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Abstract

  The rapid update of land cover maps is necessary because 

spatial information of land cover is widely used in various 

areas. However, these maps have been released or updated 

in the interval of several years primarily owing to the 

manual digitizing method, which is time-consuming and 

labor-intensive. This study was aimed to develop a land 

cover classification model using the concept of a 

convolutional neural network (CNN) that classifies land cover 

labels from high-resolution remote sensing (HRRS) images 

and to increase the classification accuracy in agricultural 

areas using the parcel boundary extraction algorithm. The 

developed model comprises three modules, namely the 

pre-processing, land cover classification, and post-processing 

modules. The pre-processing module diversifies the 

perspective of the HRRS images by separating images with 

75% overlaps to reduce the misclassification that can occur 

in a single image. The land cover classification module was 

designed based on the FusionNet model structure, and the 

optimal land cover type was assigned for each pixel of the 

separated HRRS images. The post-processing module 

determines the ultimate land cover types for each pixel unit 

by summing up the several-perspective classification results 
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and aggregating the pixel-classification result for the 

parcel-boundary unit in agricultural areas. The developed 

model was trained with land cover maps and orthographic 

images (area: 547 km2) from the Jeonnam province in Korea. 

Model validation was conducted with two spatially and 

temporally different sites including Subuk-myeon of Jeonnam 

province in 2018 and Daseo-myeon of Chungbuk province in 

2016. In the respective validation sites, the model’s overall 

accuracies were 0.81 and 0.71, and kappa coefficients were 

0.75 and 0.64, implying substantial model performance. The 

model performance was particularly better when considering 

parcel boundaries in agricultural areas, exhibiting an overall 

accuracy of 0.89 and kappa coefficient 0.81 (almost perfect). 

It was concluded that the developed model may help perform 

rapid and accurate land cover updates especially for 

agricultural areas.

Keywords: Land cover map, Land cover classification, 
Convolutional neural network, Parcel boundary

Student Number: 2019-26400
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Chapter 1. Introduction

1.1. Study background

  The way of land use is rapidly changing through the 

processes of adapting weather changes and civilization. 

Various aspects, including human behavior and ecosystem, 

are largely affected by the changed land use(Blasi et al., 

2008; Yang et al., 2014; He et al., 2015). Land cover map, 

which implements the land use including spatial information, 

is an essential data to simulate the phenomenon. Real-time 

land cover map, especially on agricultural areas where land 

use could be changed every year, is necessary to track the 

land cover changes and suggest the future plan(Anderson et 

al., 2012; Schilling et al., 2008; Rahman, 2010; Bontemps, 

2015; Borrelli, 2017).

  Land cover maps, initially, were produced by the on-screen 

digitizing method, wherein a person reads the remote sensing 

image and classifies the land-use status. The Korea Ministry 

of Environment classifies land cover into 41 classes and 

provides land cover map using on-screen digitizing method. 

However, only limited area is turned into land cover maps 

per year, due to time consuming classification process(Laha 

et al., 2006; Shin et al., 2015).
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  Advancements in remote sensing technology enable us to 

obtain high resolution remote sensing (HRRS) images of an 

extensive area in short interval. Acquired HRRS images 

increase the potential to be used as basic data for creating a 

real-time land cover map (Enderle and Weih, 2005). Several 

land cover classification studies had been conducted for 

producing accurate and immediate land cover maps using 

HRRS images.

  The pixel based methods were applied to classify land 

cover rapidly and accurately from remote sensing images, 

including several mathematical algorithms (Sakong, 2003; 

Enderle and Weih, 2005; Laha et al., 2006), artificial neural 

network (ANN) (Kang et al., 2006; Kang et al., 2012; Roy et 

al., 2015; Prasad et al., 2011; Huang and Zhang, 2012), and 

convolutional neural network (CNN) (Kussul et al., 2017; Fu 

et al., 2017; Lu et al., 2017; Carranza-García et al., 2019; Pan 

et al., 2020). A series of comparative studies confirmed that 

using CNN to classify the land cover showed better results 

than previous mathematical algorithms and ANN methods. 

The CNN accuracy showed 3–11% better than mathematical 

algorithms (Luus et al., 2015; Santoni et al., 2015), 1–4% 

better than SVM (Chen et al., 2014; Lee et al., 2015; Grinblat 

et al., 2016), and 2–41% better than MLP (Lee et al., 2015; 

Kussul et al., 2017). However, most of the previous CNN 

application studies have been conducted in relatively smaller 
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spatial areas with smaller numbers of land cover classes 

(Kussul et al., 2017; Fu et al., 2017; Lu et al., 2017; 

Carranza-García et al., 2019; Pan et al., 2020). So, land 

classifications were mostly made based on a single 

perspective image, which could be biased when application 

areas become larger. 

  Additionally, pixel based methods generate the optimal land 

cover label per pixel, and it could occur salt-and-pepper 

misclassification which isolated misclassified pixels existed on 

the correctly classified area (Darius and Justin, 2017). Object 

based land cover classification, which detects objects using a 

scale, color, shape, smoothness, and compactness and 

applies pixel based classification by a detected object, was 

conducted (Lee et al., 2011; Kim and Yeom et al., 2012). The 

aggregation of land cover classification results from pixels to 

boundary unit has the advantage to reduce the bias for 

classification. However, detected objects were different from 

real land use boundaries such as parcels and buildings. 

Therefore, it is necessary to devise a boundary extraction 

method suitable for each land cover, and to combine the 

extracted boundary with pixel based methods.
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1.2. Objective of thesis

  The objectives of this study were to develop a land cover 

classification model using the CNN concept under FusionNet 

structure and increase the accuracy of the developed model 

in agricultural areas by applying parcel boundary extraction 

algorithm.

  The manuscript is divided into three chapters. Chapter 2 

includes a literature review, which provides the basis for the 

thesis and indicates the direction of developing land cover 

classification model.

  Chapter 3 described the methodology of land cover 

classification model development. Three main modules were 

established and combined including perspective diversification 

module for the pre-processing module, classifying land cover 

from orthographic image for CNN based land cover 

classification module, and aggregating land cover results in 

pixel to parcel unit for post-processing module.

  Chapter 4 validate the accuracy of the developed model by 

applying it to different regions in terms of time and regions. 

Model validation was discussed with 41 child subcategories, 7 

main categories, and 4 agricultural subcategories.

  The FusionNet based land cover classification model 

development is quoted from development of land cover 

classification model using AI based FusionNet network (Park 



5

et al., 2020). It was mentioned as footnotes that the cited 

portions were quoted at the beginning of each chapter.

Figure 1-1 Flow diagram of this study
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Chapter 2. Literature review

2.1. Development of remote sensing technique

  Remote sensing techniques are the essential data for the 

study field which investigating the vast amount of area is 

needed, such as human behavior, ecosystem, climate, and 

also agricultural studies (Blasi et al., 2008; Yang et al., 2014; 

He et al., 2015; Anderson et al., 2012; Schilling et al., 2008; 

Rahman et al., 2010; Bontemps et al., 2015; Borrelli et al., 

2017). The image obtained from remote sensing techniques is 

useful in that extract necessary information could be 

extracted according to the purpose of the usage, and the 

extracted information could be handled using geographic 

information system (GIS). Several platforms including satellite, 

airplane, and unmanned aerial vehicle (UAV) exist to obtain 

remote sensing data set with the development of remote 

sensing techniques.

  Satellite image platform enables us to acquire a wide range 

of spatial coverage data with various observed wavelengths 

including red (R), green (G), blue (B), and near-infrared (NIR) 

bands. The time interval of remote sensing data provided 

from the satellite image platform is caused by the 

phenomenon of the satellite orbiting the earth. Satellite 
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image, mostly, has a lower resolution than other platform 

and the quality of the images could be affected by 

environmental factors such as clouds.

  The representative satellite platforms are Landsat-8, Ikonos, 

Kompsat, and the provided resolution for RGB is 30m, 4m, 

2.2m, and the recording interval is 16 days, 3 days, 1.4 days, 

respectively. Several studies were conducted to extracting 

useful information from satellite platforms. Examples of 

studies could be divided into four categories; human 

behavior (Kim et al., 2006; Oh et al., 2008); ecosystem (Cho 

and Oh, 2004; Choi and Kang, 2010; Choi et al., 2015); 

climate change (Park and Lee, 2017; Park et al., 2018); 

agricultural (Yeom and Kim, 2014)

  The aerial platform provides aerial photographed images 

and orthographic images in which additional geometric 

corrections are conducted. The orthographic image has 

higher resolution and precision than satellite image through 

the use of observing camera and efforts of mapping 

research. But it has a limitation of long acquisition interval 

from the cost of precise aerial photography (Cho et al., 

2014). The Korean National Geographic Information Institute 

(NGII) provide aerial photographs and orthographic images in 

the resolution of 0.51m with RGB and 2-year interval.

  The main reason for starting aerial photography was 

surveying and creating a precise map from aerial 
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photographed maps conducted by several studies. Rabiu and 

Waziri (2014) produced orthographic images using ERDAS LPS 

software. And Kim and Um (2015) transformed aerial images 

into digital surface model (DSM) and orthographic images.

  UAV platform, the latest methods, offer high resolution 

(less than 5cm) and near real-time image with less expense 

than satellite and aerial platforms. UAV photograph with a 

general camera, not the precise observation camera, and 

generate corrected images using the overlapped points 

(Barazzetti et al., 2014; Yoo et al., 2016). 

  UAV platform, capable of acquiring real-time information 

from the characteristics of simple photograph and image 

processing, is being used for several studies including 

disaster management (Roy et al., 2015; Prasad et al., 2011; 

Huang and Zhang, 2012), surveying and mapping (Kang et al., 

2006; Kang et al., 2012; Schöpfer et al., Areas 2010; 

Längkvist et al., 2016; Kamilaris and Prenafeta, 2018; Gavade 

and Rajpurohit, 2019) agriculture and forest change detection 

(Sakong and Im., 2003; Enderle and Weih, 2005; Laha et al., 

2006; Jin et al., 2019; Paisitkriangkrai et al., 2016), and crop 

production (Na et al., 2019).
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2.2. Land cover segmentation1)

  Development of remote sensing technology provide high 

resolution images, which implies vast amount of information. 

Several efforts to extract desired information for each study 

fields are being made. Land cover classification field is 

necessary to provide precise map, which was the original 

purpose of remote sensing technology, in that it could be 

served as basic data for all studies.

  In the early stages of land cover classification, the 

on-screen digitizing method was used, in which person 

identified each land cover by reading the orthographic 

images and referencing the already possessed map including 

the clinical map, cadastral map etc. Korean Ministry of 

Environment began providing main-category land cover map 

with 7 categories in the 1980s using on-screen digitizing 

method. KME has been providing it as sub-category with 22 

items and child-category with 41 items, according to the 

development of HRRS imagery and the need for detailed land 

use information. As information becomes more sophisticated 

and categories increased, on-screen digitizing method has 

limitation of time consuming and labor intensive to create 

real time land cover map.

1) Chapter 2.2. is quoted from development of land cover classification 
model using AI based FusionNet network (Park et al., 2020).
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  Several studies, utilizing various methods to produce 

accurate and immediate land cover map, were conducted 

including mathematical algorithms and ANN concept methods. 

In the application of mathematical algorithms, multifarious 

algorithms such as parametric method, maximum likelihood 

method, fuzzy theory, supervised classification were used to 

classify the land use. Sakong (2003) compared results of 

visual reading with results of parameter method, fuzzy 

theory, non-supervised classification algorithms, for land 

cover classification through videos. Enderle (2005) classified 

the land cover by combining the supervised and 

unsupervised classification methods, while Laha (2006) used 

the fuzzy theory to classify the land cover. However, with the 

advancement of the remote sensing technology, it became 

possible to obtain a high-resolution remote sensing (HRRS) 

image which widened a spectrum of a single land-use cases 

(Jin, 2019). This has resulted in reducing the effects of the 

previous land cover classification method (Paisitkriangkrai, 

2016).

  ANN concept based studies such as SVM, MLP and CNN 

were conducted to classify land covers accurately from HRRS 

image with a larger amount of information. Several studies 

conducted using prototype of ANN concept including SVM 

and MLP. Kang (2006) used the maximum likelihood method 

and MLP to classify the land cover and it was confirmed that 
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the land cover classification was more accurate in MLP. Kang 

(2012) compared the results through the maximum likelihood 

method, artificial neural network, and SVM while Moumita 

Roy (2015) compared the results through k-nearest neighbor 

technique (KNN), MLP, and SVM. A series of comparative 

studies confirmed that using the prototype of ANN to classify 

the land cover produced better performance compared with 

using the mathematical algorithm. However, prototype of ANN 

based land cover classification has limitation that it is 

difficult to considering the spatial distribution of images 

according to the properties of trained with sing DN of a 

single pixel.

  CNN, the developed form of ANN, was developed to 

considering the difficulty and has been applied to image 

classification (Längkvist et al. 2016). The accuracy of CNN 

model is affected by the CNN structures and the quality of 

the training data set (Jin et al., 2019; Kamilaris and 

Prenafeta, 2018; Gavade and Rajpurohit, 2019). For an 

optimal structure, trial-and-error method is needed, and 

several studies tried to develop optimal structure by 

combining basic components of CNN. Developed different 

CNN structure increased the classification accuracy 

compared to Mathematical algorithms. The CNN accuracy 

showed 3–11% better than mathematical algorithms (Luus et 

al., 2015; Santoni et al., 2015), 1–4% better than SVM (Chen 
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et al., 2014; Lee et al., 2015; Grinblat et al., 2016), and 2–

41% better than MLP (Lee et al., 2015; Kussul et al., 2017).

  Several CNN models are applied on land cover 

classification, which segments land use per each pixel of the 

entire image, using different training data sets. Nataliia 

Kussul classified major summer crop types to 11 categories 

using Landsat-8 and Sentilel-1A image (Kussul et al., 2017). 

Gang Fu trained model to 12 categories of urbanized area 

with GF-2 image and tested on several 1 km2 area using 

other GF-2 and IKONOS satellite image (Fu et al., 2017). LU 

Heng distinguished cultivated land from whole image of 0.5 

km2 obtained from unmanned aerial vehicle (Lu et al., 2017). 

Manuel Carranza-García used AVIRIS and ROSIS image to 

train 16 classes of crops in agricultural area and AirSAR for 

training urbanized area with 12 classes and verified 6.5 km2 

of agricultural area and 5.0 km2 of urbanized area 

(Carranza-García et al., 2019). Suoyan Pan classified 3.2 km2 

of land cover to seven categories using multi-spectral LiDAR 

(Pan et al., 2020). However, most of the previous studies 

have been conducted in relatively smaller spatial areas with 

smaller numbers of land cover classes.
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2.3. Land boundary extraction

  Real-time land cover map of agricultural area is important 

data for Geographical Information Systems (GIS) to tracking 

the land use change, estimating production and providing 

appropriate financial support from nation. Conversion of land 

cover map from HRRS image requires not only segmented 

land cover information, but also accurate parcel boundary 

extraction. Several studies have been conducted to extract 

field parcel boundaries, grouped with 3 categories; 

edge-based methods; region-based methods; and ANN-based 

methods.

  Edge-based methods use filters to extract the parcel edge 

from detecting abrupt gradient change. Mustafa Turker and 

Emre Hamit Kok (2013) extracted sub-field boundary from 

satellite imagery using canny edge detection and simplicating 

the line with Douglas–Peucker algorithm. L. Yan and D.P. 

Roy (2014) divided crop field and non-fields from landsat 

imagery using the distance from WELD reference data and 

watershed algorithm to refine the extracted boundary. 

Edge-based methods, however, have a limitation that 

extracted field boundary could be more simplified or sensitive 

than reality depending on the filters.

  Region-based methods separate the specific land cover 

using textural properties of each land use from the 
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adjustment of threshold parameter. Segl, Karl and Hermann 

Kaufmann (2001) distinguished small objects like building and 

vegetation fields from HRRS images by modifying the 

threshold. And Mulleller et al. (2004) developed extracting 

liner boundary by upgrading previous Segl, Karl and 

Hermann Kaufmann (2001) study. Da Costa et al. (2007) 

extracted vine parcels from HRRS images based on the 

textural properties. Yet, region-based methods have 

drawbacks in that the extracted boundaries are highly 

dependent on parameter selections.

  ANN-based methods are in progress to produce accurate 

field boundaries using ANN architecture and training with 

already classified field boundary data. A. García-Pedrero et 

al. (2016) delineation the agricultural parcel using the 

machine learning approach. And Waldner, François, and 

Foivos I. Diakogiannis (2020) extracting field boundaries from 

satellite images using CNN architecture.
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Chapter 3. Development of land cover classification model2)

3.1. Conceptual structure of the land cover classification model

Figure 3-1 Flow chart of the land cover classification model (modified from Park et al., 2020)

2) Chapter 3.1. to 3.3. are quoted from development of land cover classification model using AI based FusionNet network 
(Park et al., 2020).
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3.2. Pre-processing module

  The CNN based land cover classification classify the land 

cover label from HRRS image considering the spatial 

distributions of color values of each pixel, not simply allocate 

land uses by color values of pixels. Land cover classification 

using only a single HRRS image, depending on the view 

point, could lead to biased land cover classification result. 

The pre-processing module was applied to diversify the 

perspectives of HRRS images.

  Pre-processing module separate the orthographic image 

into unit image with overlapping to diversification of 

perspectives. The size of unit image was set to 256 x 256 

pixels (about 130m x 130m) considering the size of artificial 

land use and computer performance. Each image was 75% 

(shifting 64 pixels) overlapped both in the horizontal and 

vertical directions (Figure 3-2). Finally, 16 images with 

different perspectives were used to classify land uses in a 

single space (Figure 3-2 Red hatched area).
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Figure 3-2 The process of pre-processing module (Land 
cover information of Red hatched area could be extracted 

from 16 different viewpoint.) (Park et al., 2020)

3.3. CNN based land cover classification module

  The land cover classification module converts the input 

image into a land cover map, in which the land use status is 

segmented semantically by respective land cover color codes 

(please refer to Table 4-1). CNN was used for an effective 

image segmentation of the land cover, and FusionNet (Quan 

et al., 2016) of CNN, which separates cell from EM image 

(Ronneberger et al., 2015; Çiçek et al., 2016) was conceptually 

similar to the creating land cover maps that identifies land 

use boundary using HRRS image, was used as the structure 

of the neural network.
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  The entire land cover classification module largely consists 

of two processes: encoding (Figure 3-3 (a)) that classifies 

land use features from the image data, and decoding (Figure 

3-3 (b)) that prints the land use map classified through 

different colors according to the classified land use features. 

The module is configured with a combination of four basic 

layers of the convolutional layer, residual layer, 

down-sampling and up-sampling, and summation-based skip 

connection.

  As a layer that is widely used in the deep learning field, 

the convolutional layer converts the entered data into 

compressed data including special information in the 

processes of convolution, activation function, and batch 

normalization (Shang et al., 2016). Parameters used in the 

configuration of convolutional layer in this module are kernel 

size of 3, stride of 1, and padding of 1. In general, the 

rectified linear unit (ReLU) is used in the activation function 

(Equation (1)). However, in ReLU, the gradient value always 

becomes negative if the entered value is negative. Data 

compression using ReLU in the encoding process could result 

in data losses. Leaky ReLU, which can provide gradient value 

when the input value is negative, can complement ReLU 

(Equation (2)). Therefore, the module was configured with 

Leaky ReLU as an activation function in the encoding 

process and ReLU as an activation function in the decoding 
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process.

    max (1)
    max (2)

  The residual layer is configured with three convolutional 

layers and a single summation-based skip connection. The 

neural network deepens, and the data features become 

noticeable through the three convolutional layers included in 

the residual layer. However, as the neural network deepens, 

a gradient vanishing problem occurs. To solve this issue, we 

used the summation-based skip connection in the residual 

layer, which integrates the past data with the currently 

processing data in the module, and configured the layer to 

enable a more exquisite classification (Quan et al., 2016).

  Down-sampling was used to reduce computation volume 

and prevent overfitting (Zeiler and Fergus, 2013). Maxpooling 

function that brings the largest value within each stride was 

also used. In the down-sampling process, a kernel size of 2, 

stride of 2, and zero padding were used. In contrast to the 

down-sampling, the up-sampling increases the layer size to 

acquire images segmented by colors from the land use 

classification results. The deconvolution function was used 

for up-sampling.

  Summation-based skip connections, which solve the 

gradient vanishing issue and help the information transfer, 

were used in the residual layer and long skip connections. 
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So, the convolutional layer could be much deeper to include 

more parameters without losing its training efficiency. Skip 

connections function to merge the previous layer and the 

current layer by summing the matrix of each layer. Short 

skip connections in residual layer add up first convolutional 

layer with third convolutional layer. Four long skip 

connections connect the layer of the encoding path to the 

decoding path, which are the same size.
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Figure 3-3 Architecture of the convolutional neural network 
(CNN) based land cover classification module (Park et al., 

2020).
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3.4. Post processing module

3.4.1 Determination of land cover in a pixel unit3)

  The primary function of determination of land use in pixel 

unit integrates module is to analyze and integrate classified 

images of 16 different perspectives, produced from the 

pre-processing and the land cover classification modules, 

into a final land cover using numerical and statistical 

methods. The module of determination of land use in pixel 

unit consists of two parts of land cover assignment to a pixel 

level and following land cover integration to determine the 

final land cover to a given pixel.

  Land cover assignment part is the process to determine 

land cover to a pixel based on the classified output. The R, 

G, B values of classified image pixels are the output by the 

classification model that were trained with land cover map 

color (label). The model output values do not match exactly 

to the reference values of land cover map since the trained 

CNN works only to minimize errors. The Gaussian distance 

was used to find nearest land cover to a given pixel by 

calculating the distance between the classified color values 

(result) with reference land cover code (label). The formula 

3) Chapter 3.4.1. is quoted from development of land cover classification 
model using AI based FusionNet network (Park et al., 2020).
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to calculate Gaussian distance is given in Equation (3). The 

label land cover with the lowest Gaussian distance was 

assigned to a given pixel.



          
(3)

  where each Rresult, Gresult, and Bresult means red, green, blue 

values represent output produced by the land cover 

classification module. Rlabel, Glabel, Blabel means red, green, blue 

values indicate the reference values specific to each 

sub-category of land cover maps given in Table 4-1. The 

reference color code is standardized and provided by the 

Korean government.

  The land cover integration is a process of aggregating the 

land cover classification results that are classified through 

images of 16 different perspectives of one region, to 

determine the final land cover classification result. The 16 

different classification results per pixel that were obtained 

from the pre-processing, the land cover classification 

module, and the pixel land use determination process of the 

determination of land use module were aggregated to 

produce the final result. The item selected as having the 

greatest number of land cover classification results among 

the aggregated land cover classification items was determined 

as the final land use classification result (Equation (4). When 

the maximum counts are same for the different land covers, 
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then one of them was chosen arbitrarily. The final land use 

classification result per pixel is printed as a final land cover 

classification map in which the classification of the 

aggregated orthographic image input is complete.

  max  (4)

  where countitem is the number of the classified item out of 

the total classification results.

3.4.2 Aggregation of land cover to parcel boundary

  The CNN based land cover classification module produces 

the optimal land cover classification per pixel, not per parcel 

with boundaries. In reality, however, agricultural areas are 

used in the form of parcels with boundaries. Aggregation of 

land cover to parcel boundary module is applied to produce 

a land cover map that is similar to the actual land use.

  The main function of aggregation of land cover to parcel 

boundary module is extracting the boundary of agricultural 

area, regardless of the crop type or cultivation type, and 

assigning the most land use in pixel unit, from the 

determination of land use module, as land cover in parcel 

boundary. Aggregation of land cover to parcel boundary 

module is composed up of three part including external 

edges detection, internal edges detection, and aggregation of 
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pixel based land cover to boundary based.

  External edge detection, which is the region-based 

methods, distinguish the agricultural region from the others 

by detecting the abrupt gradient difference. External edges 

detection is composed of gray scaling and application of 

three main algorithms including Otsu’s algorithm, Suzuki85 

algorithm and Ramer-Douglas- Peuker algorithm.

  Orthographic images including R, G, B were converted into 

gray scaled with one representative value (Equation (5) and 

Figure 3-4 (a)) for image generalization (Lakhwani et al., 

2015).

      (5)

  Where, μ represents gray scaled value and each R, G, and 

B means red, green, and blue, respectively.

  Gray scaled image is binarized with estimated threshold 

from Otsu’s algorithm (Equation (6) and Figure 3-4 (b)), 

which determine the threshold minimizing the variance from 

pixels (Otsu, 1979). This process could solve the problem of 

region-based method, in which the accuracy is affected 

depending on the threshold, and made it applicable 

regardless of the image.

   
〈
 ≥ 

(6)

  Where, BIxy represents the binarized value, μ is gray scaled 

image value, and T means threshold obtained from Otsu’s 
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algorithm.

  Image contours are extracted from binarized image using 

Suzuki85 algorithm (Figure 3-4 (c)), which construct contours 

by setting a starting point and searching boundaries in 

clockwise and counterclockwise from adjacent points (Suzuki 

& Abe, 1985; Lee et al., 2016).

  Extracted contours are then simplified into polygons 

representing agricultural region by applying the 

Ramer-Douglas-Peuker algorithm, which defines dissimilar 

points as vertex and removes other similar points based on 

the distance from line and points (Figure 3-4 (d)). In this 

study, the maximum distance was set to approximately 

0.0001.

  Internal edges detection, which is edge-based method, was 

applied to extract sensitive edge such as the boundary 

between parcels and other parcels. Internal edges are 

separated within the extracted external edges by following 

four steps including gray scaling, Canny edge detection, 

Hough transform and ray casting algorithm, and noise 

canceling process.

  Gray scaling is adapted to image generalization, same as 

the extracting external edges (Equation (5) and Figure 3-4 

(e)). And edges are extracted in binary image form using 

Canny edge detector, image filter specialized in detecting 

edge (Figure 3-4 (f)). Several processes are conducted to 
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detect the edges (Canny, 1986); Gaussian smoothing to reduce 

the noise using Gaussian filter (Hagen & Dereniak, 2008); 

Gradient filtering to select the preliminary edges which have 

high spatial derivatives; Non-maximum suppression to 

eliminate the pixel that is not at the maximum; Hysteresis 

thresholding to extract specific edges which satisfying two 

thresholds of objective. In this study, 3x3 sized Sobel kernel 

was applied to the Gaussian smoothing and thresholds for 

parcel boundaries were set to 80 and 240.

  Hough transform and ray casting algorithm were applied to 

handle the problem of the edge-based methods that the 

divided boundary could be more simplified or sensitive than 

reality depending on the filters. Edges extracted from Canny 

edge detection include various length and uncertain values 

hindering the accurate internal edge detection. Using Hough 

transform, all edges in X and Y plane were transformed with 

r and theta plane to express the various lines and find the 

intersections (Richard & Peter, 1971). And some edges are 

ignored that the edges with a length are less than 25 pixels 

and the distance between edges are within 3 pixels. While 

edges with more than 60 intersections are selected as valid 

edge. Selected valid edges are expanded to extracted outer 

boundaries using ray casting algorithm (Figure 3-4 (g)), 

which could determine the nearest outer boundaries 

(Shimrat, 1962).
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  Noise canceling processes are conducted by removing the 

dense lines, and by eliminating the lines with unusual angles 

(Figure 3-4 (h)).

  As the final process of aggregation of land cover to parcel 

boundary module, aggregation of pixel (Figure 3-4 (B)) to 

boundary based land cover to boundary based (Figure 3-4 

(C)) is conducted. In each parcel boundaries, land cover 

categories are counted and the most counted categories are 

synthesized as the land use of the boundary (Figure 3-4 (C)).
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Figure 3-4 The whole process of aggregation of land cover to parcel boundary
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Chapter 4. Verification of the land cover 
classification model4)

  The schematics of the developed model training and 

verification is shown in Figure 4-1. Developed model was 

trained and validated with two different regions in terms of 

time and regions. And verification results were discussed with 

41 child subcategories, 7 main categories, and 4 agricultural 

subcategories.

Figure 4-1 Schematics of the study procedure (Park et al., 
2020)

4) Chapter 4.1. and 4.2. are quoted from development of land cover 
classification model using AI based FusionNet network (Park et al., 2020).
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4.1. Study area and data acquisition

4.1.1. Training area

  To train the land cover classification model, a training 

area of 547.3 km2 was selected, which could acquire the 

latest source data of 2018 and contain the largest cultivating 

area in South Korea. The selected area included a cultivated 

acreage of 22,495 ha in Yeongam-gun and 20,279 ha in 

Muan-gun, and is a useful area for training the model for 

agricultural land cover (KOSTAT, 2020). In addition, it could 

also train the model for urban land cover, as it includes the 

main urban areas, such as the Gun offices in Jeonnam 

province, Mokpo City Hall, etc., which are some of the major 

buildings in the urban center. The areas selected for the 

study are shown in Figure 4-2.

Figure 4-2 Study area of training and verification (Park et al., 2020)
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4.1.2. Verification area

  The artificial intelligence (AI) based land cover classification 

is likely to be the most accurate for data that have spatial 

and temporal dimensions similar to that of the training data. 

To increase the accuracy of model verification, this study 

selected two separate areas for the verification process; one 

area had spatial and temporal dimensions similar to that of 

the training area and the other area was located far from 

the training area and had different time periods.

  An area of 62.4 km2 in Subuk-myeon, Jeonnam province, 

in 2018 was selected as the first verification area. For the 

Subuk-myeon area, an orthographic image source data 

obtained for the same period as that of the study data (2018) 

exists, and spatially, it is located in the same region as the 

study data (Jeonnam province).

  As the second verification area, an area of 79.61 km2 in 

Daeso-myeon, Chungbuk province, in 2016 was selected. 

Daeso-myeon was selected because an orthographic image 

source data recorded at a different time period (2016) and 

located far from the study data was available. These two 

verification areas are shown in Figure 4-2.
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4.1.3. Data acquisition

A. Orthographic image

  The orthographic images of the study area (2018) and the 

verification areas (2018, 2016) were obtained from the 

National Geographic Information Institute (NGII). The 

orthographic images are produced through geometric 

correction and orthometric correction of aerial photographs 

recorded in each period. The spectral channels of HRRS 

image include the red, green, and blue bands. The resolution 

of the orthographic images of the established study area 

(2018) and verification areas (2018, 2016) is 51 cm/pixel.

B. Land cover map

  The land cover maps of the selected sites for model 

training (2018) and the two verification sites (2018, 2016) were 

established using the Korean Environmental Geographic 

Information System (EGIS). The land cover maps of EGIS are 

the results of on-screen digitizing of the orthographic images 

from the NGII by assigning various colors to respective land 

use types as shown in Table 4-1. It should be noted that the 

color codes were thoughtfully assigned that the 

sub-category-classes under a main category have similar 

color hues, i.e., red for urbanized area, yellow for 
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agricultural land, dark green for forest, light green for 

grassland, violet for wetland, light blue for barren lands, and 

dark blue for water. The land cover map was used as the 

ground truth serving as the target for the supervised model 

training. As previously described in Equations (3) and (4), the 

color codes in Table 4-1 were also used for calculating the 

Gaussian distance for the land cover assignment to the pixel 

level. The land cover map is presented in three different 

categories based on the level of detail; seven items in the 

main category, 22 items in the parent subcategory, and 41 

items in the child subcategory.

C. Farm map

  The farm map, which was specialized in agricultural area, 

were obtained from Korean public data portal. It provides 

agricultural land cover with parent subcategory in parcel 

boundary unit. Provided farm map has delay in update due 

to the methods of manually extracting boundaries from 

orthographic image. So, a farm map that most temporally 

matched with orthographic images were used as ground truth 

of parcel boundary. Established temporal year of 

orthographic image and farm map was 2018 and 2017 in 

Subuk-myeon, respectively. And the same 2016 orthographic 

image and farm map was used in Daeso-myeon.
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Main 
Category
(7 items)

Parent 
Subcategory

(22 items)
Child Subcategory

 (41 items)
Color Code

R G B Remark

Urbanized
area

Residential area
Single housings 254 230 194

Apartment housings 223 193 111
Industrial area Industrial facilities 192 132 132

Commercial area
Commercial andoffice buildings 237 131 184
Mixed use areas 223 176 164

Culture and sports 
recreation area

Culture and sports recreation facilities 246 113 138

Transportation area

Airports 229 38 254
Ports 197 50 81

Railroads 252 4 78
Roads 247 65 42

Other transportation and communication facilities 115 0 0

Public facilities 
area

Basic environmental facilities 246 177 18
Educational andadministrative facilities 255 122 0

Other public facilities 199 88 27

Agricultural 
area

Paddy
Consolidated paddy filed 255 255 191

Paddy field without consolidation 244 230 168

Upland
Consolidated upland 247 249 102

Upland without consolidation 245 228 10
Greenhouse Green houses 223 220 115

Orchard Orchards 184 177 44
Other cultivation 

lands
Ranches and fish farms 184 145 18
Other cultivation plots 170 100 0

Forest
Deciduous forest Deciduous forests 51 160 44
Coniferous forest Coniferous forests 10 79 64

Mixed forests Mixed forests 51 102 51

Grassland
Natural grassland Natural grasslands 161 213 148

Artificial grassland
Golf courses 128 228 90
Cemeteries 113 176 90

Other grasslands 96 126 51

Wetland
Inland wetland Inland wetlands 180 167 208
Coastal wetland Tidal flats 153 116 153

Salterns 124 30 162

Barren lands
Natural barren

Beaches 193 219 236
Riversides 171 197 202

Rocks and boulders 171 182 165

Artificial barrens
Mining sites 88 90 138
Sports fields 123 181 172

Other artificial barrens 159 242 255

Water Inland watery Rivers 62 167 255
Lakes 93 109 255

Marine water Marine water 23 57 255

Table 4-1 Hierarchy of land cover categories and respective color 
codes (Environmental Geographic Information System (EGIS)).
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4.2. Training the land cover classification model

  The location adjustment of the established orthographic 

images and land cover maps of the study area was made 

using ArcMap (ESRI, Ver. 10.1). To train the land cover 

classification model, acquired data were split vertically and 

horizontally with 256 × 256 pixels (130 m × 130 m), which is 

an appropriate size for confirming the land uses. The land 

cover map classified by colors of the child subcategory (41 

items) was used for the model training. A total of 32,384 

orthographic images and 32,384 land cover maps of the same 

area were created.

  For effective model training, an image augmentation 

process that increases the number of the study data was 

performed. The level of the diversification of the study data 

was increased by rotating the generated orthographic images 

and land cover maps at angles of 0°, 90°, 180°, and 270°. 

Finally, 129,536 sheets of each orthographic image and land 

cover map were used for training the model.

  The model training was conducted using Intel i7-9700K CPU 

and NVIDA GeForce GTX 1060 6gb hardware, and using the 

Python (Ver. 3.6.8) and PyTorch (Ver. 1.0.1) software. Mean 

square loss (MSELoss) was used for estimating errors in the 

model, and the training was completed when the error value 

was less than 0.01. The training was completed with MSELoss 
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value of 0.0077 after training 129,536 sheets of the 

established study data 84 times.

4.3. Verification method

4.3.1. The performance measurement methods of land 
cover classification model5)

  The accuracy of the land cover classification was evaluated 

by creating accuracy metrics that indicated consistencies of 

items between the evaluation results of the two evaluators 

and by estimating the quantitative index values for overall 

accuracy and kappa coefficient based on the metrics.

  The accuracy metrics were created by comparing the land 

cover classification map created by the on-screen digitizing 

method (reference land cover) with that created classified by 

the developed model (classified land cover). The consistent 

land cover classification results of both evaluators (reference 

land cover, classified land cover) were indicated on the 

diagonal matrix of accuracy metrics.

  Producer’s accuracy and user’s accuracy show the ratio of 

correctly matched area of each land use in reference data 

and classified data, respectively (Equation (7) and (8)). The 

overall accuracy was estimated using Equation (9), which 

5) Chapter 4.3.1. is quoted from development of land cover classification 
model using AI based FusionNet network(Park et al., 2020).
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indicates the ratio of the correctly classified land cover area 

to the entire area. Three accuracy indicator has values 

ranging from 0 to 1, and the classification becomes more 

accurate as this value comes closer to 1. Although the 

overall accuracy enables an intuitive accuracy evaluation of 

the land cover classification, it has a limitation of not being 

able to consider a possibility of accidentally assigning the 

same land cover classification for different areas.

  Thus, a kappa coefficient, which excluded the probability of 

accidental consistency in the overall accuracy, was also used 

in the accuracy evaluation of the land cover classification. 

The kappa coefficient means a value compared with a 

randomly arranged accuracy metrics (Equation (10)). The 

kappa coefficient has values ranging from -1 to 1, and as 

the value gets closer to 1, the classification attains a higher 

accuracy. Model performance was evaluated by the strength 

criteria(Table 4-3) provided by Landis and Koch (Landis and 

Koch, 1977).

Classified Data Producer’s 
accuracy (%)Paddy Water Forest Total

Reference 
Data

Paddy 23 6 0 29 79.3
Water 5 31 3 39 79.5
Forest 7 3 22 32 68.8
Total 35 40 25 100 -

User’s accuracy 
(%) 65.7 77.5 88.0 - -

Table 4-2. A example of accuracy metrics
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  where, i and j represent each row and column, 
respectively, and N denotes total number of the classification 
result.

Kappa coefficient Strength of Agreement
-1.0–0.0 Poor
0.0–0.2 Slight
0.2–0.4 Fair
0.4–0.6 Moderate
0.6–0.8 Substantial
0.8–1.0 Almost Perfect

Table 4-3 Strength of agreement according to kappa 
coefficient value(Landis and Koch, 1977)

4.3.2. Accuracy estimation methods of agricultural 
parcel boundary

  Extracted agricultural parcel boundaries from Aggregation 

of land cover to parcel boundary module are not including 

Producer’s accuracy = 
 (7)

User’s accuracy =  
 (8)

Overall accuracy = 

  



 (9)

Kappa coefficient = 
 

  



 × 

 ×
  




  



 × 

(10)
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land cover information such as paddy, field, and greenhouse 

etc. It only implies whether it is the boundary of agricultural 

land or not. The accuracy of extracted agricultural parcel 

boundaries was evaluated using precision, recall.

  The indicators of true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN), which representing the 

agreement of predicted boundaries and ground truth, were 

first calculated (Table 4-4). Based on the assumption that 

predicted boundaries from model is positive, TP is evaluated 

if prediction matched (true) with ground truth and FP is 

evaluated if prediction mismatched (false) with ground truth. 

Precision, which indicates the predicted boundaries accuracy, 

were calculated from the accurate boundary (TP) 

overestimated accurate boundaries (TP + FP) (equation 11)).

  Assuming that predicted boundaries from model is 

negative, TN and FN is estimated depending on whether 

predicted nonboundary (negative) was matched with ground 

truth (true, TN) or not (false, FN). Recall, demonstrate the 

accuracy of detecting boundary, was estimated based on 

equation 12.

  In general, judgment of match or mismatch were estimated 

from threshold of coincidence ratio like intersection over 

union (IOU). In this study, judgment of match was performed 

based on pixel and the threshold which was set to 1.
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Ground truth Predicted results
Positive Negative

Positive 
(true positive)


(false negative)

Negative 
(false positive)


(true negative)

Table 4-4 An example of precision and recall

Pr  det




 (11)

   



 (12)

4.3.3. Comparison of boundary based classification 
result with ERDAS Imagine

  Pixel with boundary based classification model result, which 

was produced by combining pixel and parcel classification 

result, was verified using an objective workstation of 

commercial software ERDAS Imagine (HEXAGON, version 14).

  The agricultural land cover classification from the objective 

workstation was performed through the following three 

processes. The orthographic image was simplified using the 

single feature probability (SFP) method, and 15 land cover 

information for each agricultural areas were inputted. And 

the agricultural land cover was extracted through the 

processes of probability filter 0.7, generalize, and smooth.
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4.4. Verification of land cover 
classification model6)

4.4.1. Performance of land cover classification at the 
child subcategory

  Model performance in land cover classification for the 

respective Subuk-myeon (Jeonnam province, 2018) and 

Daeso-myeon (Chungbuk province, 2016) was presented in 

terms of the number of classified land cover that matches 

with the reference land label as shown in Figure 4-3. A total 

of 41 land covers at the child subcategory level were 

classified with the developed model (Figure 4-3). As shown 

from the darker gray along the diagonal direction, the 

developed model performed reasonably well in land cover 

classification. Overall, the model demonstrated better 

accuracy for the urban, agriculture, forest and water areas, 

while relatively poor in grass, wetlands, and barren lands 

showing the wider spectrum of classified land covers.

6) Chapter 4.4.1. and 4.4.2. are quoted from development of land cover 
classification model using AI based FusionNet network (Park et al., 2020).
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Classified land cover Classified land cover 

Reference land cover

(a) Subuk-myeon (b) Daeso-myeon
Figure 4-3 Model performance matrices for (a) the Subuk-myeon and (b) Daeso-myeon areas. The 

accuracy was presented in gray scale based on the percentage of the classified pixels that batch 

with the reference land cover label to the total number of pixels. The darker gray indicates the 

more pixels were classified to the given land cover. Refer to the color codes for detailed land 

cover given Table 4-1 (Park et al., 2020).
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  Most of misclassifications at the child subcategory (41 

classes) level occurred within the main categories (seven 

classes) for the urbanized and agriculture areas. It can be 

seen that some sporadic points are deviated from the 

diagonal line, but it still remains within the same square of 

the respective main land cover classes in Figure 4-3. Several 

urban land covers in the 41-classes-subcategory are 

buildings which are similar in appearance so making it 

difficult for the developed model to differentiate its usage, for 

example among apartment, industrial, and commercial 

buildings as shown in Figure 4-3, a-1, a-2, b-2 and b-2. 

Agricultural areas also include land cover sub-classes with 

similar outward shapes depending on consolidation that 

resulted in the misclassifications within the main category 

(Figure 4-3, a-3 and b-3).

  However, grass and barren lands showed the wider 

misclassifications over the main land cover categories. Many 

of grass lands were misclassified by the forest, wetlands, and 

barren lands, of which appearances are similar as natural 

landscapes (Figure 4-3, a-4, a-5, b-4, b-5).

  The statistics of 16 different perspective classifications are 

presented in Figure 4-4. As aforementioned, the final land 

cover classification was assigned statistically based on the 

maximum counts of a given land cover class.
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Figure 4-4. Average counts for different land covers from 
the 16 different perspective classifications (Park et al., 2020).

  The greater the maximum count is, the more consistent 

the developed model performed for a given class. The 

average counts for urban, agriculture, forest, and water land 

covers were greater than 14, which indicates approximately 

87% consistency of out of 16 classifications. This implies also 

that the consideration of viewpoints could improve 

classification consistency by reducing 13% potential errors as 

compared to a single-pixel based classification. Consistent 

with Figure 4-3, the maximum counts for wetland and barren 

lands were smaller than nine, which means nearly half of 

these categories could be misclassified as other land covers 

if the 16 different perspective classifications were not 

implemented. Thus the 16-perspective application can 

increase model accuracy by improving the model 

classification consistency.
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4.4.2. Classification accuracy of the aggregated land 
cover to main category

  The overall accuracy of the land cover classification was 

evaluated by expanding the printed land uses of child 

subcategory unit to the main category unit. A land cover 

map (Figure 4-5 (c)) of an orthographic image (Figure 4-5 

(a)) of Subuk-myeon which is spatially and temporally similar 

to the study area (Jeonnam province, 2018) was printed 

through the land cover classification model developed in this 

study. This result is compared with the land cover map 

(Figure 4-5 (b)) obtained from EGIS and the accuracy metrics 

are presented in Table 4-5.
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(a)

    

(b) (c)
Figure 4-5 Photos of (a) Orthographic image, (b) land cover map, and (c) 

classification results of the Subuk-myeon area (Park et al., 2020).
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Classified Land Cover Producer’s 
Accuracy 

(%)Urbanized 
Area

Agricultural 
Area Forest Grassland Wetland Barren 

Lands Water Total

Reference 
land cover

Urbanized 
area 18,658 2,834 19 1,850 41 193 24 23,619 79.0

Agricultural 
area 4,439 114,426 61 5,848 177 1,122 114 126,187 90.7

Forest 83 329 29,198 9,619 4 24 3 39,261 74.4

Grassland 2,148 4,870 1414 23,920 424 853 43 33,672 71.0

Wetland 138 309 22 3,840 1595 1,205 352 7,461 21.4

Barren 
lands 1,369 802 13 879 13 385 9 3,469 11.1

Water 29 22 1 153 688 187 5,055 6,133 82.4

Total 26,864 123,593 30,728 46,108 2943 3,970 5,600 239,804 -
User’s Accuracy 

(%) 69.5 92.6 95.0 51.9 54.2 9.7 90.3 - -

Overall accuracy 0.81

Kappa Value 0.71

Table 4-5. Accuracy metrics and verification indices for the Subuk-myeon area (unit: 1000 pixels) (Park et al., 2020).
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  Visual comparison of both the land cover map of EGIS and 

the land cover map produced by the model shows an overall 

match between the two maps. However, the result showed 

large differences in the green areas of deciduous forests, 

coniferous forests, and mixed forests that were classified as 

the forest area. The classification of the overall forest area 

showed users accuracy of 95.02% and a producer’s accuracy 

of 74.37%. This high accuracy result was achieved because 

the developed model is effective in classifying forest and 

other areas; however, it is not as effective in identifying 

detailed forest types within the forest area. As the forest 

area has large differences in elevations, the shades developed 

by its terrain, may affect the colors of the orthographic 

images. Such differences in colors made it difficult to classify 

the forests in detail.

  The qualitative index of overall accuracy and kappa 

coefficient were 0.81 and 0.71, respectively. This showed a 

substantial degree of accuracy with the kappa coefficient ≥ 

0.6 and < 0.8. It was confirmed that this was an improvement 

when compared to overall accuracy of 0.74 and kappa 

coefficient of 0.69 (Kim and Yeom, 2012) of the land cover 

classification using an object-based algorithm in the 

agricultural region.

  Agricultural area, forest area and water showed high 

classification accuracy. The user’s accuracy and producer’s 



50

accuracy of each classification item from the accuracy 

metrics showed in agricultural area (92.58%, 90.68%), forest 

area (95.0%, 74.4%), and water (90.3%, 82.4%), respectively. 

However, the classification accuracy of grassland (51.9%, 

71.0%), wetlands (54.2%, 21.4%), and barren lands (9.7%, 

11.1%) were low. It was caused by the misclassification of 

grassland to forest, wetland to grassland and barren lands, 

and barren lands to wetland and agricultural area.

  This might be results from the ambiguity of the land cover, 

which causes difficulties in classification, as the forms of 

land uses are not clear (Figure 4-6 and 7).

(a) Orthographic 
image

(b) Land cover map (c) Classification 
result

Figure 4-6. Example of ambiguity of land cover in grassland 
(yellowish green and whitish green is grass land, other 
greens are forest with different types of tree, yellows are 
agricultural area, and red is road) (Park et al., 2020).

  Most of the forest area in the orthographic image (Figure 9 

(a)) was defined as deciduous forest (Figure 4-6 (b), bright 

green) and coniferous forest (Figure 4-6 (b), dark green). 

However, the developed model classified mostly as mixed 
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forest (Figure 4-6 (c), intermediate dark green) and grass 

lands (Figure 4-6 (c), yellowish green). As mentioned, this 

might be due to difficulties of distinguish these two classes 

and thus more intensive training on forest areas are needed 

to increase the accuracy.

  

(a) Orthographic 
image

(b) Land cover map (c) Classification 
result

Figure 4-7. Example of ambiguity of land cover in wetland 
and barren lands (purple is wetland, gray is barren lands, 
green is grass land, blue is river, red is road) (Park et al., 
2020).
  In the space surrounded by the central river of the 

orthographic image (Figure 4-7 (a)) near the river in 

Subuk-myeon, it is difficult to clearly classify the wetlands, 

barren lands, and grasslands by visual reading. In the land 

cover map (Figure 4-7 (b)) of EGIS, this was classified as a 

single land use (wetland) based on the land boundary, while 

in the land cover classification model, the classification of an 

optimal land use per pixel (Figure 4-7 (c)) was conducted. 

The differences in the land cover classification results caused 

by the ambiguity of the land cover largely affected the 

classification accuracy of wetlands and barren lands.
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  Wetlands are generally located in lower land area and thus 

pooled water during rainy season, while grasslands and 

barren lands are dry lands with and without vegetation, 

respectively. Thus wetlands, grasslands, and barren lands 

could share the similar landscape and its land cover changes 

depending on the existence of water and vegetation. This 

may have caused some ambiguity among those land covers 

that resulted in relatively poor performance. The ambiguity 

can be alleviated if additional indicators of NDWI (normalized 

difference water index) and NDVI (normalized difference 

vegetation index) are used, along with the RGB values.

  Additionally, the overall portions of wetland and barren 

areas are relatively small as compared to other land covers, 

so the model might have been under-trained. The poor 

performance for water and barren area would be improved 

by training the model with more data specific to these land 

covers.

  Figure 4-8 shows the orthographic image of Daeso-myeon 

(Figure 4-8 (a)), which is spatially (Chungbuk province) and 

periodically (2016) different from the study area (Jeonnam 

province, 2018) and the land cover map (Figure 4-8 (c)) 

classification produced by the land cover classification model. 

The accuracy metrics obtained by verifying it visually with 

the land cover map of EGIS (Figure 4-8 (b)) are presented in 

Table 4-6.
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(a)

    

(b) (c)

Figure 4-8. Photos of (a) Orthographic image, (b) land cover map, and (c) 
classification results of the Daeso-myeon area (Park et al., 2020).
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Classified Land Cover Producer’s 
Accuracy 

(%)Urbanized 
Area

Agricultural 
Area Forest Grassland Wetland Barren 

Lands Water Total

Reference 
land cover

Urbanized 
area 44,614 4,451 25 4,026 203 334 68 53,721 83.1

Agricultural 
area 6,759 124,749 254 6,677 334 737 402 139,91

2 89.2

Forest 214 469 14,582 18,109 1,184 213 198 34,970 41.7

Grassland 3,951 7,333 775 39,064 815 788 344 53,069 73.6

Wetland 558 2,327 5 3,985 759 790 77 8,501 8.9

Barren 
lands 3,956 3,483 14 2,702 131 2,280 38 12,604 18.1

Water 73 321 2 378 280 249 2012 3,315 60.7

Total 60,125 143,132 15,657 74,941 3,706 5,392 3139 306,09
3 -

User’s Accuracy 
(%) 74.2 87.2 93.1 52.1 20.5 42.3 64.1 - -

Overall accuracy 0.75

Kappa Value 0.64

Table 4-6. Accuracy metrics and verification indices of the Daeso-myeon area (unit: 1000 pixels) (Park et al., 2020).
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  Although the verification area was both spatially and 

periodically different from the study area, it was confirmed 

that the classification was conducted well when visually 

comparing the land cover map of EGIS with the land cover 

map produced by the model.

  In particular, the qualitative index of overall accuracy and 

kappa coefficient were 0.75, and 0.64, respectively. When 

compared with the Subuk-myeon area (overall accuracy of 

0.81, kappa coefficient of 0.71), which was similar to the 

study area, it showed approximately 10% lower accuracy. 

However, it showed a substantial degree of accuracy with 

kappa coefficient ≥ 0.6 and < 0.8. This result confirms the 

possibility of applying the land cover classification of a 

general orthographic image data regardless of its acquired 

time, or space. As for the classification accuracy of each 

item, the results for agricultural area (user’s accuracy of 

87.2%, producer accuracy of 89.2%) were accurate, whereas 

the results for wetlands (user’s accuracy of 20.5%, 

producer’s accuracy of 8.9%) and barren lands (user’s 

accuracy of 42.3%, producer’s accuracy of 18.1%) showed a 

lower level of accuracy. Thus, it can be confirmed that the 

results are similar to those from the aforementioned 

verification of Subuk-myeon.

  In reality, the land uses of paddy field and upland are in 

the form of parcels with boundaries. However, the result of 
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the model produces the optimal land cover classification per 

pixel not per parcel with boundaries. As indicated by the red 

dotted lines shown in Figure 4-9, most of the area is 

classified as paddy field in the classification of a parcel of 

paddy field, whereas some part of the area is classified as 

upland. The ambiguity in boundaries could be improved to 

additional process of applying land parcel boundaries into 

pixel-based land cover.

(a) Orthographic 
image

(b) Land cover map (c) Classification 
result

Figure 4-9. Example of ambiguity of boundaries (bright and dark 
skin color are paddy field, bright and dark yellow are upland) 

(Park et al., 2020).
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4.4.3. Classification accuracy of boundary based 
aggregation in agricultural area

  The accuracy of extracted parcel boundary was evaluated 

by comparing the boundary separated from orthographic 

image using model and the farm map boundary, manually 

extracted parcel boundary. According to the interval of farm 

map production period, the most temporally closest data 

were used for validation. Orthographic images of 2018 and 

2017 orthographic image based farm map were compared 

with Subuk-myeon and the same 2016 orthographic image 

based model result and farm map were validated on 

Daeso-myeon. The extracted boundary from the model (a), 

the parcel boundary of farm map (b), and verification image 

(c) and table (d) were shown in Figure 4-10 and 11, 

respectively.
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(a) (b)

 

(c)

(1,000 pixel unit)
model

Positive Negative

farm
map

Positive 95,803 21,904

Negative 175 121,922
Precision (%) 99.8

Recall (%) 81.4

(d)

Figure 4-10 Extracted agricultural parcel boundary in Subuk-myeon. (a) Farm map, (b) 
extracted boundary from post-processing module, (c) verification image of extracted 
boundary, and (d) verification table. Extracted agricultural area boundary was shown in white 
in (a)&(b). Accurately extracted boundaries were colored in red(TP for red, TN for pink) and 
mis-extracted boundaries were shown in blue(FP for sky blue, FN for blue).
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(a) (b)

 

(c)

(1,000 pixel unit)
model

Positive Negative

farm
map

Positive 118,647 11,026

Negative 2,701 173,719
Precision (%) 97.8

Recall (%) 91.5

(d)

Figure 4-11 Extracted agricultural parcel boundary in Daeso-myeon. (a) Farm map, (b) 
extracted boundary from post-processing module, (c) verification image of extracted 
boundary, and (d) verification table of Daeso-myeon. Extracted agricultural area boundary 
was shown in white in (a)&(b). Accurately extracted boundaries were colored in red(TP for 
red, TN for pink) and mis-extracted boundaries were shown in blue(FP for sky blue, FN for 
blue).
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  Precision, which predicts the accuracy among the extracted 

as parcel boundary by model, was accurately estimated on 

both verification area, larger than 97%. It confirms that the 

boundary extracted from model at least included in the real 

parcel boundary. However, recall, which means that how well 

the real boundaries could be extracted, showed low accuracy 

than precision though it was higher than 80%.

  This result was caused by the differently set confines of 

parcel boundary between model and farm map. The space 

between lot and the lot was recognized as also lot in farm 

map (Figure 4-12 (b)), however, it was accepted as 

non-agricultural area in model result (Figure 4-12 (c)). It 

seems that the extracted boundary from model could 

represent the real parcel boundary in that the difference of 

parcel boundary mainly occurred on the edges of agricultural 

area.

(a) Orthographic 
image

(b) Agricultural 
boundary of farm map

(c) Extracted 
agricultural boundary

Figure 4-12 The example of extracted agricultural parcel boundary.
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  The recall of Subuk-myeon (81.4%) was lower than that of 

Daseo-myeon (91.5). The aggregation of land cover to parcel 

boundary module extracts the parcel boundary by detecting 

the change of gradient. The derivative of gradient was 

complicated near the mountain or river, which has diverse 

RGB even in small areas, and it resulted in the mis-extracted 

boundaries (Figure 4-13).

(a) Orthographic 
image

(b) Agricultural 
boundary of farm map

(c) Extracted 
agricultural boundary

Figure 4-13 The examples of mis-extracted parcel boundary 
near the mountain.

  The accuracy of extracted parcel boundary from the model 

seemed well match with the farm map boundary, assigned as 

the real parcel boundary, regardless of spatially and timely. 

So, extracted boundary was applied to the previous CNN 

based land cover map to settle the ambiguity of boundaries 

(Figure 4-14, 4-15) and evaluated the land cover 

classification accuracy in agricultural area (Table 4-7&8, 

9&10).
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(a) (b)

(c) (d)

Figure 4-14 Agricultural land cover classification result in Subuk-myeon. (a) orthographic image 
(2018), (b) 2019 farm map(based on 2017 orthographic image), (c) pixel based classification result, 
and (d) boundary based classification result in agricultural area. Each color represent the land 

cover; Bright yellow for paddy; yellow for farm; green yellow for green house; brown for orchard.
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(unit: 1.000.000 pixels)
Classified Data (based on 2018 data) Producer’s 

accuracy 
(%)Paddy Farm Green 

house Orchard Others Total

Reference 
Data

(based on 
2017 data)

Paddy 66.6 5.3 1.8 0.1 2.4 76.2 87.4
Farm 7.3 9.2 1.3 1.0 4.3 23.2 39.7
Green 
house 1.4 0.6 9.4 0.1 1.7 13.1 71.2

Orchard 0.3 1.0 0.3 1.4 2.2 5.3 26.6

Others 6.8 3.0 4.5 2.2 105.6 122.0 86.5

Total 82.5 19.0 17.3 4.9 116.2 239.8 -
User’s 

accuracy (%) 80.7 48.4 54.1 28.7 90.9 - -
Overall 

accuracy 0.80

Kappa Value 0.69

Table 4-7 Accuracy metrics and verification indices of pixel 
based classification result in Subuk-myeon

(unit: 1.000.000 pixels)
Classified Data (based on 2018 data) Producer’s 

accuracy 
(%)Paddy Farm Green 

house Orchard Others Total

Reference 
Data

(based on 
2017 data)

Paddy 58.0 4.7 1.1 0.6 11.8 76.2 76.2
Farm 6.4 7.9 0.8 1.3 6.7 23.2 34.0
Green 
house 0.9 0.5 7.0 0.0 4.7 13.1 53.4

Orchard 0.4 1.0 0.1 1.2 2.6 5.3 22.4

Others 0.5 0.2 0.3 0.1 121.0 122.0 99.2

Total 66.2 14.3 9.4 3.1 146.8 239.8 -
User’s 

accuracy (%) 87.7 55.0 75.0 37.4 82.4 - -
Overall 

accuracy 0.81

Kappa Value 0.69

Table 4-8 Accuracy metrics and verification indices of pixel 
with boundary based classification result in Subuk-myeon.
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(a) (b)

(c) (d)

Figure 4-15 Agricultural land cover classification result in Daeso-myeon. (a) orthographic image 
(2016), (b) 2018 farm map(based on 2016 orthographic image), (c) pixel based classification result, 
and (d) boundary based classification result in agricultural area. Each color represent the land 

cover; Bright yellow for paddy; yellow for farm; green yellow for green house; brown for orchard.
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(unit: 1.000.000 pixels)
Classified Data (based on 2016 data) Producer’s 

accuracy 
(%)Paddy Farm Green 

house Orchard Others Total

Reference 
Data

(based on 
2016 data)

Paddy 53.9 7.5 0.6 0.1 0.8 63.0 85.6
Farm 2.5 36.5 0.8 1.8 7.4 49.0 74.4
Green house 0.4 0.5 11.5 0.4 3.1 15.9 72.4

Orchard 0.0 0.2 0.1 1.4 1.2 2.9 47.8

Others 7.0 7.3 6.5 4.1 150.5 175.3 85.8

Total 63.9 52.0 19.6 7.7 163.0 306.1 -
User’s 

accuracy (%) 84.5 70.2 58.8 18.1 92.3 - -
Overall 

accuracy 0.83

Kappa Value 0.72

Table 4-9 Accuracy metrics and verification indices of pixel 
based classification result in Daeso-myeon

(unit: 1.000.000 pixels)
Classified Data (based on 2016 data) Producer’s 

accuracy 
(%)Paddy Farm Green 

house Orchard Others Total

Reference 
Data

(based on 
2016 data)

Paddy 49.5 6.8 0.1 0.2 6.4 63.0 78.6
Farm 2.2 35.9 0.4 4.4 6.2 49.0 73.2
Green 
house 0.2 0.5  13.4 0.1 1.6 15.9 84.6

Orchard 0.0 0.2 0.1 2.3 0.3 2.9 79.7

Others 1.8 2.1 0.5   0.5 170.4 175.3 97.2

Total 53.7 45.4 14.5 7.5 185.0 306.1 -
User’s 

accuracy (%) 92.1 79.1 92.5 31.3 92.1 - -
Overall 

accuracy 0.89

Kappa Value 0.81

Table 4-10 Accuracy metrics and verification indices of pixel 
with boundary based classification result in Daeso-myeon.
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  Estimated verification indices of overall accuracy and 

kappa value were 0.81 and 0.69 in Subuk-myeon, 0.89 and 

0.8 in Daeso-myeon, respectively. The overall accuracy was 

advanced 0.80 to 0.81 in Subuk-myeon and 0.83 to 0.89 in 

Daeso-myeon. Aggregation of land cover based on extracted 

parcel boundary led to not only the accuracy improvement 

but also express actual land use.

  In Subuk-myeon, the user’s accuracy was overall 

improved, but overall accuracy improved only 1% and the 

producer’s accuracy of greenhouse decreased 71.2% to 

53.4%. Timely difference between ground truth (2017 

orthographic image based 2019 farm map) and model result 

(based on 2018 orthographic image) caused the inaccurate 

comparison. Figure 4-16 represents the changed land use in 

agricultural area within one year; removed greenhouse in red 

circle and created greenhouse in blue circle. The latest farm 

map of 2019, delayed due to the manual process, could 

provide inaccurate land cover and the capability of developed 

model, extracting land cover immediately from orthographic 

image, could be effectively applied to extracting real-time 

agricultural land cover.
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(a) Orthographic image (2018) (b) Farm map (2017)

(c) Pixel based land cover 
classification result (2018)

(d) Pixel with boundary based land 
cover classification result (2018)

Figure 4-16 The land cover classification result comparison in 
Subuk-myeon.

  Daeso-myeon, where the ground truth of farm map and 

result of developed model land cover classification were same 

in 2016, showed high accuracy with overall accuracy of 0.89 

and ‘almost perfect’ level kappa coefficient, which is the 

highest level of accuracy with a kappa coefficient of over 

0.8.

  The land cover that was classified into several land use in 

each pixel were aggregated to one land cover (Figure 4-17 

red circle) based on the extracted parcel boundary or 

removed (Figure 4-17 blue circle). 

  Extracted paddy and farm from developed model were more 

accurate compared to pixel based result, through the 
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increase of the user’s accuracies. However, the actual paddy 

and farm from the ground truth farm map were less 

extracted with the decrease of producer’s accuracy. This is 

the result of the boundary extraction module that does not 

classify the spaces between lots as agricultural parcels 

(Figure 4-16 (b) & (d) and Figure 4-17 (b) & (d).

(a) Orthographic image (2016) (b) Farm map (2016)

(c) Pixel based land cover 
classification result (2016)

(d) Pixel with boundary based land 
cover classification result (2016)

Figure 4-17 The land cover classification result comparison in 
Daeso-myeon

  Though producer’s accuracy of paddy and farm have 

slightly decreased (paddy 7.0% and farm 1.2%), Other 

accuracies of each land cover increased by 17.9% on 

average. Especially, the accuracy of greenhouse was greatly 

enhanced with 12.2% of producer’s accuracy and 33.7% of 
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user’s accuracy. It could be confirmed that the agricultural 

land cover was accurately extracted using developed model 

compare to farm map, which created from time consuming 

and labor intensive on-digitizing method.

  Additionally, land cover classification was conducted using 

an objective workstation of commercial software ERDAS 

Imagine (Figure 4-18, Table 4-11) and compared the 

accuracy with the developed model result to review the 

applicability of developed model in agricultural classification.

  The result of agricultural classification using ERDAS 

Imagine showed that both user’s accuracy and producer’s 

accuracy were low with an average of 34.4% and 23.5%. In 

particular, paddy was misclassified as farm and farm as 

paddy, and greenhouse&orchard were misclassified as others, 

mainly to roads and forests&grasslands, respectively. It can 

be seen that the characteristic of ERDAS Imagine, which 

assign a land cover label based on a DN in each pixel, 

caused misclassification on the area of similar color values. 

Moreover, the difference between objects grouped using 

ERDAS Imagine and actual boundaries deteriorated the 

accuracy.

  This implies that the developed model is particularly 

applicable to parcel-level agricultural cover classification 

compared to ERDAS Imagine specialized in main category 

cover classification.
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(a) Orthographic image (b) Farm map (ground truth)

(c) ERDAS IMAGINE Objective tool (d) Model classification result 
(Pixel with boundary based result)

Figure 4-18 Comparison of the agricultural cover 
classification results in Daeso-myeon. (Bright yellow for paddy, 

yellow for farm, green yellow for green house, brown for orchard, 
and black for others.)

(unit: 1.000.000 pixels)
ERDAS IMAGEINE result Producer’s 

accuracy 
(%)Paddy Farm Green 

house Orchard Others Total

Farm 
map

Paddy   8.9  10.2 3.8   9.6 29.1 61.7 14.4
Farm   0.4  13.9  6.2   5.0 22.3 47.8 29.1
Green house  0.3   1.9   0.5 7.5 5.0 15.3 3.5

Orchard 0.0 0.2   0.6   0.2 1.9 2.9 6.5
Others 2.7 19.5 11.0 31.5 113.7 178.4 63.7
Total 12.3 45.8 22.2 53.9 172.0 306.1 -

User’s 
accuracy (%) 72.7 30.4 2.4 0.3 66.1 - -

Overall 
accuracy 0.45

Kappa Value 0.13

Table 4-11 Accuracy metrics and verification indices of 
ERDAS Imagine result with farm map in Daeso-myeon.
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Chapter 5. Conclusions

  As an effort to improve the update of land cover maps 

especially for agriculture, this study developed the land cover 

classification model using the CNN-based FusionNet network 

structure and advanced the developed model accuracy in 

agricultural areas by applying parcel boundary extraction 

algorithm. The developed model verified its applicability for 

the two areas of different spatial and temporal 

characteristics.

  The developed model was designed to classify land cover 

from orthographic images by considering spatial distributions 

of each pixel using CNN structure and reading 16 images of 

different perspectives to classify a single area. The 

classification consistency was increased by approximately 

87%.

  Performance of the developed model was reasonably good 

demonstrating the overall accuracies of 0.81 and 0.75, and 

kappa coefficients of 0.71 and 0.64, respectively. However, 

wetlands and barren lands were substantially misclassified to 

grassland and wetland which were trained with relatively 

small area. Thus, further training with data specific to these 

land covers may improve accuracy.

  When considering parcel boundaries in agricultural area, 
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the model performance showed overall accuracy of 0.89 and 

kappa coefficients of 0.81, which grade the highest level of 

‘almost perfect’. Aggregation of land cover in pixel to parcel 

boundary led to not only the accuracy improvement but also 

expressed actual land use.

  It was concluded that the developed model could assist the 

current slow process of land cover classification, especially 

on parcel-level agricultural cover classification. Since the 

developed model was based on CNN, maintenance such as 

continuous model training with the future land cover 

information is required to sustainable model performance. 

Additionally, produced near real-time land cover maps could 

enhance the accuracy of model simulation for watershed and 

land use change, and thus it will be future studies.
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국 문 초 록

  토지이용이 빠르게 변화함에 따라, 토지 피복에 대한 공간정보를 

담고 있는 토지 피복 지도의 신속한 최신화는 필수적이다. 하지만, 현 

토지 피복 지도는 많은 시간과 노동력을 요구하는 manual digitizing 

방법으로 제작됨에 따라, 토지 피복 지도의 업데이트 및 배포에 긴 

시간 간격이 발생하는 실정이다. 본 연구에서는 convolutional 

neural network (CNN) 기반의 인공신경망을 이용하여 

high-resolution remote sensing (HRRS) 영상으로부터 토지 피복

을 분류하는 모델을 개발하고, 특히 농지 경계추출 알고리즘을 적용

하여 농업지역에서 분류 정확도를 개선하고자 하였다. 개발된 토지 

피복 분류모델은 전처리(pre-processing) 모듈, 토지 피복 분류(land 

cover classification) 모듈, 그리고 후처리(post-processing) 모듈의 

세 모듈로 구성된다. 전처리 모듈은 입력된 HRRS 영상을 75%씩 중

첩 분할하여 관점을 다양화하는 모듈로, 한 관점에서 토지 피복을 분

류할 때 발생할 수 있는 오분류를 줄이고자 하였다. 토지 피복 분류 

모듈은 FusionNet model 구조를 바탕으로 개발되었고, 이는 분할된 

HRRS 이미지의 픽셀별로 최적 토지 피복을 부여하도록 설계되었다. 

후처리 모듈은 픽셀별 최종 토지 피복을 결정하는 모듈로, 분할된 

HRRS 이미지의 분류결과를 취합하여 최빈값을 최종 토지 피복으로 

결정한다. 추가로 농지에서는 농지경계를 추출하고, 필지별 분류된 토

지 피복을 집계하여 한 필지에 같은 토지 피복을 부여하였다. 개발된 

토지 피복 분류모델은 전라남도 지역(면적: 547 km2)의 2018년 정사

영상과 토지 피복 지도를 이용하여 학습되었다. 토지 피복 분류모델 
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검증은 학습지역과 시간, 공간적으로 구분된, 2018년 전라남도 수북

면과 2016년 충청북도 대소면의 두 검증지역에서 수행되었다. 각 검

증지역에서 overall accuracy는 0.81, 0.71로 집계되었고, kappa 

coefficients는 0.75, 0.64로 산정되어 substantial 수준의 토지 피복 

분류 정확도를 확인하였다. 특히, 개발된 모델은 필지 경계를 고려한 

농업지역에서 overall accuracy 0.89, kappa coefficient 0.81로 

almost perfect 수준의 우수한 분류 정확도를 보였다. 이에 개발된 

토지 피복 분류모델은 특히 농업지역에서 현 토지 피복 분류 방법을 

지원하여 토지 피복 지도의 빠르고 정확한 최신화에 기여할 수 있을 

것으로 생각된다.

주요어: 토지 피복 지도, 토지 피복 분류, 합성곱 신경망, 필지 경계

학  번: 2019-26400
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