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Abstract 

Background:  Microbiome has been shown to substantially contribute to some cancers. However, the diagnostic 
implications of microbiome in head and neck squamous cell carcinoma (HNSCC) remain unknown.

Methods:  To identify the molecular difference in the microbiome of oral and non-oral HNSCC, primary data was 
downloaded from the Kraken-TCGA dataset. The molecular differences in the microbiome of oral and non-oral HNSCC 
were identified using the linear discriminant analysis effect size method.

Results:  In the study, the common microbiomes in oral and non-oral cancers were Fusobacterium, Leptotrichia, Sele-
nomonas and Treponema and Clostridium and Pseudoalteromonas, respectively. We found unique microbial signatures 
that positively correlated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in oral cancer and posi‑
tively and negatively correlated KEGG pathways in non-oral cancer. In oral cancer, positively correlated genes were 
mostly found in prion diseases, Alzheimer disease, Parkinson disease, Salmonella infection, and Pathogenic Escherichia 
coli infection. In non-oral cancer, positively correlated genes showed Herpes simplex virus 1 infection and Spliceo‑
some and negatively correlated genes showed results from PI3K-Akt signaling pathway, Focal adhesion, Regulation of 
actin cytoskeleton, ECM-receptor interaction and Dilated cardiomyopathy.

Conclusions:  These results could help in understanding the underlying biological mechanisms of the microbiome of 
oral and non-oral HNSCC. Microbiome-based oncology diagnostic tool warrants further exploration.

Keywords:  Microbiome, HNSCC, Oral cancer, Non-oral cancer, TCGA​, KEGG pathway, Linear discriminant analysis

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Head and neck squamous cell carcinoma (HNSCC) is the 
sixth most common cancer worldwide, with 890,000 new 
cases and 450,000 deaths in 2018 [1, 2]. HNSCC accounts 
for about 6% of all cancers and 1–2% of deaths due to 

neoplastic diseases [3–5]. HNSCC is a heterogeneous 
disease and tumours are distinguished based on location. 
HNSCC originates from the epithelial cells in the laryn-
geal and oropharynx, lips, mouth or larynx. Tobacco and 
alcohol consumption are the well-known and geographi-
cally most prevalent risk factors for HNSCC [6]. Heavy 
users of these carcinogens-containing products have a 
35-fold higher risk of developing HNSCC than non-users 
[6, 7], and approximately three-quarters of HNSCC cases 
attributable to cigarette smoking and tobacco use [8]. In 
addition, betel nut chewing is independent risk factor 
for HNSCC in India, China or Taiwan [9, 10]. Especially, 
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development of oropharyngeal cancers is strongly associ-
ated with HPV infection, which mainly occurs in West-
ern Europe and the United States [6, 11].

Trillions of microbes have evolved and continue to 
live on and within human beings [12]. Numerous stud-
ies have suggested a link between the microbiota, which 
exist in various organs (e.g., gut and placenta) and patho-
logical conditions such as neurologic diseases, metabolic 
disorders, and cancers [13–16]. With the development 
of omics technologies, such as metagenomics, transcrip-
tomics, and proteomics, substantial evidence has been 
accumulated regarding the relationship of microorgan-
isms and various diseases, including cancers [17].

The gut microbiome has been associated with vari-
ous disorders, especially malignant tumours. The gut 
microbiome is involved in biological processes, including 
modulating the metabolic phenotype, regulating epithe-
lial development, and influencing innate immunity [18]. 
Chronic diseases such as obesity, inflammatory bowel 
disease, diabetes mellitus, metabolic syndrome, athero-
sclerosis, alcoholic liver disease, non-alcoholic fatty liver 
disease, cirrhosis are associated with the human micro-
biome [19]. Several studies have demonstrated that gut 
microbiome dysbiosis is associated with tumourigen-
esis and/or tumour growth across cancer types, includ-
ing colon, hepatocellular carcinoma, gastric, and breast 
[13, 18]. Moreover, the gut microbiome has been dem-
onstrated to play a key role in the response to cancer 
therapy, such as chemotherapy, immune checkpoint 
blockade, and stem cell transplant [13]. For immune 
checkpoint blockade response, differential gut microbi-
ome signatures exist in patients who respond to immune 
checkpoint blockade treatment [20–22].

Although intratumoral microbiota has not been stud-
ied as much as the gut microbiota, the importance of 
microbiota in tumours is increasing, with studies show-
ing that it affects the response to cancer treatment [13, 
23–26]. Intratumoral bacteria, which are metabolically 
active, can alter the chemical structure of anti-cancer 
drugs [27, 28]. In addition, Fusobacterium nucleatum in 
colorectal tumour promotes resistance to chemotherapy 
through modulation of autophagy [29]. HNSCC, espe-
cially oral squamous cell carcinoma (OSCC), is the most 
prevalent and commonly studied cancer associated with 
bacterial infection, and is the most common malignancy 
of the head and neck worldwide [30]. Two prominent 
oral pathogens, Porphyromonas gingivalis, and F. nucle-
atum have been reported to promote tumour progres-
sion in mice [31]. Periodontitis is an infectious disease 
causing chronic inflammation in the oral cavity [32, 33]. 
Periodontitis has been linked to various cancers, includ-
ing oesophageal and oropharyngeal cancers [30]. Several 
studies have found that the risk of developing OSCC may 

increase with periodontal disease [34, 35], and periodon-
tal disease increases the risk of oral cancer even after 
adjusting for significant risk factors [36, 37]. Herein, we 
investigated the underlying molecular differences of the 
microbiome of oral cancer and non-oral HNSCC.

Methods
Microbiome datasets & TCGA RNA‑sequencing datasets
We downloaded Kraken-TCGA(The Cancer Genome 
Atlas) -Raw-Data (n = 17,625) from microbial count data-
sets [38] for this study. Primary tumours were selected 
from HNSCC of microbiome data, classified into RNA 
and WGS, and combined with TCGA clinical informa-
tion to separate oral and non-oral subtype. RNA-expres-
sion sequencing and clinical data sets of HNSCC samples 
were downloaded from the Broad GDAC Firehose [39] 
on 20 Feb 2020. The samples were categorised based 
on the site of occurrence as either oral cancer (alveolar 
ridge, buccal mucosa, floor of the mouth, hard palate, lip, 
oral cavity, and oral tongue) or non-oral cancer (base of 
tongue, hypopharyngeal, larynx, oropharynx, and tonsil) 
(Supplementary Table). Preprocessing was used with the 
R program (version 4.0.3) [40].

Linear discriminant analysis effect size (LEfSe)
To identify significantly different bacteria (as biomark-
ers) between the two groups at the genus level, taxa sum-
maries were reformatted and inputted into LEfSe via the 
Huttenhower Lab Galaxy Server [41]. The LDA values of 
oral and non-oral HNSCC microbiome data of RNA and 
DNA were obtained. We used the LDA method to esti-
mate the effect size of the abundant genus level [41].

Then, we obtained common bacteria of RNA and DNA 
with the threshold on the logarithmic LDA score for dis-
criminative features of 2.0108 (p < 0.0076). In the settings 
of LEfSe, the Kruskal–Wallis sum-rank test (α = 0.05) 
was used to detect taxa with significant differential 
abundance.

Phylogenetic investigation of communities 
by reconstruction of unobserved states (PICRUSt) 
and ANOVA‑like differential expression (ALDEx2)
The name of the common bacteria was changed to ID of 
Greengenes (97% taxonomy) (version 13.5) (http://​green​
genes.​lbl.​gov) and used as an input file. PICRUSt was 
performed using the Galaxy web application, which was 
used to predict bacterial metabolic contributions of oral 
rich and non-oral rich bacteria, respectively [42]. To filter 
the results of the PICRUSts, we merged results of oral rich 
and non-oral rich bacteria, and used the ALDEx2 [43] to 
obtain top five pathways with a p-value of 0.05 or less.

http://greengenes.lbl.gov
http://greengenes.lbl.gov
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Correlation analysis
A correlation analysis was performed with respect to 
the RNA expression data and common bacteria data of 
oral and non-oral HNSCC. Using the Spearman corre-
lation test, genes with oral/non-oral correlation coeffi-
cients r > 0.15 and r < − 0.15 were obtained. Significance 
levels were considered at P < 0.05.

Protein–protein interaction (PPI) analysis & Hub gene
PPI analysis of correlated genes was performed using the 
plug-in Search Tool for the Retrieval of Interacting Genes 
(STRING) app (version 1.5.1) [44]. The results of the analysis 
were imported into Cytoscape (version 3.8.2) [45] to estab-
lish a network model. The plug-in app cytohubba (version 
0.1) [46] in Cytoscape was downloaded and installed. The 
top ten scores of the degree algorithm were taken as the cri-
teria to screen out the hub genes with high connectivity in 
the gene expression network.

KEGG pathway and gene ontology (GO)
KEGG pathway and GO analysis were performed on the 
DAVID website [47] with the genes in the node table result-
ing from the PPI. Then, the genetic symbol was transferred 
to entrezID using the org.Hs.eg.db (version 3.12.0) package 
[48] with the same input file from the PPI for subsequent 
analysis. The results of enhanced GO entries and KEGG 
were visualised as path point plots using clusterProfiler (ver-
sion 3.18.1), ggplot (version 3.3.5), and Enrichplot2 (version 
1.10.2) packages. GO and KEGG analysed the used data with 
statistically significant false discovery rates < 0.05.

Results
Characterisation of unique microbial signatures of oral 
and non‑oral HNSCC
To evaluate the unique microbial signatures of oral and 
non-oral HNSCC, we analysed Kraken-TCGA data sets 
using the linear discriminant analysis (LDA) method. 
We divided 691 HNSCC samples into 172 DNA whole 
genome sequencing (WGS) data and 519 RNA sequenc-
ing data (Fig.  1). Next, we analysed RNA sequencing as 
subtypes divided into 314 oral cancer and 205 non-oral 
cancer. DNA WGS data were also analysed as 115 oral 
and 57 non-oral subtypes. Clinical information related to 
these samples is described in Table  1. In both data, gen-
der (P = 8.698E-05 (RNA)/2.372E-06 (DNA)) HPV status 
(P = 1.623E-09 (RNA)/5.201E-08 (DNA)), clinical stage 
(P = 3.998E-03 (RNA)/1.100E-03 (DNA)) and pathologic 
stage (P = 4.998E-04 (RNA)/2733E-05 (DNA)) were sig-
nificantly different between patients with oral and non-oral 
cancers.

Investigation of the common microbiome of oral 
and non‑oral HNSCC
The relatively enriched microbiome of oral and non-oral 
HNSCC are shown in Fig. 2a, b. The enriched microbiomes 
in oral HNSCC were Fusobacterium, Leptotrichia, Sele-
nomonas and Treponema and the enriched microbiomes 
in non-oral HNSCC were Clostridium and Pseudoalte-
romonas, as determined by the linear discriminant analy-
sis effect size (LEfSe) method (Fig. 2a, b). The distribution 
of count data for each microbiome subtypes is depicted in 
Fig. 2c–h.

Microbial Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway and protein network of oral and non‑oral 
HNSCC
We analysed the molecular mechanism of the microbi-
ome of oral and non-oral HNSCC using KEGG pathway 
analysis and protein network analysis (Fig. 3, Tables 1 and 

Fig. 1  Pipeline flow chart throughout the study
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Fig. 2  Linear discriminant analysis effect size (LEfSe) analyses and distribution of the microbiome by subtype. LEfSe analysis of microbiome 
composition between oral and non-oral-associated cancers was performed on a bacterial DNA and b bacterial RNA, respectively. Bacteria species 
enriched in oral cancer had a positive linear discriminant analysis (LDA) score, while bacteria species enriched in non-oral cancer had a negative 
score. Microbiomes with higher levels of distribution in oral cancer were c Fusobacterium, d Leptotrichia, e Selenomonas, and f Treponema. 
Microbiomes with higher levels of distribution in non-oral cancer were f Clostridium and g Pseudoalteromonas 
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2). We found unique microbial signatures that positively 
correlated KEGG pathways in oral HNSCC, positively 
correlated KEGG pathways and negatively correlated 
KEGG pathways in non-oral HNSCC (Figs. 3 and 4). In 
oral HNSCC, positively correlated genes were mostly 
found in bacterial infection pathways, and the genes 
involved in neurodegenerative diseases (prion diseases, 
Alzheimer disease, and Parkinson disease). In non-oral 
cancer, positively correlated genes were found Herpes 

simplex virus 1 infection and Spliceosome and negatively 
correlated genes showed results from PI3K-Akt signaling 
pathway, focal adhesion and regulation of actin cytoskel-
eton and Dilated cardiomyopathy. In addition, we con-
ducted a pathway and gene expression analysis using 
microbial data of subtypes from each oral and non-oral 
HNSCC. As a result of PICRUSt, rich microbiome within 
oral cancer was involved in germination, Huntington’s 
disease, biosynthesis of siderophore group nonribosomal 

Fig. 3  Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. a Significantly enriched KEGG pathways of the positively 
correlated genes in oral cancer. b Significantly enriched KEGG pathways of the positively correlated genes in non-oral cancer. c Significantly 
enriched KEGG pathways of the negatively correlated genes in non-oral cancer. The left Y-axis shows the KEGG pathway. The X-axis shows the gene 
ratio

Fig. 4  Graphical summary of this study
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peptides, atrazine degradation and prion diseases. Rich 
microbiome within non-oral cancer was found to be 
associated with other glycan degradation, Lysosome, 
Glycosphingolipid biosynthesis—globo series, electron 
transfer carriers, and glycosaminoglycan degradation 
(Table  2 and Additional file  2: Table  S1). Rich microbi-
ome within non-oral cancer was found to be associated 
with biosynthesis and metabolism of glycan, transport, 
catabolism, and biosynthesis of other secondary metabo-
lites. Rich microbiome within oral cancer was involved 
in the biodegradation and metabolism of xenobiotics, 
neurodegenerative diseases, and the circulatory system. 
We found significant pathways using correlated genes 
with microbiome. We identified the KEGG pathways by 
selecting only the nodded genes as a protein–protein 
interaction tool (Table 3). The results of the phylogenetic 
investigation of communities by reconstruction of unob-
served states (PICRUSt) analysis are shown in Additional 
file  1: Fig.  S1. ALDEx2 was performed by merging the 
KEGG pathways obtained after PICRUSt of each subtype. 
The result is the median expression value of the KEGG 
pathway, and is expressed as a dot on the graph (Addi-
tional file 2: Table S1).

Discussion
The microbiome plays an important role in the human 
host and participates in the development of a wide vari-
ety of diseases, such as cancer [12]. The tumor microbi-
ome is associated with a chronic inflammatory state and 
modulates the initiation and development of various 
cancers, such as lung, breast, colon, gastric, pancreatic, 
cholangiocarcinoma, ovarian, and prostate cancers [13, 
23–26, 49–51]. In colorectal cancer (CRC), transplant 
of stool containing the tumor microbiome from patients 
with CRC can induce polyp formation [52, 53]. Moreo-
ver, some bacterial species (F. nucleatum) can stimulate 
an inflammatory state that can promote carcinogenesis 
via increased production of reactive oxygen species [54], 
induction of proinflammatory toxins [55, 56], and sup-
pression of anti-tumor immune functions [57, 58]. In this 
study, for the first time, we differentiated the microbiota 
of HNSCC into oral and non-oral cancers to identify 
differences in the abundance of the tumor microbiome. 
Then, we then attempted a molecular approach using 
the correlation between the microbiome and mRNA 
expression. We systematically selected six microbiomes 
as unique microbial signatures of oral and non-oral 

Table 2  Results of PICRUSt KEGG pathway enrichment analysis

BH < 0.05 compared to the oral and non-oral (ALDEx2); BH Benjamini-Hochberg

diff.btw cut off > abs(6)

rab.win.non-oral: a vector containing the median clr value for each feature in non-oral, clr centred log-ratio

rab.win.oral: a vector containing the median clr value for each feature in oral

diff.btw: a vector containing the per-feature median difference between condition non-oral and oral

PICRUSt phylogenetic investigation of communities by reconstruction of unobserved states; KEGG Kyoto Encyclopedia of Genes and Genomes

Level 1 Level 2 Level 3 Rab.win. non-oral Rab.win.oral diff.btw

Oral rich bacteria Unclassified Cellular Processes and 
Signaling

Germination − 0.421 8.339 9.005

Human diseases Neurodegenerative diseases Huntington’s disease 0.541 8.378 7.972

Metabolism Metabolism of Terpenoids 
and Polyketides

Biosynthesis of siderophore 
group nonribosomal 
peptides

1.232 8.327 7.111

Metabolism Xenobiotics Biodegradation 
and Metabolism

Atrazine degradation 1.559 8.333 6.271

Human diseases Neurodegenerative diseases Prion diseases 2.353 8.343 6.171

Non-oral rich bacteria Metabolism Glycan biosynthesis and 
metabolism

Other glycan degradation 10.295 − 0.612 − 10.855

Cellular processes Transport and catabolism Lysosome 10.270 − 0.458 − 10.537

Metabolism Glycan biosynthesis and 
metabolism

Glycosphingolipid biosyn‑
thesis—globo series

10.230 0.474 − 9.590

Unclassified Cellular processes and 
signaling

Electron transfer carriers 10.290 1.406 − 8.713

Metabolism Glycan biosynthesis and 
metabolism

Glycosaminoglycan degra‑
dation

10.275 1.553 − 8.588
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Table 3  DAVID gene-annotation enrichment analysis of KEGG pathway

ID KEGG pathway Count P-value FDR Genes

Positively correlated genes in oral 
cancer

hsa05020 Prion disease 10 9.21E-07 9.120E-05 STIP1, PSMA6, TUBA1C, PSMD12, TUBB6, 
TUBB2A, IL1B, PPIF, TUBB4B, TUBA4A

hsa05010 Alzheimer disease 9 1.15E-04 2.412E-03 PSMA6, TUBA1C, PSMD12, TUBB6, TUBB2A, 
IL1B, PPIF, TUBB4B, TUBA4A

hsa05132 Salmonella infection 8 5.09E-05 2.412E-03 TUBA1C, TUBB6, TUBB2A, CXCL8, IL1B, 
TUBB4B, DYNLL1, TUBA4A

hsa05012 Parkinson disease 8 7.74E-05 2.412E-03 PSMA6, TUBA1C, PSMD12, TUBB6, TUBB2A, 
PPIF, TUBB4B, TUBA4A

hsa05130 Pathogenic Escherichia coli infection 7 1.22E-04 2.412E-03 TUBA1C, TUBB6, TUBB2A, CXCL8, IL1B, 
TUBB4B, TUBA4A

Positively correlated genes in oral 
cancer

hsa05168 Herpes simplex virus 1 infection 39 6.31067961 3.342E-08 ZNF155, ZNF132, ZNF550, ZNF195, 
ZNF606, ZNF84, ZNF823, ZNF547, ZNF205, 
ZNF766, ZNF600, ZNF226, ZNF302, EIF2B1, 
ZNF566, ZNF620, ZNF224, ZNF564, 
ZNF443, ZNF584, ZNF441, ZNF141, 
ZNF140, ZNF283, BST2, IRF3, ZNF519, IRF7, 
SRSF2, SRSF3, ZNF337, ZNF557, SRSF5, 
ZNF780A, SRSF6, SRSF7, ZNF112, ZNF530, 
ZNF354B

hsa03040 Spliceosome 22 3.55987055 1.454E-09 PRPF38B, HSPA1L, RBM8A, CCDC12, 
THOC1, MAGOHB, LSM5, LSM4, LSM2, 
XAB2, HNRNPM, PHF5A, PRPF18, TRA2B, 
MAGOH, SRSF2, SRSF3, PRPF31, SRSF5, 
SRSF6, SRSF7, SRSF10

Negatively correlated genes in non-
oral cancer

hsa04151 PI3K-Akt signaling pathway 59 6.5701559 1.870E-15 ITGB1, ATF2, FLT1, ITGB5, IRS1, ITGB4, FLT4, 
ITGB3, TNC, LAMC2, LAMC1, IGF1R, RPTOR, 
GYS1, PPP2R5E, CREB3L2, KDR, ITGAV, 
ITGB6, IL6R, YWHAG, PDGFRB, MAP2K1, 
ITGA3, ITGA1, F2R, PRKCA, OSMR, COL4A2, 
PIK3CA, COL4A1, COL6A1, COL6A3, ITGA7, 
ITGA6, ITGA5, ITGA9, CREB5, LAMA2, 
LAMA4, LAMA3, PDGFB, LPAR3, LPAR4, 
THBS2, THBS1, EGFR, RELA, RXRA, PDGFC, 
MAPK1, ANGPT2, LAMB3, FN1, PPP2R3A, 
COL1A1, COL1A2, ITGA11, TEK

hsa04510 Focal adhesion 58 6.45879733 1.455E-27 ITGB1, FLT1, ITGB5, ITGB4, FLT4, ITGB3, TNC, 
LAMC2, LAMC1, ACTB, IGF1R, MYLK, KDR, 
ITGAV, ITGB6, PDGFRB, MAP2K1, ITGA3, 
ACTN1, ITGA1, PRKCA, ACTN4, COL4A2, 
PIK3CA, COL4A1, COL6A1, RAPGEF1, 
COL6A3, ITGA7, ITGA6, ITGA5, TLN1, CRK, 
VCL, ITGA9, LAMA2, ROCK2, LAMA4, PXN, 
LAMA3, PDGFB, THBS2, THBS1, EGFR, 
PDGFC, FLNA, MAPK1, FLNB, FLNC, PAK2, 
LAMB3, CAV1, FN1, PARVA, COL1A1, 
COL1A2, ITGA11, ZYX

hsa04810 Regulation of actin cytoskeleton 42 4.67706013 3.317E-13 ITGB1, CYFIP1, ITGB5, ROCK2, ITGB4, 
ITGB3, ARPC1B, PXN, PDGFB, WASL, LPAR4, 
IQGAP1, EGFR, ACTB, SLC9A1, MYLK, 
GNA12, PDGFC, MAPK1, ITGAV, ITGB6, 
PAK2, PDGFRB, MAP2K1, ITGA3, ACTN1, 
LIMK1, ITGA1, F2R, FN1, MSN, ACTN4, 
ENAH, PIK3CA, ITGA11, MYH9, ITGA7, 
ITGA6, ITGA5, CRK, VCL, ITGA9

hsa04512 ECM-receptor interaction 30 3.34075724 1.945E-16 ITGB1, LAMA2, ITGB5, ITGB4, LAMA4, ITGB3, 
LAMA3, TNC, LAMC2, LAMC1, THBS2, 
THBS1, ITGAV, ITGB6, LAMB3, ITGA3, ITGA1, 
FN1, HSPG2, COL1A1, COL1A2, COL4A2, 
COL4A1, COL6A1, ITGA11, COL6A3, ITGA7, 
ITGA6, ITGA5, ITGA9

hsa05414 Dilated cardiomyopathy 25 2.78396437 6.870E-11 ITGB1, LAMA2, ITGB5, ITGB4, ITGB3, 
ATP2A2, ADCY1, ADCY7, ACTB, SGCD, 
SGCA, ITGAV, ITGB6, TPM4, ITGA3, TPM1, 
ITGA1, ACTC1, DES, ITGA11, MYL3, ITGA7, 
ITGA6, ITGA5, ITGA9

FDR false discovery rate
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HNSCC. Microbiomes with higher levels of distribution 
in oral HNSCC were Selenomonas, Fusobacterium, Lep-
totrichia and Treponema, while microbiomes with higher 
levels of distribution in non-oral HNSC were Clostridium 
and Pseudoalteromonas.

The relationship between oral microbiota and human 
diseases has studied a lot. Especially, several bacteria 
including Porphyromonas gingivalis, Treponema denti-
cola, Selenomonas sputigena and Fusobacterium nuclea-
tum have been associated with cancer development 
[59–61]. In the current study, we observed the Fusobac-
terium, Treponema, Leptotrichia were enriched in oral 
cancer compared to non-oral cancer. In consistent with 
previous research, it may have a negative effect on cancer 
progression. Clostridium species, which are well-studied 
anaerobic bacterium, has high ability for colonization in 
the hypoxic and necrotic lesions in tumour [62]. Geneti-
cally modified Clostridium expressing tumour suppres-
sive genes is one of the therapeutic strategies of cancers. 
Since the Clostridium is enriched in non-oral cancer, it 
may be used as therapeutic options for non-oral cancers.

The prevention and treatment of diseases by target-
ing the microbiome have been widely investigated [30]. 
Modulation of the microbiome may also contribute to 
the treatment of cancer [63]. Cancer therapy requires an 
intact commensal microbiome that mediates the ther-
apy effects by modulating functions of myeloid-derived 
suppressor cells in the tumor microenvironment [24, 63, 
64]. Some studies have shown the deleterious effects of 
antibiotics on the treatment of cancer [13, 65]. Patients 
with metastatic renal cell carcinoma or non-small-cell 
lung cancer had significantly worse survival outcomes 
if they received antibiotics just before or just after the 
initiation of treatment with immune checkpoint block-
ade [66]. In addition, patients who received anti-Gram-
positive antibiotics along with cyclophosphamide for 
chronic lymphocytic leukemia or cisplatin for relapsed 
lymphoma had a lower overall response rate [55, 67]. 
These microbiomes may confer susceptibility to certain 
cancers, either through a direct effect by the local pres-
ence within the tumor microenvironment or via the sys-
temic impact of the microbiome from a distant location, 
such as the gut and the skin [68].

There are several limitations in this study. The results 
were not validated in other cohorts or experimental 
procedures. We obtained the results by using Kraken 
pipeline, which obtains microbiome information from 
whole genome sequencing or RNA sequencing data. 
Therefore, it is necessary to verify it by microbiome 
sequencing and/or PCR analysis.

Taken together, stress conditions, such as diet, anti-
gen exposure, medications, and stress are important 
factors that contributing to the state of health and also 

affect the microbiome [38]. This field is young, and we 
are left with many unanswered questions—especially 
regarding the mechanism of action as well as the group 
of bacterial species that are most important in medi-
ating antitumor effects. Multifaceted strategies are 
needed to modulate precision medicine and treat dis-
ease. Efforts are currently underway to enhance thera-
peutic responses and/or abrogate treatment-associated 
toxicity chemotherapeutic agents via modulation of the 
microbiome.
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