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Abstract 

 
Building controls are becoming complicated because modern building systems must 

respond to not only conventional systems like HVAC and lighting, but also to novel 

systems such as intermittent renewables, energy storage systems, and more. Therefore, 

the advanced building controllers must balance the trade-off between multiple 

objectives and automatically adapt to dynamic environment. Although it is widely 

acknowledged that reinforcement learning (RL) can be beneficially used for better 

building control, there are several challenges that should be addressed for real life 

application of RL: (1) unstable and poor control actions during early training period 

of RL may cause unexpected costs; (2) many RL-based control actions still remain 

unexplainable for daily practice of facility managers. By applying RL algorithms as 

artificial intelligences that are the subject of decision-making, owners and operators 

of buildings need to be reassured about the controllers’ intentions. 

To address the first challenge, federated model, a novel concept of simulation model, 

is proposed for pre-training RL agents. The federated model is an integrated data-

driven model that divides a building system into several modules based on physical 

causality and develops each module into a data-driven model to perform simulations 

on building systems. A federated model of a complex cooling system of a target 

building is realized using six modules, each developed using data gathered from 

BEMS. By developing the federated model, limitations of physics-based simulation 

models (eg. topology rules, model calibration) are overcome. Deep Q-network (DQN) 

is applied to learn the dynamics of the cooling system and explore control strategies 

that can reduce energy use while providing cold for the building. By comparing the 

control performance of DQN with the performance of baseline control, it is shown 

that RL controller can significantly enhance control efficiency of the system and the 

federated model can provide sufficient virtual experience for the controller. 

To enhance interpretability of the DQN agent, decision tree is used to extract 

explanation of the decision making process of the agent. State-action pairs generated 
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by the agent is used train a decision tree. Post-hoc interpretation using a shallow but 

easily interpretable model enhances transparency and interpretability of reinforcement 

learning. Also, the result of classification made by the decision tree provides ‘If-then’ 

rules which are reduced version of control strategies made by the artificial intelligence. 

The performance of the reduced rule-based control is also compared to the 

performance of DQN controller. It is demonstrated that the reduced rule is good-

enough and the difference in energy savings between the two is marginal, resulting in 

2.8%.  

This study reports the development of explainable RL for cooling control of an 

existing office building. A decision tree is applied to trained DQN agent and then a set 

of reduced-order control rules are suggested. This study proposes rule reduction 

framework using explainable reinforcement learning and demonstrates that reduced 

rules can perform as well as complex reinforcement learning algorithms. The 

significance of this study lies in proposing how to derive rules with quantitative 

evaluation for building control. 

 

Keyword : explainable reinforcement learning, rule reduction, reduced rule-based 

control, DQN 

 

Student Number : 2019-21675 
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1. Introduction 

Buildings consume about 40% of total primary energy in countries like United States. 

From a life cycle perspective, most of a building’s energy is consumed during its 

operational phase, thus, it is crucial to identify and evaluate impactful energy-saving 

technologies and strategies during this phase (Hong et. al., 2018). Moreover, in 

developed countries the buildings sector is dominated by existing buildings. 

Accordingly, improvement of existing building operation can be a key strategy for 

reduction the overall energy use of the buildings. Systems in buildings, such as 

lighting, windows, and HVAC equipment have been equipped with smart controllers 

and these systems may open opportunities for improving building efficiency (Wang 

& Hong, 2020). Well-designed control systems can increase building efficiency up to 

30% without the need to upgrade existing appliances (DOE, 2015).  

1.1 Control of building systems 

Majority of HVAC systems are controlled using rule-based approach based on the 

building operators’ experience and knowledge. The rule-based approach is simple and 

easy to apply but, as quantitative and scientific evaluation for the approach is not made, 

it is hard to be optimal and its performance can be inferior to that of other control 

methods. 

To address the aforementioned problem of rule-based control, Model-Predictive 

Control (MPC) has attracted attention. MPC is an adaptive control approach that uses 

simulation models to predict the future states of buildings or systems and make control 

strategies based on the predictions (Afram & Janabi-Sharifi, 2014). The goal to be 

achieved through control is expressed as a cost function and constraints, such as 

limitation of control variables or satisfaction range for state variables, can be defined. 

Although the performance of MPC is promising, MPC has not yet been widely 

adopted by the building industry. This is because it is labor-intensive to develop 

simulation models with high fidelity and requires expertise to use (Wang & Hong, 

2020). 
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Recently, reinforcement learning-based control of building systems has been 

attracting significant attention in building simulation domain. Reinforcement learning 

(RL) is a kind of machine learning that explores optimal and sequential decision-

making strategies to achieve goals and it is being actively applied on various fields 

from self-driving to robotics. Building controls are becoming complicated because 

modern building systems must respond to not only conventional systems like HVAC 

and lighting, but also to novel systems such as intermittent renewables, energy storage 

systems, and more. Therefore, the advanced building controllers must balance the 

trade-off between multiple objectives and automatically adapt to environment. The 

controllers based on RL have potential to achieve these performances. As the RL 

controllers continuously learn from different operating conditions through interaction 

with building, they are capable of adapting to the local environment and operation 

conditions. Although many simulation studies have been conducted and proved the 

potential of RL, there are a limited number of studies on its practical implementation 

and evaluation. To further understand the opportunities and challenges of 

reinforcement learning based building system control, implementation studies should 

be conducted using existing buildings or data gathered from them. 

1.2 Problem Description 

An agent, a decision maker of RL algorithm, directly interacts with building 

environment in trial-error manner to learn the dynamics of the environment and find 

optimal control strategies to control them. Thus, many studies on RL-based building 

control system says RL has its own strength since it does not require any sophisticated 

mathematical simulation model compared to MPC. Though those simulation studies 

proved that RL can make well-considered strategies to optimize energy efficiency of 

the building environment, still application of RL-based control system has significant 

challenges in REAL buildings:  

⚫ RL may cause unexpected costs with unstable and poor control actions 

during its own early training period on real building situation (Wang & Hong, 

2020). While those periods, it will study how to make optimal strategy by 

testing new decisions and evaluating the outcomes, and it is possible to fail 
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to maintain thermal comfort of building occupants or to cause system 

breakdown (which causes tremendous financial damage on building 

maintenance). 

⚫ Another challenge for implementing RL for real-world problems is lack of 

“interpretability” and “reliability” (Dulac-Arnold et. al., 2019). As RL agents 

are neural network models in form of black boxes, it is hard to understand 

and explain their algorithm of decision making. By applying RL algorithms 

as artificial intelligences that are the subject of decision-making, owners and 

operators of buildings need to be reassured about the controllers’ intentions. 

The ability to provide explanations of the behavior of these artificial agents 

is particularly important in scenarios where humans need to collaborate with 

them.  

Thus, study how to avoid undesirable outcomes, guarantee control robustness, and 

secure interpretability and reliability are key points of implementing RL in real 

buildings.  

One way to address the problem is pre-training agents using simulators. Through pre-

interaction with virtual environments, agents can be guided to explore optimal control 

strategies to achieve goals before they are implemented into the actual environment. 

Through this practice, RL agents can minimize their mistakes on real situation. The 

virtual environments can be generated in two approaches: physics-based simulation 

model and data-driven model. Physics-based simulation models can perform 

sophisticated simulations of thermal dynamics of buildings based on detailed input 

variables. However, most simulation tools have predefined topology rules for 

computational efficiency, which may not allow accurate modeling of systems in real 

buildings. Besides, to reduce the performance gap between simulation results and 

measurements, model calibration is essential, and it is usually time-consuming and 

sometimes impossible to perform because of insufficient data. Therefore, if BEMS 

(Building Energy Management System) data is available, it is practical and rational to 

generate virtual environment using data-driven methods. 
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Post-hoc interpretation using shallow but easily interpretable models, beside the black 

box models, is one way to enhance transparency and interpretability of reinforcement 

learning (Alharin et. al., 2018). “Reliability” is not built up simply by having the 

performance of reducing energy use while not messing up the system control. It is 

built up when the decision-making process of artificial agents is rationale and human 

understandable. Decision trees are intuitive and easily explainable machine learning 

algorithm that are widely used to extract classification rules. They are also one of the 

most popular method to distal explanation from RL agent models (Madumal et. al., 

2020). As agents of RL learn how to map states to actions, the trained artificial 

intelligences generate state-action pairs with their own decision-making rules. The 

decision-making rules can be interpreted by classifying those state-action data using 

decision trees. The generated explanation models have the potential to provide 

intuitive and natural explanations, allowing the human (eg. building operators) a 

deeper understanding of the agents and to build “trust”. Also, the result of 

classification can provide ‘If-then’ rules which can be implemented to real building 

system control problems with minimum cost. The derived rules are expected to be 

reduced version of complex control strategies made by artificial intelligences. 

1.3 Goal 

The objective of this study is to propose a practical framework of implementing 

reinforcement learning based optimal control to an existing building (Figure 1-1). If 

data gathered from an existing building is available, it can be practical to give artificial 

intelligences opportunities to learn the building dynamics using the data. In this study, 

data-driven models are constructed for a complicated cooling system of target 

building, which consists of ice-based thermal storage with two chillers and 18 geo-

thermal heat pumps. The models are used to provide pre-training phase for an agent 

of deep Q-learning, one of the most popular algorithms of reinforcement learning. As 

the trained artificial intelligence could not be implemented to the real system, the 

performance of it is proved using the model. Furthermore, a novel concept of 

interpreting RL agents is proposed. Providing explanation of decision-making process 

of agents can enhance the reliability of RL algorithms. Also, considering the nature of 
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building system control with high costs incurred by undesirable results, reduced rules 

that are generated using decision trees can be a realistic alternative to direct 

implementation of RL algorithms. It is expected that this could provide a vision for 

collaboration of artificial intelligence and humans in building control. 

 

 

Figure 1-1. Rule reduction for control of existing building 

 

 

1.4 Thesis Outline 

The research presented in this thesis concerns the field of optimal control of building 

system. The aim is to propose practical approach of implementing reinforcement 

learning based optimal control and a novel concept of interpreting reinforcement 

learning agents. 
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The content of the following chapters is as follows. Chapter Ⅱ reviews previous 

studies on reinforcement learning based optimal control of building system and theory 

of deep reinforcement learning algorithm; it provides a background on reinforcement 

learning. Chapter Ⅲ presents the necessity of interpreting reinforcement learning 

agents with introducing a method of distilling explanation using decision trees. 

Chapter Ⅳ presents overall implementing methodology of the proposed framework 

and the structure of a simulation model developed to realize the system of the target 

building is introduced. A federated model which consists of several data-driven 

models is introduced and the usefulness as a simulator is also discussed. Chapter Ⅴ 

analyzes the implementation result of a reinforcement learning based controller to the 

target building. Also, interpretation process of decision-making rules of reinforcement 

learning agents are shown. Finally, Chapter Ⅵ completes thesis by providing a 

summary of the work, limitations of the study, and future challenges. 
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2. Deep Q-network (DQN) 

This chapter gives an overview of a reinforcement learning algorithm, especially, deep 

Q-learning that is one of the most popular deep reinforcement learning algorithms 

which is applied for the study. Deep Q-learning (DQL) is a model-free reinforcement 

learning algorithm which does not require mathematical simulation models while 

exploring optimal control strategies of systems. Instead, the DQL uses experience data 

gathered directly from systems to learn the dynamics of systems and establish control 

strategies. However, applying the model-free approach reinforcement learning 

algorithm directly to real-world control problems has several challenges and they are 

discussed in this chapter. Also, earlier works on implementing reinforcement learning 

for control systems of existing buildings and findings are introduced. 

2.1. Summary of reinforcement learning 

Reinforcement learning is one of machine learning paradigms that learns how to map 

observations to actions (Sutton and Barto, 2018). Artificial decision makers of 

reinforcement learning attempt various actions to learn strategies that meet the 

purpose and collect the result data which can be called experience. The decision 

makers repeat the attempt to get better results, and learn optimal actions to achieve 

the goal from those attempts. The way reinforcement learning learns is similar to how 

human learns and this is why it is called artificial intelligence. In this section, elements 

and basic theories of reinforcement learning are introduced. 

2.1.1 Elements of reinforcement learning 

A decision maker of reinforcement learning is called an agent and the entity that 

interacts with the agent is called the environment. The agent observes state (𝑠𝑡) from 

environment and determines an action (𝑎𝑡 ) according to the state. The state of 

environment changes due to the action and the changed state (𝑠𝑡+1) is passed to the 

agent with reward (𝑟𝑡) for the action. Reinforcement learning problem is a sequential 

decision-making problem in which agents choose actions to maximize rewards. 
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The discrete time-step is represented as t  and 𝑠𝑡 ∈ 𝑆  represents the state of each 

time-step where S represents the entire possible states. 𝑎𝑡 ∈ 𝐴(𝑠𝑡) represents action 

at time-step t where 𝐴(𝑠𝑡) represents all possible actions that agents can take on 𝑠𝑡. 

The rewards, 𝑟𝑡 ∈ 𝑅 , are represented by numbers and define the goal in a 

reinforcement learning problem. A policy defines the probability of choosing an action 

for the agent in certain states. 𝜋𝑡(s, a) represents the policy of time-step t and it 

means the probability of taking action a in state s. The agent takes action based on 

the policy and updates the policy during the learning period to find optimal policies.  

Reinforcement learning uses the concept of Markov decision process (MDP), discrete 

time stochastic control system. The agent chooses action only based on the current 

state, which is possible based on the premise that the state has Markov property. 

Markov property is expressed as Equation 2-1: The probability of taking an action (𝑎𝑡) 

only based on current state (𝑠𝑡) is same as the probability of taking the action based 

on all the information from the past (𝑠𝑡, 𝑎𝑡−1, 𝑠𝑡−1, ⋯ , 𝑎0, 𝑠0) . Reinforcement 

learning has shown that one time-step dynamics decision making is as effective as 

making decisions based on all past information. 

 

Pr  (𝑎𝑡|𝑠𝑡) = Pr(𝑎𝑡|𝑠𝑡, 𝑎𝑡−1, 𝑠𝑡−1, ⋯ , 𝑎0, 𝑠0)                     (Equation 2-1) 

 

In MDP (Figure 2-1), the relationships between elements such as states, actions, and 

reward are expressed stochastically. At each time step, the process is in some state 𝑠𝑡 

and the agent chooses action that is possible in 𝑠𝑡. By the action, the state changes to 

the next state 𝑠𝑡+1  stochastically and the agent get the corresponding 

reward, 𝑅(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) . Transition probability, Pr(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) , represents the 

probability of change from the current state (𝑠𝑡) to next state (𝑠𝑡+1) when taking an 

action (𝑎𝑡). In other words, the next state depends on only current state and current 

action with given 𝑠𝑡 and 𝑎𝑡, which means MDP satisfy the Markov property. 
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Figure 2-1. Markov decision process (Kim, 2021) 

Return (Equation 2-2) represents the cumulative reward earned by the agent during 

Markov decision process. The discount rate, 𝛾 ∈ [0,1], essentially determines how 

much agents cares about future rewards relative to immediate rewards. For example, 

𝛾 = 0 is to explore strategies to maximize only the current reward and 𝛾 = 1 means 

that all future rewards will be considered equally. Especially for infinite Markov 

decision process, the discount rate prevents returns from diverging.  

 

𝑅𝑡 = 𝑟𝑡 + γ ∙ 𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ = ∑ 𝛾𝑘 ∙ 𝑟𝑡+𝑘
∞
𝑘=0                 (Equation 2-2) 

 

2.1.2 Value function 

Agents of reinforcement learning earn rewards through interaction with environment 

and develop policies based on rewards. The goal of reinforcement learning is to 

maximize return, the cumulative rewards earned during the interaction, and a value 

function is introduced to estimate the return probabilistically. The reason that value 

functions are expressed as expected values is that they reflect future return that have 

not yet been experienced. The expectations can be updated by the interaction of the 

agent and the environment. 
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Two different value functions are defined: state value functions and action value 

functions. State value function (Equation 2-3) of a state 𝑠𝑡 under a policy π is the 

expected return when starting in 𝑠𝑡 and following the policy π, where τ denotes 

the trajectory (at, st+1, at+1, ⋯ , 𝑠𝑇−1, 𝑎𝑇−1, 𝑠𝑇) that occurs according to the policy. 

There are various states in which state 𝑠𝑡 can change at time t+1, and the change 

occurs following the transition probability, mentioned above. In other words, there are 

a number of cases that can reach the goal in a specific state, 𝑠𝑡, and accordingly, there 

are many cases of return value. The state value function is the expected value of the 

return for all these cases. 

Action value function (Equation 2-4) is the expected return from the action a taken in 

state 𝑠𝑡  under at policy π , where τ  denotes the trajectory ( 𝑠𝑡+1 , 𝑎𝑡+1 , 

⋯ , 𝑠𝑇−1, 𝑎𝑇−1, 𝑠𝑇 ) that occurs according to the policy. The action value function 

defines a value for every action that can be taken in a particular state. The state value 

of 𝑠𝑡 is the mean value of the action values of all actions that can be taken in 𝑠𝑡 

(Equation 2-5).  

 

𝑉𝜋(𝑠𝑡) = 𝐸𝜏~𝑝(𝜏|𝑠𝑡)[∑ 𝛾𝑘−𝑡 ∙ 𝑟(𝑠𝑘 , 𝑎𝑘)|𝑠𝑡
𝑇
𝑘=𝑡 ]                    (Equation 2-3) 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝜏~𝑝(𝜏|𝑠𝑡,𝑎𝑡)[∑ 𝛾𝑘−𝑡 ∙ 𝑟(𝑠𝑘 , 𝑎𝑘)|𝑠𝑡, 𝑎𝑡
𝑇
𝑘=𝑡 ]             (Equation 2-4) 

𝑉𝜋(𝑠𝑡) = 𝐸𝑎𝑡~𝜋[𝑄𝜋(𝑠𝑡, 𝑎𝑡)]                                  (Equation 2-5) 

 

The relationship between the current state value and the state value of the next time-

step follows Equation 2-6, which is called the Bellman equation. The relationship 

between the current action value and the action value of next time-step can also be 

expressed by the Bellman equation (Equation 2-7).  
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𝑉𝜋(𝑠𝑡) = 𝐸𝑎𝑡~𝜋[𝑟(𝑠𝑡, 𝑎𝑡) + 𝐸𝑠𝑡+1~𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)[𝛾 ∙ 𝑉𝜋(𝑠𝑡+1)]]      (Equation 2-6) 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝐸𝑠𝑡+1~𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)[𝐸𝑎𝑡~𝜋[𝛾 ∙ 𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)]]  

                                                      (Equation 2-7) 

 

The policy that maximizes the state value is defined as optimal policy. The state value 

function and the action value function when the optimal policy is applied are defined 

as the optimal state value function (Equation 2-8) and the optimal action value 

function (Equation 2-9), respectively, and these are called the Bellman optimal 

equations.  

 

𝑉∗(𝑠𝑡) = max
𝑎𝑡

[𝑟(𝑠𝑡, 𝑎𝑡) + 𝐸𝑠𝑡+1~𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)[𝛾 ∙ 𝑉∗(𝑠𝑡+1)]]       (Equation 2-8) 

𝑄∗(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝐸𝑠𝑡+1~𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)[𝛾 ∙ max
𝑎𝑡+1

𝑄∗(𝑠𝑡+1, 𝑎𝑡+1)] (Equation 2-9) 

 

Equation 2-10 shows the relationship between the optimal state value function and the 

optimal action value function: optimal state value can be obtained by maximizing 

optimal action value. As mentioned above, optimal policy is the policy that maximizes 

state value, so the optimal policy is to take action with the largest action value in each 

state (Equation 2-11) which maximizes the return. 

 

𝑉∗(𝑠𝑡) = max
𝑎𝑡

𝑄∗(𝑠𝑡 , 𝑎𝑡)                                   (Equation 2-10) 

π∗(𝑎𝑡|𝑠𝑡) = argmax
𝑎𝑡

𝑄∗(𝑠𝑡, 𝑎𝑡)                              (Equation 2-11)  
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2.2. Deep Q-learning 

2.2.1 Temporal difference (TD) learning and Q-learning 

Dynamic programming algorithms are of limited utility in reinforcement learning 

because of their assumption of a perfect model. To compensate for these shortcomings, 

the Monte Carlo method, an experience-based reinforcement learning concept, is 

proposed. Monte Carlo methods use experience sample sequences of states, actions, 

and rewards to average returns for each state-action pair and approximates it as a state 

value function of the state. 

The approximated state value function is expressed as Equation 2-12, where 

V(s) denotes approximated state value function in state 𝑠; n means the number of 

times the 𝑠 has been visited over episodes; 𝑅𝑖(𝑠) denotes the return obtained by 

visiting the 𝑠 of ith episodes. State value functions for all states can be approximated 

in the same way. 

 

V(s) =
1

𝑛
∑ 𝑅𝑖(𝑠)𝑛

𝑖=1                                        (Equation 2-12) 

 

Equation 2-13 shows how to update the value function for each episode by 

approximating the state value function where, 𝑉(𝑠)𝑛 denotes nth updated state value 

function. ∑ 𝑅(𝑠)𝑖
𝑛
𝑖=1  can be separated into the return of the nth episode (𝑅(𝑠)𝑛) and 

the approximated state value function of the n-1th episode (𝑉(𝑠)𝑛−1). In other words, 

the nth update of approximated state value function of state s is performed by 

reflecting the difference between 𝑉(𝑠)𝑛−1 and 𝑅(𝑠)𝑛 by a weight of 1/n. Equation 

2-14 shows 1/n in α as a concept of weight which means it is possible to derive an 

optimal state value function of state s without a model of the system using Monte 

Carlo method. However, as Monte Carlo method takes into account entire return 

gained until the episode is over, it is still of limited utility for real world problems. 
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V(s)𝑛 =
1

𝑛
∑ 𝑅𝑖(𝑠)𝑛

𝑖=1                                       (Equation 2-13) 

=
1

𝑛
(𝑅𝑛(𝑠) + ∑ 𝑅𝑖(𝑠)𝑛−1

𝑖=1 )  

=
1

𝑛
(𝑅𝑛(𝑠) + (𝑛 − 1)V(s)𝑛−1)  

= V(s)𝑛−1 +
1

𝑛
(𝑅𝑛(𝑠) − V(s)𝑛−1)  

V(𝑠𝑡) ← V(𝑠𝑡) + 𝛼(𝑅𝑡 − V(𝑠𝑡))                              (Equation 2-14) 

 

Unlike Monte Carlo method, Temporal Difference (TD) learning is a reinforcement 

learning method that updates the state value function of state 𝑠 based on samples of 

experience rather than waiting till the episode is finished (Equation 2-15). At time t+1, 

TD methods form a TD target (𝑟𝑡 + 𝛾 ∙ 𝑉(𝑠𝑡+1)) and make a useful update, where, 𝑟𝑡 

denotes the observed reward; 𝛾  denotes discount factor; 𝑉(𝑠𝑡+1)  denotes for 

approximated state value function in state st+1. 

 

V(𝑠𝑡) ← V(𝑠𝑡) + 𝛼(𝑟𝑡 + 𝛾V(𝑠𝑡+1) − V(𝑠𝑡))                    (Equation 2-15) 

 

Q-learning is an off-policy TD algorithm. Q-learning uses a lookup table called a Q-

table that stores approximated action value functions called Q values, for a specific 

action with respect to a finite set of state-action pairs. Q-learning updates the action 

value functions based on the experience sample <𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1> and the update 

rule is defined by Equation 2-16. As Q-learning updates the Q-values without 

executing action (𝑎𝑡+1 ) in the next state, policy exploration is independent of the 

policy being followed which is advantageous for the development of an optimal policy. 

In other words, Q-learning updates action value functions using only one step 

experience samples in model-free manner. In addition, policy development is 

achieved through repetitive experiences and self-learning. However, Q-learning is 
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inappropriate for problems that can have large number of states and actions because 

of the memory storage and computation time required to update Q-table. 

 

Q(𝑠𝑡, 𝑎𝑡) ← Q(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾 argmax
𝑎′∈𝐴

𝑄(𝑠𝑡+1, 𝑎′) − Q(𝑠𝑡, 𝑎𝑡))  (Equation 2-16) 

 

2.2.2 Deep Q-learning 

Deep Q-learning is a combination of Q-learning and deep neural network. As 

mentioned above, sometimes it is inefficient or even impossible to have a Q-table 

because of large state-action pairs, which is called curse of dimensionality. Deep Q-

learning solves this problem by approximating the Q-table using deep neural network, 

called deep Q-network (DQN). Deep Q-learning gathers experience samples, <s, a, r, 

s’>, which are stored in replay memory at each time-step and develop policies using 

the samples. Besides, using replay memory, the correlation of time-series data 

sampled following an incomplete policy is removed. Also, to overcome the limited 

number of experiences, deep Q-learning randomly extract samples from the replay 

memory and offers a variety experiences for agents to develop policies. 

In a DQN, exploration evaluates possible actions, whereas exploitation uses 

knowledge from prior experience. The trade-off between exploration and exploitation 

must be carefully considered. The ϵ -greedy method is one of the most popular 

techniques for balancing exploration and exploitation, where the agent chooses 

actions with the knowledge with probability of 1 − ϵ  and chooses random action 

with probability of ϵ for exploration. 

Deep Q-learning uses two networks: main Q-network (Q(s, a; θ) ) and target Q-

network (Q(s, a; 𝜃−)). Main Q-network is the decision maker of DQN to maximize 

the action value function and the target Q-network is a copied network that creates 

target values for updating the other network. In other words, the action value function 
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of the current state-action pair (output #1) is derived from the main Q-network and 

the maximum action value function of the next time-step (output #2) is derived from 

the target Q-network. At every iteration i, parameters of the main Q-network are 

updated to minimize the loss between output #1 and output #2 (Equation 2-17). The 

reason why deep Q-learning uses two networks is that output of the main Q-network 

can be unstable and unstable outputs are inappropriate for updating the policies for 

deep Q-learning. 

 

𝐿(𝜃) = {𝑄(𝑠, 𝑎; 𝜃) − (𝑟 + 𝛾 𝑎𝑟𝑔max
𝑎’𝜖𝐴

𝑄(𝑠′, 𝑎′; 𝜃−)}2             (Equation 2-17) 

 

The structure is shown in Figure 2: 1) Main Q-network chooses the action that 

maximizes the action value function and sends to the environment; 2) the state of 

environment changes due to the action and the reward is calculated; 3) experience 

sample, <s, a, r, s’>, is stored at replay memory; 4) every i, Q-value of current state-

action pair is calculated using main Q-network and the maximum value of future Q-

value is calculated using target Q-network; 5) the parameters of main Q-network are 

updated to minimize the loss function; 6) main Q-network is cloned to target Q-

network. 
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Figure 2-2. Deep Q-learning (Ahn et. al., 2020) 
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2.3. Previous works to implement reinforcement learning to 

existing buildings 

Reinforcement learning based control of building systems can be model-free approach, 

but the RL controllers take unacceptably long time to be trained. Thus, directly 

implementing such controllers would not be practical in real building control 

problems. There are very few studies conducted on implementing reinforcement 

learning algorithms to existing buildings. The studies developed models capable of 

simulating systems and trained RL agents using the models. 

There are several studies that developed physics-based simulation model for RL 

control. Yang et. al. (2015) applied Q-learning to control the circulation flow rate of 

the solar system based on the solar radiation and outdoor air temperature in a 

residential building. The performance of RL controller is compared to rule-based 

control using Simulink model of the target building and the result shows that 11% of 

energy cost can be saved by the RL controller. However, model calibration is not 

conducted to reduce performance gap between the simulation model and real building. 

This means that the dynamics the RL agent learned may differ from that of the real 

building, and the performance of the RL controller may not be maintained when 

applied to the real building. Zhang et. al. (2019) applied reinforcement learning 

algorithm to control a radiant heating system of an existing office building. A whole 

building energy model is developed using EnergyPlus to provide pre-training 

opportunity for the agent to learn dynamics of the building before implemented to real 

situation. Calibration process is conducted to minimize the error between simulated 

result and measured data of energy use and indoor air temperature. The result shows 

that 17% of heating demand is saved by reinforcement learning based control 

compared to rule-based control. However, for most of existing buildings, developing 

well-calibrated physics-based models is challenging because of lack of detailed data 

required for calibration. Also, as there are many kinds of novel HVAC systems that 

cannot be modeled by current modeling tools, the framework is not generalizable to 

existing buildings. 
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To overcome the limitations of physics-based simulation model for RL based control, 

some studies used data-driven models as system simulation models. Kazmi et. al. 

(2018) controlled hot water controllers in 32 Dutch houses based on reinforcement 

algorithm with assumption that the problem is Markov Decision Process (MDP). A 

data-driven prediction model that predicted hot water temperature and the RL 

controller explored optimal strategies just based on the single variable. The result 

showed that the proposed controller can save almost 20% of energy consumption. 

May et. al. (2019) controlled window operation using Q-learning to control indoor air 

quality. The result showed that RL controller can improve thermal comfort and indoor 

air quality by 90% compared to manual occupant control. The aforementioned studies 

just considered a simple single system of buildings and applied Q-learning or simple 

MDP concept. However, for large scale buildings, numerous facilities interact with 

each other and determine the level of heat/cold produced and supplied in order to 

respond to dynamic changes in the environment. In other words, RL agents should be 

able to consider complex interactions between plant systems to be applied for optimal 

control problems. 
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2.4. Conclusion 

In this section, the basic theories of reinforcement learning and deep Q-learning is 

introduced. By using deep neural network, deep Q-learning solves the dimensional 

problem of conventional Q-learning while maintaining its advantages. Its ability to 

learn the dynamics and find optimal control strategy of complex systems is suitable 

for large scale buildings equipped with numerous components. From the review of 

previous works that tried to implement reinforcement learning to real-world cases, the 

followings are found: 

⚫ Some researches proposed practical framework which is combination of 

physics-based simulation model and model-free reinforcement algorithms. 

However, the challenge to develop high fidelity physics-based model for 

existing buildings are not considered. Therefore, the framework is not 

generalizable. 

⚫ Data-driven models are also used to train reinforcement learning agent 

practically. However, the studies are conducted only considering control of 

local systems. In order to study the potential of RL, research on whole 

building system control needs to be conducted. 

⚫ Agents in RL algorithms that combine deep learning and reinforcement 

learning, such as DQN, are black-box models in the form of neural networks. 

Therefore, it is difficult to interpret the decision-making process of the agents, 

which is one of challenges for applying RL based control to real buildings. 

To the best of the authors’ knowledge, no studies have been conducted 

interpreting the decision-making process of artificial agents. 

In order to apply reinforcement learning to real building system, building operators 

should be able to understand artificial intelligence’s decision-making process and 

build “Trust” for it. To this end, studies are being conducted on how to interpret trained 

RL agents. In the next chapter, a decision tree, a class of explainable machine learning, 
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are described, and the concept of interpreting RL agents using the decision tree is 

introduced. 
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3. Decision Trees 

A decision tree is an intuitive and explainable machine learning algorithm. A decision 

tree can be used to discover features and extract patterns in large databases that are 

important for discrimination and predictive modeling. A decision tree is constructed 

by recursively dividing the feature space of the training set. The objective of decision 

tree is to come up with decision rules that provide an informative and robust 

hierarchical classification model. This section explains the components of a decision 

tree with a simple example, and introduces a simple but practical method of 

interpreting decision-making process using a decision tree. 

3.1 Summary of decision tree 

A decision tree (Figure 3-1) is a non-parametric supervised learning method used for 

classification and regression. The goal is to create a model that predicts the value of a 

target variable by learning simple decision rules inferred from the data features. The 

decision tree models consist of nodes and there are three types of nodes: 1) a root node 

is the starting point of the decision tree; 2) leaf node shows the discriminated class; 3) 

decision node/internal node shows the rules for classifying data using features of the 

data.  

 

Figure 3-1. Example of decision tree (Titanic survival prediction) 
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In general, a decision tree completes a tree that achieves optimal goals by computing 

information gain. The information gain is calculated through entropy (Equation 3-1) 

changes. Entropy represents the degree of disorder and is a numerical expression of 

the amount of information possessed by the probability distribution. If the probability 

of a certain value in the probability distribution increases and that of remaining values 

decreases, the entropy decreases. Information gain refers to the degree to which the 

entropy decreases by splitting into child nodes. The greater the information gain, the 

better the classification of data. The decision tree tries various classification methods 

for one decision node and proceeds with learning in the direction of the largest 

information gain. In other words, a decision tree finds leaf nodes that can minimize 

the disorder of data through continuous classification. This process is called recursive 

partitioning. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) = − ∑ 𝑝𝑘 ∙ 𝑙𝑜𝑔2(𝑝𝑘)𝑚
𝑘=1                         (Equation 3-1) 

where m denotes the number of classes; and 𝑝𝑘 denotes for the ratio of k-class data. 

The state in which the decision tree branches over all learning data is called full tree. 

It is known that a full tree is prone to overfitting for train data, and pruning methods 

are used to prevent the overfitting. Pruning is stopping generating new nodes if the 

information gain does not exceed a certain value, which can improve the 

interpretability of trained decision trees, although classification accuracy may be 

slightly reduced. 

To make pruning efficient, it is necessary to calculate feature importance from full-

tree. Feature importance is an index that tells how much the feature in the data affect 

the exact classification of decision trees. Feature importance is obtained by measuring 

how different the model prediction results are when the feature is modified. Key 

features can be selected from feature importance calculations and be used to create 

interpretable decision trees. 
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3.2 Classification And Regression Trees (CART) 

The classification and Regression Trees (CART) algorithm is the most popular 

decision tree algorithm which is used for both regression and classification. The 

CART algorithm uses Gini impurity (Equation 3-2) instead of entropy to calculate the 

information gain. Gini impurity is a measure of how much heterogeneous things are 

mixed in data. Nodes with 0 Gini impurity are pure. Gini impurity is used as a 

substitute of entropy because it requires less computation. A decision tree explores 

rules in the direction of lowering the Gini impurity. 

I(A) = 1 − ∑ 𝑝𝑘
2𝑚

𝑘=1                                      (Equation 3-2) 

where I(A) denotes the gini index of data A; and 𝑝𝑘 denotes for the ratio of k-class 

data. 

Applying the CART algorithm, a classification tree is built using “splitting” which is 

splitting data of parent node to two child nodes that have maximum homogeneity 

according to splitting rule. As the Gini index of parent node is a fixed value, the 

maximum homogeneity of child nodes can be calculated by the maximization of 

change of impurity function. The change of impurity function calculated using Gini 

index is shown in Equation 3-3. 

∆I(A) = − ∑ 𝑝𝑘
2𝑚

𝑘=1 + 𝑃1 ∑ 𝑝1𝑘
2𝑚

𝑘=1 + 𝑃2 ∑ 𝑝2𝑘
2𝑚

𝑘=1              (Equation 3-3) 

where ∆I(A) denotes the change of Gini index; m denotes the number of classes; 𝑝𝑘 

denotes for the ratio of k-class data; 𝑃𝑖 means the probability of being classified to 

child node i; and 𝑝𝑖𝑘 denotes for the ratio of k-class data in child node i. 
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3.3 Interpreting reinforcement learning using decision tree 

Because the results of decision trees can be visualized easily, they are used instead of 

the original black box model for the purpose of interpretation. However, decision trees 

are not easily learned, so other methods, like distillation, are used to train decision 

trees in several decision tree-based reinforcement learning. Distillation is guiding a 

shallow model such as decision trees by a more complex model like deep neural 

networks. Instead of directly training decision trees, deep neural networks are first 

trained with the data. Then, the knowledge of deep neural networks is transferred to 

shallow models by generating soft labeled data. 

As mentioned above, reinforcement learning is learning how to map actions to states. 

In other words, the trained agents of reinforcement learning can generate states data 

with actions label (Figure 3-2). By training a decision tree using the data, the decision 

rules of the agents can be interpretable which can be utilized in following two aspects. 

1) Verify agents of reinforcement learning: Deriving the rules of actions of the agents 

can be an indirect way of proving that they can learn the complex dynamics in real 

world and make decisions accordingly. In other words, it will be possible to increase 

the reliability of end-users (eg. system operators in buildings) in the reinforcement 

learning agent and boost the adaptation of reinforcement learning based optimal 

control for the building systems. 2) Deriving reduced rules: The reliability of end-

users in black box networks is not the only reason they are rarely applied in the field. 

By using decision trees, it is possible to derive reduced rules from the artificial agents 

which are intuitive and are easily to be applied in the field where physical systems are 

not yet ready to implement optimal control applying reinforcement learning based 

optimal control. Reduced rules can be a realistic alternative in building optimal control, 

which demonstrates how artificial intelligence and humans can collaborate. 

In this study, a simple decision tree will be trained using the state-action pairs 

generated by the deep Q-network. The decision rule of the agent will be derived as a 

reduced rule (Figure 3-2) that can be directly applied to the target building. 
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Figure 3-2. Distill explanation of DQN agent. 
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3.4 Conclusion 

In this section, the basic theories of decision trees are introduced and the concept of 

distillation explanation of reinforcement learning is introduced. In this study, the 

explanation for the agent of deep Q-learning will be generated by using a simple 

decision tree. By interpreting the decision-making process of the artificial intelligence, 

reliability of the artificial intelligence can be enhanced (Figure 3-3). The next chapter 

introduces the process of developing simulation models using collected BEMS data 

to apply explainable reinforcement learning to a real building system. 

 

Figure 3-3. Conventional vs. Explainable reinforcement learning 

 

  

 1 

(a) Conventional reinforcement learning 2 

 3 

(b) Explainable reinforcement learning 4 
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4. Target building and Federated model 

The project described in this study is conducted to explore the applicability of 

reinforcement learning based optimal control of an existing building. RL can be 

model-free approach, but it is risky to directly implement the RL to the building 

system. Therefore, the model should be developed to explore the applicability and 

also to use the model to transfer knowledge about the dynamics of building system. 

In this chapter, a cooling system of the target building is described and initial concept 

of federated model is proposed as a simulation model developed for pre-training a 

deep Q-network (DQN). The federated model is an integrated data-driven model that 

divides a building system into several modules based on physical causality and 

develops each module into a data-driven model to perform simulations on building 

systems. The structure of the federated model is introduced and the limitation of the 

model is also discussed. 

4.1 Parallel cooling system 

The target building is an office building located in Gyeongsangbuk-do, South Korea, 

with a floor area of 145,864m2, four basement floors, and 28 ground floors. The office 

zone is divided into lower (5F-16F) and higher (17F-28F) floors. The cooling system 

of the building consists of ice-based thermal storage system and geo-thermal heat 

pump system (Figure 4-1). The ITS system consists of two chillers (520 USRT each), 

an ice-based thermal storage (10,400 USRT), and a heat exchanger (HEX1, Figure 4-

1). The geo-thermal heat pump system consists of 18 heat pumps (156 kW each) and 

a heat exchanger (HEX2, Figure 4-1). 
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Figure 4-1. Cooling system (ITS + Geo-thermal HP) of the target building 
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To set optimal control objectives and select input and output variables for the system 

model, data analysis and interviews with building operators are conducted. The target 

building is collecting an hour interval of data through BEMS and the data gathered 

during summer season (2017.06.23-2017.08.20) is used for system analysis. Table 4-

1 shows a list of the data used in this study and the major results are as followings: 

 

⚫ Data from the ITS is being collected, but the temperature data of geo-thermal 

heat pump system (T9-T12) is not collected. In addition, the flow rate data 

of fluid are not collected, and electricity energy use data from the chillers 

and heat pumps are not separately measured from other devices. Therefore, 

the flow rates and electric energy use of system components are assumed to 

be equal to values of nominal specifications. 

⚫ Outlet temperature of ITS (T1, Figure 4-1) is controlled not to exceed 3℃ 

when providing cold to the building. Through interviews with actual building 

operators, it is found that T1 should be maintained to be lower than 3℃ to 

properly provide cold for the building. 

Table 4-1. Data gathered through BEMS 

ID Measured variables Unit 

T1 

Ice-thermal 

storage 

(ITS) system 

ITS outlet temperature ℃ 

T2 ITS inlet temperature ℃ 

T3 HEX1 supply side inlet temperature ℃ 

T4 HEX1 supply side outlet temperature ℃ 

T5 HEX1 demand side inlet temperature ℃ 

T6 HEX1 demand side outlet temperature ℃ 

O1 Chillers On/Off - 

O2 HEX1 On/Off - 
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Table 4-1. Data gathered through BEMS (continued) 

ID Measured variables Unit 

T7 

Geo-thermal 

heat pump 

system 

Geo-thermal pipe outlet temperature ℃ 

T8 Geo-thermal pipe inlet temperature ℃ 

O3 Heat pump On/Off - 

T9 
Heat pumps inlet temperature 

(not measured) 
℃ 

T10 
Heat pumps outlet temperature 

(not measured) 
℃ 

T11 
HEX2 demand side inlet temperature 

(not measured) 
℃ 

T12 
HEX2 demand side outlet temperature 

(not measured) 
℃ 

 

The ITS system is operated to provide cold for upper office floors of the building 

(17F-28F) while the heat pump system provided cold for lower office floors (5F-16F), 

during the target period. Hence the data of the heat pump system is not gathered, this 

study is conducted on optimal control strategy of the system to provide cold for upper 

office floors through the parallel cooling system. As control strategies for AHUs are 

not considered, the aggregated cooling load of the upper office floors is calculated 

using Equation 4-1. 

Q = 𝑚̇𝑐𝑝(𝑇5𝑡+1 − 𝑇6𝑡) × (1 ℎ𝑜𝑢𝑟)                        (Equation 4-1) 

where Q: aggregated hourly cooling load of the upper office floors (kWh); 𝑚̇: chilled 

water flow rate of HEX1 supply side (kg/s); 𝑐𝑝: heat capacity of water (kJ/kg∙K); 

𝑇5𝑡+1: HEX1 supply side inlet temperature at time-step t+1; 𝑇6𝑡: HEX1 supply side 

outlet temperature at time-step t. Please note that one time-step denotes for an hour. 
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4.2 Federated model 

To explore optimal control strategies of the cooling system, a federated model, a novel 

concept of simulation model, is proposed. Federated model is an integrated data-

driven model that divides a building system into several modules based on physical 

causality and develops each module into a data-driven model to perform simulations 

on building systems. Each module in the federated model shares input variables and 

performs sequential simulations using output variables from other modules as input 

variables. The advantages of federated model are as followings: 

Structural flexibility of the simulation model can be enhanced: Conventional building 

simulation tools, such as EnergyPlus, have pre-defined topology rules which make it 

hard to develop a simulation model identical to the real building. For example, in 

EnergyPlus, libraries of ice-based thermal storage do not have multiple outlet nodes 

but, the ITS of the target building has two outlet nodes as shown in Figure 4-1. 

Although EnergyPlus provides splitter and mixer libraries, they also have limitations 

because the inlet and outlet topology rules of them should be matched. By developing 

federated model, components of the model can be connected identical to the real 

system which means subjective assumptions of the model developer may be less 

involved. 

Data-driven simulation model can be developed without calibration: When 

developing physics-based simulation models, model calibration is essential to reduce 

the performance gap between the simulation results and the real operational data. 

However, calibration process typically lacks critical inputs from physics and 

engineering perspectives, thus sometimes leading to unreasonable calibrated results. 

By directly developing data-driven simulation models using real operational data, 

high fidelity simulation models that reflect the dynamics of target building can be 

developed without calibration process. 

The system is divided into six modules (M1-M6, Figure 4-1). ITS system is modeled 

using three modules (M1-M3): M1, containing two chillers and ITS, predicts outlet 

temperature of ITS (T1). M2 predicts brine outlet temperature of HEX1 (T4) and 



32 

 

chilled water outlet temperature of HEX1 (T6). In other words, M2 calculates the 

amount of cold provided by the HEX1 when the ITS system is operated. M3 predicts 

the inlet temperature of ITS (T2). Although the brine outlet temperature of HEX1 (T4) 

and the inlet temperature of ITS (T2) are expected to be the same, the actual 

operational data shows that there is a significant difference between the two 

temperatures for unknown reasons. Therefore, M3 is developed to predict relationship 

between T2 and T4. 

The geo-thermal heat pump system consists of three modules (M4-M6): M4 predicts 

source side inlet temperature of heat pumps (T7). M5 calculates source side outlet 

temperature of heat pumps (T8) and supply side outlet temperature of heat pumps 

(T10). In other words, M5 calculates the amount of the cold generated by the heat 

pumps. M6 calculates supply side outlet temperature of HEX2 (T9) and demand side 

outlet side outlet temperature of HEX2 (T12) which means M6 calculates the amount 

of heat exchanged through HEX2. 

M1-M4 are developed as data-driven model using artificial neural networks (ANNs). 

ANNs, based on a multi-layer perceptron, have been widely used to resolve 

engineering problems. ANNs consist of input, output, and hidden layers, and each 

layer consists of several nodes. The relationship between the nodes is determined by 

weights and the weights are updated to minimize errors, defined as difference between 

the output of the model and measurements, through back propagation. ANNs are able 

to predict and represent the dynamics of buildings systems with high fidelity, based 

on their ability to reflect non-linearity. Table 4-2 to 4-5 show the inputs and outputs 

of ANNs. The input variables of each ANN are selected based on domain knowledge 

and to predict or calculate outputs using historical data collected over a period of time 

to reflect the effect of the thermal inertia of buildings and systems. The modules are 

trained using data gathered during 2017.06.23-2017.08.11. 
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Table 4-2. Inputs and outputs of M1 

Variables Variable type Unit 

ITS outlet temperature (T1, t-1) 

Inputs 

℃ 

ITS outlet temperature (T1, t-2) ℃ 

ITS outlet temperature (T1, t-3) ℃ 

ITS inlet temperature (T2, t-1) ℃ 

ITS inlet temperature (T2, t-2) ℃ 

ITS inlet temperature (T2, t-3) 

(output of M3) 
℃ 

Chillers On/Off (O1, t) - 

Chillers On/Off (O1, t-1) - 

Chillers On/Off (O1, t-2) - 

ITS outlet temperature (T1, t) Outputs ℃ 

 

Table 4-3. Inputs and outputs of M2 

Variables Variable type Unit 

HEX1 supply side inlet temperature (T3, t) 

(output of M1) 

Inputs 

℃ 

HEX1 supply side inlet temperature (T3, t-1) ℃ 

HEX1 supply side inlet temperature (T3, t-2) ℃ 

HEX1 demand side inlet temperature (T5, t) ℃ 

HEX1 demand side inlet temperature (T5, t-1) ℃ 

HEX1 demand side inlet temperature (T5, t-2) ℃ 

HEX1 On/Off (O2, t) - 

HEX1 On/Off (O2, t-1) - 

HEX1 On/Off (O2, t-2) - 

HEX1 supply side outlet temperature (T4, t) 
Outputs 

℃ 

HEX1 demand side outlet temperature (T6, t) ℃ 
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Table 4-4. Inputs and outputs of M3 

Variables Variable type Unit 

ITS inlet temperature (T2, t-1) 

Inputs 

℃ 

ITS inlet temperature (T2, t-2) ℃ 

ITS inlet temperature (T2, t-3) ℃ 

HEX1 supply side outlet temperature (T4, t) 

(output of M2) 
℃ 

HEX1 supply side outlet temperature (T4, t-1) ℃ 

HEX1 supply side outlet temperature (T4, t-2) ℃ 

Chillers On/Off (O1, t) - 

Chillers On/Off (O1, t-1) - 

Chillers On/Off (O1, t-2) - 

HEX1 On/Off (O2, t) - 

HEX1 On/Off (O2, t-1) - 

HEX1 On/Off (O2, t-2) - 

ITS inlet temperature (T2, t) Outputs ℃ 

 

Table 4-5. Inputs and outputs of M4 

Variables Variable type Unit 

Geo-thermal pipe outlet temperature (T7, t-1) 

Inputs 

℃ 

Geo-thermal pipe outlet temperature (T7, t-2) ℃ 

Geo-thermal pipe outlet temperature (T7, t-3) ℃ 

Geo-thermal pipe inlet temperature (T8, t) 

(output of M5) 
℃ 

Geo-thermal pipe inlet temperature (T8, t-1) ℃ 

Geo-thermal pipe inlet temperature (T8, t-2) ℃ 

Heat pump On/Off (O3, t) - 

Heat pump On/Off (O3, t-1) - 

Heat pump On/Off (O3, t-2) - 

Geo-thermal pipe outlet temperature (T7, t) Outputs ℃ 
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Figure 4-2 shows the validation results of data-driven modules. The validation is 

conducted using data gathered for 3 days (2017.08.16-2017.08.18) which are not used 

to train the models. As a result of the validation, the prediction accuracy for the five 

output variables from each module satisfies the hourly prediction accuracy (less than 

CVRMSE 30% and less than MBE 10%) recommended by ASHRAE Guideline 14 

(2002). 

 1 

(a) Model accuracy of M1 (prediction of T1) 2 

 1 

(b) Model accuracy of M2 (prediction of T4) 2 
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Figure 4-2. Model accuracy of modules (M1-M4)  

 1 

(c) Model accuracy of M2 (prediction of T6) 2 

 1 

(d) Model accuracy of M3 (prediction of T2) 2 

 1 

(e) Model accuracy of M4 (prediction of T7) 2 
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M5 and M6 are developed using physics-based equations because the operational data 

of heat pumps and HEX2 (T9-T12) are missing. M5 consists of two equations: 

calculating cold supplied by heat and calculating electric energy use of the heat pumps 

(Equation 4-2 - 4-3, DOE, 2019a). 

𝑄𝑐

𝑄𝑐,𝑟𝑒𝑓
= 𝐴1 + 𝐴2 [

𝑇𝐿,𝑖𝑛

𝑇𝐿,𝑟𝑒𝑓
] + 𝐴3 [

𝑇𝑆,𝑖𝑛

𝑇𝑆,𝑟𝑒𝑓
] + 𝐴4 [

𝑉𝐿̇

𝑉𝐿,𝑟𝑒𝑓̇
] + 𝐴5 [

𝑉𝑆̇

𝑉𝑆,𝑟𝑒𝑓̇
] (Equation 4-2) 

𝑃𝑜𝑤𝑒𝑟𝑐

𝑃𝑜𝑤𝑒𝑟𝑐,𝑟𝑒𝑓
= 𝐵1 + 𝐵2 [

𝑇𝐿,𝑖𝑛

𝑇𝐿,𝑟𝑒𝑓
] + 𝐵3 [

𝑇𝑆,𝑖𝑛

𝑇𝑆,𝑟𝑒𝑓
] + 𝐵4 [

𝑉𝐿̇

𝑉𝐿,𝑟𝑒𝑓̇
] + 𝐵5 [

𝑉𝑆̇

𝑉𝑆,𝑟𝑒𝑓̇
] (Equation 4-3) 

where 𝑄𝑐: supplied cold (W); 𝑄𝑐,𝑟𝑒𝑓: nominal capacity (W); 𝑇𝐿,𝑖𝑛: demand side inlet 

temperature (℃); 𝑇𝐿,𝑟𝑒𝑓: nominal demand side inlet temperature (℃); 𝑇𝑆,𝑖𝑛: supply 

side inlet temperature (℃); 𝑇𝑆,𝑟𝑒𝑓: nominal supply side inlet temperature (℃); 𝑉𝐿̇: 

demand side flow rate (m3/s); 𝑉𝐿,𝑟𝑒𝑓
̇ : nominal demand side flow rate (m3/s); 𝑉𝑆̇ : 

supply side flow rate (m3/s); 𝑉𝑆,𝑟𝑒𝑓
̇ : nominal supply side flow rate (m3/s); 𝑃𝑜𝑤𝑒𝑟𝑐: 

electric energy use (W); 𝑃𝑜𝑤𝑒𝑟𝑐,𝑟𝑒𝑓: nominal electric energy use (W). 

M6 is a module that calculates the amount of heat transferred through the HEX2 and 

the Number of Transfer Units (NTU) method is used, in this study. NTU method is a 

calculation method used when there is insufficient information to calculate the Log-

Mean Temperature Difference (LMTD). In this study, NTU method is used because 

only inlet temperatures are available. M6 consists of six equations as follows 

(Equation 4-4 - 4-9, DOE, 2019a): 

𝑅𝑐 =
(𝑚̇𝑐𝑝)𝑀𝑖𝑛

(𝑚̇𝑐𝑝)𝑀𝑎𝑥
 (Equation 4-4) 

NTU =
𝑈𝐴

(𝑚̇𝑐𝑝)𝑀𝑖𝑛
 (Equation 4-5) 

ϵ =
1−exp [−𝑁𝑇𝑈(1−𝑅𝑐)]

1−𝑅𝑐exp [−𝑁𝑇𝑈(1−𝑅𝑐)]
  (Equation 4-6) 

𝑄̇ = 𝜖(𝑚̇𝑐𝑝)
𝑀𝑖𝑛

(𝑇𝑆𝑢𝑝𝐿𝑜𝑜𝑝,𝐼𝑛 − 𝑇𝐷𝑚𝑑𝐿𝑜𝑜𝑝,𝐼𝑛)                     (Equation 4-7) 
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𝑇𝑆𝑢𝑝𝐿𝑜𝑜𝑝,𝑂𝑢𝑡 = 𝑇𝑆𝑢𝑝𝐿𝑜𝑜𝑝,𝐼𝑛 −
𝑄̇

(𝑚̇𝑐𝑝)
𝑆𝑢𝑝𝐿𝑜𝑜𝑝

                  (Equation 4-8) 

𝑇𝐷𝑚𝑑𝐿𝑜𝑜𝑝,𝑂𝑢𝑡 = 𝑇𝐷𝑚𝑑𝐿𝑜𝑜𝑝,𝐼𝑛 −
𝑄̇

(𝑚̇𝑐𝑝)
𝐷𝑚𝑑𝐿𝑜𝑜𝑝

                  (Equation 4-9) 

where   𝑅𝑐: capacity ratio; (𝑚̇𝑐𝑝)𝑀𝑖𝑛: minimum value between capacity of supply 

side and demand side (W/K); (𝑚̇𝑐𝑝)𝑀𝑎𝑥: maximum value between capacity of supply 

side and demand side (W/K); NTU: Number of Transfer Unit; 𝑈𝐴: capacity of heat 

exchanger (W/K); ϵ : effectiveness of heat transfer; 𝑄̇ : heat transfer rate (W); 

𝑇𝑆𝑢𝑝𝐿𝑜𝑜𝑝,𝐼𝑛 : inlet temperature of supply side; 𝑇𝑆𝑢𝑝𝐿𝑜𝑜𝑝,𝑂𝑢𝑡 : outlet temperature of 

supply side; 𝑇𝐷𝑚𝑑𝐿𝑜𝑜𝑝,𝐼𝑛 : inlet temperature of demand side; 𝑇𝐷𝑚𝑑𝐿𝑜𝑜𝑝,𝑂𝑢𝑡 : outlet 

temperature of demand side. 

Figure 4-3 shows the overall structure of the federated model. The simulation 

sequence of ITS system model is M1→M2→M3→M1 and the sequence of geo-

thermal heat pump system model is M4→M5→M6→M4. As mentioned above, 

output variables of each module are used as input variables of the other modules. For 

example, the output variable of M1 (T1) is used as one of the input variables of M2 

(T3, T1 and T3 are same value). The cold is provided to the building through the 

output variables of heat exchanger modules (T6 of M2 and T12 of M6) and the 

demand side inlet temperatures of heat exchangers (T5 and T11) are calculated using 

cooling load of the office building. 
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Figure 4-3. Federated model of the target building 
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5. Explainable deep Q-network and rule 

reduction for building control 

In Chapter 5, an overall framework of rule reduction for building control using 

explainable deep Q-network is shown. First, elements (states, actions, and rewards) 

of reinforcement learning is defined for the implementation of DQN. Especially, 

control conditions that are required by the building operators are used to define reward 

functions. Then, control results performed by the DQN agent is compared to the 

baseline control. Finally, explanation of the DQN agent is shown and reduced rule is 

extracted from the explanation. The control performance of the reduced rule is also 

compared to the baseline control and optimal control performed by the DQN agent. It 

is shown that reduced rule can be practical approach of implementing RL based 

optimal control to building system. 

5.1 DQN implementation framework 

To implement Deep Q-network (DQN) for optimal control of the target building, 

states, actions, and reward function is defined based on the data analysis result 

described in Chapter 4. Table 5-1 shows the states. Temperatures of the system nodes 

(s1-s12), operating information of chillers, heat pumps, and heat exchangers (s13-s15), 

electric energy use of the system components (s16-s17), cooling load of the building 

(s18), and time-flag (s19) are used as states. Please note that time-flag denotes for the 

hour of the day because the simulations in this study are conducted at an hour interval. 

Also, the electric energy use of the system components is calculated using nominal 

specifications because the information is not measured properly. 
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Table 5-1. States defined for pre-training of DQN agent 

ID State Unit 

s1 ITS outlet temperature ℃ 

s2 ITS inlet temperature ℃ 

s3 HEX1 supply side inlet temperature ℃ 

s4 HEX1 supply side outlet temperature ℃ 

s5 HEX1 demand side inlet temperature ℃ 

s6 HEX1 demand side outlet temperature ℃ 

s7 Geo-thermal pipe outlet temperature ℃ 

s8 Geo-thermal pipe inlet temperature ℃ 

s9 Heat pumps inlet temperature ℃ 

s10 Heat pumps outlet temperature ℃ 

s11 HEX2 demand side inlet temperature ℃ 

s12 HEX2 demand side outlet temperature ℃ 

s13 Chillers On/Off - 

s14 Heat pumps On/Off (same as HEX2 On/Off) - 

s15 HEX1 On/Off - 

s16 Electric energy use of chillers kWh 

s17 Electric energy use of heat pumps kWh 

s18 Cooling load of upper office floors kWh 

s19 Time-flag (7-20) - 

 

Table 5-2 shows the actions that the agent could take at each state. The first action is 

to provide cold to the building using ITS without running the chillers. The second 

action is to provide cold using ITS with running the chillers. When providing cold 

using the ITS system and if the agent determines that the cooling capacity of the ITS 

is depleted, the agent selects a2. a3 denotes for the action that operates geo-thermal 

heat pumps to provide cold without running chillers to charge the ITS. a4 denotes for 

the action that operates geo-thermal heat pumps while running chillers to charge the 
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ITS. Although it is disadvantageous to operate chillers for immediate rewards, a4 can 

be chosen if it is advantageous for future states and delayed rewards. 

Table 5-2. Actions defined for pre-training DQN agent 

Action Chillers 
Heat 

pump 

Heat 

Exchanger 

a1 ON OFF HEX1 

a2 OFF OFF HEX1 

a3 ON ON HEX2 

a4 OFF ON HEX2 

 

As explained in Chapter 2, an agent of DQN explores control strategies that 

maximizes return, the accumulated reward. Equation 15 shows a reward function 

defined to evaluate the actions taken by the agent. The goal of the DQN agent in this 

study is to remove the cooling load, minimize energy consumption, and maintain the 

system node temperature in line with the building operators’ requirements. Therefore, 

the reward function (Equation 5-1) consists of three main terms: (1) Removal penalty 

of cooling load (Equation 5-2) represents the difference between the cold provided by 

the system and the cooling load of the building. When the amount of the provided 

cold is bigger than the cooling load, the penalty is defined as zero. (2) Energy 

consumption (Equation 5-3) is calculated as the sum of chillers energy use and heat 

pumps energy use. (3) Failure penalty is defined for two cases. First, when providing 

cold using ITS even though outlet temperature of ITS is over 3℃, the failure penalty 

is obtained because the cooling capacity of the ITS can be determined to be exhausted 

if the outlet temperature of ITS is over 3℃. Also, as the temperature of supply header 

must be less than 12℃ for efficient heat exchange to occur in AHUs, the failure 

penalty is obtained if the temperature of the supply header is higher than 12℃. To 

sum up, the reward function is proposed to train the agent to explore the control 

strategies that can provide cold to the building while minimizing energy consumption 
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of the system and avoiding system failure status. To make the reward a positive value, 

constant numbers a, b, c, and the failure penalty is set by the trial-error manner: a= 

1.2, b = 1.4, c = 1.0. 

𝑟(𝑡) = {
𝑎 − 𝑏 ∙ 𝑃𝑟𝑒𝑚𝑜𝑣𝑒(𝑡) − 𝑐 ∙ 𝐸(𝑡)   (𝑖𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙 = 𝐹𝑎𝑙𝑠𝑒)

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑡)                                      (𝑖𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙 = 𝑇𝑟𝑢𝑒)
  (Equation 5-1) 

𝑃𝑟𝑒𝑚𝑜𝑣𝑒(𝑡) = {
|𝑄𝑔𝑎𝑖𝑛(𝑡) − 𝑄𝑟𝑒𝑚𝑜𝑣𝑒(𝑡)| (𝑖𝑓 𝑄𝑔𝑎𝑖𝑛(𝑡) > 𝑄𝑟𝑒𝑚𝑜𝑣𝑒(𝑡))

  0                                          (𝑖𝑓 𝑄𝑔𝑎𝑖𝑛(𝑡) < 𝑄𝑟𝑒𝑚𝑜𝑣𝑒(𝑡))
 (Equation 5-2) 

𝐸(𝑡) =  𝑠16(𝑡) + 𝑠17(𝑡)                                      (Equation 5-3) 

where 𝑃𝑟𝑒𝑚𝑜𝑣𝑒(𝑡)  denotes for removal penalty that is defined as the difference 

between cooling load and cold provided by the system at time-step t; 𝐸(𝑡) represents 

total energy use of the system at time-step t; 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑡) denotes for failure penalty 

that the agent gets as reward when the action chosen by the agent make the system to 

be failed at time-step t; 𝑄𝑔𝑎𝑖𝑛(𝑡)  represents cooling load at time-step t; and 

𝑄𝑟𝑒𝑚𝑜𝑣𝑒(𝑡) represents cold provided at time-step t. 

As balancing between exploitation and exploration is critical for training the agent of 

reinforcement learning, e-greedy algorithm is used and the e value is defined as 

Equation 5-4. The e value decreased as the episode of training process increased which 

means the agent tried to find new control strategies in the early training episodes and 

after sufficient training, the agent controlled the system using the knowledge learned 

from exploration. 

e = 1/[1 + exp (−5 +
N(episodes)

20
)]                           (Equation 5-4) 

where e denotes for e value; and N(episodes) represents for the nth episode. 

Figure 5-1 shows the framework of pre-training a deep Q-learning agent using the 

federated model. The pre-training of the artificial agent is conducted using the data 

gathered for 15 days (2017.07.22.-2017.08.11.) and the agent is trained for 500 

episodes to explore optimal control strategies and learn the dynamics of the system. 
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The federated model and DQN algorithm are realized using python keras module. 

DQN consist of 3 hidden layers that had 20 nodes each. The size of the replay memory 

is set as 10,000 and deleted the oldest experience data. The training of DQN is 

conducted at the end of each episode and the cloning weights of networks is also 

performed at the end of each episode.
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Figure 5-1. Pre-training framework of DQN agent using the federated model 
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5.2 Control results of DQN 

The DQN agent of this study explores optimal control strategies for daytime operation 

of the parallel cooling system and the nighttime operation is assumed to be same as 

the baseline operation. Figure 5-2 shows the return and total energy consumption of 

the system during training period (July 22 - August 11) per episode. The agent is 

trained to maximize the return value while minimizing energy consumption of the 

system according to the definition of the reward function described above. Although 

the strategy of agent converged after 200 episodes and return value converged to about 

142, the agent’s control strategy can have uncertainty because the agent continued to 

update control strategies by self-learning using replay memory (Figure 5-2(a)). 

 

Figure 5-2. Training result of the DQN agent (July 22 – August 11) 

 1 
(a) Return per episode during training period 2 

 3 

 4 
(b) Energy consumption of the cooling system per episode 5 
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Since it is hard to directly apply the DQN controller to the target building, 

performance of the controller is validated for 3 days (2017.08.12.-2017.08.14., Table 

5-3) using federated model. For validation, DQN agent of 450th episode is used, 

which derives the return value at most (144.56) during the training process. Table 1 

shows the performance of the trained DQN agent compared to the baseline control. 

DQN agent could save 31.9% of daytime electric energy consumption of the cooling 

system compared to the baseline control (9,836 kWh vs. 14,440 kWh). This is because 

the electric energy consumption of daytime chiller operation is reduced by 46% while 

the agent used heat pumps more than the baseline control. This means that the agent 

found energy use of the system could be saved by balancing between two systems: ice 

thermal storage system and geo-thermal heat pump system. 

Table 5-3. Comparison of control performance: Baseline vs. DQN 

 Baseline DQN 

Chiller energy consumption (kWh) 14,440 6,646 

Heat pump energy consumption (kWh) 0 3,372 

Total energy consumption (kWh) 14,440 9,836 

System failure hours (out of 42) 18 6 

Return 3.46 27.56 

 

Figure 5-3 also depicts the performance of the DQN agent compared to the baseline 

control. The daytime operating duration is 14 hours (07:00 A.M.-20:00 P.M.), so the 

control performance of the agent is verified for total 42hours over three days. Figure 

5-3 (a) shows hourly total energy consumption of the cooling system. For the daytime 

operation, only chillers are used by the baseline control but the DQN controller 

operated heat pumps during late afternoon (usually after 16:00 P.M.) when the cooling 

load is reduced and saved energy consumption of the system. Figure 5-3 (b) shows 

outlet temperature of ice-based thermal storage (ITS). As described in Chapter 4, the 

system operators required the outlet temperature of ITS to be below 3℃. For 
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validation period, the baseline control could not meet the requirements for 18 hours 

out of 42 hours while the DQN agent violated the requirements only for 6 hours. 

Figure 5-3 (c) shows the supply header temperature of the cooling system. As 

mentioned above, the artificial agent should find the control strategy that maintains 

the supply header temperature below 12℃ for proper cold supply. The baseline 

control could not maintain the temperature below 12℃ for 13 hours during the 

validation period. However, control by the DQN agent allowed the temperature to 

exceed 12℃ for only 3 hours. The overall results show that the DQN agent could 

explore the control strategy that can meet the operational requirements while reducing 

total energy consumption of the cooling system.  
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Figure 5-3. Control performance: Baseline vs. DQN (August 12-14) 
  

 1 

(a) Energy consumption of the cooling system 2 

 3 

(b) Outlet temperature of ice-based thermal storage 4 

 5 

(c) Temperature of supply header 6 
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5.3 Rule reduction from DQN agent 

During episodes 450–500, 9,750 state-action pairs are generated by the DQN agent as 

the result of control. As described above, the number of states that the agent used for 

decision making is 19 and the agent chose one control action for each time-step. 

Although full decision making rules could be derived using the state-action pairs, the 

tree is too complicated and inappropriate for interpreting the decision making process, 

as the full tree consisted of too many leaf nodes and decision nodes. 

To make the decision tree interpretable and to perform rule reduction, feature 

importance of the states is calculated from the full tree. Figure 5-4 shows the feature 

importance of the states for decision making process. States of which the feature 

importance is over 0.05 are selected as important features and the selected five 

important features are: (1) outlet temperature of ice thermal storage (s1); (2) hourly 

cooling load of the target building (s18); (3) demand side outlet temperature of heat 

exchanger 2 (s12); (4) time-flag (s19); (5) brine inlet temperature of heat exchanger 1 

(s3). Among the five features, as s1 and s3 are basically the same data, only four 

features (s1, s12, s18, s19) are used to explain decision making process of the DQN agent. 

 

Figure 5-4. Feature importance for decision making process of the agent 

 

Figure 5-5 depicts the interpretation of decision making process of the DQN agent 
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derived using decision tree. To make the decision tree practical, maximum depth of 

the tree is set as four, minimum impurity decrease of the nodes is 0.02, and minimum 

samples to split is set as 100. The decision tree shows how the control of DQN agent 

is performed. For example, if the outlet temperature of ice thermal storage is 2.2℃ or 

less and hourly cooling load is above 160kWh, the agent used stored ice to provide 

cold without using chillers. The reference outlet temperature of ice thermal storage is 

2.2℃, lower than the specific control condition required by the building operators 

(3℃), because the agent of reinforcement learning established a control strategy that 

took into account the future states of the system and building as well as current states.  

 

 

Figure 5-5. Reduced rule extracted using decision tree 

 

As above, simple “If-then” rules can be derived by tracking nodes and branches of the 

decision tree and the rules is applied for building control as reduced rules. Table 5-4 

and Figure 5-6 show the difference between in performance of reduced rule-based 

control and the DQN controller for the validation period (2017.08.12.-2017.08.14.). 

The DQN controller could save more energy compared to the decision tree controller. 

(9,836 kWh vs. 10,229 kWh). Also, the system failure hours are less caused by DQN 

controller compared to the reduced rule-based controller (6 hours vs. 7 hours). 
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However, the reduced rule-based controller could reduce daytime energy 

consumption by 29.1% (10,229 kWh vs. 14,440 kWh) and also reduce the system 

failure hours (7 hours vs. 18 hours). 

Table 5-4. Comparison of control performance: DQN vs. Reduced rule 

 DQN Decision Tree 

Chiller energy consumption (kWh) 6,646 7,272 

Heat pump energy consumption (kWh) 3,372 2,957 

Total energy consumption (kWh) 9,836 10,229 

System failure hours (out of 42) 6 7 

Return 27.56 23.17 

 

Although the rule is derived using state-action pairs that the DQN controller generated, 

the control strategies of two controllers (DQN and reduced rule-based) are different 

(Figure 5-6(a)). This is because the rule is derived using the decision tree generated 

only using four important features. DQN controller could maintain the outlet 

temperature of the ice thermal storage below 3℃ for entire hours when using ITS 

system to provide cold while the reduced rule-based controller violated the condition 

for 3 hours during the period (Figure 5-6(b)). However, the temperature of supply 

header is better maintained by the rule-based controller compared to the DQN 

controller (3 hours vs. 6 hours, Figure 5-6(c)). The overall control performance 

comparison shows that the simple but control based on rules that are evaluated 

quantitatively can be practical alternative of complicated optimal controllers. 
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Figure 5-6. Control performance: DQN vs. Reduced rule (August 12-14) 
  

 1 

(a) Energy consumption of the cooling system 2 

 3 

(b) Outlet temperature of ice-based thermal storage 4 

 5 

(c) Temperature of supply header 6 
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5.4 Discussion 

The result of DQN control showed that through iterative learning, the DQN agent 

could learn dynamics of the target building and the cooling system, and find the 

balance between different components of the system to reduce energy consumption. 

To interpret decision making process of DQN agent and extract reduced rule for 

building control, decision tree is trained using state-action pairs generated by the agent 

during training period. The control performance of reduced rule using a decision tree 

is compared to the performance of baseline control and control of DQN agent. The 

reduced-rule based control is proved to be good-enough compared to complex control 

of artificial intelligence and the difference in energy savings between the two is 

marginal, resulting in 2.8%. In other words, it is shown that rules with quantitative 

evaluation can perform as reduced rule-based control which is practical and reliable 

way to realize collaboration of human and artificial intelligence. 

However, there are still several limitations that the interpretation of the DQN agent’s 

the decision making process using decision tree could not solve and one of the biggest 

questions remained is: Why the agent judged the four states as major features? The 

agent judged (1) outlet temperature of ice-based thermal storage (s1); (2) hourly 

cooling load of the target building (s18); (3) demand side outlet temperature of heat 

exchanger 2 (s12); (4) time-flag (s19) as four major states for its decision making 

process. It can be well explained that the agent considered s1 and s18 as important 

features because the reward function is defined using the states (Chapter 5.1). Also 

for s1, the rule is derived using internal node: s1 ≤ 2.2℃ (Figure 5-4) which can be 

interpreted as the agent learned the dynamics of the system and considered not only 

current rewards but also the future rewards. However, it is hard to interpret the reason 

that the agent chose actions based on s12 and s19. In other words, making decision trees 

using state-action pairs can be superficial interpretation for artificial intelligences. 

Although it is hard to fully understand the decision making process of the DQN agent, 

the result of this study is worthy enough in that it presented a new perspective of 

making control strategies for better building control. 
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6. Conclusion 

6.1 Summary 

Building controls are becoming complicated due to novel systems such as intermittent 

renewables, energy storage systems, and more. Reinforcement learning based control 

has been attracting attention as a technique to implement such complex building 

system control and demonstrated its potential to enhance building performance while 

addressing some limitations of other control techniques. Especially, RL can be a 

model-free manner control technique which can liberate researchers from tedious 

works of developing simulation models. Although RL-based control can be a model-

free approach, unstable control actions during early training period and lack of 

interpretability are challenges that should be overcome to implement RL for real 

building. RL controller may cause unexpected costs (eg. thermal discomfort of 

occupants or failure of systems) by unstable control during early period of training. 

Also, buildings are owned and operated by humans who should be reconfirmed the 

controllers’ intentions, especially regarding to failure cases. However, reinforcement 

learning based controllers are in black-box form, which makes the decision making 

process difficult to interpret. 

To overcome above mentioned challenges, this study proposed federated model and 

interpreting decision making process of artificial agent using explainable 

reinforcement learning. Federated model is a novel concept of simulation model 

which consists of several modules developed using data from BEMS. As federated 

model is developed without any pre-defined topology rules, it could address 

limitations of conventional building simulation programs such as EnergyPlus and a 

simulation model could be developed with less subjective assumptions. Using the 

federated model, deep Q-network (DQN) is implemented to learn dynamics of a target 

building. The trained agent of DQN could save 31.9% of energy consumption 

compared to the baseline control while enhancing system stability by reducing system 

failure hours to 6 hours from 18 hours out of 42 hours. The result demonstrated that 

federated model could provide initial experiences for the DQN agent to develop its 

own control strategy which can enhance stability of RL based controller and avoid 
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unexpected outcomes during the early training period. 

Decision tree which is an interpretable machine learning algorithm is applied to distill 

explanation of decision making process of the DQN agent. By training the decision 

tree using state-action pairs generated by the trained DQN agent, it is possible to 

interpret reasons of choosing actions for the agent. For example, the most important 

state for the agent to choose an action is temperature of ice-based thermal storage (ITS) 

outlet and the reference value is 2.23℃. As the agent is required to find the strategy 

that the temperature would not exceed 3℃ while operating ITS system, the DQN 

agent explored strategies that could keep the temperature below 3℃ continuously. In 

other words, the result showed that DQN agent could find strategies that meet the 

requirement by considering not only current rewards but also future rewards. Also, 

the explanation could be applied for building control as simple but practical ‘If-then’ 

rules. By applying the rules derived using decision tree, 29.1% of energy consumption 

could be saved compared to baseline control and system failure hours could be 

reduced to 7 hours from 18 hours. This indicated that well evaluated rules could 

perform as effective as complicated artificial intelligence controllers. 

To sum up, this study proposed practical framework of implementing reinforcement 

learning based control for complicated building system. Also, it is demonstrated that 

explainable reinforcement learning can be applied to develop reduced rule whose 

performance is near RL controller and reliability is enhanced (Figure 6-1). 

 

Figure 6-1. Hypothesis of the study 
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6.2 Future works 

This study proposes rule reduction framework using explainable reinforcement 

learning and demonstrates that reduced rules can perform as well as complex 

reinforcement learning algorithms. The significance of this study lies in proposing 

how to derive rules with quantitative evaluation for building control. Followings are 

future studies: 

⚫ One of the major advantages of applying reinforcement learning 

controller is that RL-based controller can be adaptive. As the agent of 

RL learns dynamics of building by continuously interacting with the 

environment, the controller can adapt to internal and external changes. 

However, the reduced rule-based control cannot adapt by itself to the 

changing environment. Therefore, studies on developing adaptive rule-

based controller should be conducted to conserve the advantage of RL-

based controller while extracting simple rules. 

⚫ This study is conducted using data gathered in summer. Therefore, the 

developed controller could be implemented only in summer season. 

Also, the controller could perform well only for the target building 

because it is developed only using data gathered from the building. The 

studies on developing spatially and temporally generalizable controller 

should be conducted to implement the developed framework widely. 
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국문 초록 

강화학습을 적용한 실용적인 건물 시스템 제어 

 

조성권 

건축학과 건축공학전공 

서울대학교 대학원 

 

HVAC 및 조명과 같은 기존 시스템과 간헐적 재생 에너지, 에너지 저장 

시스템 등과 같은 새로운 시스템에도 대응해야 하므로 현대 건물 시스템 

제어는 복잡해지고 있습니다. 이에 따라, 건물 시스템 제어기는 건물의 

동적 거동에 스스로 적응할 수 있어야 하고 다목적 최적화 결과를 반영할 

수 있어야 한다. 강화학습 (reinforcement learning, RL)을 사용하여 

전술된 건물 제어기의 성능을 달성할 수 있다는 것은 널리 알려져 있지만, 

RL을 실제 건물에 적용하기 위해서는 해결해야 할 과제들이 있다: (1) 

RL의 초기 훈련 기간 동안 불안정한 제어는 예상치 못한 비용을 야기할 

수 있다. (2) 여전히 대부분의 RL 기반 제어 전략은 일상적 실무에 

적용하기에는 시설 관리자 입장에서 이해하기 어렵고 제어 전략에 대한 

해석을 수행할 수 없다. RL 알고리즘을 건물 제어에 적용한다는 것은 

의사결정의 주체가 인공지능이 된다는 것을 의미한다. 이때, 건물의 

소유주와 운영자는 인공지능 기반 건물 제어기의 의도 및 의사결정 

과정에 대한 해석 및 이해를 할 필요가 있다. 

첫 번째 과제를 해결하기 위해, RL 에이전트를 사전 학습하고 이를 위해 

새로운 개념의 시뮬레이션 모델인 연합 모델이 제안된다. 연합 모델은 

빌딩 시스템을 물리적 인과 관계에 따라 모듈로 나누고 각 모듈을 데이터 

기반 모델로 개발하여 빌딩 시스템에 대한 시뮬레이션을 수행하는 통합 
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데이터 기반 모델이다. 대상 건물의 냉방 시스템 시뮬레이션 모델은 

6개의 모듈로 구성되고 각 모듈은 BEMS에서 수집된 데이터를 사용하여 

개발된다. 연합 모델은 제1법칙 기반 시뮬레이션 모델의 한계 (예: 위상 

규칙, 모델 보정)를 극복할 수 있다. Deep Q-Network (DQN)은 냉방 

시스템의 동적 거동을 학습하고 건물에 냉방을 공급하는 동시에 에너지 

사용을 줄일 수 있는 제어 전략을 모색하는 데 적용된다. DQN의 제어 

성능을 현재 건물 운영자들이 적용하는 기존 제어 성능과 비교함으로써 

RL 제어기가 시스템의 제어 효율성을 크게 개선할 수 있으며 연합 

모델은 강화학습 기반 제어기의 학습을 위한 가상 환경을 제공할 수 

있음을 증명한다. 

DQN 에이전트의 해석성을 높이기 위해 의사결정 트리를 사용하여 

에이전트의 의사결정 프로세스에 대한 설명을 추출한다. 에이전트에서 

생성된 상태-작업 (state-action) 쌍이 의사결정 트리를 훈련하는 데 

사용된다. 얕지만 쉽게 해석할 수 있는 모델을 사용한 사후 해석은 강화 

학습의 투명성과 해석성을 향상시킨다. 또한 의사결정나무가 만든 분류 

결과는 인공지능이 만든 제어 전략을 단순화시킨 'If-then' 규칙을 

도출한다. 추출된 규칙 (reduced rule) 기반 제어의 성능과 DQN 

제어기의 성능을 비교하여 두 제어기 사이의 에너지 절약량 차이가 

2.8%로 미미함을 보인다. 즉, 규칙 기반 제어가 충분한 성능을 보인다는 

것을 증명한다. 

본 연구는 기축 사무실 건물의 냉방 제어를 위한 설명 가능한 RL의 적용 

방안에 대해 수행된다. 의사 결정 트리를 훈련된 DQN 에이전트에 

적용한 다음 일련의 단순화된 제어 규칙을 도출한다. 이 연구는 설명 

가능한 강화학습을 이용한 정량화된 규칙 도출 프레임워크를 제안하고, 

복잡한 강화학습 알고리즘과 비교하여 단순하지만 정량적인 평가가 

수행된 규칙이 충분한 성능을 보여줄 수 있음을 보여준다. 이 연구의 
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의의는 건물 통제에 대한 정량적 평가를 통해 규칙을 도출하는 방법을 

제안하는 데 있다. 

 

주요어: 설명 가능한 강화학습, 정량화된 규칙 도출, 정량적 규칙 기반 

제어, DQN 

학번: 2019-21675 


	1. Introduction
	1.1 Control of building systems
	1.2 Problem Description
	1.3 Goal
	1.4 Thesis Outline

	2. Deep Q-network (DQN)
	2.1. Summary of reinforcement learning
	2.1.1 Elements of reinforcement learning
	2.1.2 Value function

	2.2. Deep Q-learning
	2.2.1 Temporal difference (TD) learning and Q-learning
	2.2.2 Deep Q-learning

	2.3. Previous works to implement reinforcement learning to existing buildings
	2.4. Conclusion

	3. Decision Trees
	3.1 Summary of decision tree
	3.2 Classification And Regression Trees (CART)
	3.3 Interpreting reinforcement learning using decision tree
	3.4 Conclusion

	4. Target building and Federated model
	4.1 Parallel cooling system
	4.2 Federated model

	5. Explainable deep Q-network and rule reduction for building control
	5.1 DQN implementation framework
	5.2 Control results of DQN
	5.3 Rule reduction from DQN agent
	5.4 Discussion

	6. Conclusion
	6.1 Summary and conclusion
	6.2 Future works

	Reference


<startpage>10
1. Introduction 1
 1.1 Control of building systems 1
 1.2 Problem Description 2
 1.3 Goal 4
 1.4 Thesis Outline 5
2. Deep Q-network (DQN) 7
 2.1. Summary of reinforcement learning 7
  2.1.1 Elements of reinforcement learning 7
  2.1.2 Value function 9
 2.2. Deep Q-learning 12
  2.2.1 Temporal difference (TD) learning and Q-learning 12
  2.2.2 Deep Q-learning 14
 2.3. Previous works to implement reinforcement learning to existing buildings 16
 2.4. Conclusion 19
3. Decision Trees 21
 3.1 Summary of decision tree 21
 3.2 Classification And Regression Trees (CART) 23
 3.3 Interpreting reinforcement learning using decision tree 24
 3.4 Conclusion 26
4. Target building and Federated model 27
 4.1 Parallel cooling system 27
 4.2 Federated model 31
5. Explainable deep Q-network and rule reduction for building control 40
 5.1 DQN implementation framework 40
 5.2 Control results of DQN 46
 5.3 Rule reduction from DQN agent 50
 5.4 Discussion 54
6. Conclusion 55
 6.1 Summary and conclusion 55
 6.2 Future works 57
Reference 58
</body>

