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Abstract

3D hand pose estimation (HPE) based on RGB images has been studied for

a long time. Relevant methods have focused mainly on optimization of neural

framework for graphically connected finger joints. Training RGB-based HPE

models has not been easy to train because of the scarcity on RGB hand pose

datasets; unlike human body pose datasets, the finger joints that span hand pos-

tures are structured delicately and exquisitely. Such structure makes accurately

annotating each joint with unique 3D world coordinates difficult, which is why

many conventional methods rely on synthetic data samples to cover large varia-

tions of hand postures.

Synthetic dataset consists of very precise annotations of ground truths, and

further allows control over the variety of data samples, yielding a learning model

to be trained with a large pose space. Most of the studies, however, have per-

formed frame-by-frame estimation based on independent static images. Syn-

thetic visual data can provide practically infinite diversity and rich labels, while

avoiding ethical issues with privacy and bias. However, for many tasks, cur-

rent models trained on synthetic data generalize poorly to real data. The task

of 3D human hand pose estimation is a particularly interesting example of this

synthetic-to-real problem, because learning-based approaches perform reason-

ably well given real training data, yet labeled 3D poses are extremely difficult

to obtain in the wild, limiting scalability.

In this dissertation, we attempt to not only consider the appearance of a hand

but incorporate the temporal movement information of a hand in motion into

the learning framework for better 3D hand pose estimation performance, which
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leads to the necessity of a large scale dataset with sequential RGB hand images.

We propose a novel method that generates a synthetic dataset that mimics nat-

ural human hand movements by re-engineering annotations of an extant static

hand pose dataset into pose-flows. With the generated dataset, we train a newly

proposed recurrent framework, exploiting visuo-temporal features from sequen-

tial images of synthetic hands in motion and emphasizing temporal smoothness

of estimations with a temporal consistency constraint. Our novel training strat-

egy of detaching the recurrent layer of the framework during domain finetuning

from synthetic to real allows preservation of the visuo-temporal features learned

from sequential synthetic hand images. Hand poses that are sequentially esti-

mated consequently produce natural and smooth hand movements which lead

to more robust estimations. We show that utilizing temporal information for

3D hand pose estimation significantly enhances general pose estimations by

outperforming state-of-the-art methods in experiments on hand pose estimation

benchmarks.

Since a fixed set of dataset provides a finite distribution of data samples, the

generalization of a learning pose estimation network is limited in terms of pose,

RGB and viewpoint spaces. We further propose to augment the data automati-

cally such that the augmented pose sampling is performed in favor of training

pose estimator’s generalization performance. Such auto-augmentation of poses

is performed within a learning feature space in order to avoid computational bur-

den of generating synthetic sample for every iteration of updates. The proposed

effort can be considered as generating and utilizing synthetic samples for net-

work training in the feature space. This allows training efficiency by requiring

less number of real data samples, enhanced generalization power over multiple
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dataset domains and estimation performance caused by efficient augmentation.

keywords: 3D hand pose estimation, RGB-based hand pose estimation,

Synthetic Dataset, Feature-level Auto-Augment, temporal feature, hand motion
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Chapter 1

Introduction

Figure 1.1: An application of 3D hand pose estimation computer vision prob-

lems that allows virtual maneuver in AR/VR spaces. Originally used in [37]

Hand pose estimation (HPE) has been one of the critical computer vision prob-

lems. With the advance of deep learning technology, various approaches of neu-

ral inference have been studied the literature and have caused breakthroughs in

general computer vision problems including hand pose estimation tasks [7, 8,

50, 84, 102]. Hand pose estimation is an essential task for augmented reality

and virtual reality (collectively called as “extended reality (XR)”) systems. For

instance, to enable hand-based human-computer interactions (HCI) with objects
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in XR environments, accurate real-time estimates of the positions of hand joints

in 3D world coordinates are needed [35]. Since hand gestures reflect elemen-

tary human behavioral patterns, hand pose tracking enables several downstream

AI applications such as gesture recognition [37, 66, 74] and human-computer

interactions [10]. In [47], Lee et al. detected hands to render an object in AR

environment on the hand which was proportional to hand size. Piumsomboon

et al. [66] focused on guessability in 40 different tasks in AR environment with

studying hand gestures. Jang et al. [37] build an AR/VR system in egocentric

viewpoint which was completely controllable via user’s hands. Figure 1.1 shows

one of the applications of hand pose estimation used in egocentric viewpoint in

AR/VR headset [37].

Nevertheless the applications of hand pose estimation are not limited to

AR/VR technologies. Sridhar et al. [76] built a system working with a num-

ber of finger actions. Markussen et al. [55] also proposed a mid-air keyboard to

type on air, as depicted in Figures 1.2 and 1.3.

Figure 1.2: Users’ hand gestures with a glove on are collected while writing

sentences with a mid-air keyboard.
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Figure 1.3: An example of Text entry using word-gestures in mid-air.

Yin et al. [91] used hand pose estimation to design a system that understands

sign language. In a similar study, Chang et al. [10] used finger tip detection

and tracking to read alphabet written by finger in the air. Outside HCI field,

the works of [71] and [68] applied body and hand pose estimation systems for

predicting body movements of a piano player and to detect activities.

In recent years, the interest in systems controlled by fingers, made researchers

more ambitious to the extent that they discarded 2.5D depth map images and

tried to estimate hand pose by a single RGB image. This method is a harder task

and needs a considerable larger data to train. Below, we will first explain the

hand pose estimation problem and discuss its variations and next we will dis-

cuss different methods in solving this problem. At the end of the paper we will

briefly investigate new datasets in this field and will see how the size of datasets

have changed dramatically through time.

Hand pose estimation is the process of modeling human hand as a set of

some parts (e.g. palm and fingers) and finding their positions in a hand image

(2D estimation) or the simulation of hand parts positions in a 3D space Although

it is also used to estimate hand with the phalanges, in almost all the recent papers

hands are modeled as a number of joints and the task is equivalent to finding the

position of these joints. We can then estimate the real hand pose using those

joints. While lots of the efforts had been focused on 2D pose estimation studies,

3



recently, not only 3D pose estimations are studied but 3D shapes of hands are

also expected as supplementary results [69, 29, 6].

1.1 RGB-based 3D Hand Pose Estimation

Figure 1.4: An example of an RGB image of a hand with which 3D posture is

estimated. Image is originally used in [95]

Figure 1.5: An example of 3D hand pose estimation results. Image is originally

used in [95]

Hand pose estimation tasks are performed largely based on either depth maps

or RGB image inputs, examples of which are depicted in Figures 1.4, 1.5 and
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1.6. In spite of the fact that using a simple RGB image as an input gives the

model a very good generalization power to be used everywhere, reducing the

dimension of the input from 2.5D to 2D will make the task drastically harder.

The data needed to train a network using RGB images is much bigger than the

data needed to train a similar network using depth maps. Collection of RGB

data is also difficult. Since annotating 3D location of finger joints precisely is a

challenging work, conventional efforts include putting markers on each joint so

that real-time 3D positions of the joints can be collected. As it can be seen in

Figure 1.7, accurate 3D annotation of finger joints can be acquired by markers

put on each joint. While this effectively logs finger positions in a 3D space, the

markers (or gloves) that are put on hands severely deteriorates the RGB values

to be considered by computer vision 3D hand pose estimators. Therefore, the

literature lacks large scale datasets for RGB hand pose estimation tasks, many

methods are reported with depth image inputs despite of generalization power

of RGB-based methods [53, 58, 99, 60, 77].

Figure 1.6: Other than RGB image inputs, depth images can be inputted for 3D

HPE. This image is retrieved from the work of [93].
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Figure 1.7: Accurate 3D annotation of finger joints can be acquired by markers

put on each joint. While this effectively logs finger positions in a 3D space, the

markers (or gloves) that are put on hands severely deteriorates the RGB values

to be considered by computer vision 3D hand pose estimators. This is image is

originally used in [13].

Hand pose estimation is considered as a separate field from hand detec-

tion tasks. Many hand pose estimators assume that their inputs are images that

cropped around a single hand. To this end, note that image-based methods need

to first isolate the hand (cropped and resized) and then are fed as the cropped

images to the network in which hands are estimated.

As mentioned earlier, since the RGB image contains less information than

depth disparity maps, the RGB-based networks are harder to train and requires

a larger dataset. Synthetic visual data can provide practically infinite diversity

and rich labels, while avoiding ethical issues with privacy and bias. However,

for many tasks, current models trained on synthetic data generalize poorly to

real data. The task of 3D hand pose estimation is a particularly interesting ex-

ample of this synthetic-to-real domain gap problems, because learning-based

approaches perform reasonably well given real training data, yet labeled 3D

poses are extremely difficult to obtain in the wild, limiting scalability.
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1.2 Needs of Synthetic 3D Hand Pose Data

3D hand pose estimation is one of classic computer vision problems, with ap-

plications in imitation learning, robotic interaction, and activity understanding.

Hand pose estimation is extremely challenging with objects that are articulated,

deformable, or have wide intra-class variation, as is the case with humans in

many real-world scenarios. Therefore, state-of-the-art approaches rely on neural

networks and learning. However, learning-based methods are extremely data-

hungry, and acquiring sufficient data in the real world is difficult. First, there

is no straightforward way for people to annotate 3D ground truth poses. Also,

in settings like industrial warehouses or homes, hundreds of thousands of dif-

ferent object types may appear, and new objects may arrive at random. Here,

even simple labeling will generally be impractical, much less 3D poses. And

any time data involves real humans, issues with privacy, intellectual property,

and bias can become serious obstacles [38].

Synthetic data, however, provides an answer to all these problems, providing

a potentially infinite dataset where ground-truth properties are easily accessible.

In domains with many objects where labeling is impractical, scanning and sim-

ulating objects may not be [32, 19]. Furthermore, synthetic humans do not have

any privacy or intellectual property concerns [38], and datasets can be balanced

exactly with respect to sensitive attributes like race, gender, and other physical

characteristics, minimizing the problems algorithms currently have with bias.

Even better, simulations can be made interactive for training robotic policies.

Considering all the advantages, synthetic or artificial simulations should be

dominantly for learning in various computer vision problems. One problem is

that neural networks trained on synthetic data do not necessarily work on real
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data as well as methods trained directly on real data. Thus, even though such

synthetic-to-real domain transfer has performed [56], the importance of syn-

thetic data usage for training is still rarely

To overcome the occlusion problems and especially the size of the dataset

and the high cost of annotating hands frame by frame, a recent work [58] uses a

synthesized dataset which is annotated automatically. They use kinematic sen-

sors which has multiple electromagnetic sensors (usually 6 6D sensors) con-

nected to a hand. These sensors are connected to a receiver and a transmitter

which generates the 3D hand pose automatically.

Although using synthesized dataset is easy to generate and annotate, they

lack generalization power. As the image generated by this devices are computer

generated, it will not work very well on real-world hand images. To overcome

this issue they used a conditioned GAN [65] called GeoConGAN to transfer the

computer generated images to real images. Also, to reach a better one-to-one

relation between real and computer generated images, they applied a Cyclic-

GAN [100] which has two parts of Real to Synthesized GAN (called real2synth)

and Synthesized to Real GAN (called synth2real). Each of this GANs has its

own generator and discriminator. Mueller et al. controlled the process with two

losses; first converting synthesized image to real and calculating synthetic-to-

real loss and again converting the result to synthesized image and calculating

real-to-synthetic loss. They also randomly put some backgrounds behind the

hands to make the images more realistic. Moreover, to create occlusion on the

hands, they artificially put some objects in front of the hands to have some oc-

cluded frames in the dataset as well. They used ResNet [31] architecture for their

feature extraction network to take advantage of residual blocks. Figure 12 shows

the different steps of dataset production and hand pose estimation of Mueller et
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al.’s paper [56].

Spurr et al. [75] also used this cyclic concept for making a one-to-one re-

lation between RGB image to 3D hand joints pose. They used GAN and Vari-

ational Autoencoder (VAE) to transfer the images to a latent space and then

transfer it to the other domain. With that, they tried to map every RGB hand

image to a 3D pose and use this map in the hand pose estimation task.

1.3 Effective Utilization of Synthetic Samples

Here, we propose two methods that develop convention approaches of utilizing

synthetic dataset for effective synthetic-to-real domain generalization, resulting

better 3D hand pose estimation performance against real images. First, in Chap-

ter 4, we propose a generation methodof synthetic hand motions, not only to

overcome the domain gap with continuous, but to shrink search space of hand

pose estimation for a given input image, considering temporal feature of suc-

cessive poses from streaming frames. With the hand motion dataset artificially

created, we are able to extract temporal features and learn continuous estima-

tions with streaming video frames. Secondly, we propose to

1.3.1 Synthetic Sequential RGB Dataset

Most of the RGB-based 3D hand pose estimation studies have performed frame-

by-frame estimation based on independent static images. In this paper, we at-

tempt to not only consider the appearance of a hand but incorporate the temporal

movement information of a hand in motion into the learning framework, which

leads to the necessity of a large-scale dataset with sequential RGB hand images.

Conventional attemtps have built synthetic dataset that is generated for frame-
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Figure 1.8: Illustration of synthetic-real feature gap and static-successive hand

poses temporal feature difference

by-frame training, which have not made the literature to extract temporal infor-

mation from the continuous estimations from streaming frames. We propose a

novel method that generates a synthetic dataset that mimics natural human hand

movements by re-engineering annotations of an extant static hand pose dataset

into pose-flows. With the generated dataset, we train a newly proposed recurrent

framework, exploiting visuo-temporal features from sequential synthetic hand

images and emphasizing smoothness of estimations with temporal consistency

constraints. Our novel training strategy of detaching the recurrent layer of the

framework during domain finetuning from synthetic to real allows preservation

of the visuo-temporal features learned from sequential synthetic hand images.

Hand poses that are sequentially estimated consequently produce natural and

smooth hand movements which lead to more robust estimations. Utilizing tem-

poral information for 3D hand pose estimation significantly enhances general

pose estimations by outperforming state-of-the-art methods in our experiments

on hand pose estimation benchmarks.
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Figure 1.9: A diagram that shows how hand pose automatic augmentation learn-

ing system cycles.

1.3.2 Hand Pose Automatic Feature-level Augmentation

For many years, dataset augmentation has been a standard regularization tech-

nique used to reduce overfitting while training supervised learning models. Data

augmentation is particularly popular for visual recognition tasks as new data

can be generated very easily by applying image manipulations such as shift-

ing, scaling, rotation, and other affine transformations. When training LeNet5

[45], one of the most early and well-known convolutional neural network archi-

tectures, their work applied a series of transformations to the input images in

order to improve the robustness of the model. An early work of deep learning

[43] also used image transformations to generate new data when training the

renowned AlexNet model for the 2012 Large Scale Visual Recognition Chal-

lenge (ILSVRC). They claimed that dataset augmentation reduced the error rate

of the model by over 1%. Creating new data has since been a crucial component

of all recent large-scale image recognition models. Unfortunately, dataset aug-

11



mentation is not as straightforward to apply in all domains as it is for images. For

example, a recent work [71] investigated a variety of data augmentation tech-

niques for application to singing voice detection. These include adding Gaussian

noise to the input, shifting the pitch of the audio signal, time stretching, varying

the loudness of the audio signal, applying random frequency filters, and interpo-

lating between samples in input space. They found that only pitch shifting and

random frequency filtering appeared to improve model performance. While per-

forming well on audio data, these augmentation techniques cannot be applied to

other domains. As such, the process of designing, implementing, and evaluat-

ing new data augmentation techniques would need to be repeated for each new

problem.

In this work, we consider augmentation not by a domain-specific transfor-

mation, but by perturbing, interpolating, or extrapolating between existing ex-

amples. However, we choose to operate not in input space, but in a learned

feature space. Higher level representations are claimed to expand the relative

volume of plausible data points within the feature space, conversely shrinking

the space allocated for unlikely data points [5, 62]. As such, when traversing

along the manifold it is more likely to encounter realistic samples in feature

space than compared to input space. Unsupervised representation learning mod-

els offer a convenient way of learning useful feature spaces for exploring such

transformations. Recently, there has been a return to interest in such techniques,

leading to, e.g., variational autoencoders [41], generative adversarial networks

[25], and generative stochastic networks [2], each of which could be used to

generate useful feature spaces for augmentation.

By manipulating the vector representation of data within a learned feature

space a dataset can be augmented in a number of ways. One of the most basic
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transformations that can be applied to the data is to simply add random noise

to the context vector. In the context of class-imbalanced data, we believe that

extrapolation between samples could also be applied. We investigate some of

these methods to see which is most effective for improving the performance of

supervised learning models when augmented data is added to the dataset.

We propose a novel feature-level auto-augmentation method that augments

features that span a continuous space. Previous attempts of auto-augmentation

are mainly consisted of discrete action space where each action corresponds to

a augmentation policy (e.g. Shear-X translation, Brightness, Inversion ane etc.).

Searches for augmentation policies in continuous space require for a policy net-

work to have a far more delicate variations [48]. In terms of augmentation, we

first emphasize on enlarging the training distribution of humand hand postures.

This, however, allows robustness only against 3D pose estimations, and not nec-

essarily in 2D estimations. Hands may appear variously within images depend-

ing on the illuminating condition, skin color, shades, hairs, wrinkles and more.

A fixed set of training data limits its distribution of image space features. We

thus utilize random images (not necessarily with hands in them) and synthesize

them in a feature space in order to ‘hallucinate’ the network, so that general

image encoding can be performed. As mentioned earlier in this section, aug-

mentation in feature space is economical and efficient for training data-hungry

neural networks. Enlarge the distribution of input images allow our network to

generalize over various image inputs. For automation of the augmentation, we

sample a hand pose vector from a pre-defined distribution that span a physically

plausible human hand pose space. The distribution is trained to evolve to sample

better pose hallucination features in an adversarial manner against the training

loss.
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Chapter 2

Related Works

2.1 RGB Synthetic Hand Pose Datasets

As mentioned earlier, RGB-based 3D hand pose estimation literature has diffi-

culty of collecting scalable dataset due to challenges in annotations and privacy

issues. Many hand pose estimation methods therefore have proposed, utilized

and publicized their own synthetic datasets.

As an early approach, SynthHands [58] dataset is proposed. The dataset

consists of total 63,530 images of synthetic hands, with which corresponding

depth images are provided. The postures are collected based on two subjects,

and the viewpoints toward the poses are in egocentric perspective. While the

dataset was one of the first synthetic dataset proposed, the posture distribution

within the dataset is limited based on two subjects in egocentric viewpoints.

Figures 2.1, 2.2 and 2.3 depict examples of SynthHands data.
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Figure 2.1: Examples of SynthHands data samples from [58].

Figure 2.2: Examples of SynthHands data samples from [58].
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Figure 2.3: Examples of SynthHands data samples from [58].

Unlike SynthHands, Rendered Handpose Dataset (RHD) [102] consists of

data samples in 3rd-person view. The dataset has 41K/2.7K training/testing im-

age samples which is a smaller dataset compared to SynthHands, their postures

are collected based on twenty different subjects. This allows the dataset to cover

a larger distribution of hand pose space. However, as depicted in Figures 2.4 and

2.5, realistic image-level features are not present in the dataset.
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Figure 2.4: Examples of Rendered Handpose Dataset data samples from [102].

Figure 2.5: Examples of Rendered Handpose Dataset data samples from [102].

However, the generalization power of RGB synthetic hand dataset is no-

torious for cross-domain usage for real images samples. The encoded features

based on learning from the synthetic datasets are known to be not robust against

variations in skin texture and color along with various RGB background of real

images. Since RGB real image samples with accurate annotations are difficult

to obtain, as mentioned earlier, there have been attempts to augment/generate

real images based on synthetic samples. FreiHand (FH) dataset is mainly com-

posed of approximately 40,000 real hand image samples of which background

is composited with chroma key setting [103]. Figures 2.6 and 2.7 illustrate their
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data samples. The background can then be replaceable with any random im-

ages, allowing various RGB versions to be generated with a limited set of hand

samples. Although their final data adds up to 120,000 single hand images, the

distribution of hand postures that are spanned by the data is limited. Their image

features can, theoretically, be augmented in infinite versions.

Figure 2.6: Examples of FreiHand data samples from [103].
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Figure 2.7: Examples of FreiHand data samples from [103].

Such effort is extended with style transfer from synthetic to real domain.

The work [56] proposes an approach for the synthetic generation of training

data that is based on a geometrically consistent image-to-image translation net-

work. They use a neural network that translates synthetic images to real images,

such that the so-generated images follow the same statistical distribution as real-

world hand images. For training this translation network they combine an ad-

versarial loss and a cycle-consistency loss with a geometric consistency loss in

order to preserve geometric properties (such as hand pose) during translation.

Although using synthesized dataset is easy to generate and annotate, they
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lack generalization power. As the image generated by this devices are computer

generated, it will not work very well on real-world hand images. To overcome

this issue they used a conditioned GAN [65] called GeoConGAN to transfer the

computer generated images to real images. Also, to reach a better one-to-one

relation between real and computer generated images, they applied a Cyclic-

GAN [100] which has two parts of Real to Synthesized GAN (called real2synth)

and Synthesized to Real GAN (called synth2real). Each of this GANs has its

own generator and discriminator. Mueller et al. controlled the process with two

losses; first converting synthesized image to real and calculating synthetic-to-

real loss and again converting the result to synthesized image and calculating

real-to-synthetic loss. They also randomly put some backgrounds behind the

hands to make the images more realistic. Moreover, to create occlusion on the

hands, they artificially put some objects in front of the hands to have some oc-

cluded frames in the dataset as well. They used ResNet [31] architecture for their

feature extraction network to take advantage of residual blocks. Figure 12 shows

the different steps of dataset production and hand pose estimation of Mueller et

al.’s paper [56]. The resultant images of their work are illustrated in Figures 2.8,

2.9 and 2.10

Figure 2.8: Comparisons data samples that are differently generated. The image

is retrieved from [56].

20



Figure 2.9: Comparisons data samples that are differently generated. The image

is retrieved from [56].

Figure 2.10: Examples of data samples generated by [56].

Spurr et al. [75] also used this cyclic concept for making a one-to-one re-

lation between RGB image to 3D hand joints pose. They used GAN and Vari-

ational Autoencoder (VAE) to transfer the images to a latent space and then

transfer it to the other domain. With that, they tried to map every RGB hand

image to a 3D pose and use this map in the hand pose estimation task. The re-

sults of traverses of latent variables learned by the method is illustrated in Figure

2.11.
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Figure 2.11: Examples of data samples generated by [75].

Hands are very likely to be occluded when captured in a 2D plane. This

is mainly because of interactions with various objects that hands maneuver in

mundane basis. This naturally brings up some theories that if object shapes can

be approximated from the image, the hands that co-pose with the object can

be more easily estimated in terms of their postures and shapes. So, recently,

ObMan [28], a RGB synthetic dataset of hands that interact with daily objects,

is proposed in order to solve such occlusion issues. While the dataset provides

150K images of hands in 3rd/egocentric view points along with annotations for

vertices of 3D hand mesh estimations, it also provides annotations pose/shapes

for objects. Many attempts recently are tried to tackle hand pose estimations

when inputs are based on hands that are interacting with objects. Some examples

of ObMan dataset are illustrated in Figures 2.12 and 2.13.
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Figure 2.12: Examples of synthetic data samples generated by [28].

Figure 2.13: Examples of synthetic data samples generated by [28].

Our synthetic data generation is mainly motivated by the work of [6]. They

implement MANO to generate synthetic samples based on MANO outputs and

reproject them to 2D planes. Their synthetic dataset is mainly for pre-training

their network before fine-tuning to real domain, which we later in Chapter 4
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show that such finetuning is not working from synthetic to real without addi-

tional network structure constraints. Examples of their dataset is shown in Fig-

ure 2.14.

Figure 2.14: Examples of synthetic data samples generated by [6].

2.2 Use-Cases of Synthetic Data

2.2.1 Pretraining with Synthetics

It is common in the literature of 3D hand pose estimation to pretrain a network

with a synthetic dataset and then finetune to real domain. This is due to the is-

sue that RGB hand datasets are not large compared to other computer vision

problems. In order to make methods to generalize over the given training set,

the network needs to be able to learn the pose distribution of physically real-

istic postures in 3D space. To overcome the issue many methods pretrain their

networks with synthetically generated samples. SynthHands dataset [58] is first

introduced for this purpose. To reduce the learning space of complex networks

such as ResNet50 [31], synthetic samples were naively generated with MANO
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[69] and used for pretraining before finetuning to real domain [6, 102, 56]. The

complexity is even more required when postures of objects that are interacting

target hands are also considered to be estimated. This also leads more power-

ful set of synthetic samples. Recent works like [20, 39] utilize ObMan dataset

for pretraining in order to reduce the search space of manifolds of human hand

poses.

2.2.2 Simultaneous Feeding

Synthetic samples can also be fed along with real samples as concatenated sam-

ples in order to induce network training to learn general image semantic en-

coding that can be universally utilized for both synthetic and real [57]. Such

approach is valid in only depth-based HPE tasks where domain gap from real

to synthetic is not large compared to RGB images. HandAugment [98] also

augments depth-based data because of its image-level domain gap between syn-

thetic and real are small.

2.2.3 Generative Inference:

Generate and Match Synthetic Templates

Instead of discriminative approach where methods directly regress 3D coordi-

nates for each joint, there exist generative approaches in which methods try to

rather match pre-defined template to current estimation. Conventional methods

include fitting a pre-defined model, setting the system as an inverse kinematic

problem [64]. Recently, MANO hand model [69, 29] is a synthetic mesh gen-

erative model that takes two low-dimensional parameters θ and β as inputs for

controlling the pose and the shape, respectively, of the 3D hand mesh outputs.

MANO innately constratints itself from estimating physically unrealistic hand
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postures as outputs unless very extreme values are inputted. After MANO is

introduced, recent works thus have developed to estimate MANO parameters

instead of 3D coordinates for each joints [6, 27, 26]. More details of MANO

will be introduced in Chapter 3.
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Chapter 3

Preliminaries: 3D Hand Mesh Model

3.1 MANO Hand Model

Figure 3.1: Illustration a MANO layer that takes two latent parameters, pose

θ and shape β. MANO outputs 3D hand mesh model that is decided by the

parameters.

As depicted in Figure 3.1, MANO hand model [29, 69] is a mesh deformation

model that takes two low-dimensional parameters θ and β as inputs for con-

trolling the pose and the shape, respectively, of the 3D hand mesh outputs. The

general formulation of MANO model M , with a given mean template T̄ , is as
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follows:

M(θ, β) = W (Tp(θ, β), J(β), θ, ω), (3.1)

Tp(θ, β) = T̄ +Bp(θ) +Bs(β) (3.2)

where J(·) yields 3D joint locations using a kinematic tree The locations de-

pend on shape parameters. These are learned as a sparse linear regression matrix

J from mesh vertices. W (·) represents the linear blend skinning function that

is applied with blend weights ω. Tp(·) defines the overall shape for the mesh

model based on pre-defined deformation criteria with pose and shape While

Bs(·) allows the base shape to vary with identity, Bp(·) captures deformations

of the mesh as a function of the bending of the joints. The pose and shape blend

shapes are defined as the linear combination of a set of deformations, i.e. vertex

offsets:

Bp(θ;P) =
9K∑
n=1

(Rn(θ)−Rn(θ∗))Pn, (3.3)

Bs(θ;S) =

|β|∑
n=1

βnSn. (3.4)

Here Pn ∈ P are the pose blend shapes andK is the number of parts in the hand

model. Rn(θ) indexes into the n-th element of a vector The βn are linear coef-

ficients and the vectors Sn ∈ S are principal components in a low-dimensional

shape basis that are learned.

A PyTorch implementation of MANO modeling function with trained pa-

rameters (S,P,J , T̄ , ω) is provided by [29]. MANO model takes up to 45-

dimensional pose parameters θ and 10-dimensional shape parameters β while

the original MANO framework uses 6-dimensional PCA (principal component

analysis) subspace of θ for computational efficiency. We refer the original work

of MANO [69] for more insights.
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3.2 2D Reprojeciton of MANO Hands

Figure 3.2: Orthographic reprojection 3D Mesh vertices and joints on a 2D plane

based on rotation R, translation t and scale s factors.

After 3D estimations for mesh vertices M(θ, β) and joints J(θ, β) are com-

puted by MANO model, in [6], the location of joints J(β) can be globally

rotated based on the pose θ, denoted as Rθ, to obtain a hand posture P with

corresponding 3D coordinates of 21 joints:

J(θ, β) = Rθ(J(β)). (3.5)

The 3D joint localization estimations can then be re-projected to 2D image plane

with a weak-perspective camera model to acquire 2D estimations with a given

rotation matrix R ∈ SO(3), a translation t ∈ R2 and a scaling factor s ∈ R+ :

M2D = sΠRM(θ, β) + t (3.6)

J2D = sΠRJ(θ, β) + t (3.7)

where Π represents orthographic projections. Hand mesh M(θ, β) is composed

of 1,538 mesh faces and defined by 3D coordinates of 778 vertices, and joint

locations J(θ, β) are represented by 3D coordinates of 21 joints. As illustrated
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in Figure 3.2, the re-projected 2D coordinates of M2D and J2D are represented

in 2D locations in the image coordinates. MANO hand model can be utilized

for both synthetic hand data generation and pose and shape estimator [6].
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Chapter 4

SeqHAND:

RGB-Sequence-Based

3D Hand Pose and Shape Estimation

4.1 Motivation

Since expressions of hands reflect much of human behavioral features in a daily

basis, hand pose estimations are essential for many human-computer interac-

tions, such as augmented reality (AR), virtual reality (VR) [36] and computer

vision tasks that require gesture tracking [11]. Hand pose estimations conven-

tionally struggle from an extensive space of pose articulations and occlusions

including self-occlusions. Most recent 3D hand pose estimators that take se-

quential depth image frames as inputs have tried to enhance their performance

considering temporal information of hand motions [33, 87, 59, 52]. Some works

in the literature has tried to enhance estimation performance for RGB-only situ-

ations with stereo vision data, stereoscopic vision data is, however, expensive to

acquire and easily distracted from high complexity within scenes. Motion con-
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text provides temporal features for narrower search space, hand personalizing,

robustness to occlusion and refinement of estimations. We focus on the hand

pose estimation considering its movements using only RGB image sequences

for better inference of 3D spatial information.

Although the problem of estimating a hand pose in a single RGB image

is an ill-posed problem, its performance is rapidly improving due to the de-

velopment of various deep learning networks [6, 56, 23]. However, most studies

have focused on accurately estimating 3D joint locations for each image without

considering motion tendency. Pose of hands changes very quickly and in many

cases contains more information on the movements of the successive poses than

on the momentary ones. In addition, the current pose is greatly affected by the

pose from the previous frames. Until now, there has been a lack of research on

the estimation network considering the continuous changes of poses. The main

reason that conventional RGB-based deep 3D hand pose estimators [6, 96, 3, 56]

have only proposed frameworks with per-frame pose estimation approaches is

that any large scale RGB sequential hand image dataset has not been avail-

able unlike the datasets with static images of hand poses. The diversity and the

authenticity of hand motions along with generalization over skin colors, back-

grounds and occlusions is a challenging factor for a dataset to be assured.

In this section, we present a novel perspective on hand pose and shape esti-

mation tasks and propose to consider temporal movements of hands as well as

their appearances for more accurate 3D estimations of hand poses based on RGB

image inputs. In order to train a framework that exploits visuo-temporal features

to manage successive hand pose images, we are required to have sufficient pose

data samples that are sequentially correlated. We thus propose a new generation

method of dataset, SeqHAND dataset, with sequential synthetic RGB images
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of natural hand movements, re-enginerring extant static hand pose annotations

of BigHand2.2M dataset [93]. To effectively test our generated dataset, we ex-

tend the framework of [6] with a recurrent layer based on empirical validity of

its structure. Also since it is widely accepted that models trained with synthetic

images perform poorly on real images [56], we present a new training pipeline

to preserve pre-trained image-level temporal mapping during synthetic-real do-

main transition. Our contributions to this end are as follows :

• We design a new generation method for sequential RGB image dataset

with realistic hand motions that allows 3D hand pose and shape estima-

tors to learn the dynamics of hand pose variations (See Figure 4.1) by

proposing a pose-flow generation procedure.

• We propose a new recurrent framework with convolution-LSTM layer to

directly exploit visuo-temporal information from hand pose and shape

variations in image space and map to 3D space.

• We present a novel training pipeline of preserving extracted spatio-temporal

features from sequential RGB hand images during domain finetuning from

synthetic to real.

• Our approach achieves not only state-of-the-art performance in standard

3D hand pose estimation dataset benchmarks, but also smooth human-like

3D pose fittings for the image sequences.

To the best of our knowledge, we propose the first deep-learning based 3D hand

pose and shape estimator without any external 2D pose estimator that exploits

temporal information directly from sequential RGB images.
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Figure 4.1: Illustrations of sequential 2D images of hand pose-flows that are

generated by the proposed method. Hand poses in each frame are ensured to be

physically feasible.

4.2 Related Works

Many approaches of hand pose estimation (HPE) have been actively studied. To

acquire hand information, the literature of single hand 3D pose estimation has

been mainly based on visual inputs of depth sensors and/or RGB cameras.

4.2.1 Per-frame RGB-based 3D HPE

As views of a single 3D scene in multiple perspectives are correlated, efforts

of 3D estimation based on multiple RGB images of a hand have also been

introduced [79, 73, 24, 61, 17]. Multi-view camera setups allow refinements

against occlusions, segmentation enhancements and better sense of depth. In

the work of [73], bootstrapping pose estimations among images from multiple
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perspectives help the estimator to retrain badly annotated data samples and re-

fine against occlusions. A pair of stereo images provides similar effects in a

more limited setting. Integration of paired stereo images has yielded better 3D

hand pose estimations through manipulations of disparity between paired im-

ages [63, 70, 95, 67].

By providing both color and depth information, the RGB-D inputs in a hy-

brid input type overcome limitations of depth-only images such as occlusions.

Additional color information presents pixel-level clusters based on color simi-

larities and light contrasts which enables more robustness to occlusions occur-

ring even in egocentric views [53, 58, 99, 60, 77]. In [92], after a depth-based

model is trained with abundant depth image data, an RGB-based 3D pose esti-

mation framework is trained through transfer learning with privileged high-level

features learned from the depth-only setting. Cai et al. [7] is trained in a weakly-

supervised manner with a depth regularizer which is trained through depth map

matching on RGB-only estimations.

Monocular RGB-only setup is even more challenging because it only pro-

vides visual 2D vision of hand poses. With deep learning methods that have al-

lowed successful achievements of hand detection [31, 44], deep pose estimators

have recently been able to concentrate on per-frame hand 3D pose estimation

problems [102]. To overcome the lack of 3D spatial information from the 2D

inputs, there are needs of constraints and guidance to infer 3D hand postures

[64]. Most recently, works of [6, 96, 3] employ a prior hand model of MANO

[69] and have achieved significant performance improvement in the RGB-only

setup.
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4.2.2 Exploitation of Temporal Information in 3D HPE

Considering temporal features of depth maps, sequential data of hand pose depth

images [95, 93, 58, 59] have been trained with hand pose estimators. The tem-

poral features of hand pose variations are used for encoding temporal variations

of hand poses with recurrent structure of a model [33, 87], modeling of hand

shape space [40], and refinement of current estimations [59, 52]. With sequential

monocular RGB-D inputs, Taylor et al. [83] optimize surface hand shape mod-

els, updating subdivision surfaces on corresponding 3D hand geometric mod-

els. Temporal feature exploitation has not been done for deep-learning based

3D hand pose estimators that take color images as inputs because large scale

sequential RGB hand pose datasets have not been available in the literature. We

share the essential motivation with the work of [8], but believe that, even with-

out the assistance of 2D pose estimation results, sequential RGB images provide

sufficient temporal information and spatial constraints for better 3D hand pose

inference with robustness to occlusions.

4.2.3 Generated Synthetic Hand Data

Since RGB images also consist of background noise and color diversity of hands

that distract pose estimations, synthetic RGB data samples are generated from

the hand model to incite the robustness of models [7, 6, 23, 58]. In [75, 89],

cross-modal data is embedded in a latent space, which allows 3D pose label-

ing of unlabeled samples generated from (disentangled) latent factor traverses.

Mueller et al. [56] had applied cycleGAN [101] for realistic appearances of gen-

erated synthetic samples to reduce the synthetic-real domain gap. While there

have been recent attempts to solve an issue of lacking reliable RGB datasets
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Figure 4.2: Each frame of sequential hand motion videos is composed of varying

poses and moving backgrounds.

through generations of hand images [6, 102, 56, 7, 75], most of the works have

focused on generation of realistic appearances of hands that are not in motions.

To strictly imitate human perception of hand poses, it is critical for RGB-based

hand pose estimators to understand the dynamics of pose variations in a spatio-

temporal space. We further consider that synthetic hand pose dataset in realistic

motions provides efficient information for pose estimations as much as appear-

ances.

4.3 Generation of SeqHAND Dataset

Although the potential of temporal features have been shown promising results

for 3D HPE tasks [8, 59, 83], large scale RGB sequential hand image datasets

have not been available during recent years in the literature of RGB-based 3D

37



HPE. In this section, we propose a generation method to create short clip sam-

ples of hand motions that consist of sequential RGB frames of synthetic hands.

In this section, we describe a new generation method of hand motions that con-

sist of sequential RGB frames of synthetic hands.

To generate sequential RGB image data with human-like hand motions, all

poses during the variation from an initial pose to a final pose need to be realis-

tic. We thus utilize BigHand2.2M (BH) [93] for sequential hand motion image

dataset generation. BH dataset consists of 2.2 million pose samples with 3D an-

notations for joint locations acquired from 2 hour-long hand motions collected

from 10 real subjects. With BH datasets, the generated samples are expected

to inherit the manifold of its real human hand articulation space and kinemat-

ics of real hand postures. As 3D mapping of BH samples using t-SNE [51] in

Figure 4.3 shows, BH is known that the pose samples are densely and widely

collected. Such density of BH dataset with a more complete range of variation

is considered sufficient for various pose generations.

We firstly define a pose-flow, a set of poses at each time step during the

variation. Putting gradually changing poses in a sequential manner, we newly

propose a pose-flow generation method. For each pose-flow generation, an ini-

tial and a final poses, Pinitial and Pfinal, are independently and randomly se-

lected from BH dataset. While varying from the initial to the final pose during n

frames, the coordinates of joints are updated by α/n of the difference between

the current coordinates and the ones of the final pose.1 The update size α is em-

pirically chosen for the desirable speed of pose variations. A pose PBHi from

BH dataset that is the nearest to the updated pose in terms of Euclidean distance
1Note that direct random samplings from continuous pose parameter space θ ∈ R does not

assure diversity and authenticity of poses [69].
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Figure 4.3: 3D t-SNE visualization of 10,000 of BH data samples randomly

selected. BH dataset completes a pose space that covers previously reported

datasets, having a dense pool of related neighboring poses.

is then newly selected as the current pose for the k-th frame:

P0 = PBHinitial (4.1)

Pupdated = Pk−1 −
α

n
(Pk−1 − PBHfinal) (4.2)

Pk = PBHi s.t. min
i
||Pupdated − PBHi ||. (4.3)

The overall procedure of the Pose-flow generation is summarized in Figure 4.4.

The intermediate pose (Pupdated) is calculated as stochastic update. Such stochas-

ticity of our pose updates helps avoiding strict updates of pose gradients and

encourages wandering more within the pose space. This is intended to lower the

frequency of the mean pose and encourage various trajectories from a pose to
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Figure 4.4: An illustration of the pose-flow generation procedure. All poses per

pose-flow are selected from the annotations of BH dataset. At each frame, a

current pose is updated by the difference between the previous pose and the

final pose. The pose nearest to the updated pose is then selected for the frame.

another. Pose selections from the BH annotations, again, allows assurance on the

authencity of hand poses during the variation. The procedure of the Pose-flow

generation is illustrated in Fig 4.4.

To generate RGB images for a pose, a shallow four-layer network with

which takes inputs of 3D coordinates for joints of BH annotations is trained

to output corresponding pose parameters θ for MANO hand model. For each

pose at a frame, we feed corresponding 21 joint location coordinates to the this

network to acquire a hand mesh model in the desired pose, which is then re-

projected to an image plane. As done in [6], we assign each vertex in a mesh
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the RGB value of predefined color templates of hands to create appearances of

hands. Sampled hand shape parameter β ∈ [−2, 2]10 and selected color tem-

plate are set unchanged along per flow. Camera parameters of rotation R, scale

s and translation t factors are independently sampled for initial and final poses

and updated at each frame in the same way as the poses are. All frames are in

the size of w and h. Figure 4.1 depicts illustrations of our generated pose-flows.

Further mimicking images of hand motions in the wild, we sample two (ini-

tial and ending) random patches from VOC2012 data [21] with the size of w

and h and move the location of the patch for backgrounds along the frames.

As Table 4.1 denotes, the generated SeqHAND dataset provides not only both

3rd-person and egocentric viewpoints of hand postures but also sequential RGB

images of hand poses that firstly allow data-hungry neural networks to exploit

visuo-temporal features directly from RGB inputs. 2

4.4 SeqHand-Net for Visuo-Temporal

Feature Exploitation

With SeqHAND dataset, we are able to overcome the scarcity of sequential RGB

dataset which limits conventional RGB-based 3D HPE methods from exploit-

ing temporal image features. The overall hand pose estimation scenario in our

problem scope is conducted with an exterior hand detector that localizes a hand

from streaming frames. Motivated by [6], we design sequential hand pose and

shape estimation network (SeqHAND-Net). On top of the encoder network of

[6], we incorporate convolution-LSTM (ConvLSTM) layer [88] to capture se-
2Although we can generate as many synthetic data as we want, our SeqHand dataset contains

400K/10K samples used for training/validation.
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Figure 4.5: Examples of SeqHAND data
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Table 4.1: Among the contemporary 3D hand pose datasets, SeqHAND dataset

is the first dataset for 3D hand pose estimations that provides sequential RGB

hand image frames along with stable annotations in both 3rd-person and ego-

centric perspectives.

Datasets RGB/Depth Real/Synth Static/Sequential 3rd/Ego view # of frames

SynthHands[58] RGB+Depth Synth Static Ego 63k

RHD[102] RGB+Depth Synth Static 3rd 43.7k

FPHA[22] RGB+Depth Real Sequential Ego 100k

NYU [85] Depth Real Sequential 3rd 80k

ICVL [82] Depth Real Sequential 3rd 332.5k

MSRA15 [80] Depth Real Sequential 3rd 76,375

MSRC [72] Depth Synth Sequential 3rd+Ego 100k

SynHand5M [54] Depth Synth Sequential 3rd 5M

GANerated [56] RGB Synth Static Ego 330k

SeqHAND (Ours) RGB Synth Sequential 3rd+Ego 410k

quential relationship between consecutive hand poses. With SeqHAND dataset,

our model is able to effectively exploit high-level visuo-temporal features in

spite of such simple extension with a recurrent layer. Our method does not con-

sider additional hand 2D joint locations as inputs, and purely performs 3D hand

pose estimation based on sequentially streaming RGB images in an effort to

overcome the dependency on external 2D pose estimators. We also propose, in

this section, a training pipeline for domain adaptation from synthetic to real,

adapting low-level features with real hand images while preserving high-level

visuo-temporal features of hand motions.

From each frame, a cropped hand image is fed into SeqHAND-Net as il-

lustrated in Figure 4.6. Our problem scope is to better perform hand pose es-

timations on streaming cropped frames that are unseen by the estimator. The
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encoder of our SeqHAND-Net has the backbone structure of ResNet-50[31]

and, for training, expects sequential inputs with k frames. A single ConvLSTM

is implemented right before the last layer as a recurrent visual feature extractor

so that the dynamics of hand motions are embedded in the highest-level latent

space. Learning of hand motion sequential dynamics in the high-level space is

important since low-level visual features are changed with the ConvLSTM layer

fixed during finetuning for real hand images. After the recurrent layer, a simple

linear mapping layer from hidden features to the output vector is set. The en-

coder’s resultant vector consists of parameters for pose θ ∈ R10, shape β ∈ R10,

scale s ∈ R+, translation t ∈ R2 and rotation r ∈ R3 which turns into a matrix

R ∈ SO(3) through Rodrigues rotation formula for Eqs (3.6) and (3.7).
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Figure 4.6: Our training strategy for preservation of temporal features during

domain adaptation synth-to-real. SeqHAND-Net is created from [6] with an ex-

tra visuo-temporal feature exploitation layer for sequential RGB inputs. Dur-

ing finetuning, SeqHAND-Net considers a static real data as 1-frame-long se-

quence. The temporal high-level feature encoding is preserved while low-level

image feature encoding layers are finetuned.

4.4.1 Synth-to-Real Domain Transfer

with Preservation of Temporal Features

Since there are no large scale dataset with sequential images of real hands with

reliable 3D joint labels, we first train the encoder with SeqHAND dataset for the

encoder to understand natural continuity of hand motion dynamics. Then, while

the ConvLSTM layers are fixed, the encoder is fine-tuned with real hand image
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Figure 4.7: Illustration of synthetic-real feature gap and static-successive hand

poses temporal feature difference

datasets to reduce the real-synthetic domain gap. As mentioned earlier, many re-

cent researches have used synthetic hand images for pre-training and finetuned

into real domain to overcome the scarcity of real hand images. While finetuning

into real domain may allow faster training convergence, further training with a

smaller dataset not only causes overfitting and may result in catastrophic for-

getting [42]. To preserve visuo-temporal features learned from synthetic hand

motions of SeqHAND dataset, we exclude the ConvLSTM layer of SeqHAND-

Net from domain transfer to real hand images, allowing the network to only

finetune low-level image features. Only the ‘Encoder’ and ‘MLP’ layers from

Figure 4.6 are finetuned with a real static hand image dataset (e.g. FreiHand

[103]). SeqHAND-Net is therefore trained, considering each image sample as

1-frame-long sequential image during domain transition to real.

4.4.2 Training Objectives

The followings are the types of criteria used for training our proposed frame-

work to consider visuo-temporal features and emphasize the temporal smooth-
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ness of estimations :

2D joint regression loss

The re-projected 2D joint loss is represented as :

LJ2D = ||J2D − xJ2D||1, (4.4)

where x2D represents the ground-truth 2D locations of hand joints within a

frame image. We have used the L1 loss because of inaccuracies in annotations

in the training datasets.

3D joint regression loss

The ground-truth joint locations and the ones predicted are regressed to be the

same using the following loss:

LJ3D = ||RJ(θ, β)− xJ3D||22, (4.5)

where xJ3D represents ground-truth 3D joint coordinates. If a dataset provides

ground-truth coordinates of 3D vertex points (e.g. FreiHand dataset), the 3D

coordinates of each vertex predicted and the ones of ground-truth is minimized

as done for 3D joint loss, based on the following loss:

LM3D = ||RM(θ, β)− xM3D||22 (4.6)

where xM3D represents ground-truth 3D mesh vertex coordinates.

Hand mask fitting loss

The hand mask loss is proposed in [?] to fit the shape and pose predictions in the

binary mask of hands in the image plane. This loss ensures predicted coordinates
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of mesh vertices to be inside of a hand region when re-projected:

Lmask = 1− 1

N

∑
i

H(M i
2D), H(x) =


1, if x inside a hand region.

0, otherwise.
(4.7)

where H is a hand mask indicator function that tells if vertex point x is inside

the hand region or not. The loss represents the percentage of vertices that are

outside the region. See Figure 4.8 for imagery understanding of the hand mask

fitting loss.

Figure 4.8: Red points represent re-projected 2D vertices of 3D mesh models.

Hand mask fitting loss is calculated with the number of 2D vertices outside of

the white area of hand mask images.

Temporal consistency loss

For pre-training on SeqHAND dataset, our method needs to be constrained with

temporal consistency to ensure smoothness of pose and shape predictions. Sim-

ilar to [8], we have adopted the temporal consistency loss for smoothness of

temporal variation of poses:

Ltemp = ||βt−1 − βt||22 + λθtemp||θt−1 − θt||22. (4.8)

Considering the fact that all hands in a sequence is the same hand for all the

frames, we have set the constraint hyper-parameter λθtemp a comparably small

number as 0.01 so that temporal variation of hand shapes per image sequence
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data to be low while pose variation is less constrained but is still assured of tem-

poral smoothness. While finely penalizing current estimations with the previous

ones, this loss allows the reduction of search space and natural 3D hand motion

estimations.

Camera parameter regression loss

During training with SeqHAND dataset where all ground-truths for pose, shape

and viewpoint parameters {θ, β, r, t, s} are available, our model is trained with

L2-norm loss between predictions and the ground-truth.

Lcam =
∑

i∈{θ,β,r,t,s}

||̂i− i||22 (4.9)

where î and i respectively refer to predicted and ground-truth parameters for

pose, shape and viewpoint.

4.5 Experiments

Datasets for Training

For visuo-temporal feature encodings of sequential RGB hand images, we pre-

train SeqHAND-Net with our SeqHAND dataset. We have generated 40,000 se-

quences for training and 1,000 for validate samples each of which is 10-frames-

long. All images are generated in the size of 224×224 fitting ResNet input size.

SeqHAND data samples are exemplified in Figure 4.1 and 4.2.

To finetune SeqHAND-Net for synthetic-real domain gap reduction, we

have used STB (Stereo Hand Pose Tracking Benchmark) [95] and FR (Frei-

Hand) [103] datasets. STB dataset consists of real hand images captured in a

sequential manner during 18,000 frames with 6 different lighting conditions and
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backgrounds. Each frame image is labeled with 2D and 3D annotations of 21

joints. Since STB dataset has annotations for joint locations of palm centers in-

stead of wrist, we have interpolated related mesh vertices of MANO hand model

to mach the annotation of STB dataset. The dataset is divided into training and

testing sets as done in [6].

FR dataset has 130,240 data samples that are made up of 32,560 non-sequential

real hand images with four different backgrounds. Since the dataset has hands

that are centered within the image planes, we have modified each sample by re-

positioning the hand randomly within the image for more robust training results.

FR dataset provides MANO-friendly annotations of 21 joint 3D/2D locations

along with 778 vertex ground-truth 2D/3D coordinates with hand masks.

We have finetuned the SeqHAND-Net pretrained on SeqHAND dataset with

real-hand image datasets mentioned above in a non-sequential manner while

conserving hand motion dynamic features detached from further learning.

Datasets for Evaluation

We evaluate various framework structures that consider temporal features on

the validation set of SeqHAND dataset for the logical framework choice. Dur-

ing training with real hand images, we have used our synthetic image sequences

with various different backgrounds. For the comparison against other state-of-

the-art methods, we have selected standard hand pose estimation datasets of the

splitted test set of STB, EgoDexter (ED) [58] and Dexter+Obeject (DO) [78] in

which there exists temporal relations among data samples since our network re-

quires sequential RGB inputs for fair comparisons. While STB and DO datasets

consist of real hand images in 3rd-person viewpoints, ED dataset has samples

that are in egocentric perspective. For all datasets, our method is evaluated on
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every frame of input sequences.

We evaluate our method on STB dataset with pose estimations per frame

while, for ED and DO datasets, the dataset is re-designed so that every frame

with 3D annotations would be the last frame of 10 frame-long image sequence.

Our method is therefore evaluated at the last frame of every input sequence. This

is because our network structure is able to perform in both cases, and all image

frames of ED and dataset is not annotated and skipped. The first image sample

for ED and DO datasets are repeated to make 10-frame long sequential input

data.

Metrics

For evaluation results, we measure the percentage of correct key-points for 3D

joint locations (3D-PCK) along with the area under the curve (AUC) of var-

ious thresholds. The PCK measurement that quantifies the fraction of correct

predictions within an error threshold τ [90]. We measure each individual joint

respectively and took their average as an overall metric. Using different τ val-

ues, we yield a PCK curve. Therefore, the Area Under Curve (AUC) can be

obtained as a holistic measurement across different decision thresholds. In addi-

tion, we provide average Euclidean distance error for all 2D/3D joint key-points

so that more absolute comparisons can be made.

Hand Localizations

or all experiments, we have used MobileNet+SSD version of hand detection

implementation [44] trained with a hand segmentation dataset [4] for providing

sequential cropped hand images to SeqHAND-Net. For localized hands with

tight bounding rectangular boxes, we choose the longer edge with a length size
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l and crop the region based on the center point of boxes so that the cropped

images have a square ratio with width and height size of 2.2 ∗ l, as done in [6].

Table 4.2: Ablation study results of various structures of the framework pro-

posed in [6] for sequential inputs.

Frameworks
AUC Error (px/mm)

# params
2D 3D 2D 3D

ResNet50-Encoder (baseline) [6] 0.855 0.979 3.44 7.85 28.8M

ResNet101-Encoder [6] 0.861 0.981 3.31 7.54 47.8M

I3D-Encoder [9] 0.831 0.967 4.19 9.24 31.5M

MFNet-Encoder [46] 0.818 0.912 5.48 10.54 41.7M

ResNet50-Encoder+LSTM 0.826 0.956 4.64 9.63 39.3M

ResNet50-Encoder+ConvLSTM 0.873 0.986 3.17 7.18 43.2M

4.5.1 Versatility of Generated Poses

To quantitatively reflect the versatility of generated hand postures of SeqHAND

dataset, we measure the average angular difference between the wrist and tips of

fingers. In order to measure the angle variations for each finger, we firstly align

a metacarpal (bones within a hand palm that are proximal and connected to each

finger from a wrist) for each corresponding finger to the origin coordinates and

normalize the length to be 1. We then measure a vector from the origin to the tip

of the finger in order to measure the angle between the wrist and finger tips. The

reason we align the metacarpal line to (0, 0, 0) and (0, 1, 0) is that to identify

the measured angles for either inward variation or outward, which conclusively

reflect feasible range of finger movements.

Range of joint motion is measured on the interphalangeal joints of the hand
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which are the hinge joints between the phalanges of the fingers that provide

flexion towards the palm of the hand [14]. The degree of flexion of the proximal

interphalangeal (PIP) can be generally said to be in the range of 100◦ to 110◦. In

the case of the distal interphalangeal (DIP) joints, the greatest degree of flexion

is within 80◦.

Figure 4.9: Structure of hand bones. The images is obtained from

https://quizlet.com.
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Figure 4.10: Range of motion for PIP and DIP joints. The image is acquired

from https://www.physio-pedia.com
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Figure 4.11: Range of motion for MCP, PIP and DIP joints of SeqHAND data

samples. The range is within the least and the greatest value noted at each joint

for each finger.

Figure 4.11 summarizes overall versatility of generated postures of Seq-

HAND dataset. As it can be shown in the table, the range of angular difference

reflect that the generated postures generally follow the finger movements col-

lected from real hands.

4.5.2 Ablation Study

Framework Selection

To show the logic behind the selection of the proposed framework, we evaluate

various forms of extended baseline model [6] shown in Table 4.2 for managing

sequential inputs on our newly generated SeqHAND dataset. The extended ver-

sions of baseline encoder (ResNet-50) include the baseline model with a LSTM

layer [81], the baseline model with a ConvLSTM layer [88], the baseline en-

coder with the structure of I3D[9] and the baseline encoder with the structure

of MF-Net [46]. Both I3D-Encoder and MFNet-Encoder represent methods that

incorporate sequential inputs with 3D convolutional neural network. For I3D,

we have changed few features from the original form of I3D so that its struc-

ture fits into the hand pose estimation task. The original backbone structure of
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Table 4.3: Performances of differently (partially) trained models on ED, DO,

STB datasets.

Methods
AUC Avg. 3D Error (mm)

ED DO STB ED DO STB

Encoder + Train(SynthHAND) 0.350 0.095 0.140 52.11 100.84 68.86

Encoder + Train(SynthHAND) + Train(FH + STB) 0.397 0.516 0.985 49.18 33.12 9.80

Encoder + C-LSTM + Train(SeqHAND) 0.373 0.151 0.121 52.18 81.51 71.10

Encoder + C-LSTM + Train(SeqHAND) + Train(FH + STB) 0.444 0.581 0.981 40.94 29.41 9.82

Encoder + C-LSTM + Train(SeqHAND) + TrainC(FH + STB) 0.766 0.843 0.978 17.16 18.12 9.87

I3D with Inception modules have changed into ResNet-50 for a fair compari-

son. And, it originally performs max-poolings througout the time domain, we

however have omitted the part since we desire it to infer hand poses for every

input frame from a sequence. MFNet is another examplary 3D convolution net-

work proposed specifically for motion feature extractions. Of the candidates, the

encoder with a ConvLSTM layer has performed the best.

The Effectiveness of SeqHAND-Net and SeqHAND Dataset

To clarify the effectiveness of our proposed framework and our generated dataset,

variations of the proposed method and the baseline model are investigated. We

report AUCs of 3D PCK curves and average 3D joint location errors for ED,

DO and the evaluation set of STB datasets. In Table 4.3, ‘Encoder’ denotes

the baseline model with ResNet50 backbone structure while ‘Encoder + C-

LSTM’ denotes our proposed framework SeqHAND-Net. ‘Train(SynthHAND)’

and ‘Train(SeqHAND)’ represent training a model with synthetic hand image

dataset respectively in non-sequential and sequential manner. ‘Train(FH + STB)’

and ‘TrainC(FH + STB)’ refers to training with STB and FreiHand dataset for

the synthetic-real domain transfer with the ConvLSTM layer, respectively, at-
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Table 4.4: Average 3D joint distance (mm) to ground-truth for

RGB Sequence datasets hand pose benchmarks.

Avg. 3D Error (mm)

ED DO STB

Our Method 17.16 18.12 9.87

Bouk. et al. (RGB) [6] 51.87 33.16 9.76

Bouk. et al. (Best) [6] 45.33 25.53 9.76

Spurr et al. [75] 56.92 40.20 -

Zimmer. et al. [102] 52.77 34.75 -

tached and detached from finetuning.

We show in the Table 4.3 how much performance enhancement can be ob-

tained with SeqHAND dataset and our proposed domain adaptation strategy.

Encoder with the ConvLSTM layer finetuned to real domain consequently per-

forms similar to the encoder that does not consider visuo-temporal correla-

tions. If the ConvLSTM layer is detached from finetuning and visuo-temporal

features learned are preserved, the performance significantly improves. Also,

SeqHAND dataset does not consist with any occluded hands except for self-

occlusions. With training for FreiHand dataset, our method is able to learn the

visual features of not only real hands but also occluded real hands since Frei-

Hand dataset’s augmentations consist of occlusions. Due to the temporal con-

straint that penalizes large difference among sequential estimations, per-frame

estimation performs slightly better for the STB dataset.

Nevertheless, considering successive frames has allowed our method to be

more robust to occlusions even before domain finetuning, performing better for

DO and ED datasets than the baseline encoder. Hand movements in STB dataset

are comparably slow compared to SeqHAND, ED and DO datasets. Thus at the
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pre-trained stage, temporal dynmaic features learned from SeqHAND dataset is

redundant for STB dataset. With training for FH dataset, our method is able to

learn the visual features of not only real hands but also occluded real hands since

FH dataset’s augmentations consist of occlusions. As the result, our method per-

forms the best for the dataset with swift hand motions. Having SeqHAND data

sequences with more static hand postures would have helped our method to

perform better for STB dataset, but we have decided to clearly focus the prob-

lem scope on visuo-temporal information exploitation for robustness against

dynamic hand motions.

Figure 4.12: 3D PCK for ED
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Figure 4.13: 3D PCK for DO

Figure 4.14: 3D PCK for STB
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4.5.3 Comparison against State-of-the-art Methods

In Figures 4.12, 4.13 and 4.14, we have plotted 3D-PCK graph with various

thresholds for STB, ED and DO datasets. For STB dataset, deep-learning based

works of [6, 7, 75, 34, 56, 102] and approaches from [64, 94] are compared.

Many previous methods have reached near the maximum performance for STB

dataset. With temporal constraints and fixing the ConvLSTM layer during fine-

tuning, our method reaches a competitive performance. For both ED and DO

datasets, our method outperforms other methods. For ED dataset, contemporary

works of [102, 6, 34, 75] are compared to our method. The best performance

of our baseline [6] is reached with inputs of RGB and 2D pose estimations pro-

vided by an external 2D pose estimator. Our method results in outstanding per-

formance against other compared methods [56, 102, 6, 34, 75] for DO dataset

with heavy occlusions, which shows that the learning of pose-flow continuity

enhances robustness to occlusions. Temporal information exploitation from se-

quential RGB images affect our model to be robust against dynamically moving

scene. For more absolute comparisons, we provide our average 3D error of joint

location in Table 4.4.

We provide qualitative results in Figure 4.15 and 4.16 for visual compari-

son against a frame-by-frame 3D pose estimator, our reproduced work of [6].

All images in the figure are sequentially inputted to both estimators from left to

right. Per-frame estimations that fit postures at each frame result in unnatural 3D

hand posture changes over a sequence while our method’s leaning trajectories

biased by previous frames produces natural hand motions and robust estima-

tions to frames that lack visual information of hand postures. The feature of our

method that is trained with the temporal criterion that penalizes large change of
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pose and shape parameters allows such temporal estimation continuity. When a

frame lacks much visual information of hand postures as in the cases in Figure

4.16(b), the frame-by-frame estimator’s performance significantly decrements.

Our method, on the other hand, considers the motion context and overcomes

such issue. As illustrated in Figure 4.16(c), Our method models estimated hand

shapes as consistent as possible per sequence. During the qualitative evaluation

on a RGB image sequence of a single real hand, our method’s average differ-

ence among temporal changes of shape parameters βt−1 − βt is 4.16e−11 while

that of the frame-by-frame estimator is 2.38e−5. The average difference among

temporal changes of the pose parameters θt−1 − θt are 1.88e−6 for our method

and 6.90e−6 for the other.
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Figure 4.15: Qualitative estimation results of our method on STB dataset.
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Figure 4.16: Qualitative estimation results on Temporal Consis-

tency/Smoothness. Unlike our baseline model which performs estimations

frame-by-frame and does not consider temporal features, our method performs

smooth and temporally intuitive estimations despited of sudden and gradual

successive hand postures.
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4.6 Conclusion and Discussion

In this chapter of my dissertation, we have addressed and tackled the scarcity

of sequential RGB dataset which limits conventional methods from exploiting

temporal features for 3D HPE. We have proposed a novel method to generate

SeqHAND dataset, a dataset with sequential RGB image frames of synthetic

hand poses in motions that are interpolated from existing static pose annota-

tions. We have then also proposed a framework that exploits visuo-temporal

features for 3D hand pose estimations in a recurrent manner. We have imple-

mented cost functions considering the temporal smoothness of sequential hand

pose estimations. However, such framework would still be limited due to lack of

large scale sequential RGB hand images, so to achieve a stable and efficient so-

lution, we uniquely designed a new large-scaled hand motion dataset generation

framework that generates synthetic images with human-like hand movements

while preserving realistic appearances of hands as conventionally studied by

other works in the literature. Our proposed method outperforms other existing

approaches that take RGB-only inputs that are based on solely appearance-based

methods, and consequently produces pose-flow estimations that mimic natural

movements of human hands. We plan to enable the framework to solve (self-

)occlusion problems more robustly.

With sequential inputs, we were able to witness possibility of overcoming

conventional struggle against occlusion problems in the literature of 3D hand

pose estimations. We plan to further the project towards unifying an external

hand detector that localizes hands from raw images into a single 3D hand pose

estimator since both tasks correlate closely. In addition, such framework would

avoid tracking in-continuity, which is the reason we had to experience errors
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caused by pester-some hand tracking problems.
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Chapter 5

Hand Pose Auto-Augment

5.1 Motivation

Hand pose estimation (HPE) is an essential task for augmented reality and vir-

tual reality (collectively called as “extended reality (XR)”) systems. For in-

stance, to enable hand-based interactions with objects in XR environments,accurate

real-time estimates of the positions of hand joints in 3D world coordinates are

needed. Since hand gestures reflect elementary human behavioral patterns, hand

pose tracking enables several downstream AI applications such as gesture recog-

nition [37, 66] and human-computer interactions [35].

Recent methods have used synthetic datasets that are much larger than real

dataset to pretrain a network [58, 102, 6, 56, 20, 39]. Such efforts allow neural

networks to learn larger spaces of image semantic and hand poses before fine-

tuning to real domains, because with synthetic, large spaces of pose and images

can be artificially created while such various poses, backgrounds, skin color and

lighting conditions are hard to be covered with dataset collected with real sub-

jects. The network’s innate semantic encoding mechanism has its own limit of
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overcoming the differences of features learned from real and synthetic images.

In order for synthetic-to-real transfer to more effectively apply for neural net-

work training, the efforts of image feature domain gap reduction should thus be

performed inner-feature level, rather than image-level.

For many years, dataset augmentation has been a standard regularization

technique used to reduce overfitting while training supervised learning mod-

els. Data augmentation is particularly popular for visual recognition tasks as

new data can be generated very easily by applying image manipulations such

as shifting, scaling, rotation, and other affine transformations. When training

LeNet5 [45], one of the most early and well-known convolutional neural net-

work architectures, their work applied a series of transformations to the input

images in order to improve the robustness of the model. An early work of deep

learning [43] also used image transformations to generate new data when train-

ing the renowned AlexNet model for the 2012 Large Scale Visual Recognition

Challenge (ILSVRC). They claimed that dataset augmentation reduced the er-

ror rate of the model by over 1%. Creating new data has since been a crucial

component of all recent large-scale image recognition models. Unfortunately,

dataset augmentation is not as straightforward to apply in all domains as it is

for images. For example, a recent work [71] investigated a variety of data aug-

mentation techniques for application to singing voice detection. These include

adding Gaussian noise to the input, shifting the pitch of the audio signal, time

stretching, varying the loudness of the audio signal, applying random frequency

filters, and interpolating between samples in input space. They found that only

pitch shifting and random frequency filtering appeared to improve model per-

formance. While performing well on audio data, these augmentation techniques

cannot be applied to other domains. As such, the process of designing, imple-
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menting, and evaluating new data augmentation techniques would need to be

repeated for each new problem.

In this work, we consider augmentation not by a domain-specific transfor-

mation, but by perturbing, interpolating, or extrapolating between existing ex-

amples. However, we choose to operate not in input space, but in a learned

feature space. Higher level representations are claimed to expand the relative

volume of plausible data points within the feature space, conversely shrinking

the space allocated for unlikely data points [5, 62]. As such, when traversing

along the manifold it is more likely to encounter realistic samples in feature

space than compared to input space. Unsupervised representation learning mod-

els offer a convenient way of learning useful feature spaces for exploring such

transformations. Recently, there has been a return to interest in such techniques,

leading to, e.g., variational autoencoders [41], generative adversarial networks

[25], and generative stochastic networks [2], each of which could be used to

generate useful feature spaces for augmentation.

By manipulating the vector representation of data within a learned feature

space a dataset can be augmented in a number of ways. One of the most basic

transformations that can be applied to the data is to simply add random noise

to the context vector. In the context of class-imbalanced data, we believe that

extrapolation between samples could also be applied. We investigate some of

these methods to see which is most effective for improving the performance of

supervised learning models when augmented data is added to the dataset.

Variations in hand postures, in this context, are expressed with MANO pa-

rameters θ, β,R, t and s which respectively represent pose, shape of hands and

rotation, translation and scale factors of camera viewpoints. Distribution of re-

alistic hand postures can be modeled even before training with annotations of
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existing dataset, such as BigHand2.2M dataset [93] from Chapter 4. BH dataset

consists of 2.2 million pose samples with 3D annotations for joint locations ac-

quired from 2 hour-long hand motions collected from 10 real subjects. With

BH datasets, the generated samples are expected to inherit the manifold of its

real human hand articulation space and kinematics of real hand postures. As 3D

mapping of BH samples using t-SNE [51] in Figure 4.3 shows, BH is known that

the pose samples are densely and widely collected. Such density of BH dataset

with a more complete range of variation is considered sufficient for various pose

generations. As similarly done in Chapter 4, we first train BH data annotations

with a Variational Autoencoder (VAE) to learn a mapping function from BH

annotations to MANO pose parameters. This allows to learn the distribution of

realistic hand postures that span BH annotation space, which can be utilized

for initial distribution to sample hand poses. With each latent pose parameters

including camera parameters, our own 3D and 2D annotations can virtually be

acquired.

In this section, we propose a novel feature-level auto-augmentation method

that augments features that span a continuous space. Previous attempts of auto-

augmentation are mainly consisted of discrete action space where each action

corresponds to a augmentation policy (e.g. Shear-X translation, Brightness, In-

version ane etc.). Searches for augmentation policies in continuous space re-

quire for a policy network to have a far more delicate variations [48]. In terms

of augmentation, we first emphasize on enlarging the training distribution of

humand hand postures. This, however, allows robustness only against 3D pose

estimations, and not necessarily in 2D estimations. Hands may appear variously

within images depending on the illuminating condition, skin color, shades, hairs,

wrinkles and more. A fixed set of training data limits its distribution of image
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space features. We thus utilize random images (not necessarily with hands in

them) and synthesize them in a feature space in order to ‘hallucinate’ the net-

work, so that general image encoding can be performed. As mentioned earlier in

this section, augmentation in feature space is economical and efficient for train-

ing data-hungry neural networks. Enlarge the distribution of input images allow

our network to generalize over various image inputs. For automation of the aug-

mentation, we sample a hand pose vector from a pre-defined distribution that

span a physically plausible human hand pose space. The distribution is trained

to evolve to sample better pose hallucination features in an adversarial manner

against the training loss.

To this end, our contribution in this section are as follows:

• We propose to augment hand pose data without explicit augmented im-

ages, but implicitly in feature space for variations of both RGB values and

hand postures.

• To do so, we propose Feature Synthesizer module that incorporates human

hand pose feature and any random RGB images (not necessarily with

hands) to augment features of a network.

• The augmentation is automatically performed and learned to sample more

effective pose in an adversarial manner against training loss.

• Our method reaches a state-of-the-art performance on competitive hand

pose estimation benchmarks.
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5.2 Related Works

5.2.1 Feature-level Augmentation

An early approach of dataset augmentation in feature space is performed in a

VAE framework with sequence type of data [18].

Figure 5.1: System architecture composed of three steps. (a) A sequence autoen-

coder learns a feature space from unlabeled data, representing each sequence by

a context vector (C). (b) Data is encoded to context vectors and augmented by

adding noise, interpolating, or extrapolating (here we depict interpolation). (c)

The resulting context vectors can either be used directly as features for super-

vised learning with a static classifier, or they can be decoded to reconstruct full

sequences for training a sequence classifier.

In order to augment a dataset, each example is projected into feature space

by feeding it through the sequence encoder, extracting the resulting context vec-

tor, and then applying a transformation in feature space (Figure 5.1b). The sim-

plest transform is to simply add noise to the context vectors, however, there is

71



a possibility with this method that the resulting vector may not resemble the

same class as the original, or even any of the known classes. In experiments,

they generate noise by drawing from a Gaussian distribution with zero mean

and per-element standard deviation calculated across all context vectors in the

dataset. They include a γ parameter to globally scale the noise:

c’
i = ci + γX,X N{0, σ2i } (5.1)

where i indexes the elements of a context vector which corresponds to data

points from the training set. A more directed approach for data augmentation

follows the techniques introduced by the work of [12]. For each sample in the

dataset, we find its K nearest neighbours in feature space which share its class

label. For each pair of neighbouring context vectors, a new context vector can

then be generated using interpolation:

c’ = (cK − cj)λ+ cj (5.2)

where c’ is the synthetic context vector, ci and cj are neighbouring context vec-

tors, and λ is a variable in the range {0, 1} that controls the degree of interpo-

lation. In our experiments, we use λ = 0.5 so that the new sample balances

properties of both original samples. In a similar fashion, extrapolation can also

be applied to the context vectors with a similar degree of the λ value:

c’
j = (cj − cK)λ+ cj . (5.3)

Once new context vectors have been created, they can either be used directly

as input for a learning task, or they can be decoded to generate new sequences

(Figure 5.1c). When interpolating between two samples, the resulting decoded

sequence is set to be the average length of the two inputs. When extrapolating
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between two samples the length of the new sequence is set to be the same as

that of cj .

5.2.2 Auto-Augment

Our method largely follows the studies of automatic augmentation strategies

(Auto-Augment) [15, 49, 30, 97, 86] although our fundamental approach of aug-

mentation differs from the works in many aspects. The original work of Auto-

Augment formulates the problem of finding the best augmentation policy as a

discrete search problem, as illustrated in Figure 5.2. Their method consists of

two components: A search algorithm and a search space. At a high level, the

search algorithm (implemented as a controller RNN) samples a data augmen-

tation policy S, which has information about what image processing operation

to use, the probability of using the operation in each batch, and the magnitude

of the operation. Key to our method is the fact that the policy S will be used

to train a neural network with a fixed architecture, whose validation accuracy

R will be sent back to update the controller. Since R is not differentiable, the

controller will be updated by policy gradient methods.
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Figure 5.2: Overview of Auto-Augmentation framework of using a search

method (e.g., Reinforcement Learning) to search for better data augmentation

policies. A controller RNN predicts an augmentation policy from the search

space. A child network with a fixed architecture is trained to convergence

achieving accuracy R. The reward R will be used with the policy gradient

method to update the controller so that it can generate better policies over time.

The image is from the original work [15]

Augmentation policies from the original work are updated every epoch after

all batches of training data samples are ‘seen’ by the child model, which makes

the whole training progress takes a massive computation hours to reach conver-

gence. The policy controller that is structured as RNN requires large number of

epochs to learn. The works of [49, 30] try to overcome the large computation

burden.

Unlike Auto-Augmentation methods that accompany with reinforcement
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updates, the augmentation strategy can be learned in an adversarial manner. For

example as in the work of [97], the augmentation data sampling distribution

is learned are sampled in the direction of increasing training loss of the child

model. The method not only allows great reduction of training hours, but also

more stable learning of the whole automatic augmenting system. The framework

is retrieved from the original work and illustrated in Figure 5.3
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Figure 5.3: The work of [97] formulates the automatic augmentation policy

learning with an adversarial update setting. The data of each batch is augmented

by multiple pre-processing components with sampled policies {τ1, τ1, ..., τM ,},

respectively. Then, a target network is trained to minimize the loss of a large

batch, which is formed by multiple augmented instances of the input batch. We

extract the training losses of a target network corresponding to different aug-

mentation polices as the reward signal. Finally, the augmentation policy net-

work is trained with the guideline of the processed reward signal, and aims to

maximize the training loss of the target network through generating adversarial

policies.

5.2.3 RandAugment

Recent work has shown that data augmentation has the potential to significantly

improve the generalization of deep learning models. As mentioned in a previous
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section, automated augmentation strategies have led to state-of-the-art results

in image classification and object detection. While these strategies were opti-

mized for improving validation accuracy, they also led to state-of-the-art results

in semi-supervised learning and improved robustness to common corruptions of

images. However such methods still require a separate optimization procedure,

which significantly increases the computational cost and complexity of training

a machine learning model. One of the sharing outcomes of auto-augmentation

and relevant methods is that the learned augmentation policy is more likely to

output large magnitude of augmentation such as brightness and contrast. Moti-

vated by such issue, The work of [16] proposes to randomly choose augmenta-

tion policy instead of learning one. This has a significantly reduced search space

which allows it to be trained on the target task with no need for a separate proxy

task. RandAugment yields better performance for CIFAR-10/100, SVHN, and

ImageNet datasets than those of automatic augmentation strategies.
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Figure 5.4: An Illutration of the work of [16] that formulates their augmentation

policy to be random instead of learning automatic augmentation policy learning

with an adversarial update setting. The motivation of their work comes from the

issue that auto-augmentation outputs more complex augmentation policies as

training progresses.
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5.3 Hand Pose Auto-Augment (HPAA)

Figure 5.5: This figure illustrates the overall framework of Hand Pose Auto-

Augmentation (HPAA). HPAA augments visual features in a feature space. The

augmented features are generated based on two random variables; one from a

pose distribution that determines pose θ and shape β, and another random vari-

able that generates fake feature. Each variable distribution is learned with two

different losses. First variable that determines pose and shape of hands based on

MANO is learned with L2-loss between the estimated poses and the poses that

are determined by the sampled MANO parameters. Another random variable is

trained by the discriminator loss while aligning the domains of fake and real

features. Estimator Head is structured with 3 FC layers that output MANO pose

θ and shape β parameters along with camera parameters R, t, s, as depicted in

Figure 5.6. And, the discriminator is structured with 2 FC layers that outputs

values in range of [0, 1].

In this section, we propose a novel augmentation method that is performed in

an automatic end-to-end manner while regular training of a hand pose estima-

tion model is performed. Our framework for training is largely structured with
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a Feature Extractor (FE), Feature Synthesizer (FE-Synth) and Estimator Head

(Estimator). FE is responsible for encoding images into compacted features that

connote RGB image features and pose features. The features from FE are strictly

from real images. In order to effectively perform automatic augmentation with

synthetic sample generations, we create synthetic features that hallucinate the

Estimator head. Feature Synthesizer “synthesizes” the MANO parameters β, θ

into fake feature samples to confuse the estimator head. The synthesizer is

learned to generate realistic fake features through GAN-like updates. One iter-

ation of update is performed with F-synth and without FE, and another is done

vice versa. This learning is inspired by domain adversarial alignment learning

[1] We perturb the image features by inputting random variables to F-synth so

that Estimator Head is able to learn about other image features. Using varia-

tions within the distribution of images seen by the network is only interpolating

among its training distribution, easily yielding over-fitting. We thus apply ad-

versarial updates of the distribution against the training loss. The method is thus

updated three times: one with only FE fixed, one with only F-synth fixed and

the last one only with sampling distribution.

Figure 5.6: The structure of Estimator Head.
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5.4 Experiments

FreiHand Dataset In order to present the effectiveness of HPAA, the method is

evaluated with FreiHand dataset [103], details of which is visualized in Figures

2.6 and 2.7. The training set of the dataset is re-visualized with random images

projected on the chromakey part of training image samples. The distribution of

FreiHand datsaet spans much wider space then that of STB dataset. STB dataset

is collected so that data samples are visualized under various lighting conditions

while FreiHand samples are collected for various poses (in both 3rd-person and

egocentric perspectives) with various lighting conditions and backgrounds re-

placed with chromakey background. Such factor of STB is reviewed in its orig-

inal work [95] We therefore perform our main experiment on FreiHand dataset

since our method proves of its conributions based on augmenting poses.

Comparisons We firstly set our baseline as the work of [6], since our net-

work’s architectural framework is inspired by the method. The performance of

the baseline is acquired without any form of augmentation. Then we perform an

experiment with the baseline with random augmentation (RandAugment) [16].

The random augmentation is executed on the original training images. Since

our groundtruths included 2D keypoint locations for the finger joints, we ex-

clude shear transformations and vertical/horizontal flips to avoid mismatches

of 2D keypoint labels. We consider RandAugment represents the performance

of other auto-augmentation methods (e.g. adversarial auto-augmentation [97])

since it outperforms other standard automatic augmentation methods. We con-

duct experiments with two variants of our proposing method; one method with

random pose sampling from a fixed distribution of random (PoseRandAugment)

and another with learning pose sampling distribution (PoseAugment).
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Figure 5.7: FreiHand data images with random images on chromakey part of

images.

Table 5.1: Experimental results on FreiHand datset [103] based on various set-

tings of HPAA. Two of settings of HPAA are performed; one with prior distri-

bution of MANO parameters M = {θ, β} learned during training baseline, and

one without any prior distribution.

Base Base+RA
Base+PRA Base+PA

w/ Pbase(M) w/out Pbase(M) w/ Pbase(M) w/out Pbase(M)

2D/3D AUC 0.725/0.921 0.715/0.909 0.762/0.952 0.687/0.876 0.739/0.939 0.782/0.958

Table 5.1 analyzes our contributions upon baseline. RA, PRA and PA re-

spectively represent RandAugment [16], PoseRandAugment and PoseAugment.

P (M) represents the distribution of MANO parameters M = {θ, β} and Pbase

means the distribution learned from baseline. “With Pbase(M)” the pose sam-

pling distribution is initialized with the baseline distribution. Sampling with-

out Pbase(M) represents initialization of poses and shapes to be sampled from

ranges of [-2, 2] and [-0.1, 0.1], respectively.

As it can be shown in Table 5.1, RandAugment does not improve the base-

line’s performance, but degrades it. We believe that this is caused because, un-
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like object detection problems where objects are present as lumps in an image,

hands are highly deformable and its structure must be meticulously reviewed

by a pose estimator. Random lighting condition upon images of hands may re-

sult in loss of visual information of fingers. Few of such cases are presented in

Figure 5.8. The magnitude of augmentation does not affect evenly to all fingers.

The best performance is acquired by our method without the use of prior pose

distribution of baseline.

Figure 5.8: Examples of FreiHand samples [103] augmented by a random policy

[16].

SOTA Comparison Figure 5.10 shows our results along with other contempo-

rary RGB-based 3D hand pose estimation methods. Our final result outperforms

all the conventional methods. Extrapolating from trianing distribution with a

pose distribution clearly affects the network’s performance. Also, qualitative re-

sults of STB dataset are presented in Figure 5.10.
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Figure 5.9: HPAA result of 3D AUC on STB Dataset

Figure 5.10: Qualitative results of HPAA on STB Dataset.
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Chapter 6

Conclusion

In my dissertation, we have addressed and tackled the scarcity of sequential

RGB dataset which limits conventional methods from exploiting temporal fea-

tures for 3D HPE. We have proposed a novel method to generate SeqHAND

dataset, a dataset with sequential RGB image frames of synthetic hand poses

in motions that are interpolated from existing static pose annotations. We have

then also proposed a framework that exploits visuo-temporal features for 3D

hand pose estimations in a recurrent manner. We have implemented cost func-

tions considering the temporal smoothness of sequential hand pose estimations.

However, such framework would still be limited due to lack of large scale se-

quential RGB hand images, so to achieve a stable and efficient solution, we

uniquely designed a new large-scaled hand motion dataset generation frame-

work that generates synthetic images with human-like hand movements while

preserving realistic appearances of hands as conventionally studied by other

works in the literature. Our proposed method outperforms other existing ap-

proaches that take RGB-only inputs that are based on solely appearance-based

methods, and consequently produces pose-flow estimations that mimic natural
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movements of human hands. We plan to enable the framework to solve (self-

)occlusion problems more robustly.

With sequential inputs, we were able to witness possibility of overcoming

conventional struggle against occlusion problems in the literature of 3D hand

pose estimations. We plan to further the project towards unifying an external

hand detector that localizes hands from raw images into a single 3D hand pose

estimator since both tasks correlate closely. In addition, such framework would

avoid tracking in-continuity, which is the reason we had to experience errors

caused by pester-some hand tracking problems.

In this work, we consider augmentation not by a domain-specific transfor-

mation, but by perturbing, interpolating, or extrapolating between existing ex-

amples. However, we choose to operate not in input space, but in a learned

feature space. Higher level representations are claimed to expand the relative

volume of plausible data points within the feature space, conversely shrinking

the space allocated for unlikely data points. As such, when traversing along the

manifold it is more likely to encounter realistic samples in feature space than

compared to input space. Unsupervised representation learning models offer a

convenient way of learning useful feature spaces for exploring such transforma-

tions. By manipulating the vector representation of data within a learned feature

space a dataset can be augmented in a number of ways. One of the most basic

transformations that can be applied to the data is to simply add random noise

to the context vector. In the context of class-imbalanced data, we believe that

extrapolation between samples could also be applied. We investigate some of

these methods to see which is most effective for improving the performance of

supervised learning models when augmented data is added to the dataset within

the feature space.
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[71] J. Schlüter and T. Grill. Exploring data augmentation for improved

singing voice detection with neural networks. In ISMIR, pages 121–126,

2015.

[72] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim, C. Rhe-

mann, I. Leichter, A. Vinnikov, Y. Wei, et al. Accurate, robust, and flex-

ible real-time hand tracking. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems, pages 3633–3642,

2015.

[73] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection

in single images using multiview bootstrapping. pages 1145–1153, 2017.

[74] J. Song, G. Sörös, F. Pece, S. R. Fanello, S. Izadi, C. Keskin, and

O. Hilliges. In-air gestures around unmodified mobile devices. In Pro-

ceedings of the 27th annual ACM symposium on User interface software

and technology, pages 319–329, 2014.

[75] A. Spurr, J. Song, S. Park, and O. Hilliges. Cross-modal deep variational

hand pose estimation. pages 89–98, 2018.

[76] S. Sridhar, A. M. Feit, C. Theobalt, and A. Oulasvirta. Investigating the

dexterity of multi-finger input for mid-air text entry. In Proceedings of the

96



33rd Annual ACM Conference on Human Factors in Computing Systems,

pages 3643–3652, 2015.

[77] S. Sridhar, F. Mueller, A. Oulasvirta, and C. Theobalt. Fast and robust

hand tracking using detection-guided optimization. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages

3213–3221, 2015.

[78] S. Sridhar, F. Mueller, M. Zollhöfer, D. Casas, A. Oulasvirta, and
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초록

2D 이미지에서 사람의 손 모양과 포즈를 인식하고 구현흐는 연구는 각

손가락 조인트들의 3D 위치를 검출하는 것을 목표로한다. 손 포즈는 손가락

조인트들로 구성되어 있고 손목 관절부터 MCP, PIP, DIP 조인트들로 사람

손을 구성하는 신체적 요소들을 의미한다. 손 포즈 정보는 다양한 분야에서

활용될수 있고 손 제스쳐 감지 연구 분야에서 손 포즈 정보가 매우 훌륭한

입력특징값으로사용된다.

사람의 손 포즈 검출 연구를 실제 시스템에 적용하기 위해서는 높은 정

확도,실시간성,다양한기기에사용가능하도록가벼운모델이필요하고,이

것을 가능케 하기 위해서 학습한 인공신경망 모델을 학습하는데에는 많은

데이터가 필요로 한다. 하지만 사람 손 포즈를 측정하는 기계들이 꽤 불안정

하고, 이 기계들을 장착하고 있는 이미지는 사람 손 피부 색과는 많이 달라

학습에사용하기가적절하지않다.그러기때문에본논문에서는이러한문제

를해결하기위해인공적으로만들어낸데이터를재가공및증량하여학습에

사용하고,그것을통해더좋은학습성과를이루려고한다.

인공적으로 만들어낸 사람 손 이미지 데이터들은 실제 사람 손 피부색과

는비슷할지언정디테일한텍스쳐가많이달라,실제로인공데이터를학습한

모델은실제손데이터에서성능이현저히많이떨어진다.이두데이타의도

메인을줄이기위해서첫번째로는사람손의구조를먼저학습시키기위해,손
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모션을재가공하여그움직임구조를학스한시간적정보를뺀나머지만실제

손이미지데이터에학습하였고크게효과를내었다.이때실제사람손모션을

모방하는방법론을제시하였다.

두번째로는 두 도메인이 다른 데이터를 네트워크 피쳐 공간에서 align시

켰다. 그뿐만아니라 인공 포즈를 특정 데이터들로 augment하지 않고 네트워

크가 많이 보지 못한 포즈가 만들어지도록 하나의 확률 모델로서 설정하여

그것에서샘플링하는구조를제안하였다.

본논문에서는인공데이터를더효과적으로사용하여 annotation이어려

운실제데이터를더모으는수고스러움없이인공데이터들을더효과적으로

만들어내는것뿐만아니라,더안전하고지역적특징과시간적특징을활용

해서 포즈의 성능을 개선하는 방법들을 제안했다. 또한, 네트워크가 스스로

필요한데이터를찾아서학습할수있는자동데이터증량방법론도함께제안

하였다.이렇게제안된방법을결합해서더나은손포즈의성능을향상할수

있다.

주요어: 3차원손포즈인식

학번: 2016-30732
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공정하게선한영향을끼치는사람이되도록노력하겠습니다.저의한국이름

’한열’은유년기에없어졌지만,대학원생활과함께 ’한열’이라는이름으로어

릴적부터동경해오던한국에서의삶을원없이즐길수있어서행복했습니다.
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