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Abstract 

 
The sensing system in NAND flash memories is a complex 

mixed-signal circuit consisting of a large-scale cell array, 

wordline decoders, page buffers, analog/digital bit-counters, and 

digital sequence controllers. This paper proposes a model and 

simulation framework that can assess the effectiveness of various 

incremental/adaptive algorithms used by digital controllers for the 

read, program, and erase operations, while simulating the 

progression of individual cell threshold voltages (Vth) and 

modeling the detailed analog characteristics of the page buffers. 

The proposed model is written entirely in SystemVerilog, and its 

analog parts are described using the XMODEL primitives, which 

enable efficient and event-driven simulation of analog circuits. 

The proposed model can simulate a 40μs-long incremental step 

pulse programming (ISPP) sequence with the maximum loop 

iteration count of 4 on a 12K-bit block of single-level cells 

(SLC) in less than 2 minutes, and can assess the trade-offs 

between the programming speed and reliability as a function of 

the pulse step size and the impacts of the page buffer’s sensing 

time on the final cell Vth distribution. 

 

Keyword : NAND flash sensing system, mixed-signal circuit, cell 

threshold voltage distribution, XMODEL, SystemVerilog. 

 

Student Number : 2018-29065 

 

 

 

 

 

 



 

 ii 

Table of Contents 

 
Chapter 1. Introduction ............................................................ 1 

1.1. Study Background ....................................................................... 1 

1.2. Thesis Organization .................................................................... 3 

 

Chapter 2. Background ............................................................ 4 

2.1. NAND Flash Memory Architecture and Its Operations ............ 4 

2.2. Previous Works .......................................................................... 8 

 

Chapter 3. Proposed SystemVerilog Model of NAND Flash 

Memory Sensing System ....................................................... 11 

3.1. Cell Array Model ...................................................................... 12 

3.2. Page Buffer Model .................................................................... 15 

3.3. Analog Bit-Counter Model....................................................... 19 

3.4. Digital System Model ................................................................ 22 

 

Chapter 4. Experimental Results ........................................... 23 

4.1. SLC Program with Different ISPP Steps ................................. 25 

4.2. SLC Program with Different Sensing Times ........................... 28 

 

Chapter 5. Conclusions .......................................................... 30 

 

 

Bibliography ........................................................................... 31 

 

 

Appendix ................................................................................ 33 

 

 

Abstract in Korean ................................................................ 40 

 



 

 １ 

Chapter 1. Introduction 
 

 

1.1. Study Background 
 

To address ever-increasing demands for capacity while 

keeping the costs and bit errors low, NAND flash memories use 

various techniques including multi-level cells and incremental 

programming [1], [2]. Consequently, the sensing system in today’s 

NAND flash memories has become a complex mixed-signal circuit, 

consisting of memory cell arrays, wordline decoders, page buffers, 

analog/digital bit-counters, and digital control blocks [3]-[5]. In 

particular, the close interaction between the analog and digital 

circuits within the sensing system makes its system-level 

validation and performance evaluation challenging because the 

simulation of the analog parts requires the high precision of an 

analog-type circuit simulator, e.g. SPICE, whereas the simulation of 

the digital parts requires the high efficiency of a digital-type 

simulator, e.g. Verilog. While solutions exist for the co-simulation 

between SPICE and Verilog, the difference between the two 

simulators and conflicts at their boundaries often result in even 

slower simulation speeds [6]. This paper presents a system-level 

verification framework for the sensing system of a NAND flash 

memory, which can simulate the read, program, and erase 

operations of its memory cell array entirely in SystemVerilog, and 

estimate the resulting statistical distributions of the cell 

characteristics. 

NAND flash memory is a nonvolatile data storage that stores 

information by varying the Vth of a floating-gate transistor device 

[7], and for each read, program, or erase operation, a sensing 

operation that checks its current Vth level is required. Considering 

an example of a charge-trap flash (CTF) cell [8], reading a cell 

involves applying a certain read voltage (VR) to its gate and sensing 

its current, which tells whether VR is higher than Vth (1) or not (0). 

Programming a cell involves applying a high program voltage (VPGM) 
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and raising its Vth by moving electrons into the charge trapping 

layer via a channel-hot electron (CHE) injection mechanism. 

However, erasing a block of cells involves applying a high erase 

voltage (VERS) and lowering the Vth by removing the trapped 

electrons via a hot-carrier injection mechanism. The VPGM and VERS 

voltages are applied for both the program and erase operations as a 

finite-duration pulse, which is repeated with increasing amplitude 

until the Vth of the cell shifts to the desired level. To prevent some 

slowly-responding cells from degrading the overall 

programming/erasing performance, most commercial NAND flash 

memories set a maximum loop count for repeating these pulses and 

stop repeating when the number of unprogrammed/unerased cells 

drops below a certain reference number above zero.  

The above description on the read, program, and erase 

operations of the NAND flash memories illustrates the complexity 

of its sensing systems and the difficulty of verifying them. The Vth 

of each cell is incrementally updated with a different progression 

and loop count, depending on its initial value and the amount of shift 

caused by each program/erase pulse. The total time required to 

program or erase a block of cells may vary depending on the Vth 

distribution of the cells. Also, the number and distribution of the 

cells that remain unprogrammed or unerased can vary depending on 

the conditions of the other cells within the same block. The 

complexity further increases as the digital controllers adopt 

adaptive schemes to determine the sensing level, pulse amplitudes, 

loop stopping criteria, timing conditions, etc. [1], [9]. The Vth 

distribution of the resulting cell is a complex function of the 

circuit/device-level characteristics of the analog circuits as well as 

the algorithms employed by the digital logic. Verifying whether the 

read, program, and erase operations can work correctly in all 

possible conditions is a challenging task.  

As mentioned earlier, considering the cell-to-cell Vth variations, 

neither SPICE- nor Verilog-only simulation can achieve the 

satisfactory speed and accuracy required to verify the operations of 

the NAND flash memory sensing system. For example, the work in 
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[10] had to assume fixed Vth conditions and reduce the size of the 

cell array to mitigate the slow speed of SPICE. In contrast, the 

Verilog-only models in [11] could not reflect the realistic shifts in 

Vth due to the pulse duration and level, hence the resulting changes 

in the cell current, page buffer timing, and sequence controlled by 

the digital logic.  

This paper proposes a model for a NAND flash memory sensing 

system, which can overcome all of these challenges by modeling 

both of its analog and digital parts in SystemVerilog. Particularly, 

the analog parts are modeled using the XMODEL primitives by 

Scientific Analog [12], which can perform the efficient, event-

driven simulation of functional and circuit-level models of analog 

circuits within SystemVerilog without invoking SPICE. The 

proposed model can simulate the progression of the Vth values of 

the individual cell in a given block and analyze its statistical 

distribution while performing read, program, and erase operations 

controlled by the digital logic, which employs various adaptive 

and/or incremental algorithms. For instance, the proposed model 

can assess the trade-offs between the programming speed and 

reliability as a function of the programming pulse step size and 

analyze the impacts of the page buffer’s sensing time on the final 

cell Vth distribution. The simulation of a 40μs-long incremental 

step pulse programming (ISPP) sequence with the maximum loop 

iteration count of 4 on a 12K-bit block of single-level cells (SLC) 

takes less than 2 minutes. 

 

1.2. Thesis Organization 
 

The rest of the paper is organized as follows. Chapter 2 

provides the background on the NAND flash memory sensing 

systems and discusses the previous efforts of verifying them. 

Chapter 3 describes the proposed SystemVerilog model for the 

NAND flash memory sensing system and Chapter 4 presents the 

simulation results with the proposed model. Finally, Chapter 5 

concludes this thesis. 
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Chapter 2. Background 
 

 

2.1. NAND Flash Memory Architecture and Its 

Operations  
 

Figure 1 shows the sensing system blocks that perform the 

read, program, and erase operations of a vertical-NAND (V-

NAND) flash memory [13]: a memory cell array storing the data, 

wordline decoders driving the wordlines WL[0:n-1] and select 

lines GSL/ SSL, and page buffers sensing currents on the bitlines 

BL[0:k-1]. The analog/digital bit counters, pass/fail (PF) checker, 

and sequence control logic order the incremental steps of the 

program/erase operations. A string is the basic unit composing 

the cell arrays of NAND flash memories, which is basically a 
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Figure 1: Overall architecture of NAND flash memory sensing system. 
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series stack of CTF cells and select transistors. Each flash cell on 

the string can store one or more bits of information by varying its 

Vth. Multiple strings may share the same wordlines (WL), string 

select lines (SSL), ground select lines (GSL), and bitlines (BL), 

as depicted in Figure 1. Depending on how they share these lines, 

a set of strings may be grouped into a page, block, and plane [14].  

When reading a data stored in a particular cell of a particular 

string, the X-decoder asserts the SSL and GSL to select the 

desired string and applies the WL voltage of VR to the gate of the 

desired cell and the WL voltage of VPASS to the rest of the cells in 

the string (Figure2). While VPASS is high enough to always turn 

the cell transistor on, VR is set so that the selected cell would 

conduct current only when its Vth is lower than VR. The page 

buffer circuit connected to its BL then senses the current and 

produces a digital output in three phases. First, the BL and SO 

nodes within the page buffer are pre-charged to a positive supply 

level (e.g. VDD). Second, the BL current discharges the SO node 

with a multiplication effect owing to the charge sharing between 

the BL and SO nodes. Third, the sense amplifier detects the 

polarity of the SO voltage and drives the final digital output (Dout). 

For the NAND flash memories employing all bitline (ABL) current 

sensing [15], the same set of WL’s and SSL/GSL’s may drive 

multiple strings simultaneously, and a set of page buffers, each 

dedicated to a string, can produce a multi-bit digital output 

collectively. 
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Figure 2 : Read operation (a) with Vth distribution and (b) in NAND 

string. 
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 When programming data into the cells, a high program 

voltage of VPGM is applied to the gate of the selected cells of the 

selected strings. In the widely-adopted scheme of incremental 

step pulse programming (ISPP) [16], a series of finite-duration 

pulses with a gradually increasing voltage level is applied as VPGM, 

for fast programming speed and tightly-controlled Vth distribution 

of the programmed cells. Figure 3 illustrates an example 

sequence of ISPP. In the first iteration loop, the initial VPGM is 

applied to the WL of the selected cells. Then, a verification step 

follows, which checks the resulting Vth of the cells by performing 

a read/sensing operation. The cells that are programmed 

satisfactorily are marked with the program-inhibit state to avoid 

being over-programmed in the next loop iterations. 

Simultaneously, the analog and digital counter blocks count the 

number of un-programmed cells, and the PF checking unit checks 

if this number is below a predefined reference number. If not, a 

new ISPP loop iteration starts with the higher level of VPGM. As 

illustrated in Figure 3(b), the ISPP scheme can achieve a tight cell 
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Figure 3 : (a) Program sequence and (b) Vth distribution of resulting cell 

after each iteration with the incremental step pulse programming (ISPP). 
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Vth distribution after programming by applying incrementally-

increasing pulses of VPGM to the un-programmed cells alone. 

However, its iterative nature makes it difficult to verify the 

correct ISPP operation against all possible conditions of the cells 

within the array.  

When erasing data stored in the cells, NAND flash memories 

reset the Vth of all the cells within a selected block at once by 

setting all of its WLs to a low voltage and driving the channels of 

the cells with a high voltage VERS. To prevent deep erase cases 

which can degrade the endurance and retention characteristics of 

the cells, the erase operation also adopts a similar sequential 

algorithm, called incremental step pulse erase (ISPE). Hence, the 

same challenge exists when verifying the correctness of the erase 

operation. 
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2.2. Previous Works   
 

The existing ways of verifying the operations of a NAND 

flash memory sensing system rely on “divide-and-conquer” 

approaches that simulate each part of the system with a different 

simulator and combine the results under certain limiting 

assumptions [6].  

For instance, first, a so-called worst on-cell current (WOC) 

of a cell string is estimated using three-dimensional (3D) 

technology computer-aided design (TCAD) simulation [10]. This 

WOC is defined as the current of a string in which cells are all 

programmed except the last one. Second, considering this WOC as 

the fixed string current and modeling the BL as a resistor-

capacitor circuit, the pre-charge and sensing delays of the page 

buffer are estimated with SPICE simulation. Third, these delays 

are then considered as fixed, where the correctness of the read, 

program, and erase operations is verified with digital system 

simulations (Figure 4). It is evident that assuming fixed string 

current and fixed pre-charge/sensing delays cannot produce 

diverse scenarios to fully exercise different cases of the ISPP and 

ISPE algorithms.  
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Although combining these separate simulations into a single, 

unified simulation with SPICE or HDL-SPICE co-simulators has 

been attempted, the slow speeds in performing high-precision 

simulations of large, complex circuits carrying out a long 

sequence of operations make it difficult to verify the operations of 

the sensing system across all possible Vth distributions and 

program/erase speeds of the cells. 

Therefore, to fully verify the operations of a NAND flash 

memory sensing system, its model must satisfy the following 

requirements as shown in Figure 5. First, the model must include 

at least a block-sized cell array of which cell Vths can have 

individually different initial values and changing rates responding 

to the program/erase pulses. Second, its page buffers should 
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Figure 4 : Previous verification flow for sensing systems. 
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produce individually different delays depending on the cell 

conditions of the selected strings. Finally, the simulation including 

the models for the analog/digital bit counters, PF checker unit, and 

sequence control logic must run efficiently enough to carry out a 

long sequence of operations, and observe the resulting Vth 

distributions of the cell.  
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Figure 5 : Requirements for modeling NAND flash memory sensing 

systems. 
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Chapter 3. Proposed SystemVerilog Model of 

NAND Flash Memory Sensing System 
 

This section describes the proposed SystemVerilog model of 

the NAND flash memory sensing system that meets the 

aforementioned requirements. First, its cell array models an 

entire block with at least 16 WLs, 192 BLs, and 4 SSLs, in which 

cells can have individually different Vths. However, its simulation 

time increases only with the number of BLs and not with the 

numbers of WLs or SSLs, by modeling only the selected strings of 

the cell array and dynamically loading/storing the Vth values of the 

cell when the selection changes. Second, the page buffer and 

analog bit counter models are described with the XMODEL’s 

circuit and function primitives, which can model the detailed 

analog behaviors of the SO node varying with the BL current and 

the bit counter output varying with the page buffer results while 

running efficiently within SystemVerilog. Third, the Verilog RTL 

models describing the digital bit counters, PF checker unit, and 

sequence control logic can carry out a long sequence of read, 

program, and erase operations, while observing the progression of 

the Vth distribution of the cell array (Figure 6). 
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Figure 6 : Key ideas for modeling NAND flash memory sensing systems 

using XMODEL for the analog circuits and Verilog for the digital logics. 
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3.1. Cell Array Model  
 

The cell array model has plane-block-string hierarchy. Plane 

is consisted with multiple blocks and each block includes multiple 

strings. Since the basic read, program and ereas operations in 

NAND flash memories are performed within the single selected 

block, the proposed cell array model has a separated 1-block 

sized register for simulation efficiency (Figure 7). Based on the 

block selection, the model loads the Vth values of the individual 

cell stored in a data register into the active block and if the value 

changes, their updated values get stored back to the Vth data array 

before the next operation. 

While it is straightforward to model a cell array as shown in 

Figure 8(a), keeping its simulation efficient is difficult owing to 

the large number of instances within the array and the dense 

connectivity between them. Both the elaboration and simulation 

phases of its SystemVerilog simulation can become considerably 

slow as the array size increases. 

 Recognizing that the SSLs and GSLs select only one string at 

a time that drives a given BL, one can significantly reduce the 

complexity of the cell array model without compromising the 

accuracy. In other words, the proposed cell array model models 

only the active string driving each BL, and dynamically updates its 

cell Vth values based on the SSLs and GSLs values, as shown in 
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Figure 7 : The architecutre of cell array model and its save and load 

operations with sepereated register. 
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Figure 8(b). The Vth values of the individual cell are stored in a 

data array and the model loads the Vth values into the active 

strings when the SSLs and GSLs are switched to new values. The 

active strings then produce the BL currents according to their cell 

Vth values. In case of the program operations, the Vth values on 

the active strings may change, and their updated values get stored 

back to the Vth data array before the next operation. 

Each active string in the cell array is modeled as a variable 

resistor, which has a resistance Rstring equal to the sum of the 

individual cell resistances (Figure 9). Its cell resistance Rcell,i is in 

turn proportional to (VGS,i-Vth,i)
-1, assuming that the cell device 

operates in the linear region:  

 

(1)
 

where KP is a technology-dependent scale factor.  

Figure 10 lists the SystemVerilog pseudo-code of the string 

model. Each string is described as a series of two nmosfet and 

one res_sw primitives, which are the XMODEL circuit primitives 

for nMOS and switchable resistors, respectively. The resistance 

value is computed according to Eq. (1). The cell array model 

consisting of these string models runs efficiently in an event-

driven fashion, generating only one output event when receiving a 
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Figure 8 : (a) Cell array of NAND flash memory and (b) its equivalent 

model. 
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new input event. The detailed SystemVerilog model for the cell 

array plane and block are attached in the appendix. 
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Figure 9 : (a) NAND flash memory string circuits and (b) its equivalent 

model.  

module nand_str #(
     parameter num_wl = 16, 
     parameter VTH_SEL = 0.5, 
     parameter KP_SEL = 1e-4, 
     parameter KP_CELL = 1e-4
)(
     input xreal BL, 
     input xreal SSL, 
     input xreal GSL, 
     input xreal SRC,
     input xreal [num_wl-1:0] WL,
     input longint mem_block
);
     real r_str, r_t, v_ov;
     int i;

     nmosfet #(.Vth(VTH_SEL), .Kp(KP_SEL)) MSSL (.g(SSL), .d(BL), .b(`ground), .s(sp));
     res_sw R0 (.neg(sn), .pos(sp), .R(r_str));
     nmosfet #(.Vth(VTH_SEL), .Kp(KP_SEL)) MGSL (.g(GSL), .d(sn), .b(`ground), .s(SRC));

     always @(posedge read_flag) begin
        if(MSSL.level>0 && MGSL.level>0) begin
            r_t = 0.0;
            for (i=0;i<num_wl;i++) begin
               if (sample(WL[i])<V_PASS) begin
                  v_ov = (sample(WL[i])-getelem(mem_block,i));
                  r_t += (v_ov>0) ? 1/(KP_CELL*v_ov) : `INFINITY;
               end
            end
            r_str = r_t;
        end
        else r_str = `INFINITY;
     end
endmodule

Figure 10 : SystemVerilog model for NAND flash string using XMODEL 

primitives: nmosfet and res_sw. 
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3.2. Page Buffer Model  
 

A page buffer senses the BL currents drawn by the selected 

strings and produces full-digital read-outs. Therefore, its 

operation is mixed-signal in nature and it is particularly important 

to model the SO node timing, which varies with the BL current 

level. Again, the XMODEL primitives allow us to model such 

detailed analog behaviors in a digital simulator, SystemVerilog.  

Figure 11 shows the proposed page buffer model modeling 

the state-of-the-art page buffer circuits in [17]-[19] while 

Figure 12 lists the corresponding pseudo-codes in SystemVerilog. 

The set of nMOS transistors modeled with the nmosfet primitives 

convert the BL input current to the SO node voltage via pre-

charging and discharging operation. A slice primitive then 

compares the SO node voltage with a reference and produces a 

digital output 1 or 0. The page buffer model also contains a latch 

for the strobe operation, which is described with and_xbit and 

nor_xbit (i.e., the AND and NOR gate with xbit input/output) 

primitives. When the strobe pulse SET_S or RST_S is asserted, 

the latch stores the sensed data. In addition, the page buffer 

includes the PF circuits for bit-counting operations, which are 

described later. 
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Figure 11 : Page buffer model with XMODEL primitives. 
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module page_buffer #(

parameter real C_SO = 1e-14)(

input xreal BL,
input xreal BLC,
input xreal BLX, 
input xreal XXL, 
input xreal PRE, 
input xreal PF, 
input xreal PBS,
input xbit RD_S, 
input xbit SET_S, 
input xbit RST_S);

xreal SO;
xbit ilat_S, iRD_S, iPF;

// BL control circuit
nmosfet #(.Vth(0.5), .Kp(0.001)) MBLC (.g(BLC), .d(iBLC), .b(`ground), .s(BL));   
nmosfet #(.Vth(0.5), .Kp(0.001)) MBLX (.g(BLX), .d(vdd), .b(`ground), .s(iBLC));   
nmosfet #(.Vth(0.5), .Kp(0.001)) MXXL (.g(XXL), .d(SO), .b(`ground), .s(iBLC));   
nmosfet #(.Vth(0.5), .Kp(0.001)) MPRE (.g(PRE), .d(vdd), .b(`ground), .s(SO));
   
// Sensing
capacitor #(.C(C_SO)) C0 (.neg(vss), .pos(SO)); 
slice #(.threshold(0.0)) MP0 (.in_ref(Vref), .in(SO), .out(ilat_S)); 

// Data latch
nor_xbit #(.num_in(2), .delay(0.0)) XP10(.out(S), .in({nS,iRST_S})); 
nor_xbit #(.num_in(2), .delay(0.0)) XP11(.out(nS), .in({S,iSET_S})); 
and_xbit #(.num_in(2), .delay(0.0)) XP12(.out(iRST_S), .in({ilat_S, RST_S})); 
and_xbit #(.num_in(2), .delay(0.0)) XP13(.out(iSET_S), .in({ilat_S, SET_S})); 

and_xbit #(.num_in(2), .delay(0.0)) XP14(.out(iRD_S), .in({S, RD_S}));
switch #(.R1(0.01), R0(`INFINITY),  .ic(0)) 
SW0(.neg(SO), .pos(vss), .ctrl(iRD_S));

// PF
switch #(.R1(0.01), R0(`INFINITY),  .ic(0)) SW0(.neg(iPF), .pos(vss), .ctrl(S));
nmosfet #(.Vth(0.5), .Kp(0.001)) MPRE (.g(PF), .d(PBS), .b(`ground), .s(iPF));  
capacitor #(.C(C_PBS)) C0 (.neg(vss), .pos(PBS)); 

endmodule

 
Figure 12 : SystemVerilog model for page buffer using XMODEL. 
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Figure 13 shows the simulated waveforms of the page 

buffer’s SO node in SystemVerilog, considering the best on-cell 

current (BOC), worst on-cell current (WOC), and off-cell 

current conditions. First, the BLC/BLX transistors pre-charge BL 

and the PRE transistor pre-charges SO. Next, the string current 

drawn from the BL input starts discharging BL. When BL is 

discharged sufficiently, the XXL transistor may turn on, which 

then starts discharging the SO node. The amount of change in the 

SO node voltage is a function of the BL current and the ratio 

between the BL capacitance and SO capacitance. Figure 13 shows 

the SO’s discharging slope varying with the cell current 

conditions. The sense time must be optimized to maximize the SO 

difference between the off-cell current and WOC conditions. 
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Figure 13 : Simulated waveforms of proposed page buffer model while 

performing sensing operations. 
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Figure 14 compares the simulated waveforms of a unit page 

buffer model in XMODEL and the simulated waveforms of a unit 

page buffer circuit in HSPICE. For both cases, the current 

conditions of the cell are modeled using an equivalent resistor and 

capacitor. Figure 14 shows that the results match well between 

the XMODEL and HSPICE. However, XMODEL was 5.8 times 

faster than HSPICE, thus demonstrating that the proposed page 

buffer model can efficiently represent the sensing operation 

without compromising accuracy in SystemVerilog. 

SO
 (V

)

(a) BOC (b) WOC (c) Off-Cell

XMODEL
HSPICE

 
Figure 14 : Comparison between the XMODEL and HSPICE simulation 

results with (a) best-on-cell current (BOC), (b) worst-on-cell current 

(WOC), and (c) off-cell current conditions. 
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3.3. Analog Bit-Counter Model  
 

Figure 15(a) illustrates the organization of the bit-counter 

units that count the number of failing bits during the incremental 

program/erase operations. The analog bit-counter counts the 

number of failing bits in an analog fashion by aggregating the 

voltages on the shared PBS lines. This so-called slow bit-

counter architecture is an effective way to estimate the 

approximate number of failing bits with low-complexity and low-

power analog circuits [13]. After each sensing operation, a set of 

m page buffers drives a shared PBS line with the charge indicating 

the pass/fail result, which develops a voltage proportional to the 

number of failed bits. The analog bit-counter then takes a set of j 

PBS lines and compresses their information into z-bit digital 

output using a set of current mirrors and resistor-capacitor (RC) 

sink circuits. The digital bit-counter then further aggregates the 

results from multiple analog bit-counters, producing the final 

count CNT[0:z-1]. Finally, the PF checker unit compares 

CNT[0:z-1] with a pre-determined reference and determines 

whether the program/erase has succeeded or not. Figure 15(b) 

illustrates the model of the analog bit-counter unit described with 

the XMODEL circuit and function primitives. For instance, the 

switchable RC sink is modeled with the switch, resistor, capacitor, 

and nor_xbit (i.e., the NOR gate with xbit input/output) primitives. 

The current mirror with the multiplication factor of M0 is modeled 

with the iprobe, scale, and isource primitives.  The output of the 

current mirror is fed to another RC sink to produce a reference 

voltage, which is then compared to DOUT by the slice primitive to 

determine the final digital output OUT[0:z-1]. 
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Figure 15 : (a) Organization of the bit-counter units in the slow bit-

counter architecture [13] and (b) the proposed model for the analog bit-

counter unit. 
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Figure 16(a) shows the simulated waveforms of DOUT and 

REF[0:z-1] using this analog bit-counter model. The model 

essentially outputs a log function of the number of failed bits, 

which provides the finer resolution counting small numbers with 

the limited number of output bits. Figure 16(b) plots the output of 

the analog bit-counter changing as the program iteration 

progresses. 
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Figure 16 : (a) Simulated waveforms of the analog bit-counter model and 

(b) its output OUT[3:0] varying as the program loop progresses. 
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3.4. Digital System Model  
 

The digital circuits of the NAND flash memory sensing 

system include the digital bit-counter, pass/fail (PF) checker, and 

sequence control logic. These models are described in Verilog, 

which run efficiently while carrying out long sequences of the 

incremental/adaptive read, program, and erase operations.  

Figure 17 illustrates the sequencing algorithms for the read 

and program/erase operations for the SLC arrays modeled in this 

work. For the read operation, sensing is performed in three 

phases as explained earlier. For the program/erase operation, 

sensing is performed after each program/erase execution step to 

verify the results. The bit-counters and PF checker unit output 

then serves as an indicator whether to continue or terminate the 

iteration loop.   
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Figure 17 : Flowcharts illustrating the sequences of (a) read and (b) 

program/erase operations. 
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Chapter 4. Experimental Results 
 

The SystemVerilog model of the NAND flash memory sensing 

system includes a block-size array of single-level cells (SLCs) 

with 16 WLs, 192 BLs, and 4 SSLs. The threshold voltages of the 

cell array are individually randomized to a Gaussian distribution 

[20] with a mean of -2.5V and standard deviation of 0.5V. The 

read and program operations are conducted per page containing 

192 bits. The ISPP algorithm uses the initial VPGM of 15.4V, 

incremental VPGM step of 1V, verify voltage (VVFY) of 3V, and 

maximum number of loop iterations of 4. The SystemVerilog 

simulations with the XMODEL primitives are carried out with the 

Scientific Analog’s XMODEL release 2019.09 and Cadence 

Xcelium version 19.03.009 on a 4-core Intel i5-4460 computer 

with 16-GB memory. Figure 18(a) shows the run time of the 

simulations varying with the numbers of BLs, WLs, and SSLs 

within a block. And figure 18(b) shows how much the simulation 

run time changes if the number of blocks in a plane increases. 

Thanks to the models discussed in Section 3.1, the run time 

increases only with the number of BLs and not with the numbers 

of WLs or SSLs. And the number of blocks in a plane does not 

affect the overall simulation time. The proposed model can 

simulate a 40μs-long single-level cells (SLC) programming with 

incremental step pulse programming (ISPP) sequence achieving 

the maximum loop iteration count of 4 on a 12K-bit block in less 

than 2 minutes.  
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Figure 18 : Run time of the presented SystemVerilog models 

performing the 40 s of SLC program operations varying (a) the 

numbers of BLs, WLs, and SSLs within a sinlge block and (b) the 

number of blocks in a plane. 
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4.1. SLC Program with Different ISPP Steps  
 

Figure 19 shows the simulated waveforms of the key signals 

going through the iterations of ISPP during the program operation. 

The program voltage (VPGM) with incrementally increasing level is 

applied to the WL. Depending on the resulting changes in the cell 

Vth, the page buffers’ SO outputs change. As the number of the 

programmed cells increases, the PBS voltages reflect the change 

and the bit-counters and PF checker determine whether the 

program is successful or not.  

Figure 20 (a) and (b) plot the simulated progressions of the 

cell Vth distribution during 16 SLC program operations. Figure 

20(a) is the result with the VPGM step of 1.0 V and maximum loop 

iteration count of 4. After the fourth iteration, the Vth distribution 

of the cell has a mean (μ) of 3.245V and standard distribution 

(σ) of 0.2692V. In contrast, Figure 20(b) shows the results 

obtained with the VPGM step of 0.5V and maximum loop iteration 

count of 7. When compared to Figure 20(a), this finer VPGM step 

yields the narrower cell Vth distribution of σ= 0.1664V despite 
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Figure 19 : Simulated waveforms of the key signals during the SLC 

program operation with 4 ISPP iteration steps. 
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the slower programming speed (i.e. the more loop iterations 

required). Figure 21(b) plots the trade-offs between the 

standard deviation of the final cell Vth distribution and the required 

loop iterations as the VPGM step varies. As expected, the finer 

VPGM step yields a more tightly-controlled cell Vth distribution and 

sacrifices the program performance. Based on this result, one can 

choose the optimal VPGM step that satisfies both the performance 

and reliability requirements. 
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Figure 20 : Simulated progressions of the Vth distributions of the cell 

with various VPGM steps: (a) VPGM step of 1.0V, (b) VPGM step of 0.5V. 
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Figure 21 : (a) Comparison of their final cell Vth distributions, and (b) 

trade-off between the program performance and reliability. 

ISPP Steps(V) 0.5 0.75 1 1.25 1.5 

Program  

Loop Count 
7 5 4 3 3 

σ of Final  

Cell Vth (V) 
0.1664 0.1921 0.2692 0.4006 0.4392 

 

Table 1 : Simulation results for the program loop count and cell Vth 

distribution changes with various ISPP steps. 
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4.2. SLC Program with Different Sensing Times  
 

The presented model can also verify whether the sensing 

timing margins are adequate for the page buffers to distinguish 

between the on- and off-cells. If the sensing time is too short 

(i.e., the period of the XXL pulse staying high in Figure 22), the 

on-cells may not sufficiently discharge the SO node in time and 

will be misinterpreted as off-cells. During programming, it implies 

that the digital controller may incorrectly treat them as 

programmed cells, and mark them in the program-inhibit state to 

prevent further programming. Unlike previous studies in [6], [10], 

the presented model can properly replicate these failures due to 

the page buffer timings varying with the individual cell conditions.  

Figure 23(a) shows the simulated results with various 

sensing time conditions. When the sensing time is 25% shorter 

than the optimal value, the resulting Vth distribution of cell after 4 

loop iterations has the lower mean, implying that the programming 

is insufficient. The results deteriorate further as the sensing time 

is reduced by 37.5% and 50%, and the loop count is reduced to 3. 

Figure 23(b) plots the mean value of the final cell Vth distribution 
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Figure 22 : Timing diagram of the sensing operation with different sensing 

times (XXL = ‘High’). 
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varying with the sensing time. To the best of our knowledge, the 

proposed model is the first one that can predict this correlation 

between the sensing time and cell Vth distribution. This model can 

help determine the adequate sensing times required for future 

generations of NAND flash memories by employing new 

ISPP/ISPE algorithms. 
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Figure 23 : (a) Simulated cell Vth distributions with different sensing 

times and (b) their mean values () varying with sensing time. 
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Chapter 5. Conclusions 
 

This thesis presents an efficient SystemVerilog model for 

NAND flash memory sensing systems, which describes its analog 

and digital parts in XMODEL and Verilog, respectively. The model 

enables efficient simulation in SystemVerilog carrying out long 

sequences of the incremental/adaptive read, program, and erase 

operations in sophisticated NAND flash memories while tracking 

the progressions of the individual cell Vths and simulating their 

impacts on the page buffer timings and sequencing algorithms. We 

believe that the proposed model can serve as an effective 

framework to evaluate performance and verify the correctness of 

new ISPP/ISPE algorithms developed for NAND flash memories, 

and can be extended to other types of non-volatile memories 

employing similar incremental/adaptive algorithms.  
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Appendix 
 

1. Cell array plane model 

  
/*---------------------------------------------------------------------- 
MODULE nand_plane.sv 
 
= Purpose = 
An array plane model of a NAND flash memory. 
----------------------------------------------------------------------*/ 
 
`include "xmodel.h" 
 
module nand_plane #( 
    parameter num_block = 1,                // # blocks 
    parameter num_bl = 192,                 // # strings/block 
    parameter num_ssl = 4,                  // # strings/wl share 
    parameter num_wl = 16,                  // # cells/string 
    parameter num_pbs = 12,                 // # pgbufs/pbs 
    parameter num_pf = 16,                  // # pgbufs/pf 
    parameter real KP_CELL = 1e-4,         // Kp of cell transistors 
    parameter real KP_SEL = 1e-3,          // Kp of GSL/SSL select transistors 
    parameter real VTH_SEL = 0.5,          // Vth of GSL/SSL select transistors 
    parameter real VTH_MIN = -3.0,         // minimum Vth of cell devices  
    parameter real VTH_MAX = 5.0,          // maximum Vth of cell devices  
    parameter real V_PGM = 15.0,           // minimum program voltage 
    parameter real V_PASS = 8.0,           // vpass voltage 
    parameter real V_ERASE = -15.0,        // minimum erase voltage 
    parameter real ISPP_slope = 1.0,       // program rate (ISPP Slope) 
    parameter real OneShot_slope = 0.25,  // Oneshot program efficiency 
    parameter real K_ERASE = 1e4,          // erase rate (V/s) 

parameter real vth_std = 0.5,          // standard deviation for the initial vth 
distribution 

parameter speed_mean = 0.95,           // mean value for the cell program speed 
parameter speed_std = 0.05,            // standard deviation for the cell program 

speed 
    parameter real C_GSL = 1e-12,          // load capacitance on each GSL 
    parameter real C_SSL = 1e-12,          // load capacitance on each SSL 
    parameter real C_WL = 1e-12,           // load capacitance on each WL  
    parameter real C_BL = 1e-10,           // load capacitance on each BL 
    parameter real C_SO = 5e-12,           // load capacitance on each SO 
    parameter string filename = ""         // initial memory state 
)( 
    input xreal     [num_wl-1:0] WLPre, 
    input xreal     [num_ssl-1:0] GSL, 
    input xreal     [num_ssl-1:0] SSL, 
    input xreal     SRC, 
    input xreal     VBB, 
    input xbit      BLKWL, 
    input xbit      pgm_mode, 
    input xbit      ers_mode, 
    input xbit      read_mode, 

input xbit      [7:0] BLK_ADDR, 
 input xbit      ADDR_CMD, 
input xbit      CTL_1, 
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input xreal     VPP, 
 input xbit      XDEC_CTL, 
 input xbit      XDEC_Init, 
input xreal     vdd, 
input xreal     BLC, 

    input xreal     BLH, 
    input xreal     BLS, 
    input xreal     BLX, 

input xreal     CLK1, 
    input xbit      Monitor_M, 
    input xbit      Monitor_S, 
    input xreal     [num_pf-1:0] PF, 
    input xreal     [num_pbs-1:0] PBS, 
    input xreal     PRE, 
    input xbit      RST_M, 
    input xbit      RST_S, 
    input xbit      SET_M, 
    input xbit      SET_S, 
    input xreal     VH, 
    input xreal     Vref, 
    input xreal     XXL, 

output xbit     [num_bl-1:0] lat_S, 
    output xbit     [num_bl-1:0] lat_nS 
); 
 
    xreal       [num_wl-1:0] WL; 
    xbit        [num_block-1:0] BLK_SEL; 
    reg         [num_block-1:0] BLK_SEL_BIT; 
 

//------------------------------------------------------------ 
// block decoder 
//------------------------------------------------------------ 

 
    blockdec #(.num_block(num_block)) blockdec0 
(.BLK_ADDR(BLK_ADDR[7:0]), .BLK_SEL(BLK_SEL[num_block-1:0]), .ADDR_CMD(ADDR_CMD)); 
    xbit_to_bit #(.width(num_block)) xmodel_conn0 (.in(BLK_SEL[num_block-
1:0]), .out(BLK_SEL_BIT[num_block-1:0])); 
 

//------------------------------------------------------------ 
// nand block selection 
//------------------------------------------------------------ 

     
    int i, num_blocksel, blocksel; 
 
    initial begin 
       blocksel = 0; 
        #100; 
        for (i=0; i<num_block; i++) begin 
            blocksel = blocksel + BLK_SEL_BIT[i]; 
            if(BLK_SEL_BIT[i]>0) begin 
                num_blocksel = i; 
            end 
        end 
        if (blocksel < 1 || blocksel > 1) $xmodel_error("Block selection fail"); 
    end 
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xdec XDEC0 (.BLK(BLK_SEL[num_blocksel]), .WLPre(WLPre[num_wl-1:0]), .XDEC_CTL 
(XDEC_CTL), .CTL_1(CTL_1), .WL(WL[num_wl-1:0]), .VPP(VPP), .XDEC_Init(XDEC_Init)); 
 
     nand_block 
#(.filename(filename), .num_bl(num_bl), .num_ssl(num_ssl), .num_wl(num_wl), .num_pbs
(num_pbs), .num_pf(num_pf), .KP_CELL(KP_CELL), .KP_SEL(KP_SEL), .VTH_SEL(VTH_SEL), .
VTH_MIN(VTH_MIN), .VTH_MAX(VTH_MAX), .V_PGM(V_PGM), .V_PASS(V_PASS), .V_ERASE(V_ERAS
E), .ISPP_slope(ISPP_slope), .OneShot_slope(OneShot_slope), .K_ERASE(K_ERASE), .vth_
std(vth_std), .speed_mean(speed_mean), .speed_std(speed_std), .C_GSL(C_GSL), .C_SSL(
C_SSL), .C_WL(C_WL), .C_BL(C_BL), .C_SO(C_SO))  block0 (.ers_mode(ers_mode),  
.vdd(vdd), .VBB(VBB), .XXL(XXL), .read_mode(read_mode), .BLX(BLX), .VH(VH), .SET_S(S
ET_S), .Monitor_S(Monitor_S), .PRE(PRE), .BLC(BLC), .RST_M(RST_M), .pgm_mode(pgm_mod
e), .BLKWL(BLKWL), .BLH(BLH), .CLK1(CLK1), .RST_S(RST_S), .SRC(SRC), .BLS(BLS), .SET
_M(SET_M), .Vref(Vref), .Monitor_M(Monitor_M), .WL(WL[15:0]), .GSL(GSL[num_ssl-
1:0]), .SSL(SSL[num_ssl-1:0]), .lat_S(lat_S[num_bl-1:0]), .lat_nS(lat_nS[num_bl-
1:0]), .PBS(PBS[num_pbs-1:0]), .PF(PF[num_pf-1:0])); 
 
endmodule 
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2. Cell array block model 

/*-------------------------------------------------------------- 
MODULE nand_block.sv 
 
= Purpose = 
An array block model of a NAND flash memory. 
--------------------------------------------------------------*/ 
 
`include "xmodel.h" 
 
module nand_block #( 
    parameter num_bl = 192,                // # strings/block 
    parameter num_ssl = 4,                 // # strings/wl share 
    parameter num_wl = 16,                 // # cells/string 
    parameter num_pbs = 12,                // # pgbufs/pbs 
    parameter num_pf = 16,                 // # pgbufs/pf 
    parameter real KP_CELL = 1e-4,        // Kp of cell transistors 
    parameter real KP_SEL = 1e-3,         // Kp of GSL/SSL select transistors 
    parameter real VTH_SEL = 0.5,         // Vth of GSL/SSL select transistors 
    parameter real VTH_MIN = -3.0,        // minimum Vth of cell devices  
    parameter real VTH_MAX = 5.0,         // maximum Vth of cell devices  
    parameter real V_PGM = 15.0,          // minimum program voltage 
    parameter real V_PASS = 8.0,          // vpass voltage 
    parameter real V_ERASE = -15.0,       // minimum erase voltage 
    parameter real ISPP_slope = 1.0,      // program rate (ISPP Slope) 
    parameter real OneShot_slope = 0.25, // Oneshot program efficiency 
    parameter real K_ERASE = 1e4,         // erase rate (V/s) 

parameter real vth_std = 0.5,         // standard deviation for the initial vth 
distribution 

parameter speed_mean = 0.95,          // mean value for the cell program speed 
parameter speed_std = 0.05,           // standard deviation for the cell program 

speed 
    parameter real C_GSL = 1e-12,         // load capacitance on each GSL 
    parameter real C_SSL = 1e-12,         // load capacitance on each SSL 
    parameter real C_WL = 1e-12,          // load capacitance on each WL  
    parameter real C_BL = 1e-10,          // load capacitance on each BL 
    parameter real C_SO = 5e-12,          // load capacitance on each SO 

parameter string filename = ""        // initial memory state 
)( 
    input xreal     [num_wl-1:0] WL, 
    input xreal     [num_ssl-1:0] GSL, 
    input xreal     [num_ssl-1:0] SSL, 
    input xreal     SRC, 

input xreal     VBB, 
    input xbit      BLKWL, 
    input xbit      pgm_mode, 
    input xbit      ers_mode, 
    input xbit      read_mode, 

input xreal     vdd, 
    input xreal     BLC, 
    input xreal     BLH, 
    input xreal     BLS, 

input xreal     BLX, 
    input xreal     CLK1, 
    input xbit      Monitor_M, 
    input xbit      Monitor_S, 
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input xreal     PRE, 
    input xbit      RST_M, 

input xbit      RST_S, 
    input xbit      SET_M, 

input xbit      SET_S, 
input xreal     VH, 
input xreal     Vref, 

    input xreal     XXL, 
input xreal     [num_pf-1:0] PF, 

    input xreal     [num_pbs-1:0] PBS, 
output xbit     [num_bl-1:0] lat_S, 

    output xbit     [num_bl-1:0] lat_nS, 
); 
 
    // local parameters 
    localparam size_block = num_ssl*num_bl*num_wl; // size of a block  
    xreal [0:num_bl-1] BL; 
 

// gaussian random variables 
    real mean, stdddev, gaussian; 
    import "DPI-C" context function real xmodel_rand_gaussian(real mean, real 
stddev); 
 
    //------------------------------------------------------------ 
    // initialization of memory array 
    //------------------------------------------------------------ 
 
    reg [0:0] XADDR;  
   longint MEM_STATE, MEM_STATE_SPEED; 
    reg [63:0] data_bin [0:size_block-1]; 
    integer file; 
    integer output_file,output_file_speed; 
    real init_vth, cell_speed; 
    int i, j, k; 
    

initial begin 
    $display("block size = ", size_block); 
    $display("mem block = ", idx_block*size_block); 
        $display("Initializing memory state..."); 
        if (filename != "") begin 
            file = $fopen(filename, "rb"); 
            if (file == 0) $xmodel_error("cannot read memory state file: ", 
filename); 
            MEM_STATE = NPRIMS_initarray_real(size_block); 
            MEM_STATE_SPEED = NPRIMS_initarray_real(size_block); 
            k = $fread(data_bin, file); 
            if (k < size_block) $xmodel_error("insufficient data stored in file: ", 
filename); 
            for (j=0; j<size_block; j++) begin 
                NPRIMS_putelem_real(MEM_STATE, i*size_block+j, $bitstoreal 
(data_bin[j])); 

end 
        end 
        else begin 

 output_file = $fopen("initial_vth_out.txt","w"); 
            MEM_STATE = NPRIMS_initarray_real(size_block); 
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for (i=0; i<size_block; i++) begin 
                init_vth = xmodel_rand_gaussian(VTH_MIN,vth_std); 
                $fwrite(output_file,"%f\n",init_vth); 
                NPRIMS_putelem_real(MEM_STATE, i, init_vth); 
            End 

$fclose(output_file); 
 
            output_file_speed = $fopen("cell_speed.txt","w"); 
            MEM_STATE_SPEED = NPRIMS_initarray_real(size_block); 
            for (i=0; i<size_block; i++) begin 
                cell_speed= xmodel_rand_gaussian(speed_mean,speed_std); 

$fwrite(output_file_speed,"%f\n",cell_speed); 
                NPRIMS_putelem_real(MEM_STATE_SPEED, i, cell_speed); 
            end 
            $fclose(output_file_speed); 
        end 
        $display("Done."); 
    end 
 

// wordline loads 
    capacitor #(.C(C_WL)) cload_WL [num_wl-1:0] (.pos(WL[num_wl-1:0]), .neg(VBB)); 
    capacitor #(.C(C_GSL)) cload_GSL [num_ssl-1:0] (.pos(GSL[num_ssl-1:0]), 
 .neg(`ground)); 
    capacitor #(.C(C_SSL)) cload_SSL [num_ssl-1:0] (.pos(SSL[num_ssl-1:0]),  
.neg(`ground)); 
 

//------------------------------------------------------------ 
    // array of cell strings 
    //------------------------------------------------------------ 
 
    int idx_block; 
    longint mem_block; 
    longint mem_block_speed; 
    longint mem_string; 
 

assign idx_block = int'(12'b0000_0000_0000); 
    assign mem_block = NPRIMS_getarray_real(MEM_STATE, idx_block*size_block); 
    assign mem_block_speed = NPRIMS_getarray_real(MEM_STATE_SPEED, 
idx_block*size_block); 
 

// selected memory block  
    genvar gen_i; 
    generate 
        for (gen_i=0; gen_i<num_ssl*num_bl; gen_i++) begin:g1 
            nand_str #(.num_wl(num_wl), .KP_CELL(KP_CELL), .KP_SEL(KP_SEL), 
 .VTH_SEL(VTH_SEL), .V_PGM(V_PGM), .V_PASS(V_PASS), .ISPP_slope(ISPP_slope),  
 .OneShot_slope(OneShot_slope), .str_idx(gen_i*num_wl))  
str .BL(BL[$rtoi(gen_i/num_ssl)]), .WL(WL[num_wl-1:0]), .GSL(GSL[(gen_i%num_ssl)]),  
.SSL(SSL[(gen_i%num_ssl)]), .SRC(SRC), .mem_block(mem_block), .mem_block_speed(mem_b
lock_speed), .pgm_mode(pgm_mode), .ers_mode(ers_mode), .read_mode(read_mode)); 
        end 
    endgenerate 
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//------------------------------------------------------------ 
    // page buffers  
    //------------------------------------------------------------ 
    generate 
        for (gen_i=0; gen_i<num_bl; gen_i++) begin:g3 
            nand_pgbuf #(.C_BL(C_BL), .C_SO(C_SO)) pgbuf0 .BL(BL[gen_i]),  
.lat_S(lat_S[gen_i]), .lat_nS(lat_nS[gen_i]), .PBS(PBS[$rtoi(gen_i/num_pf)]), .PF(PF
[gen_i%num_pf]), .BLX(BLX), .VH(VH), .XXL(XXL), .Monitor_S(Monitor_S), .SET_S(SET_S)
, .BLC(BLC), .PRE(PRE), .RST_M(RST_M), .BLH(BLH), .CLK1(CLK1), .RST_S(RST_S), .BLS(B
LS), .Monitor_M(Monitor_M), .SET_M(SET_M), .Vref(Vref), .vss(`ground), .vdd(vdd)); 
        end 
    endgenerate 
 
endmodule 
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초록 

  

NAND 플래시 메모리의 센싱 시스템은 대용량의 데이터를 저장할 

수 있는 셀 어레이와 이를 구동시키기 위한 워드 라인 디코더, 페이지 

버퍼, 아날로그 / 디지털 비트 카운터 및 디지털 시퀀스 컨트롤러로 구

성된 복잡한 혼성신호 회로이다. 본 연구에서는 개별 셀의 초기 조건과 

특성에 따라 서로 다른 양상을 보이는 문턱 전압 (Vth)의 변화를 반영할 

수 있으며, 페이지 버퍼의 특성을 포함한 상세한 아날로그 동작들의 모

델링하여 디지털 컨트롤러가 읽기, 프로그램 및 삭제 작업에 사용하는 

다양한 알고리즘의 효율성을 평가할 수있는 모델 및 시뮬레이션 프레임 

워크를 제안한다. 제안하는 모델은 디지털과 아날로그로 나뉘어진 검증

환경이 아닌 하나의 통합된 SystemVerilog기반으로 작성되었으며, 특히 

XMODEL 프리미티브를 사용하여 아날로그 회로의 이벤트 기반 시뮬레

이션을 통해 효율적인 검증이 가능하게 되었다. 해당 시스템 모델을 기

반으로 12K 비트의 단일 레벨 셀 (SLC) 블록에서 최대 루프 반복 횟

수가 4 회인 40μs 길이의 ISPP (Incremental Step Pulse 

Programming) 동작을 2 분 이내에 시뮬레이션 할 수 있었다. 또한, 검

증과정을 통해 얻게 되는 개별 셀 Vth 분포 분석을 통해서 프로그래밍 

속도와 신뢰성 사이의 관계를 펄스 스텝 크기의 함수로서 표현할 수 있

었으며, 페이지 버퍼의 센싱 시간 조절을 통한 최종 셀 Vth 분포의 중심

치에 대한 영향에 대해서도 검증가능하다.  

 

주요어 : 낸드플래시 메모리, 혼성신호회로, 셀 문턱전압 분포, XMODEL, 

SystemVerilog. 
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