creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering Practice

Modeling and Simulation of NAND
Flash Memory Sensing Systems
with Cell-to-Cell Vi, Variations

February 2021

Graduate School of Engineering Practice
Seoul National University
Department of Engineering Practice

Nayoung Choi

Modeling and Simulation of NAND
Flash Memory Sensing Systems
with Cell-to—Cell V4, Variations

Prof. Jaecha Kim

Submitting a Master’s Project Report

February 2021

Graduate School of Engineering Practice
Seoul National University
Department of Engineering Practice

Nayoung Choi

Confirming the master’s thesis written by
Nayoung Choi

February 2021
Chair Hoon Han
Examiner Jaeha Kim

Examiner Cheol Seong Hwan%

Abstract

The sensing system in NAND flash memories is a complex
mixed—signal circuit consisting of a large—scale cell array,
wordline decoders, page buffers, analog/digital bit—counters, and
digital sequence controllers. This paper proposes a model and
simulation framework that can assess the effectiveness of various
incremental/adaptive algorithms used by digital controllers for the
read, program, and erase operations, while simulating the
progression of individual cell threshold voltages (V) and
modeling the detailed analog characteristics of the page buffers.
The proposed model is written entirely in SystemVerilog, and its
analog parts are described using the XMODEL primitives, which
enable efficient and event—driven simulation of analog circuits.
The proposed model can simulate a 40 ¢ s—long incremental step
pulse programming (ISPP) sequence with the maximum loop
iteration count of 4 on a 12K—bit block of single—level cells
(SLC) in less than 2 minutes, and can assess the trade—offs
between the programming speed and reliability as a function of
the pulse step size and the impacts of the page buffer’ s sensing

time on the final cell V, distribution.

Keyword : NAND flash sensing system, mixed—signal circuit, cell

threshold voltage distribution, XMODEL, SystemVerilog.

Student Number : 2018—-29065

Table of Contents

Chapter 1. IntroducCtion.........ceeeievvuuerreereniieneeeenieeseeeeeneeeeeeennns 1
1.1. Study BackgroUnd....oo.eeeieeie e 1
1.2, ThesiS OrganiZation ... 3
Chapter 2. Backgroundc..veveeieienieienieiiieiieienieeeneeneneeneneenenes 4
2.1. NAND Flash Memory Architecture and Its Operations............ 4
2.2. Previous WOTKS ..o 8

Chapter 3. Proposed SystemVerilog Model of NAND Flash

Memory SeNSING SYSLEIM .cuuiuiuieienienieneeneeeeneeneeneencencesencenses 11
3.1, Cell Array MOAEL oo 12
3.2. Page Buffer Model ..o 15
3.3. Analog Bit—Counter Model......cco.oveiiiieieeee e 19
3.4. Digital System Model. ..o 22
Chapter 4. Experimental ReSultS...cccoveuveuvenieniiniiniiniinieneeneenees 23
4.1. SLC Program with Different ISPP StepS..cccccovoviiiviiiiiiiinininnns 25
4.2. SLC Program with Different Sensing TimesS...coccoveevienveeennenn.s 28
Chapter 5. CONCIUSIONS ..vuuiuiiuiinienienieneeneeneeeeneeneeneeneeneeneeneenes 30
| 331 0) 1T Yod =1 o) 15 N 31
P2\ 0] 011 8 La 1 b N 33
ADSEract 1N KOT@aM ..uuvvuienieniiienieiiieieeeeeeeeeeeneeneeneeneeneenes 40

ii a1

Chapter 1. Introduction

1.1. Study Background

To address ever—increasing demands for capacity while
keeping the costs and bit errors low, NAND flash memories use
various techniques including multi—level cells and incremental
programming [1], [2]. Consequently, the sensing system in today’s
NAND flash memories has become a complex mixed—signal circuit,
consisting of memory cell arrays, wordline decoders, page buffers,
analog/digital bit—counters, and digital control blocks [3]—[5]. In
particular, the close interaction between the analog and digital
circuits within the sensing system makes its system—level
validation and performance evaluation challenging because the
simulation of the analog parts requires the high precision of an
analog—type circuit simulator, e.g. SPICE, whereas the simulation of
the digital parts requires the high efficiency of a digital—type
simulator, e.g. Verilog. While solutions exist for the co—simulation
between SPICE and Verilog, the difference between the two
simulators and conflicts at their boundaries often result in even
slower simulation speeds [6]. This paper presents a system—level
verification framework for the sensing system of a NAND flash
memory, which can simulate the read, program, and erase
operations of its memory cell array entirely in SystemVerilog, and
estimate the resulting statistical distributions of the cell
characteristics.

NAND flash memory is a nonvolatile data storage that stores
information by varying the V, of a floating—gate transistor device
[7], and for each read, program, or erase operation, a sensing
operation that checks its current Vi, level is required. Considering
an example of a charge—trap flash (CTF) cell [8], reading a cell
involves applying a certain read voltage (Vi) to its gate and sensing
its current, which tells whether Vg is higher than V,, (1) or not (0).
Programming a cell involves applying a high program voltage (Vpou)

1

-
=]
1

L

and raising its Vy, by moving electrons into the charge trapping
layer via a channel—hot electron (CHE) injection mechanism.
However, erasing a block of cells involves applying a high erase
voltage (Vpgs) and lowering the V,, by removing the trapped
electrons via a hot—carrier injection mechanism. The Vpgy and Vggrs
voltages are applied for both the program and erase operations as a
finite—duration pulse, which is repeated with increasing amplitude
until the Vi, of the cell shifts to the desired level. To prevent some
slowly—responding cells from degrading the overall
programming/erasing performance, most commercial NAND flash
memories set a maximum loop count for repeating these pulses and
stop repeating when the number of unprogrammed/unerased cells
drops below a certain reference number above zero.

The above description on the read, program, and erase
operations of the NAND flash memories illustrates the complexity
of its sensing systems and the difficulty of verifying them. The V
of each cell is incrementally updated with a different progression
and loop count, depending on its initial value and the amount of shift
caused by each program/erase pulse. The total time required to
program or erase a block of cells may vary depending on the Vi
distribution of the cells. Also, the number and distribution of the
cells that remain unprogrammed or unerased can vary depending on
the conditions of the other cells within the same block. The
complexity further increases as the digital controllers adopt
adaptive schemes to determine the sensing level, pulse amplitudes,
loop stopping criteria, timing conditions, etc. [1], [9]. The Vi
distribution of the resulting cell is a complex function of the
circuit/device—level characteristics of the analog circuits as well as
the algorithms employed by the digital logic. Verifying whether the
read, program, and erase operations can work correctly in all
possible conditions is a challenging task.

As mentioned earlier, considering the cell—to—cell V,, variations,
neither SPICE— nor Verilog—only simulation can achieve the
satisfactory speed and accuracy required to verify the operations of

the NAND flash memory sensing system. For example, the work in

2 -2t 8
el I

L

[10] had to assume fixed Vy, conditions and reduce the size of the
cell array to mitigate the slow speed of SPICE. In contrast, the
Verilog—only models in [11] could not reflect the realistic shifts in
Vi due to the pulse duration and level, hence the resulting changes
in the cell current, page buffer timing, and sequence controlled by
the digital logic.

This paper proposes a model for a NAND flash memory sensing
system, which can overcome all of these challenges by modeling
both of its analog and digital parts in SystemVerilog. Particularly,
the analog parts are modeled using the XMODEL primitives by
Scientific Analog [12], which can perform the efficient, event—
driven simulation of functional and circuit—level models of analog
circuits within SystemVerilog without invoking SPICE. The
proposed model can simulate the progression of the Vg values of
the individual cell in a given block and analyze its statistical
distribution while performing read, program, and erase operations
controlled by the digital logic, which employs various adaptive
and/or incremental algorithms. For instance, the proposed model
can assess the trade—offs between the programming speed and
reliability as a function of the programming pulse step size and
analyze the impacts of the page buffer’s sensing time on the final
cell V, distribution. The simulation of a 40 g¢s—long incremental
step pulse programming (ISPP) sequence with the maximum loop
iteration count of 4 on a 12K—bit block of single—level cells (SLC)

takes less than 2 minutes.

1.2. Thesis Organization

The rest of the paper is organized as follows. Chapter 2
provides the background on the NAND flash memory sensing
systems and discusses the previous efforts of verifying them.
Chapter 3 describes the proposed SystemVerilog model for the
NAND flash memory sensing system and Chapter 4 presents the
simulation results with the proposed model. Finally, Chapter 5

concludes this thesis.

Chapter 2. Background

2.1. NAND Flash Memory Architecture and Its

Operations

Figure 1 shows the sensing system blocks that perform the
read, program, and erase operations of a vertical-NAND (V-
NAND) flash memory [13]: a memory cell array storing the data,
wordline decoders driving the wordlines WL[0:n—1] and select

lines GSL/ SSL, and page buffers sensing currents on the bitlines

BL[0:k—1]. The analog/digital bit counters, pass/fail (PF) checker,

and sequence control logic order the incremental steps of the
program/erase operations. A string is the basic unit composing

the cell arrays of NAND flash memories, which is basically a

Analog Simulation BL[0:k-1]
E TEAFTYE T [|
SSL[0:3]
: BI Prc;l-l-ﬂ:;;::ug
WL[n-1] . ; Vop Vpp E
WL[n-7] — e : :
g g : :
£ % : 5
o |wig g : -
A : &
1 .
> WL[0] _ R Sense Latch
amp
el Gl [
GSL[0:3] : :
R Sk dl IR
Cell Array Page-buffer —
L)}
WL Control:
iy e iy __'l' ________ ; BL Controls PBS
>|| Analog Bit-Counting Unit | :
ouT
Sequence Control Logic > Digital Bit-Counting Unit |
CNT |, :
Ref. Counts _j
> PF Checking Unit |
Pass/Fail L
Dlgltal Slmulatlon

Figure 1 Overall archltecture of NAND flash memory sensing system

4 S e

1”::

-

I

1

series stack of CTF cells and select transistors. Each flash cell on
the string can store one or more bits of information by varying its
V. Multiple strings may share the same wordlines (WL), string
select lines (SSL), ground select lines (GSL), and bitlines (BL),
as depicted in Figure 1. Depending on how they share these lines,
a set of strings may be grouped into a page, block, and plane [14].

When reading a data stored in a particular cell of a particular
string, the X—decoder asserts the SSL and GSL to select the
desired string and applies the WL voltage of Vi to the gate of the
desired cell and the WL voltage of Vpass to the rest of the cells in
the string (Figure2). While Vpass is high enough to always turn
the cell transistor on, Vi is set so that the selected cell would
conduct current only when its Vy, 1s lower than Vg. The page
buffer circuit connected to its BL then senses the current and
produces a digital output in three phases. First, the BL and SO
nodes within the page buffer are pre—charged to a positive supply
level (e.g. Vpp). Second, the BL current discharges the SO node
with a multiplication effect owing to the charge sharing between
the BL and SO nodes. Third, the sense amplifier detects the
polarity of the SO voltage and drives the final digital output (D).
For the NAND flash memories employing all bitline (ABL) current
sensing [15], the same set of WL" s and SSL/GSL’ s may drive
multiple strings simultaneously, and a set of page buffers, each
dedicated to a string, can produce a multi—bit digital output

collectively.

VseL—i ssL
Vpass—ICWL[n-1]

3 Vi —m:; WL[i]
. :
io.:, E P Veass—ic wi[o]
Ey Vepr,— GSL
- Vin

Vr SRC

(a) Read operation with Vy, (b) Read operation in NAND string
Figure 2 : Read operation (a) with Vy, distribution and (b) in NAND

string.

When programming data into the cells, a high program
voltage of Vpem 1s applied to the gate of the selected cells of the
selected strings. In the widely—adopted scheme of incremental
step pulse programming (ISPP) [16], a series of finite—duration
pulses with a gradually increasing voltage level is applied as Vpgu,
for fast programming speed and tightly —controlled Vy, distribution
of the programmed cells. Figure 3 illustrates an example
sequence of ISPP. In the first iteration loop, the initial Vpgy 1S
applied to the WL of the selected cells. Then, a verification step
follows, which checks the resulting Vi, of the cells by performing
a read/sensing operation. The cells that are programmed
satisfactorily are marked with the program—inhibit state to avoid
being over—programmed in the next loop Iiterations.
Simultaneously, the analog and digital counter blocks count the
number of un—programmed cells, and the PF checking unit checks
if this number is below a predefined reference number. If not, a
new ISPP loop iteration starts with the higher level of Vpgu. As
illustrated in Figure 3(b), the ISPP scheme can achieve a tight cell

Sequence
——Loop1 ¥ Loop 2 ¥ Loop 3 >
Program |Verify| PF Program |Verify| PF Program |Verify| PF
Veem=Vpem+2- ISPP

WL

VPGM=VPGM+ISPP

(a) Program sequence

Count & /i

= = “N Inhibit 2|
S S Check 3
G bl S
5] ol S
* * E |
2 S =l
>Vin I L >Vin
FAIL

Vvry
(b) Vi distribution changes in program

Figure 3 : (a) Program sequence and (b) Vy distribution of resulting cell
after each iteration with the incremental step pulse programming (ISPP).

Vi, distribution after programming by applying incrementally —
increasing pulses of Vpgy to the un—programmed cells alone.
However, its iterative nature makes it difficult to verify the
correct ISPP operation against all possible conditions of the cells
within the array.

When erasing data stored in the cells, NAND flash memories
reset the Vi, of all the cells within a selected block at once by
setting all of its WLs to a low voltage and driving the channels of
the cells with a high voltage Vgrs. To prevent deep erase cases
which can degrade the endurance and retention characteristics of
the cells, the erase operation also adopts a similar sequential
algorithm, called incremental step pulse erase (ISPE). Hence, the
same challenge exists when verifying the correctness of the erase

operation.

2.2. Previous Works

The existing ways of verifying the operations of a NAND
flash memory sensing system rely on “divide—and—conquer”
approaches that simulate each part of the system with a different
simulator and combine the results wunder certain limiting
assumptions [6].

For instance, first, a so—called worst on—cell current (WOC)
of a cell string is estimated using three—dimensional (3D)
technology computer—aided design (TCAD) simulation [10]. This
WOC is defined as the current of a string in which cells are all
programmed except the last one. Second, considering this WOC as
the fixed string current and modeling the BL as a resistor—
capacitor circuit, the pre—charge and sensing delays of the page
buffer are estimated with SPICE simulation. Third, these delays
are then considered as fixed, where the correctness of the read,
program, and erase operations is verified with digital system
simulations (Figure 4). It is evident that assuming fixed string
current and fixed pre—charge/sensing delays cannot produce
diverse scenarios to fully exercise different cases of the ISPP and
ISPE algorithms.

TCAD Simulation

Vorss —acd wi String current

Vse — GSL
SRC

Vg, — SSL
vaks T8 Wit t Worst On-Cell

@ Fixed string condition

SPICE Simulation

Sensing time
estimation

@ Fixed sensing time

Verilog Simulation

Sequence
check

Figure 4 : Previous verification flow for sensing systems.

Although combining these separate simulations into a single,
unified simulation with SPICE or HDL—SPICE co—simulators has
been attempted, the slow speeds in performing high—precision
simulations of large, complex circuits carrying out a long
sequence of operations make it difficult to verify the operations of
the sensing system across all possible V., distributions and
program/erase speeds of the cells.

Therefore, to fully verify the operations of a NAND flash
memory sensing system, its model must satisfy the following
requirements as shown in Figure 5. First, the model must include
at least a block—sized cell array of which cell Vys can have
individually different initial values and changing rates responding

to the program/erase pulses. Second, its page buffers should

¥ oy 1
9 -':'x_! - 1_.“ {

produce individually different delays depending on the cell

conditions of the selected strings. Finally, the simulation including

the models for the analog/digital bit counters, PF checker unit, and

sequence control logic must run efficiently enough to carry out a

long sequence of operations,

distributions of the cell.

and observe the resulting Vg

Erase

Cell

Program

fast
\slow/

Cell-to-cell Variations

Analog
BLC/BLX_; z H é
PRE H l. l. H H
XXL H H 1

High precision

S data

MBS
[3:0]

PnF

Digital

Sequence

| 0 O O I AR

- 1

High efficiency

Figure 5 : Requirements for modeling NAND flash memory sensing

systems.

10

Chapter 3. Proposed SystemVerilog Model of
NAND Flash Memory Sensing System

This section describes the proposed SystemVerilog model of
the NAND flash memory sensing system that meets the
aforementioned requirements. First, its cell array models an
entire block with at least 16 WLs, 192 BLs, and 4 SSLs, in which
cells can have individually different V;s. However, its simulation
time increases only with the number of BLs and not with the
numbers of WLs or SSLs, by modeling only the selected strings of
the cell array and dynamically loading/storing the Vy, values of the
cell when the selection changes. Second, the page buffer and
analog bit counter models are described with the XMODEL" s
circuit and function primitives, which can model the detailed
analog behaviors of the SO node varying with the BL current and
the bit counter output varying with the page buffer results while
running efficiently within SystemVerilog. Third, the Verilog RTL
models describing the digital bit counters, PF checker unit, and
sequence control logic can carry out a long sequence of read,
program, and erase operations, while observing the progression of
the Vi, distribution of the cell array (Figure 6).

SystemVerilog-
_—-—/
Cell Array Page Buffer AnalogBitCounter
) { -
XMODEL ¥
=
Verilog

Figure 6 : Key ideas for modeling NAND flash memory sensing systems
using XMODEL for the analog circuits and Verilog for the digital logics.

1 1 "':I_E _'-I-.:_

3.1. Cell Array Model

The cell array model has plane—block—string hierarchy. Plane
1s consisted with multiple blocks and each block includes multiple
strings. Since the basic read, program and ereas operations In
NAND flash memories are performed within the single selected
block, the proposed cell array model has a separated 1-—block
sized register for simulation efficiency (Figure 7). Based on the
block selection, the model loads the V4 values of the individual
cell stored in a data register into the active block and if the value
changes, their updated values get stored back to the V., data array
before the next operation.

While it is straightforward to model a cell array as shown in
Figure 8(a), keeping its simulation efficient is difficult owing to
the large number of instances within the array and the dense
connectivity between them. Both the elaboration and simulation
phases of its SystemVerilog simulation can become considerably
slow as the array size increases.

Recognizing that the SSLs and GSLs select only one string at
a time that drives a given BL, one can significantly reduce the
complexity of the cell array model without compromising the
accuracy. In other words, the proposed cell array model models
only the active string driving each BL, and dynamically updates its

cell Vi, values based on the SSLs and GSLs values, as shown in

Plane
BLK BLK /m\ I
ADDRESS SELECT WL
s/ wL . - 1-Block
Block Decoder Block Bloc - .- | Bloe Slz.ed
Addres Register
WL
Decoder i

Figure 7 : The architecutre of cell array model and its save and load
operations with sepereated register.

¥ "'-\. _I;
12 -"'\«._E '|-._'1_.'

BL[0o] BL[1] BL[k-1]

Vin Vthl
SSL Vi
WL[n-1] 2D
z array
Selected |#
wr = = I
WL[0]
GSL &

T/f/ T/[/ T 1D
SRC [Rf T [[| V array

(a) NAND flash memory cell array (b) equivalent model
Figure 8 : (a) Cell array of NAND flash memory and (b) its equivalent

model.

Figure 8(b). The V., values of the individual cell are stored in a
data array and the model loads the V., values into the active
strings when the SSLs and GSLs are switched to new values. The
active strings then produce the BL currents according to their cell
Vi, values. In case of the program operations, the V, values on
the active strings may change, and their updated values get stored
back to the Vi, data array before the next operation.

FEach active string in the cell array is modeled as a variable
resistor, which has a resistance Ry, equal to the sum of the
individual cell resistances (Figure 9). Its cell resistance R, is in
turn proportional to (Vgs,i—Vu,) ', assuming that the cell device

operates in the linear region:

n—1

Rstring - E Rcell.f’
i=0

_ nz_:l { KP'(VG.‘;:'_Vth,i) if Vas,i > Ving,
i=0 (&¢

where Kp is a technology —dependent scale factor.
Figure 10 lists the SystemVerilog pseudo—code of the string

model. Each string is described as a series of two nmosfet and

one res_sw primitives, which are the XMODEL circuit primitives

for nMOS and switchable resistors, respectively. The resistance

value is computed according to Eq. (1). The cell array model

consisting of these string models runs efficiently in an event—

(1

otherwise.

driven fashion, generating only one output event when receiving a
§ §
13 -"'-\._! =

'\._-._ 1_._ii .

new input event. The detailed SystemVerilog model for the cell

array plane and block are attached in the appendix.

BL BL BL

Vsgr, — SSL NS —il:I SSL VUNSEL —il:r SSL
Vpass—IIC, WiLn-1]

Vr —IIE“ WL[i] I::> 2’ _Rgtﬁngn R_st:)i:g
. - C€. =

Vpass—IC, wi[o]

VseL —IC csL VsEL —||:l GSL VUNSEL —H:l GSL
SRC SRC SRC
(Selected String) (Unselected String)
(a) NAND flash string (b) equivalent model

Figure 9 : (a) NAND flash memory string circuits and (b) its equivalent

model.

module nand_str #(
parameter num_wl = 16,
parameter VTH_SEL = 0.5,
parameter KP_SEL = le-4,
parameter KP_CELL = le-4
)(
input xreal BL,
input xreal SSL,
input xreal GSL,
input xreal SRC,
input xreal [num_wl-1:0] WL,
input longint mem_block
)s
real r_str, r_t, v_ov;
int i;

nmosfet #(.Vth(VTH_SEL), .Kp(KP_SEL)) MSSL (.g(SSL), .d(BL), .b("ground), .s(sp));
res_sw RO (.neg(sn), .pos(sp), .R(r_str));
nmosfet #(.Vth(VTH_SEL), .Kp(KP_SEL)) MGSL (.g(GSL), .d(sn), .b(ground), .s(SRC));

always @(posedge read_flag) begin
if(MSSL.level>0 && MGSL.level>@) begin
r_t =20.0;
for (i=0;i<num_wl;i++) begin
if (sample(WL[i])<V_PASS) begin
v_ov = (sample(WL[i])-getelem(mem_block,i));
r_t += (v_ov>@) ? 1/(KP_CELL*v_ov) : “INFINITY;
end
end
r_str = r_t;
end
else r_str = “INFINITY;
end
endmodule

Figure 10 : SystemVerilog model for NAND flash string using XMODEL
primitives: nmosfet and res_sw.

i
14 -'x'? L

3.2. Page Buffer Model

A page buffer senses the BL currents drawn by the selected
strings and produces full—digital read—outs. Therefore, its
operation is mixed—signal in nature and it is particularly important
to model the SO node timing, which varies with the BL current
level. Again, the XMODEL primitives allow us to model such
detailed analog behaviors in a digital simulator, SystemVerilog.

Figure 11 shows the proposed page buffer model modeling

the state—of—the—art page buffer circuits in [17]—=[19] while

Figure 12 lists the corresponding pseudo—codes in SystemVerilog.

The set of nMOS transistors modeled with the nmosfet primitives
convert the BL input current to the SO node voltage via pre—
charging and discharging operation. A slice primitive then
compares the SO node voltage with a reference and produces a
digital output 1 or O. The page buffer model also contains a latch
for the strobe operation, which is described with and_xbit and
nor_xbit (i.e., the AND and NOR gate with xbit input/output)
primitives. When the strobe pulse SET_S or RST_S is asserted,
the latch stores the sensed data. In addition, the page buffer
includes the PF circuits for bit—counting operations, which are

described later.

% Cso RD_S I
Selective
Precharge
Circuit RST_S S PF

S
Vihref SET_S n T Cras

L|_|

PBS

(a) BL Control Circuit (b) Sensing (c) Data Latch (d) PF

Figure 11 : Page buffer model with XMODEL primitives.

15 -"x_i'l"

module page_buffer #(
parameter real C_SO = le-14)(

input xreal BL,
input xreal BLC,
input xreal BLX,
input xreal XXL,
input xreal PRE,
input xreal PF,
input xreal PBS,
input xbit RD_S,
input xbit SET_S,
input xbit RST_S);

xreal SO;
xbit ilat_S, iRD_S, iPF;

// BL control circuit

nmosfet #(.vth(0.5), .Kp(0.001)) MBLC (.g(BLC), .d(iBLC), .b(ground), .s(BL));
nmosfet #(.vth(@.5), .Kp(@.001)) MBLX (.g(BLX), .d(vdd), .b(ground), .s(iBLC));
nmosfet #(.vth(0.5), .Kp(0.001)) MXXL (.g(XXL), .d(SO), .b(ground), .s(iBLC));
nmosfet #(.vth(@.5), .Kp(@.001)) MPRE (.g(PRE), .d(vdd), .b(ground), .s(S0O));

// Sensing
capacitor #(.C(C_SO)) CO (.neg(vss), .pos(S0));
slice #(.threshold(0.0)) MP@ (.in_ref(Vref), .in(S0O), .out(ilat_S));

// Data latch

nor_xbit #(.num_in(2), .delay(0.0)) XP1@(.out(S), .in({nS,iRST_S}));

nor_xbit #(.num_in(2), .delay(@.0)) XP11(.out(nS), .in({S,iSET_S}));

and_xbit #(.num_in(2), .delay(0.0)) XP12(.out(iRST_S), .in({ilat_S, RST_S}));
and_xbit #(.num_in(2), .delay(@.0)) XP13(.out(iSET_S), .in({ilat_S, SET_S}));

and_xbit #(.num_in(2), .delay(@.0)) XP14(.out(iRD_S), .in({S, RD_S}));
switch #(.R1(8.01), RO(TINFINITY), .ic(9))
SWo(.neg(S0), .pos(vss), .ctrl(iRD_S));

// PF

switch #(.R1(0.01), RO(INFINITY), .ic(@)) SWo(.neg(iPF), .pos(vss), .ctrl(S));
nmosfet #(.vth(0.5), .Kp(0.001)) MPRE (.g(PF), .d(PBS), .b("ground), .s(iPF));
capacitor #(.C(C_PBS)) C0@ (.neg(vss), .pos(PBS));

endmodule

Figure 12 : SystemVerilog model for page buffer using XMODEL.

16 A =

Figure 13 shows the simulated waveforms of the page
buffer’ s SO node in SystemVerilog, considering the best on—cell
current (BOC), worst on—cell current (WOC), and off—cell
current conditions. First, the BLC/BLX transistors pre—charge BL
and the PRE transistor pre—charges SO. Next, the string current
drawn from the BL input starts discharging BL. When BL is
discharged sufficiently, the XXL transistor may turn on, which
then starts discharging the SO node. The amount of change in the
SO node voltage is a function of the BL current and the ratio
between the BL capacitance and SO capacitance. Figure 13 shows
the SO’ s discharging slope varying with the cell current
conditions. The sense time must be optimized to maximize the SO

difference between the off —cell current and WOC conditions.

BLC
BLX

PRE

TTTTTTTIT | T o= T

ININRNAINR NN N}

XXL

T TTT77TT
1 i (NN

BOC
L wWoC
OFF

BOC
'WocC
OFF

SO

: oA
Precharge #« Sense > Strobe

Figure 13 : Simulated waveforms of proposed page buffer model while

performing sensing operations.

17 -":rxq ""l:: - T

Figure 14 compares the simulated waveforms of a unit page
buffer model in XMODEL and the simulated waveforms of a unit
page buffer circuit in HSPICE. For both cases, the current
conditions of the cell are modeled using an equivalent resistor and
capacitor. Figure 14 shows that the results match well between
the XMODEL and HSPICE. However, XMODEL was 5.8 times
faster than HSPICE, thus demonstrating that the proposed page
buffer model can efficiently represent the sensing operation

without compromising accuracy in SystemVerilog.

V)

SO

=
tn

0.5

= = = HSPICE
0 0
(a) BOC (b) WOC (c) Off-Cell
Figure 14 : Comparison between the XMODEL and HSPICE simulation

results with (a) best—on—cell current (BOC), (b) worst—on—cell current
(WOC). and (c) off—cell current conditions.

18 A “._, ‘_]l

3.3. Analog Bit—Counter Model

Figure 15(a) illustrates the organization of the bit—counter
units that count the number of failing bits during the incremental
program/erase operations. The analog bit—counter counts the
number of failing bits in an analog fashion by aggregating the
voltages on the shared PBS lines. This so—called slow bit—
counter architecture 1is an effective way to estimate the
approximate number of failing bits with low—complexity and low—
power analog circuits [13]. After each sensing operation, a set of
m page buffers drives a shared PBS line with the charge indicating
the pass/fail result, which develops a voltage proportional to the
number of failed bits. The analog bit—counter then takes a set of J
PBS lines and compresses their information into z—bit digital
output using a set of current mirrors and resistor—-capacitor (RC)
sink circuits. The digital bit—counter then further aggregates the
results from multiple analog bit—counters, producing the final
count CNT[0:z—1]. Finally, the PF checker unit compares
CNTI[0:2z—1] with a pre—determined reference and determines
whether the program/erase has succeeded or not. Figure 15(b)
illustrates the model of the analog bit—counter unit described with
the XMODEL circuit and function primitives. For instance, the
switchable RC sink is modeled with the switch, resistor, capacitor,
and nor_xbit (i.e., the NOR gate with xbit input/output) primitives.
The current mirror with the multiplication factor of Mg is modeled
with the iprobe, scale, and isource primitives. The output of the
current mirror is fed to another RC sink to produce a reference
voltage, which is then compared to DOUT by the slice primitive to
determine the final digital output OUT[0:z—1].

19 A 8-t

Page Buffer - Page-buffers Page-buffers
m stacks
PBS[j-1] PBS[2j-1]
PB-Dec | Switchable RC Sink | | Switchable RC Sink |
[DOUTo [DoUT1
Analog | Analog Counter | Analog Counter |
Counters
| ouTo[0z-1] [ouT1[0z-1]
SEL% Select
] OUTSEL[0:2-1]
Digital cCount—+ Digital Counter |
Counters
] CNT[0:2-1]
Ref[0:z-1] |
PF Check cPFCheck PF Check

(a) Counter structure with shared PBS lines
|

PBS[0:j-1]

AAA L]
VWY

Ipef

o X) 1

isource

DOUT DOUT

DPRE é T]

DPRE '—:F
Ref[0]
nDENi | >] Sk
Circuit |

NDEN J_ J_ ;
Switchable % - Analog 3 T
RC sink Counter T

< g % |
j Switchable RC sink circuits z Counters OUT[O:Z-I]

«—MAL

(b) Analog bit-counting unit model

Figure 15 : (a) Organization of the bit—counter units in the slow bit—
counter architecture [13] and (b) the proposed model for the analog bit—

counter unit.

20 A 2-1h

Figure 16(a) shows the simulated waveforms of DOUT and
REF[0:z—1] using this analog bit—counter model. The model
essentially outputs a log function of the number of failed bits,
which provides the finer resolution counting small numbers with
the limited number of output bits. Figure 16(b) plots the output of

the analog bit—counter changing as the program iteration

progresses.
:]——J e 10°
DPRE ; i i B ¢ of Cells
- ' ' @ Counter Out
% j ‘ T — E— 50—
nDEN : e 102
o
3 = i O
z E
O = W
‘ 4 3
DOUT | S 10’ =
REF[3:0]
10°

1 2 3 4 5 6
Program Loop

(a) Simulation Results (b) Analog Counter Out
Figure 16 : (a) Simulated waveforms of the analog bit—counter model and

(b) its output OUT[3:0] varying as the program loop progresses.

21 2 M E g

3.4. Digital System Model

The digital circuits of the NAND flash memory sensing
system include the digital bit—counter, pass/fail (PF) checker, and
sequence control logic. These models are described in Verilog,
which run efficiently while carrying out long sequences of the
incremental/adaptive read, program, and erase operations.

Figure 17 illustrates the sequencing algorithms for the read
and program/erase operations for the SLC arrays modeled in this
work. For the read operation, sensing is performed in three
phases as explained earlier. For the program/erase operation,
sensing is performed after each program/erase execution step to
verify the results. The bit—counters and PF checker unit output
then serves as an indicator whether to continue or terminate the

iteration loop.

(Read Start) (' Program/Erase Start)

" Read Program/Erase
: WL Setup
: & BL Precharge I WL & BL Setup I
: v
: I Sense I Cha.“'ge Program/.Erase Change Conditions
: v Conditions Execution
H . Veom = Vegm + ISPP
: I Strobe I Modify Vg Verify or
: L + Adjustment WL Setup Virs = Virs + ISPE
& BL Precharge
[\ Modify Ref. bits
I Sense I
]
I Strobe I
[
]
I Bit Counting I I Bit Counting I
FBS < Ref. bits ? FBS < Ref. bits ?
YES YES

End

(a) Read Sequence (b) Program/Erase Sequence
Figure 17 : Flowcharts illustrating the sequences of (a) read and (b)

program/erase operations.

9 9 2]

Chapter 4. Experimental Results

The SystemVerilog model of the NAND flash memory sensing
system includes a block—size array of single—level cells (SLCs)
with 16 WLs, 192 BLs, and 4 SSLs. The threshold voltages of the
cell array are individually randomized to a Gaussian distribution
[20] with a mean of —2.5V and standard deviation of 0.5V. The
read and program operations are conducted per page containing
192 bits. The ISPP algorithm uses the initial Vpgy of 15.4V,
incremental Vpey step of 1V, verify voltage (Vypy) of 3V, and
maximum number of loop iterations of 4. The SystemVerilog
simulations with the XMODEL primitives are carried out with the
Scientific Analog’ s XMODEL release 2019.09 and Cadence
Xcelium version 19.03.009 on a 4—core Intel i5—4460 computer
with 16—GB memory. Figure 18(a) shows the run time of the
simulations varying with the numbers of BLs, WLs, and SSLs
within a block. And figure 18 (b) shows how much the simulation
run time changes if the number of blocks in a plane increases.
Thanks to the models discussed in Section 3.1, the run time
increases only with the number of BLs and not with the numbers
of WLs or SSLs. And the number of blocks in a plane does not
affect the overall simulation time. The proposed model can
simulate a 40 ¢ s—long single—level cells (SLC) programming with
incremental step pulse programming (ISPP) sequence achieving
the maximum loop iteration count of 4 on a 12K—bit block in less

than 2 minutes.

12 T T T T
m=====_BL changes
10 | | === WL changes BIL~3 .
~ eSS changes
x ¢
.-
8k 4
£
(%)
E of 1
=
Z ‘WLx8
5 4r — 7
~ 192 BLs SSTx8
2 16 WLs WLx2 SSLx4 g
4 SSLs SSLx2
D 1 1 1 1
1.2288 2.4576 4.9152 9.8304
Block Size (bits) x 104

(a) Simulation run time with a single block

-
s

|—l—#of Block changes |

oyl

=}

53}
T

e i i

Run Time (min/min)
[=]
w0
o -
T
Il

16 64 256
Number of Blocks

(b) Simulation run time varying the number of blocks

<
w
o

Figure 18 : Run time of the presented SystemVerilog models
performing the 40 us of SLC program operations varying (a) the
numbers of BLs, WLs, and SSLs within a sinlge block and (b) the
number of blocks in a plane.

2 4 A & tH S

4.1. SLC Program with Different ISPP Steps

Figure 19 shows the simulated waveforms of the key signals
going through the iterations of ISPP during the program operation.
The program voltage (Vpgy) with incrementally increasing level is
applied to the WL. Depending on the resulting changes in the cell
Vi, the page buffers’ SO outputs change. As the number of the
programmed cells increases, the PBS voltages reflect the change
and the bit—counters and PF checker determine whether the
program is successful or not.

Figure 20 (a) and (b) plot the simulated progressions of the
cell Vi, distribution during 16 SLC program operations. Figure
20 (a) is the result with the Vpey step of 1.0 V and maximum loop
iteration count of 4. After the fourth iteration, the V, distribution
of the cell has a mean (g) of 3.245V and standard distribution
(o) of 0.2692V. In contrast, Figure 20(b) shows the results
obtained with the Vpgu step of 0.5V and maximum loop iteration
count of 7. When compared to Figure 20(a), this finer Vpgu step
yields the narrower cell Vy, distribution of o= 0.1664V despite

Loop 1 Loop 2 Loop 3 Loop 4

20 !

w1

o | 1 1 1 =il

15 T T T T

so | il R o\ | |

05

i I I il

15 T T T

PBS [‘ 7 _" L
[11:0] o5F -
X

r

L | | 1

I[V;}Zi‘ #'hF X 4hs X 4hs X 4hs

PnF |
Figure 19 : Simulated waveforms of the key signals during the SLC

program operation with 4 ISPP iteration steps.

25 -":rxﬁ-! _'q.l.'\-'_ '|_- |

the slower programming speed (i.e. the more loop iterations
required). Figure 21(b) plots the trade—offs between the
standard deviation of the final cell Vy, distribution and the required
loop iterations as the Vpgy step varies. As expected, the finer
Vpeum step yields a more tightly —controlled cell Vy, distribution and
sacrifices the program performance. Based on this result, one can
choose the optimal Vpgy step that satisfies both the performance

and reliability requirements.

T T T T T T T T T T T
— & — Initial
Loop1
3L Lo
10 — = — Loop2
— & — Loop3
’O\D — 5 — Loop4
=1 P
= 2
w 10°F E
=
o
()
(i
(=]
10 F _
g \
\
0 1]] 1 | 1 1]
10
-4 -3 -2 -1 0 1 2 3 4 5 6 (V)
(a) ISPP = 1.0V (default)
T T T T T T T T T T T
— & — Initial
Loop1
3L 4
10 — & —Loop2
Py — & —Loop3
%’D — % — Loop4
= 5 — & —Loop5
:”’ 10 — & — Loop6
8 — & —Loop7
(M
o
* 10" 7
g \
\
0 I I I I } 1 I
10
-4 -3 -2 -1 0 1 2 3 4 5 & (V)

(b) ISPP = 0.5V
Figure 20 : Simulated progressions of the Vi, distributions of the cell
with various Vpgy steps: (a) Vpgu step of 1.0V, (b) Vpgu step of 0.5V.

26 2 M E g

=
M

— & — ISPP=1.0V === Program Loop
— & — ISPP=0.5V gl 0 of Cell Vy,

=
=

-]

Program Loop Count
=]
(A) wonnqrsiq WA [[2D [eur] Jo o

4 2
A
*1g! Cf
[N 2 1
Jid
100 -4 0 0
2 3 4 5 6(V) 0.5 075 1 125 15
ISPP Step(V)
(a) Final Cell Vi, Distribution (b) Performance vs. Cell Vi,
(ISPP=1.0V vs ISPP=0.5V) Distribution with ISPP Changes

Figure 21 : (a) Comparison of their final cell Vy, distributions, and (b)
trade—off between the program performance and reliability.

ISPP Steps (V) 0.5 0.75 1 1.25 1.5
Program
Loop Count 7 0 4 3 3
olehRinal 0.1664 | 0.1921 | 0.2692 | 0.4006 | 0.4392
Cell Vi, (V) : ' : ' :

Table 1 : Simulation results for the program loop count and cell Vg,

distribution changes with various ISPP steps.

27 -":lx_i - |.-.'

4.2. SLC Program with Different Sensing Times

The presented model can also verify whether the sensing
timing margins are adequate for the page buffers to distinguish
between the on— and off—cells. If the sensing time is too short
(i.e., the period of the XXL pulse staying high in Figure 22), the
on—cells may not sufficiently discharge the SO node in time and
will be misinterpreted as off —cells. During programming, it implies
that the digital controller may incorrectly treat them as
programmed cells, and mark them in the program—inhibit state to
prevent further programming. Unlike previous studies in [6], [10],
the presented model can properly replicate these failures due to
the page buffer timings varying with the individual cell conditions.

Figure 23(a) shows the simulated results with various
sensing time conditions. When the sensing time is 25% shorter
than the optimal value, the resulting Vy, distribution of cell after 4
loop iterations has the lower mean, implying that the programming
is insufficient. The results deteriorate further as the sensing time
is reduced by 37.5% and 50%, and the loop count is reduced to 3.

Figure 23(b) plots the mean value of the final cell V,, distribution

BLC/BLX _i

(]
PRE I E
XXL ; E —] :
: P P :
: SRC+ABL | ! b :
L _/ SR
; vdd P b i
' e —————
SO _/ OP-amp vth 5
D ! ' ON ' ‘ '
' K ' ‘ '
I%Prcchargu > FSCH%C% strobe I

(]
ON cell = OFF cell

Figure 22 : Timing diagram of the sensing operation with different sensing
times (XXL = ‘High’).

28 A 2T

varying with the sensing time. To the best of our knowledge, the
proposed model is the first one that can predict this correlation
between the sensing time and cell Vy, distribution. This model can
help determine the adequate sensing times required for future
generations of NAND flash memories by employing new

ISPP/ISPE algorithms.

_ 35
10° — & — Original 2
— & — -25% [=]
— % — -375% .9
— 4+ — -50% B
@ =
Yt
2102 Z
= A 3
B E
o >
ah £ |
o \
A £
gl S
100 L 25
1 2 3 4 5 6 (V) 0.5 0625 075 1
Normalized SO Sense Time
(a) Final Cell Vy, Distribution (b) Vi, Distribution Shift
with Different SO Sense Time with Different SO Sense Time

Figure 23 : (a) Simulated cell Vy, distributions with different sensing

times and (b) their mean values (u) varying with sensing time.

20 2 @

Chapter 5. Conclusions

This thesis presents an efficient SystemVerilog model for
NAND flash memory sensing systems, which describes its analog
and digital parts in XMODEL and Verilog, respectively. The model
enables efficient simulation in SystemVerilog carrying out long
sequences of the incremental/adaptive read, program, and erase
operations in sophisticated NAND flash memories while tracking
the progressions of the individual cell Vs and simulating their
impacts on the page buffer timings and sequencing algorithms. We
believe that the proposed model can serve as an effective
framework to evaluate performance and verify the correctness of
new ISPP/ISPE algorithms developed for NAND flash memories,
and can be extended to other types of non—volatile memories

employing similar incremental/adaptive algorithms.

30 -":r-\ﬁ-! _'-.I3_1_-] -

(1]

(2]

[3]

(4]

[3]

(6]

(7]

(8]

9]

[10]

Bibilography

D. Kim, et al, “A 1Tb 4b/cell NAND flash memory with
tPROG=2ms, tR = 110ps, and 1.2 Gb/s high—speed IO rate,” in
Proc. of IEEE Int’l Solid—State Circuits Conft. (ISSCC), pp. 218—
220, Feb. 2020.

C. Kim, et al, “A 512—Gb 3-b/Cell 64—stacked WL 3-D-
NAND flash memory,” [EEE J. Solid—State Circuits, vol. 53, no.
1, pp. 124—133, Jan. 2018.

Y. Kang, et al, “High—voltage analog system for a mobile
NAND flash,” [EEE J. Solid—State Circuits, vol. 43, no. 2, pp.
507—-517, Feb. 2008.

J. Kim, et al, “A 120-mm? 64—Mb NAND flash memory
achieving 180 ns/Byte effective program speed,” [EEE J.
Solid—State Circuits, vol. 32, no. 5, pp. 670—680, May 1997.

K. Park, et al, “Three—dimensional 128Gb MLC vertical NAND
flash memory with 24—WL stacked layers and 50 MB/s high—
speed programming,” [EEE J. Solid—State Circuits, vol. 50, no.
1, pp. 204—213, Jan. 2015.

P. Daglio, “A complete and fully qualified design flow for
verification of mixed—signal SoC with embedded flash
memories,” in Proc. of the Design Automation & Test in
Europe Conf. (DATE), pp. 1—6, Mar. 2006.

K. Parat and A. Goda, “Scaling trends in NAND flash,” in Proc.
of IEEE Int’ | Electron Devices Meeting (IEDM), pp. 2.1.1—
2.1.4, Dec. 2018.

C. Chen, et al, “Study of fast initial charge loss and its impact
on the programmed states Vt distribution of charge—trapping
NAND flash,” in Proc. of IEEE Int’ | Electron Devices Meeting
(/EDM), pp. 5.6.1—5.6.4, Dec. 2010.

D. Kang, et al, “A 512Gb 3-bit/Cell 3D 6th—Generation V—
NAND flash memory with 82MB/s write throughput and 1.2Gb/s
interface,” in Proc. of IEEE Int’ | Solid—State Circuits Conf.
([SSCO), pp. 216—218, Feb. 2019.

H. Oh, et al., “3—dimensional analysis on the cell string current
of NAND flash memory,” in Proc. of Non—Volatile Memory
Tech. Symp. (NVMTS), pp. 137—139, Nov. 2005.

31 -":rxﬁ-: ""i' 1_-“

(1]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Ray and J. Bhadra, “Abstracting and verifying flash
memories,” in Proc. of Non—Volatile Memory Tech. Symp.
(NVMTS), pp. 1=5, Nov. 2008.

Scientific Analog, Inc., XMODEL Reference Manual, Sep. 2019.
T. Kim, et al, “Non—volatile memory device and memory
system including the same,” U.S. Patent 20180075918 A1, Mar.
2018.

S. Lee, et al., “A 1Tb 4b/cell 64—stacked—WL 3D NAND flash
memory with 12MB/s program throughput,” in Proc. of IEEE
Int’ | Solid—State Circuits Conf. (ISSCC), pp. 340—342, Feb.
2018.

R. Cernea, et al, “A 34MB/s—program—throughput 16Gb MLC
NAND with all=bitline architecture in 56nm,” in Proc. of I[EEE
Int’ | Solid—State Circuits Conf. (ISSCC), pp. 420—624, Feb.
2008.

K. Suh, et al, “A 3.3V 32Mb NAND flash memory with
incremental step pulse programming scheme,” [EEE J. Solid—
State Circuits, vol. 30, no. 11, pp. 1149—1156, Nov. 1995.

B. Lim, et al, “Nonvolatile memory device including page
buffer and method for verifying program operation thereof,”
U.S. Patent 20170278580 A1, Sep. 2017.

S. Joo, et al., “Page buffer, memory device comprising page
buffer, and related method of operation,” U.S. Patent 9007850
B2, Apr. 2015.

N. Shibata, et al, “13.1 A 1.33Tb 4—bit/Cell 3D—{flash memory
on a 96—word—line—layer technology,” in Proc. of IEEE Int’ |
Solid—State Circuits Conf. (ISSCC), pp. 210—212, Feb. 2019.

Y. Cai, et al, “Threshold voltage distribution in MLC NAND
flash memory: characterization, analysis, and modeling,”

in Proc. of Design, Automation & 7Test in Europe Conf. &
Exhibition (DATE), pp. 1285—1290, Mar. 2013.

32 -":rx E "";i' 1_-“

Appendix

1. Cell array plane model

MODULE nand_plane.sv

= Purpose =

An array plane model of a NAND flash memory.

“include "xmodel.h"

module nand_plane #(

parameter num_block = 1,

parameter num_bl = 192,

parameter num_ssl = 4,

parameter num_wl = 16,

parameter num_pbs = 12,

parameter num_pf = 16,

parameter real KP_CELL = le-4,

parameter real KP_SEL = le-3,

parameter real VTH_SEL = 0.5,

parameter real VTH_MIN = -3.0,

parameter real VTH_MAX = 5.0,

parameter real V_PGM = 15.0,

parameter real V_PASS = 8.0,

parameter real V_ERASE = -15.0,

parameter real ISPP_slope = 1.0,

parameter real OneShot_slope = 0.25,

parameter real K_ERASE = 1le4,

parameter real vth_std = 0.5,
distribution

parameter speed_mean = 0.95,

parameter speed_std = 0.05,
speed

parameter real C_GSL = le-12,

parameter real C_SSL = le-12,

parameter real C_WL = le-12,

parameter real C_BL = le-10,

parameter real C_SO = 5e-12,

parameter string filename = ""
)(

input xreal [num_wl-1:0] WLPre,

input xreal [num_ssl-1:0] GSL,

input xreal [num_ssl-1:@] SSL,

input xreal SRC,

input xreal VBB,

input xbit BLKWL,

input xbit pgm_mode,

input xbit ers_mode,

input xbit read_mode,

input xbit [7:0] BLK_ADDR,

input xbit ADDR_CMD,

input xbit CTL_1,

blocks

strings/block

strings/wl share

cells/string

pgbufs/pbs

pgbufs/pf

Kp of cell transistors

Kp of GSL/SSL select transistors
Vth of GSL/SSL select transistors
minimum Vth of cell devices
maximum Vth of cell devices
minimum program voltage

// vpass voltage

// minimum erase voltage

// program rate (ISPP Slope)

// Oneshot program efficiency

// erase rate (V/s)

// standard deviation for the initial vth

~
~
H HHHH

//
//

mean value for the cell program speed
standard deviation for the cell program

each GSL
each SSL
each WL

load
load
load

capacitance
capacitance
capacitance
load capacitance on each BL
load capacitance on each SO
initial memory state

on
on
on

33 - =-TH

input xreal VPP,

input xbit XDEC_CTL,
input xbit XDEC_Init,
input xreal vdd,
input xreal BLC,
input xreal BLH,
input xreal BLS,
input xreal BLX,
input xreal CLK1,
input xbit Monitor_M,
input xbit Monitor_S,
input xreal [num_pf-1:0] PF,
input xreal [num_pbs-1:0] PBS,
input xreal PRE,
input xbit RST_M,
input xbit RST_S,
input xbit SET_M,
input xbit SET_S,
input xreal VH,
input xreal Vref,
input xreal XXL,
output xbit [num_bl-1:0] lat_s,
output xbit [num_bl-1:0] lat_nS
)
xreal [num_wl-1:0] WL;
xbit [num_block-1:0] BLK_SEL;
reg [num_block-1:0] BLK_SEL_BIT;
[/ == oo
// block decoder
[== m -

blockdec #(.num_block(num_block)) blockdec®

(.BLK_ADDR(BLK_ADDR[7:0]), .BLK_SEL(BLK_SEL[num_block-1:0]), .ADDR_CMD(ADDR_CMD));
xbit_to_bit #(.width(num_block)) xmodel_conn@ (.in(BLK_SEL[num_block-

1:0]), .out(BLK_SEL_BIT[num_block-1:0]));

int i, num_blocksel, blocksel;

initial begin
blocksel = 0;
#100;
for (i=@; i<num_block; i++) begin
blocksel = blocksel + BLK_SEL BIT[i];
if(BLK_SEL_BIT[i]>0) begin
num_blocksel = ij;
end
end
if (blocksel < 1 || blocksel > 1) $xmodel_error("Block selection fail");
end

34 -:l."; -';- H I:-

xdec XDECO (.BLK(BLK_SEL[num_blocksel]), .WLPre(WLPre[num_wl-1:0]), .XDEC_CTL
(XDEC_CTL), .CTL_1(CTL_1), .WL(WL[num_wl-1:0]), .VPP(VPP), .XDEC_Init(XDEC_Init));

nand_block
#(.filename(filename), .num_bl(num_bl), .num_ssl(num_ssl), .num_wl(num_wl), .num_pbs
(num_pbs), .num_pf(num_pf), .KP_CELL(KP_CELL), .KP_SEL(KP_SEL), .VTH_SEL(VTH_SEL),
VTH_MIN(VTH_MIN), .VTH_MAX(VTH_MAX), .V_PGM(V_PGM), .V_PASS(V_PASS), .V_ERASE(V_ERAS
E), .ISPP_slope(ISPP_slope), .OneShot_slope(OneShot_slope), .K_ERASE(K_ERASE), .vth_
std(vth_std), .speed_mean(speed_mean), .speed_std(speed_std), .C_GSL(C_GSL), .C_SSL(
C_SSL), .C_WL(C_WL), .C_BL(C_BL), .C_SO(C_SO)) blocke (.ers_mode(ers_mode),
.vdd(vdd), .VBB(VBB), .XXL(XXL), .read_mode(read_mode), .BLX(BLX), .VH(VH), .SET_S(S
ET_S), .Monitor_S(Monitor_S), .PRE(PRE), .BLC(BLC), .RST_M(RST_M), .pgm_mode(pgm_mod
e), .BLKWL(BLKWL), .BLH(BLH), .CLK1(CLK1), .RST_S(RST_S), .SRC(SRC), .BLS(BLS), .SET
_M(SET_M), .Vref(Vref), .Monitor_M(Monitor_M), .WL(WL[15:0]), .GSL(GSL[num_ssl-
1:0]), .SSL(SSL[num_ssl-1:0]), .lat_S(lat_S[num_bl-1:0]), .lat_nS(lat_nS[num_bl-
1:0]), .PBS(PBS[num_pbs-1:0]), .PF(PF[num_pf-1:0]));

endmodule

35 £y | -.i-.:.:i

2. Cell array block model

MODULE nand_block.sv

= Purpose =

An array block model of a NAND flash memory.

“include

"xmodel.h"

module nand_block #(

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
distribution
parameter
parameter
speed
parameter
parameter
parameter
parameter
parameter
parameter

)(

xreal

num_bl = 192,
num_ssl = 4,
num_wl = 16,
num_pbs = 12,
num_pf = 16,
real KP_CELL
real KP_SEL =
real VTH_SEL
real VTH_MIN
real VTH_MAX
real V_PGM =
real V_PASS =
real V_ERASE
real ISPP_slo
real
real
real

K_ERASE
vth_std

speed_mean =
speed_std =

real C_GSL
real C_SSL =
real C_WL =
real C BL =1
real C_ SO = 5
string filena

= le-4,
le-3,
0.5,
-3.0,
5.0,

1

5.0,
8.

pe

J
5.0,
1.0,

oo

OneShot_slope = 0.25,

= le4,
= 0.5,

0.95,

.05,

le-12,
le-12,

le-12,

e-10,
e-12,
me =

un

// # strings/block

// # strings/wl share

// # cells/string
// # pgbufs/pbs
// # pgbufs/pf

// Kp of cell transistors

// Kp of GSL/SSL select transistors
// Vth of GSL/SSL select transistors

// minimum Vth of cell devices
// maximum Vth of cell devices
// minimum program voltage

// vpass voltage

// minimum erase voltage
// program rate (ISPP Slope)
// Oneshot program efficiency

// erase rate (V/s)

// standard deviation for the initial vth

// mean value for the cell program speed
// standard deviation for the cell program

// load
// load
// load
// load
// load

capacitance
capacitance
capacitance
capacitance
capacitance

on
on
on
on
on

each GSL
each SSL
each WL
each BL
each SO

// initial memory state

input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input

xreal
xreal
xreal
xreal
xbit
xbit
xbit
xbit
xreal
xreal
xreal
xreal
xreal
xreal
xbit
xbit

[num_wl-1:0] WL,
[num_ssl-1:0] GSL,
[num_ss1-1:@] SSL,
SRC,

VBB,

BLKWL ,

pgm_mode,
ers_mode,
read_mode,

vdd,

BLC,

BLH,

BLS,

BLX,

CLK1,

Monitor_M,
Monitor_S,

36

input
input
input
input
input
input
input
input
input
input

xreal
xbit
xbit
xbit
xbit
xreal
xreal
xreal
xreal
xreal

output xbit
output xbit

PRE,

RST_M,

RST_S,

SET_M,

SET_S,

VH,

Vref,

XXL,

[num_pf-1:0] PF,
[num_pbs-1:0] PBS,
[num_bl-1:0] lat_s,
[num_bl-1:0] lat_nS,

)s

// local parameters
localparam size_block = num_ssl*num_bl*num wl; // size of a block
xreal [@:num_bl-1] BL;

// gaussian random variables

real mean, stdddev, gaussian;

import "DPI-C" context function real xmodel_rand_gaussian(real mean,
stddev);

real

reg [0:0] XADDR;

longint MEM_STATE, MEM_STATE_SPEED;
reg [63:0] data_bin [@:size_block-1];
integer file;

integer output_file,output_file_speed;
real init_vth, cell_speed;

int i, j, k;

initial begin
$display("block size = ", size_block);
$display("mem block = ", idx_block*size block);
$display("Initializing memory state...");
if (filename != "") begin
file = $fopen(filename, "rb");
if (file == @) $xmodel_error("cannot read memory state file: ",

filename);
MEM_STATE = NPRIMS_initarray_real(size_block);
MEM_STATE_SPEED = NPRIMS_initarray_real(size_block);
k = $fread(data_bin, file);
if (k < size_block) $xmodel_error("insufficient data stored in file: ",
filename);
for (j=0; j<size_block; j++) begin
NPRIMS_putelem_real (MEM_STATE, i*size_block+j, $bitstoreal
(data_bin[j]));
end
end
else begin
output_file = $fopen("initial_vth_out.txt","w");
MEM_STATE = NPRIMS_initarray_real(size_block);

37 -:l."; -';- H I:-

for (i=0; i<size_block; i++) begin
init_vth = xmodel_rand_gaussian(VTH_MIN,vth_std);
$fwrite(output_file, "%f\n",init_vth);
NPRIMS putelem_real (MEM_STATE, i, init_vth);

End

$fclose(output_file);

output_file_speed = $fopen("cell_speed.txt","w");
MEM_STATE_SPEED = NPRIMS_initarray_real(size_block);
for (i=0; i<size_block; i++) begin
cell speed= xmodel_rand_gaussian(speed_mean, speed_std);
$fwrite(output_file_speed, "%f\n",cell_speed);
NPRIMS putelem_real (MEM_STATE_SPEED, i, cell_speed);
end
$fclose(output_file_speed);
end
$display("Done.");
end

// wordline loads

capacitor #(.C(C_WL)) cload_WL [num_wl-1:0] (.pos(WL[num_wl-1:0]), .neg(VBB));

capacitor #(.C(C_GSL)) cload_GSL [num_ssl-1:0] (.pos(GSL[num_ssl-1:0]),
.neg(" ground));

capacitor #(.C(C_SSL)) cload_SSL [num_ssl-1:0] (.pos(SSL[num_ssl-1:0]),
.neg(" ground));

// array of cell strings
/] = oo

int idx_block;

longint mem_block;
longint mem_block_speed;
longint mem_string;

assign idx_block = int'(12'bo000_0000_0000) ;

assign mem_block = NPRIMS_getarray_real(MEM_STATE, idx_block*size block);

assign mem_block_speed = NPRIMS_getarray_real (MEM_STATE_SPEED,
idx_block*size block);

// selected memory block
genvar gen_i;
generate
for (gen_i=0; gen_i<num_ssl*num_bl; gen_i++) begin:gl
nand_str #(.num_wl(num_wl), .KP_CELL(KP_CELL), .KP_SEL(KP_SEL),
.VTH_SEL(VTH_SEL), .V_PGM(V_PGM), .V_PASS(V_PASS), .ISPP_slope(ISPP_slope),
.OneShot_slope(OneShot_slope), .str_idx(gen_i*num_wl))
str .BL(BL[$rtoi(gen_i/num_ssl)]), .WL(WL[num_wl-1:0]), .GSL(GSL[(gen_i%num_ssl)]),
.SSL(SSL[(gen_i%num_ss1)]), .SRC(SRC), .mem_block(mem_block), .mem_block_speed(mem_b
lock_speed), .pgm_mode(pgm_mode), .ers_mode(ers_mode), .read_mode(read_mode));
end
endgenerate

38 - =-TH

generate
for (gen_i=@; gen_i<num_bl; gen_i++) begin:g3
nand_pgbuf #(.C_BL(C_BL), .C_SO(C_SO)) pgbufe .BL(BL[gen_i]),
.lat_S(lat_S[gen_i]), .lat_nS(lat_nS[gen_i]), .PBS(PBS[$rtoi(gen_i/num_pf)]), .PF(PF
[gen_i%num_pf]), .BLX(BLX), .VH(VH), .XXL(XXL), .Monitor_S(Monitor_S), .SET_S(SET_S)
, .BLC(BLC), .PRE(PRE), .RST_M(RST_M), .BLH(BLH), .CLK1(CLK1), .RST_S(RST_S), .BLS(B
LS), .Monitor_M(Monitor_M), .SET_M(SET_M), .Vref(Vref), .vss(ground), .vdd(vdd));
end
endgenerate

endmodule

39 41 = TH

NAND E##] wize]e] A4 AAHS o &3] dHelds A

T e A ofHolel ofE FEAIZIV] 9% fE 2l "y, #HolA

Wy, opd= / yAY HE JhH 9l gAY AlEA HESHE

A Haeh SAANE 3 Rov. & AFelM= E Ao 27 =3
i (

% glon], o4 WHe S4e Tee A ohdw A5 v

A" AEZH7E @7, 2O 9 Ak #Zgdel Abgske

g sto]

theFet dueFe a84S e ol BRE 9 AEYelA ZY 4
AIE Arsrt AdsteE ZAS X9y ofgr IR YNl AF
g0l obd stte] F3E SystemVerilogZ|HEo. 2 ZAJE Gl om, 53
XMODEL ZzZuE|HE Alg-3lo] obd@] 3|29 o|WlE 7Nk Al&¢|
oJdE T3 E&A HFol ThestAl HAdvh dF AlA" RES T
gfo 2 12K HEQ v gl A (SLC) EZoA Hu F= wE 3

F7F 4 3 40pus 4ol ISPP (Incremental Step Pulse

2
= gl
SEo AFY Aol BAE A A9 2719 e 54T 5 9
A

H
Ko, Holx] W MY Al 2EE T HE A Vy, w29 FH
Aol thst el M S 7Hsstt

FQo] : JuEZ YA w2y, EAAXNTEHE A FEASH 22 XMODEL

SystemVerilog.

A 2018—-29065

40 ,-?2—-! -':,3'- 1_]|

	Chapter 1. Introduction
	1.1. Study Background
	1.2. Thesis Organization

	Chapter 2. Background
	2.1. NAND Flash Memory Architecture and Its Operations
	2.2. Previous Works

	Chapter 3. Proposed SystemVerilog Model of NAND Flash Memory Sensing System
	3.1. Cell Array Model
	3.2. Page Buffer Model
	3.3. Analog Bit-Counter Model
	3.4. Digital System Model

	Chapter 4. Experimental Results
	4.1. SLC Program with Different ISPP Steps
	4.2. SLC Program with Different Sensing Times

	Chapter 5. Conclusions
	Bibliography
	Appendix
	Abstract in Korean

<startpage>6
Chapter 1. Introduction 1
 1.1. Study Background 1
 1.2. Thesis Organization 3
Chapter 2. Background 4
 2.1. NAND Flash Memory Architecture and Its Operations 4
 2.2. Previous Works 8
Chapter 3. Proposed SystemVerilog Model of NAND Flash Memory Sensing System 11
 3.1. Cell Array Model 12
 3.2. Page Buffer Model 15
 3.3. Analog Bit-Counter Model 19
 3.4. Digital System Model 22
Chapter 4. Experimental Results 23
 4.1. SLC Program with Different ISPP Steps 25
 4.2. SLC Program with Different Sensing Times 28
Chapter 5. Conclusions 30
Bibliography 31
Appendix 33
Abstract in Korean 40
</body>

