distribution prediction model.

After the development, the uniform current distribution profile is put into
the model. Current load of 1 A is equally given to the 25 inputs, as shown in
Fig. 4.5. As a result, a specific operating condition is acquired. If the reverse
strategy is valid, the current distribution should turn out uniform when this
operating condition is put into the current distribution prediction model. Here,
the current distribution prediction model is used as a validation tool. After the
validation, the output local current data is compared to the uniform current

distribution profile.
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4.4 Results and Discussion

4.4.1 Model accuracy

In the previous subsection, the current distribution model development and
the evaluation process are explained. As an example, the comparison result of
the model and experimental local current profile data is shown in Fig. 6. The
exemplary case is the current distribution profile under pressure at 2 bar, the
temperature at 60°C, SR of anode and cathode at 1.5 and 2.0, respectively, and
humidity of both anode and cathode at 40°C dew point. The absolute errors
between the prediction and experimental data are shown next to the test cases
in Table 1. The error values are red, orange and green marked depending on
their error range. If the error is bigger than 4.0%, it is marked in red. If the error
is smaller than 2.0%, it is marked in green. In between, it is marked in orange.
The overall absolute average is 3.0%. An interesting result is that the test cases
can be grouped clearly. Due to the nature of machine learning techniques, the
test results show small errors if similar data is trained. For example, the very
first six test cases show larger errors compared to the rest test cases. Here, it
can be concluded that more data is in need if we are to develop a more accurate

model.
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The application goal of this suggested neural network method is to bridge
the gap between the simulation model and experimental data. However, note
that the experimented local current data might not exactly match the
electrochemical reaction. Near the segmented line between the section, electron

transportation may not match the membrane proton transportation [75].

4.4.2 Effects of parameters on current distribution

Using the developed prediction model, the effects of operating conditions
on the current distribution profile are tested. As a reference, pressure at 1 bar,
60°C temperature, cathode SR at 2.0, anode SR at 1.5, cathode RH at 80% and
anode RH at 80% is set under current load at 1 A/cm?. Based on this reference,
each operating parameters are varied. Preceding studies [39,40,60,61] pointed
out that the cathode condition effect is much more dominant than that of the
anode. Therefore, the current distribution trends with temperature, pressure,
cathode SR, cathode RH variations are tested and suggested in Fig. 4.7.

The x-axis segmentation section number in Fig. 4.7 is the location shown
in Fig. 4.2(a). Operating parameter value and current flow rate are each shown
in the y-axis and z-axis. Overall, local peaks are observed in sections 3, 8, 13,

23 and 28, which are the middle sections of the membrane. These peaks are
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combined results of the contact resistance [60,61,77], the flow field
configuration [76,77], and the heat dissipation at the outer cell boundaries
[47,61]. Another overall point is that the lower current flows are observed in
the outlet stream. This characteristic is found commonly found in the PEMFCs
[39,57,72,78-81]. It results from the low reactant concentration and liquid water
flooding [39,40,61].

Effect of temperature on the current distribution is presented in Fig. 4.7(a).
With the temperature elevation, current distribution turns more uniform. Low
current flow at the outlet region of the channel at low temperature results from
flooding [65]. On the other hand, the inlet region current flow should be
increased to compensate for the current loss in the outlet region. When the
operating temperature is elevated, water vapor capacity in the channel increases,
which alleviates the flooding leading to the reduced non-uniformity [77]. Effect
of operating pressure on the current distribution is shown in Fig. 4.7(b). The
portion of inlet region current flow increases with temperature elevation, but its
effect is not as critical as the operating temperature. Next, the cathode SR
(Stoichiometric Ratio) effect on the current distribution is shown in Fig. 4.7(c).
The cathode SR is one of the most important factor that affects the performance
of the fuel cell. One of the main performance degradation results from the low

concentration of oxygen in the outlet region. Relatively low current flow at the
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outlet region in Fig. 4.7 is due to this low concentration in the outlet region.
With cathode SR increment, peak current shift from inlet to the middle region.
A similar current distribution result are reported in the preceding studies
[41,60,61].

The current distribution variation with cathode relative humidity (RH)
change is shown in Fig. 4.7(d). In the high RH condition, local current flow
decreases along the flow channel.

The current distribution variation with cathode relative humidity (RH)
change is shown in Fig. 4.7(d). In the high RH condition, local current flow
decreases along the flow channel. As the RH decreases, however, the current
peak is made in the middle region due to the decreased local current flow in the
inlet region. This trend results from the membrane dry-out in the inlet region

with decreased RH [35,65].
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4.4.3. Effects of parameters on standard deviations

The operating parameter effects are presented in Fig. 4.8(a) and Fig. 4.8(b).
To evaluate the effect, current distribution uniformity is expressed in the form
of standard deviation. Fig. 4.8(a) shows the effects of temperature and pressure
on the local current flow uniformity. With the temperature elevation, the non-
uniformity of the current distribution decreases. As explained, this is due to the
alleviation of the flooding in the outlet region with high vapor water capacity.
With the pressure elevation, the current distribution is uniformed in the high-
temperature condition while non-uniformed in the low-temperature condition.
In low-temperature conditions, the vapor water saturation starts closer to the
inlet region [61]. In other words, the flooding starts earlier with the temperature
decrement, leading to the non-uniformity with the underperformed current flow
in the outlet region. Overall, high-temperature with high-pressurized operating
conditions seem to make the fuel cell current distribution uniform.

In Fig. 4.8(b), the effects of SR and RH on the uniformity of the current
distribution are suggested. With the elevation of RH, the standard deviation
tends to decrease until a certain level (70%). After then, the standard deviation
increases. As shown in Fig. 4.7(d), excessively low or high RH induces non-
uniformity. Therefore, there is an optimal humidification condition for the fuel

cell [32]. It seems that the optimal RH for the uniform current distribution is
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formed around 70% in this research. Under the RH lower than ca. 70%,
standard deviation tends to decrease with the increasing cathode SR. Overall, it

seems that RH around 70% with increased SR improves the current uniformity.

4.4.4. Uniform current distribution

From the uniform current prediction model shown in Fig. 4.5, the
operating condition for uniform current distribution is acquired. This operating
condition implies pressure at 2.3 bar, the temperature at 65.1°C, SR of anode
and cathode at 1.62 and 2.93, respectively, and RH of anode and cathode at
68.9% and 71.8%, respectively. Considering the standard deviation results
shown in Fig. 4.8, high enough temperature (65.1°C), elevated pressure (2.3
bar), moderate cathode RH (71.8%), and high enough cathode SR (2.93)
conditions seem reasonable enough. This allegedly optimal operating condition
for the uniform current distribution is then put into the current distribution
model for evaluation. The corresponding current distribution profile is acquired,
as shown in Fig. 4.9. The profile is not exactly uniform as expected. The
absence of the local current experimental data may have made this result since
most distributions showed decreasing current flow along with the segmented
number. Nevertheless, the current standard deviation with the acquired

operating condition showed 0.039 A, which is a smaller value than the current
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deviation results shown in Fig. 4.8. Considering the reasonability of the
acquired operating condition investigated with Fig. 4.8 and the small current
deviation, it seems that this reversed neural network approach is valid.

The optimal operating conditions for the uniform current distribution can
also be found using optimization techniques. Perhaps, it may be a more
appropriate approach than the one suggested above. However, when the right
amount of local current distribution data is prepared, the suggested approach is

faster and efficient. It only costs switching inputs and outputs.
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4.5. Summary

In this chapter, a new PEMFC local current distribution prediction method
is suggested. The suggested method has advantages in the fast development
process and high enough accuracy using a neural network algorithm. The
developed neural network-based model predicted the current distribution
profile within a 3.0% error. The effects of operating condition parameters
(pressure, temperature, cathode stoichiometric ratio, cathode relative humidity)
on local current distribution and uniformity are analyzed with the current
distribution prediction model.

Switching the input and output data used for the current distribution
prediction model, another neural network model is developed. This new model,
the uniform current prediction model, suggests the operating condition that can
achieve uniform current distribution. The suggested operating condition suits
the investigated current distribution results with the current distribution
prediction model. As a result, the current distribution uniformity is achieved

with the standard deviation of 0.039 A under the current density of 1 A/cm?.
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Chapter 5. Current distribution prediction under

degradation and fault

5.1 Introduction

Most of the PEMFCs are operated under specific conditions considering
their performance and durability. Despite many efforts, however, the
performance of PEMFC decreases after a long-time operation [82,83]. With the
degradation, the current distribution inside the PEMFC changes. Therefore,
local hot spots or the reactant concentration distribution also change with the
degradation. In this context, the evolution of PEMFC local current distribution
is investigated under degradation. The degradation is simulated by applying an
accelerated stress test (AST) to a segmented fuel cell. Considering that the
overall concept of the thesis is related to the fault, the current distribution
change under faulty conditions is also investigated.

Most importantly, in this chapter, a prediction method for local current
distribution under degradation and fault is suggested. The method is an
extension of the method suggested in chapter 4, but capable of considering the
time effect and various current densities. The prediction model is developed

and validated using the collected data from the experiments.
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5.2 Accelerated stress test

One of the PEMFC’s weaknesses is its durability. United States
department of energy (DOE) suggests 8,000 hours of operating time with less
than 10% loss of performance as an ultimate durability target. Based on the on-
road data collected from 230 fuel cell electric vehicles (FCEVs), however, most
of the stack showed a performance decrease between 1,500 and 2,000 hours
[84]. Likewise, the performance degradation of PEMFC is inevitable in the
current state.

There are many reasons for the degradation of the fuel cell. Representative
phenomena of fuel cell electric vehicle (FCEV) stack degradation are as follows
[85]; degradation of the catalyst layer due to the carbon corrosion, loss of
catalyst active area due to the platinum dissolution and sintering, loss of catalyst
active are due to the adsorption of contaminants, and mechanical degradation
due to the thermal and humidity stresses. Among these phenomena, carbon
support corrosion of the catalyst layer is actively researched both industrially
and academically.

PEMFC carbon corrosion is often explained with below equation [86];

C+2H,0 =C0,+4H" +e¢", Ey = 0.207 Vgyg (5.1)
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Since the PEMFC is operated above the given voltage (0.207 V), carbon
corrosion can proceed in the catalyst layer. The detailed process about the
carbon corrosion in PEMFC can be found in the following papers; [85,87-89].
This process, however, proceeds very slow in a natural state. Therefore, an
accelerated stress test (AST) is applied in many studies.

There are mainly two AST methods for simulating carbon corrosion in
PEMEFC [85]; The first is applying a start-up or shut-down cycle to the PEMFC.
This process is based on the explanations that local fuel starvation on the anode
induces the oxygen crossover, which brings the overpotential to the fuel cell.
The second is applying overpotential higher than the open-circuit voltage
(OCV). This is also related to fuel starvation, but different mechanisms; non-
uniform fuel distribution at sudden high current loads, liquid water
accumulation, localized blockage due to the ice formation [85].

Jung et al. [90] followed the second method by applying 1.3V, 1.4 V and
1.5 V to the fuel cell. Lee et al. [91] applied 1.5 V on the fuel cell to simulate
the carbon corrosion. Spernjak et al. [92] applied 1.3 V on the fuel cell to
investigate the influence of the microporous layer on carbon corrosion. Lin et
al. [50] applied a maximum overvoltage of 2.0 V to investigate the anode
carbon corrosion effect. This study also follows the second AST method by

applying 1.4 V to the fuel cell. However, the AST method is not the point in
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this chapter.

This chapter aims to validate the effectiveness of the suggested current
distribution prediction method under degradation and faults. Thus, the AST
method is not the point in this chapter, but the distribution changes itself with

the AST is the focus of this chapter.
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5.3 Experimental setup

5.3.1 Experimental apparatus

The experimental setup is shown in Fig. 5. 1(a), and its schematic diagram
is illustrated in Fig. 5.1(b) [93]. Basic compositions are similar to the
experimental setup in chapter 4. In Fig. 5.1(a), A segmented fuel cell with a
printed circuit board is used. Twenty-five hall effect sensors (CY2-02B, Nana
Engineering Co., Japan) are used to measure local current flows. The current
flow data is collected with the acquisition system (NI cDAQ-9178 with N1 9205
and NI9206, National Instruments, USA). Power supply (E3649A, Agilent) is
used for applying overvoltage to the MEA. Potentiostat module (WPG100HP,
Wonik) is placed to observe electrochemical characteristics of PEMFC. For the
temperature control, a temperature bath circulator is used to supply deionized
coolant to the fuel cell.

In Fig. 5.1(b), dry air and hydrogen from gas tanks are supplied to the
segmented cell with mass flow controllers (EL-FLOW, Bronkhorst,
Netherlands). Between the mass flow controller and the segmented cell, a
bubbler humidifier is located for reactant humidification. Electronic load (PLZ

series, Kikusui, Japan) is used to control the current or voltage of the fuel cell.
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An anode bipolar plate of the segmented fuel cell is shown in Fig. 5.2.
Looking at the front side (Fig. 5.2(a)), the channel is divided into 25 isolated
segments. As a typical serpentine flow field with 5-pass and 4-turn channels,
reactants are counter-flow at each horizontal line but parallel with the vertical
direction. Each segment has a 1 cm? active area. The 25 segments are grouped
into five areas, from the inlet to the outlet (A to E). The gold coated printed
circuit board current collector is placed at the back of the anode bipolar plate to
separately transfer currents from local spots to the hall effect sensors. The
contact area of the bipolar plate and the printed circuit board is shown in Fig.
5.2(b). The membrane electrolyte assembly (VFM, CNL, South Korea) used in
this chapter has an active area of 25 cm?, as well as the gas diffusion layer

(39BB, Sigracet, Germany) applied to both anode and cathode.
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(b)

Figure 5.2 Anode bipolar plate (a) Front side (b) Back side
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5.3.2 Experimental conditions

To observe the evolution of local current distribution under degradation
and fault, reference operating conditions should be fixed. The reference
operating conditions are as follows; temperature at 65°C, non-pressurized,
anode SR at 1.5, cathode SR at 2.0 and relative humidity of 80% at both cathode
and anode.

Experimental degradation and fault conditions are given in Table 5.1. For
PEMFC degradation simulation, an accelerated stress test (AST) technique with
1.4 V overvoltage is application is performed. From the initial state (beginning
of'life), the AST proceeded for 8 hours. Every hour, AST is stopped to measure
the PEMFC performance. Also, current distribution data under the air supply
fault, humidification fault and temperature fault are collected every couple
hours during the AST. The air supply fault is simulated by varying the cathode
SR from 1.6 to 2.4. The humidification fault is simulated by reducing the
cathode dew point to 46°C and 54°C, which corresponds to the relative humidity
of' 40% and 60%. The temperature fault is simulated by elevating the operating
temperature from 65°C to 70°C. The fault data is collected under the current
loads at 10A, 20A and 30A.

The overall experimental procedure is briefly presented in Fig. 5.3. First,

the performance of the fuel cell is measured with its current distribution. Before
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Table 5.1 Experimental degradation and fault conditions

Operating Dew point Stoichiometric Ratio
AST
Temperatu (°C) (SR)
(hour)
re (°C) H; Air H; Air
0 65 60 60 15 2.0
L 65 60 60 15 1.6,18,22,24
(Beginning
. 65 60 46, 54 1.5 2.0
of Life)
70 60 60 15 2.0
1 65 60 60 15 2.0
65 60 60 15 2.0
) 65 60 60 15 16,18,2.2,24
65 60 46, 54 15 2.0
70 60 60 15 2.0
3 65 60 60 15 2.0
65 60 60 15 2.0
A 65 60 60 15 16,18,2.2,24
65 60 46, 54 15 2.0
70 60 60 15 2.0
5 65 60 60 15 2.0
65 60 60 15 2.0
6 65 60 60 15 16,18,2.2,24
65 60 46, 54 1.5 2.0
70 60 60 1.5 2.0
7 65 60 60 15 2.0
g 65 60 60 15 2.0
65 60 60 15 1.6,18,22,24
(End of
. 65 60 46, 54 1.5 2.0
Life)
70 60 60 15 2.0
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the AST, cathode reactant is changed to nitrogen gas and the purge has
proceeded. Then, 1.4 V overvoltage is applied to the fuel cell. While the AST,
carbon corrosion has proceeded and performance of the fuel cell decreases.
After an hour of AST, PEMFC performance recovery is made. With the
recovery process, the performance of the over degraded fuel cell rises and
stabilized. At this stage, the polarization curve is measured once again. Then
finally, the fault experiment proceeds under current loads at 10A, 20A, 30A.
The current loads correspond to the current densities at 0.4 A/cm?, 0.8 A/cm?,

1.2 A/cm?.
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5.4 Current distribution characteristics

5.4.1 Local current distribution change with accelerated stress test

The evolution of PEMFC performance with the accelerated stress test
(AST) is shown in Fig. 5.4. With the AST, the performance of the fuel cell
decreases. Before the AST, in other words, beginning of life (BoL), fuel cell
showed 0.584 V at the current density of 1.2 A/cm?. After 8 hours of AST, the
fuel cell showed 0.436 V at 1.2 A/cm?. The voltage of the fuel cell decreased
about 25%. This state (after 8 hours of AST) will be referred to as the end of
life (EoL) in this paper. Overall, the polarization curve decreases with the AST.
But its decrement is bigger with the higher current load condition.

The evolution of local current distribution change under AST is shown in
Fig. 5.5. Current distributions under current load at 10 A (0.4 A/cm?) are
presented in Fig. 5.5(a). Local area A, which is near the reactant inlet region,
shows the highest current flow. Along the reactant flow direction from A to E,
current flow at each local area decreases. This is mainly due to the decreasing
reactant concentration at the local spots along the flow channel. With the AST,
current flow at the inlet region takes more current distribution portion, and that

of the outlet region decreases. Since the fuel cell is under galvanostatic mode
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Figure 5.4 Evolution of current distribution with accelerated stress test
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under 10 A load condition, the sum of the current flows should be preserved.
Therefore, an increase of a specific local current flow induces a decrease in
another local area's current flow.

As with the current load elevation (Fig. 5.5(b), Fig 5.5(c)), non-uniformity
due to the higher current flows at the inlet region gets more severe. In other
words, the current distribution slope from A to E gets steeper with the higher
current load. This slope also gets steeper with the degradation under the higher
current load. This phenomenon is reported in other papers [60,91]. The papers
also observed more severe carbon corrosion in the outlet region. It seems that
the higher liquid water accumulation at the outlet region is a more suitable

condition for carbon corrosion.

5.4.2 Local current distribution change under faults

Local current distributions are observed under faulty conditions. Fault
related to the APS is simulated by varying the cathode SR. Under severe
degradation of the air blower or air leakage can reduce the reactant supply to
the stack. On the other hand, degradation of the airflow meter can lead to
increased airflow to the stack. In Fig. 5.6(a), local current distribution change

with varying cathode SR is suggested. The distribution is measured under non
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degraded state (BoL) at current load of 30 A. With the lesser air flow, current
distribution shifts to the inlet. With more airflow, on the contrary, the
distribution shifts to the outlet, resulting in more uniform current distribution.
In general, the outlet region suffers from insufficient reactant concentration due
to the consumed reactant in the inlet region and increased water concentration.
With more air SR, therefore, it is reasonable to have a more uniform current
distribution.

Fault experiments are also performed under degraded states with AST.
Local current distribution with AST under 20% cathode air decreased state
(SR=1.6) is shown in Fig. 5.6(b). Y-axis represents the residuals of the current
flow compared to its normal state. For example, if the current flow value at
local area A is 6.1 A at normal state and 6.4 A in a fault state, residual due to the
fault is 0.3 A. At the current load of 30 A, each local area is expected to have
the current flow of 6.0A ideally (uniform current distribution condition). Then,
the current residual is divided into 6.0 A. As a result, the residual percentage
value is represented as 5.0%. At the beginning of life (BoL) state under 20%
decreased air SR, current flows are more concentrated in the inlet region. With
the AST cycle, this unbalanced current distribution gets more severe.
Performance decrement in the outlet region due to the carbon corrosion leads

to the decreased current flow. The decreased current flow is compensated at the
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inlet region, resulting in increased current flow.

Fault responses under humidification fault and temperature fault are
suggested in Fig. 5.7(a) and Fig. 5.7(b), respectively. When the inlet air
humidity decreases from 80% to 40%, current flows in the inlet region decrease
while those of the outlet region increase. This is due to the insufficient
membrane humidification in the inlet region under the humidification fault [74].
The decrement is compensated at the outlet region. The humidification fault
response does not seem to show a clear trend as the air SR fault with the AST.
Nevertheless, decreased current flow at the inlet and increased current flow in
the outlet are clearly shown.

PEMFCs are widely known to have an optimal operating temperature
between 60~80°C [94-96]. The optimal point can vary depending on the
membrane type and gas diffusion layer type. Flow channels and shapes can also
affect the optimal temperature condition. Therefore, an increase in operating
temperature cannot always be seen as a fault. Nevertheless, this chapter focuses
on the current distribution change with the temperature elevation. Therefore, an
increase of 5°C operating temperature will be referred to as temperature fault.
Under the fault, inlet current flow decreases compared to the normal state. This
seems to be a similar effect of decreased humidification in the inlet region. An

increase in operating temperature led to the decrease of relative humidity.
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5.5 Model development

5.5.1 Neural network models

Overview of the experimental data and corresponding results with neural
network-based models are suggested in Fig. 5.8. First, local current distribution
data is collected under various operating conditions; pressure, temperature,
stoichiometric ratio and relative humidity. Using the data, the prediction model
for local current distribution under various operating conditions is developed in
chapter 4. The effectiveness of the model is validated. Also, the fact that cathode
SR, cathode RH and temperature are dominant parameters on local current
distribution is checked.

In this chapter, an accelerated stress test (AST) is performed by applying
1.4 V overvoltage to the fuel cell for 8 hours. While the process, performance
curve data is collected. Also, three fault scenarios are set and performed during
the AST. The scenarios match the key operating parameters found in chapter 4.
In subchapter 5.5, a method for modeling current distribution with the AST data
will be suggested. The developed model with the method is expected to predict
the current distribution change under degradation. Also, a method for modeling

fault response under fault conditions will be suggested.
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The structure of the neural network-based current distribution prediction
model is suggested in Fig. 5.9. Figure 5.9(a) shows the inputs and outputs of
the model. Since the operating condition is fixed, time and current density are
the only inputs. Pre-conditioner rearranges the time and current density values.
For the time, AST time is divided into 8 hours. For the current density, current
load is divided into its maximum load condition, 1.2 A/cm? The post-
conditioner will be explained on the next page. The current distribution neural
network model has three hidden layers with five nodes each (5-5-5), as shown
in Fig. 5.9(b). The fault response prediction model also has three hidden layers,
but with more nodes (10-10-10).

The working principle of the fault response prediction model is shown in
Fig. 5.10. The model returns local current difference values. In other words, the
model returns changes due to the fault. In order to predict local current
distribution under fault, therefore, current distribution should be acquired with
the current distribution prediction model firstly. Then, the changes due to the
fault are predicted with the fault response model. Finally, the predicted local

current distribution value under fault is acquired with the addition.
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5.5.2 Data conditioning

Before the training, data should be properly conditioned. In other words,
data should be transformed into a standardized form. Figure 5.11 shows the data
conditioning process. The collected current distribution data under AST should
be transformed for the model training. This process is the reversal process of
the post-conditioner (Fig. 5.11(a)). Figure 5.11(b) shows the current distribution
data under current loads at 10A, 20A and 30A. The averaged value at each local
areais 2 A, 4 A and 6 A, respectively. The gap between the averaged value and
the measured value is residual. As shown in Fig. 5.11(c), these residuals are
bigger at the higher current load conditions. When the neural network is trained
with the residuals, the model will return bigger residuals in response to higher
current density input. Therefore, the characteristics of the current distribution
will not be reflected in the model. So in Fig. 5.11(c), the residuals are divided

into its averaged value for the standardization.
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5.5.3 Model training

The basic tool and process for model training are the same as in chapter 4.
During the 8 hours of AST, the performance curve is measured nine times,
including the BoL and EoL. The fault data is collected under five different AST
conditions; BoL, 2 hours of AST, 4 hours of AST, 6 hours of AST and 8 hours
of AST (EoL). The data under the AST for 4 hours is used for the test data. The
rest data is used for the model training.

In Table 5.2, an example of cross-fold validation is suggested. When the
training dataset is not enough, the training data set is divided into few groups.
Each group, in other words, fold, takes a turn to be a validation set. In Table 5.2,
there are four-folds. The hyper-parameters are optimized to find the appropriate
training point between the under fitting and overfitting. When the hyper-
parameters are optimized, the test data is put into the model to validate the
model.

In the case of chapter 4, current distribution data after 4 hours of AST and
fault data under AST for 4 hours are used as test set data. The rest are divided
into four groups, as shown in Table 5.3. Then the 4-fold cross-validation has

proceeded. After the optimization, the model is validated with the test data.
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Table 5.2 Cross-fold validation

Training Set Test set

Fold 2 Fold 3 Fold 4

Fold 3
Test data

Fold 1

Fold 1

Table 5.3 Cross-fold validation with experimental data

Experimental Data

(AST for 8 hours: 25% Performance degradation)

Training Set Test set
0 hour AST
1 hour AST 2 hour AST 3 hour AST
(BoL)
4 hour AST
8 hour AST
5 hour AST 6 hour AST 7 hour AST
(EoL)
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5.6 Prediction results

The model validation results are shown and discussed in this sub-chapter.
Firstly, the prediction result of the local current prediction after 4 hours of AST
is suggested in Fig. 5.12. The predicted result with the model is compared to
the experimental results under current loads at 10 A, 20 A and 30 A. Regardless
of the current load condition, the model predicted the current distribution very
precisely. The mean absolute error (MAE) between the predicted value and
experimented value is 0.88%.

Next, the fault response prediction model is validated in Fig. 5.13. The
graph shows local current distribution changes under three different fault
conditions; 20% decreased air SR, 40% decreased relative humidity and 5°C
increased operating temperature. Overall, the prediction residuals of the model
followed the experimental residuals very well. The model followed the increase
and decrease of the current flows at the local spots correctly. Excluding the
normal state prediction results, which are determined with the current
prediction model, the fault response prediction model showed a 1.25% mean
absolute error (MAE) difference compared to the experimental data.

When considering the normal state prediction value as shown in Fig. 5.10,

both prediction results should be combined. In other words, the result shown in
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Fig. 5.13 should be added to the result suggested in Fig. 5.12. As a final result,
local current distributions under 4 hours of AST and fault conditions are
acquired (Fig. 5.14). The mean absolute error (MAE) between the predicted
distribution and experimental distribution is 0.8%. As shown in the graph (Fig.
5.14) predicted current flows at the local spots match the experimental current

flows.
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5.7 Summary

In this chapter, local current distribution prediction under fuel cell
degradation and fault mode has proceeded. First, local current distribution
evolution data under the degradation is collected with an accelerated stress test
(AST). Second, a fault experiment is performed between the accelerated stress
test to collect current distribution changes under faulty conditions. On the basis
of the modeling method suggested in chapter 4, modifications are made using
the standardized residual approach. As a result, the current distribution
prediction model and fault response prediction model are successfully trained
and showed good performance. The prediction results show less than 1% mean
absolute error with both the current distribution prediction model and fault

response prediction model.
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Chapter 6. Concluding remarks

A fault is one of the main reasons that reduce the reliability and durability
of the system. Therefore, fault diagnosis technology is essentially required to
protect the system. This paper suggests a new fault diagnostic method for
PEMFC. When developing a fault diagnostic algorithm, the algorithm’s
robustness and sensitivity are in the trade-off position. The suggested method
achieves both robustness and sensitivity by applying multiple diagnostic neural
networks based on fault severity. Also, the suggested method does not require
experimental fault data. When used in the commercial PEMFC system
development process, it can save cost and time for the fault experiment.

Seventeen different fault scenarios are considered in this study. Some
faults are classified in detail depending on their fault severity. The scenarios are
grouped into a critical fault group, a significant fault group and a minor fault
group. The fault experiment data is performed with the 1 kW class PEMFC
system. As the severity of the fault gets intense, the fault response magnitude
was larger and faster. Focusing on these characteristics, moving average time
and normalization magnitude is adjusted before feeding into the diagnosis
algorithm. As a result, the developed severity-based fault diagnosis algorithm

diagnosed all the fault scenarios successfully.
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Fault response is also investigated from the viewpoint of current
distribution inside the PEMFC. With the application of segmented fuel cell,
local current distribution is collected under various operating conditions before
the fault experiment. With the collected data, a current distribution prediction
model is developed with the modeling method suggested in this study. Effects
of pressure, temperature, air stoichiometric ratio and air relative humidity on
the current distribution is firstly investigated. The results showed that the
current distribution prediction model is very effective and precise.

With the modeling method, an attempt to predict local current distribution
under degradation and fault is made. An accelerated stress test is applied to the
fuel cell to simulate the degradation of the fuel cell. Also, faulty conditions are
applied to the fuel cell during the accelerated stress test. With the collected data,
a model that predicts current distribution under degradation is developed and
validated. A model that predicts current distribution change under fault is
developed and validated. Comparing the results, both models showed good
prediction performance less than 1% mean average error.

Overall, neural network technology is applied to develop the fault
diagnosis algorithm and the current distribution prediction model. Introducing
neural network technology to the field of PEMFC, simple but practical and

powerful modeling is capable. In conclusion, severity-based fault diagnostic
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algorithm and current distribution modeling method using limited experimental
data are suggested in this study. The author believes that these suggestions will
be effectively working when applied to the development process of commercial

PEMFC.
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