

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering Practice

Modeling and Simulation of NAND

Flash Memory Sensing Systems

with Cell-to-Cell Vth Variations

낸드플래시 메모리 셀 간의 문턱전압 변화를

반영한 센싱 시스템 모델링 및 검증 방법

February 2021

Graduate School of Engineering Practice

Seoul National University

Department of Engineering Practice

Nayoung Choi

ii

 i

Abstract

The sensing system in NAND flash memories is a complex

mixed-signal circuit consisting of a large-scale cell array,

wordline decoders, page buffers, analog/digital bit-counters, and

digital sequence controllers. This paper proposes a model and

simulation framework that can assess the effectiveness of various

incremental/adaptive algorithms used by digital controllers for the

read, program, and erase operations, while simulating the

progression of individual cell threshold voltages (Vth) and

modeling the detailed analog characteristics of the page buffers.

The proposed model is written entirely in SystemVerilog, and its

analog parts are described using the XMODEL primitives, which

enable efficient and event-driven simulation of analog circuits.

The proposed model can simulate a 40μs-long incremental step

pulse programming (ISPP) sequence with the maximum loop

iteration count of 4 on a 12K-bit block of single-level cells

(SLC) in less than 2 minutes, and can assess the trade-offs

between the programming speed and reliability as a function of

the pulse step size and the impacts of the page buffer’s sensing

time on the final cell Vth distribution.

Keyword : NAND flash sensing system, mixed-signal circuit, cell

threshold voltage distribution, XMODEL, SystemVerilog.

Student Number : 2018-29065

 ii

Table of Contents

Chapter 1. Introduction .. 1

1.1. Study Background ... 1

1.2. Thesis Organization .. 3

Chapter 2. Background .. 4

2.1. NAND Flash Memory Architecture and Its Operations 4

2.2. Previous Works .. 8

Chapter 3. Proposed SystemVerilog Model of NAND Flash

Memory Sensing System ... 11

3.1. Cell Array Model .. 12

3.2. Page Buffer Model .. 15

3.3. Analog Bit-Counter Model... 19

3.4. Digital System Model .. 22

Chapter 4. Experimental Results ... 23

4.1. SLC Program with Different ISPP Steps 25

4.2. SLC Program with Different Sensing Times 28

Chapter 5. Conclusions .. 30

Bibliography ... 31

Appendix .. 33

Abstract in Korean .. 40

 １

Chapter 1. Introduction

1.1. Study Background

To address ever-increasing demands for capacity while

keeping the costs and bit errors low, NAND flash memories use

various techniques including multi-level cells and incremental

programming [1], [2]. Consequently, the sensing system in today’s

NAND flash memories has become a complex mixed-signal circuit,

consisting of memory cell arrays, wordline decoders, page buffers,

analog/digital bit-counters, and digital control blocks [3]-[5]. In

particular, the close interaction between the analog and digital

circuits within the sensing system makes its system-level

validation and performance evaluation challenging because the

simulation of the analog parts requires the high precision of an

analog-type circuit simulator, e.g. SPICE, whereas the simulation of

the digital parts requires the high efficiency of a digital-type

simulator, e.g. Verilog. While solutions exist for the co-simulation

between SPICE and Verilog, the difference between the two

simulators and conflicts at their boundaries often result in even

slower simulation speeds [6]. This paper presents a system-level

verification framework for the sensing system of a NAND flash

memory, which can simulate the read, program, and erase

operations of its memory cell array entirely in SystemVerilog, and

estimate the resulting statistical distributions of the cell

characteristics.

NAND flash memory is a nonvolatile data storage that stores

information by varying the Vth of a floating-gate transistor device

[7], and for each read, program, or erase operation, a sensing

operation that checks its current Vth level is required. Considering

an example of a charge-trap flash (CTF) cell [8], reading a cell

involves applying a certain read voltage (VR) to its gate and sensing

its current, which tells whether VR is higher than Vth (1) or not (0).

Programming a cell involves applying a high program voltage (VPGM)

 ２

and raising its Vth by moving electrons into the charge trapping

layer via a channel-hot electron (CHE) injection mechanism.

However, erasing a block of cells involves applying a high erase

voltage (VERS) and lowering the Vth by removing the trapped

electrons via a hot-carrier injection mechanism. The VPGM and VERS

voltages are applied for both the program and erase operations as a

finite-duration pulse, which is repeated with increasing amplitude

until the Vth of the cell shifts to the desired level. To prevent some

slowly-responding cells from degrading the overall

programming/erasing performance, most commercial NAND flash

memories set a maximum loop count for repeating these pulses and

stop repeating when the number of unprogrammed/unerased cells

drops below a certain reference number above zero.

The above description on the read, program, and erase

operations of the NAND flash memories illustrates the complexity

of its sensing systems and the difficulty of verifying them. The Vth

of each cell is incrementally updated with a different progression

and loop count, depending on its initial value and the amount of shift

caused by each program/erase pulse. The total time required to

program or erase a block of cells may vary depending on the Vth

distribution of the cells. Also, the number and distribution of the

cells that remain unprogrammed or unerased can vary depending on

the conditions of the other cells within the same block. The

complexity further increases as the digital controllers adopt

adaptive schemes to determine the sensing level, pulse amplitudes,

loop stopping criteria, timing conditions, etc. [1], [9]. The Vth

distribution of the resulting cell is a complex function of the

circuit/device-level characteristics of the analog circuits as well as

the algorithms employed by the digital logic. Verifying whether the

read, program, and erase operations can work correctly in all

possible conditions is a challenging task.

As mentioned earlier, considering the cell-to-cell Vth variations,

neither SPICE- nor Verilog-only simulation can achieve the

satisfactory speed and accuracy required to verify the operations of

the NAND flash memory sensing system. For example, the work in

 ３

[10] had to assume fixed Vth conditions and reduce the size of the

cell array to mitigate the slow speed of SPICE. In contrast, the

Verilog-only models in [11] could not reflect the realistic shifts in

Vth due to the pulse duration and level, hence the resulting changes

in the cell current, page buffer timing, and sequence controlled by

the digital logic.

This paper proposes a model for a NAND flash memory sensing

system, which can overcome all of these challenges by modeling

both of its analog and digital parts in SystemVerilog. Particularly,

the analog parts are modeled using the XMODEL primitives by

Scientific Analog [12], which can perform the efficient, event-

driven simulation of functional and circuit-level models of analog

circuits within SystemVerilog without invoking SPICE. The

proposed model can simulate the progression of the Vth values of

the individual cell in a given block and analyze its statistical

distribution while performing read, program, and erase operations

controlled by the digital logic, which employs various adaptive

and/or incremental algorithms. For instance, the proposed model

can assess the trade-offs between the programming speed and

reliability as a function of the programming pulse step size and

analyze the impacts of the page buffer’s sensing time on the final

cell Vth distribution. The simulation of a 40μs-long incremental

step pulse programming (ISPP) sequence with the maximum loop

iteration count of 4 on a 12K-bit block of single-level cells (SLC)

takes less than 2 minutes.

1.2. Thesis Organization

The rest of the paper is organized as follows. Chapter 2

provides the background on the NAND flash memory sensing

systems and discusses the previous efforts of verifying them.

Chapter 3 describes the proposed SystemVerilog model for the

NAND flash memory sensing system and Chapter 4 presents the

simulation results with the proposed model. Finally, Chapter 5

concludes this thesis.

 ４

Chapter 2. Background

2.1. NAND Flash Memory Architecture and Its

Operations

Figure 1 shows the sensing system blocks that perform the

read, program, and erase operations of a vertical-NAND (V-

NAND) flash memory [13]: a memory cell array storing the data,

wordline decoders driving the wordlines WL[0:n-1] and select

lines GSL/ SSL, and page buffers sensing currents on the bitlines

BL[0:k-1]. The analog/digital bit counters, pass/fail (PF) checker,

and sequence control logic order the incremental steps of the

program/erase operations. A string is the basic unit composing

the cell arrays of NAND flash memories, which is basically a

4
St

ri
ng

s
in

 1
 B

L

GSL[0:3]

SSL[0:3]

WL[n-1]

WL[n-2]

WL[1]

WL[0]

SRC

BL[0:k-1]

Page-buffer

Sense
amp

VDD VDD

D

BL Precharge

PBS

Latch

Cell Array

SO

WL Controls

Analog Simulation

Digital Simulation

Digital Bit-Counting Unit

OUT

CNT

Pass/Fail

Ref. Counts

BL Controls

PF

Sequence Control Logic

PF Checking Unit

Analog Bit-Counting Unit

X
-D

ec
od

er

Figure 1: Overall architecture of NAND flash memory sensing system.

 ５

series stack of CTF cells and select transistors. Each flash cell on

the string can store one or more bits of information by varying its

Vth. Multiple strings may share the same wordlines (WL), string

select lines (SSL), ground select lines (GSL), and bitlines (BL),

as depicted in Figure 1. Depending on how they share these lines,

a set of strings may be grouped into a page, block, and plane [14].

When reading a data stored in a particular cell of a particular

string, the X-decoder asserts the SSL and GSL to select the

desired string and applies the WL voltage of VR to the gate of the

desired cell and the WL voltage of VPASS to the rest of the cells in

the string (Figure2). While VPASS is high enough to always turn

the cell transistor on, VR is set so that the selected cell would

conduct current only when its Vth is lower than VR. The page

buffer circuit connected to its BL then senses the current and

produces a digital output in three phases. First, the BL and SO

nodes within the page buffer are pre-charged to a positive supply

level (e.g. VDD). Second, the BL current discharges the SO node

with a multiplication effect owing to the charge sharing between

the BL and SO nodes. Third, the sense amplifier detects the

polarity of the SO voltage and drives the final digital output (Dout).

For the NAND flash memories employing all bitline (ABL) current

sensing [15], the same set of WL’s and SSL/GSL’s may drive

multiple strings simultaneously, and a set of page buffers, each

dedicated to a string, can produce a multi-bit digital output

collectively.

E

VR

lo
g(

of

 C
el

ls
)

Vth

P

BL

SSL

GSL

WL[n-1]

WL[0]

WL[i]

SRC

VR

VSEL

VPASS

VSEL
VPASS

(a) Read operation with Vth (b) Read operation in NAND string

Figure 2 : Read operation (a) with Vth distribution and (b) in NAND

string.

 ６

 When programming data into the cells, a high program

voltage of VPGM is applied to the gate of the selected cells of the

selected strings. In the widely-adopted scheme of incremental

step pulse programming (ISPP) [16], a series of finite-duration

pulses with a gradually increasing voltage level is applied as VPGM,

for fast programming speed and tightly-controlled Vth distribution

of the programmed cells. Figure 3 illustrates an example

sequence of ISPP. In the first iteration loop, the initial VPGM is

applied to the WL of the selected cells. Then, a verification step

follows, which checks the resulting Vth of the cells by performing

a read/sensing operation. The cells that are programmed

satisfactorily are marked with the program-inhibit state to avoid

being over-programmed in the next loop iterations.

Simultaneously, the analog and digital counter blocks count the

number of un-programmed cells, and the PF checking unit checks

if this number is below a predefined reference number. If not, a

new ISPP loop iteration starts with the higher level of VPGM. As

illustrated in Figure 3(b), the ISPP scheme can achieve a tight cell

(b) Vth distribution changes in program

(a) Program sequence

VVFY

E

FAIL

Inhibit
Count &
Check

lo
g(

of

 C
el

ls
)

Vth

Program Verify PF

VPGM

VVFY

 Loop 1

VPGM=VPGM+ISPP

VVFY

Program Verify PF
 Loop 2

VVFY

E

FAIL

Inhibit
Count &
Check

lo
g(

of

 C
el

ls
)

Vth

VPGM=VPGM+2· ISPP

VVFY

Program Verify PF
 Loop 3

 Sequence

 WL

VVFY

E

PASS

Count &
Check

Vth

lo
g(

of

 C
el

ls
)

ISPP

Figure 3 : (a) Program sequence and (b) Vth distribution of resulting cell

after each iteration with the incremental step pulse programming (ISPP).

 ７

Vth distribution after programming by applying incrementally-

increasing pulses of VPGM to the un-programmed cells alone.

However, its iterative nature makes it difficult to verify the

correct ISPP operation against all possible conditions of the cells

within the array.

When erasing data stored in the cells, NAND flash memories

reset the Vth of all the cells within a selected block at once by

setting all of its WLs to a low voltage and driving the channels of

the cells with a high voltage VERS. To prevent deep erase cases

which can degrade the endurance and retention characteristics of

the cells, the erase operation also adopts a similar sequential

algorithm, called incremental step pulse erase (ISPE). Hence, the

same challenge exists when verifying the correctness of the erase

operation.

 ８

2.2. Previous Works

The existing ways of verifying the operations of a NAND

flash memory sensing system rely on “divide-and-conquer”

approaches that simulate each part of the system with a different

simulator and combine the results under certain limiting

assumptions [6].

For instance, first, a so-called worst on-cell current (WOC)

of a cell string is estimated using three-dimensional (3D)

technology computer-aided design (TCAD) simulation [10]. This

WOC is defined as the current of a string in which cells are all

programmed except the last one. Second, considering this WOC as

the fixed string current and modeling the BL as a resistor-

capacitor circuit, the pre-charge and sensing delays of the page

buffer are estimated with SPICE simulation. Third, these delays

are then considered as fixed, where the correctness of the read,

program, and erase operations is verified with digital system

simulations (Figure 4). It is evident that assuming fixed string

current and fixed pre-charge/sensing delays cannot produce

diverse scenarios to fully exercise different cases of the ISPP and

ISPE algorithms.

 ９

Although combining these separate simulations into a single,

unified simulation with SPICE or HDL-SPICE co-simulators has

been attempted, the slow speeds in performing high-precision

simulations of large, complex circuits carrying out a long

sequence of operations make it difficult to verify the operations of

the sensing system across all possible Vth distributions and

program/erase speeds of the cells.

Therefore, to fully verify the operations of a NAND flash

memory sensing system, its model must satisfy the following

requirements as shown in Figure 5. First, the model must include

at least a block-sized cell array of which cell Vths can have

individually different initial values and changing rates responding

to the program/erase pulses. Second, its page buffers should

SPICE Simulation

Sense-
amp Vth

Sensing time
estimation

TCAD Simulation

VPASS

VSEL

VPASS

VSEL
VR

BL
SSL

GSL

WL[n-1]

WL[0]

WL[n-2]

SRC

Worst On-Cell
String current

Fixed string condition

Fixed sensing time

Verilog Simulation

Sequence
check

Figure 4 : Previous verification flow for sensing systems.

 １０

produce individually different delays depending on the cell

conditions of the selected strings. Finally, the simulation including

the models for the analog/digital bit counters, PF checker unit, and

sequence control logic must run efficiently enough to carry out a

long sequence of operations, and observe the resulting Vth

distributions of the cell.

Cell

Cell-to-cell Variations

lo
g(

of

 C
el

ls
) Program

Vth

fast

slow

Erase

Analog

High precision

BLC/BLX

PRE

XXL

BL

SRC + ∆BL

SO

vdd

Sense-amp Vth

Precharge Sense Strobe

Digital

High efficiency

Program Verify PF

 Loop 1

 Sequence

4'hF
MBS
[3:0]

PnF

Program Verify PF

 Loop 2

S data

Figure 5 : Requirements for modeling NAND flash memory sensing

systems.

 １１

Chapter 3. Proposed SystemVerilog Model of

NAND Flash Memory Sensing System

This section describes the proposed SystemVerilog model of

the NAND flash memory sensing system that meets the

aforementioned requirements. First, its cell array models an

entire block with at least 16 WLs, 192 BLs, and 4 SSLs, in which

cells can have individually different Vths. However, its simulation

time increases only with the number of BLs and not with the

numbers of WLs or SSLs, by modeling only the selected strings of

the cell array and dynamically loading/storing the Vth values of the

cell when the selection changes. Second, the page buffer and

analog bit counter models are described with the XMODEL’s

circuit and function primitives, which can model the detailed

analog behaviors of the SO node varying with the BL current and

the bit counter output varying with the page buffer results while

running efficiently within SystemVerilog. Third, the Verilog RTL

models describing the digital bit counters, PF checker unit, and

sequence control logic can carry out a long sequence of read,

program, and erase operations, while observing the progression of

the Vth distribution of the cell array (Figure 6).

Cell Array
BL[0]

 S
tr

in
g

BL[1] BL[k-1]

SSL
WL[n-1]

WL[0]
GSL

SRC

Selected
WL

Vth
Vth

Vth

Ri

(a) NAND flash memory cell array (b) equivalent model

U
ns

el
ec

te
d

St
ri

ng
s

1D
array

2D
array

Page Buffer

BLC
BLX

XXL
PRE

SO

PBS

BL

Vth,ref

SET_S RST_S

S

RD_S

PF
nS

CSO

CPBS

(a) BL Control Circuit (b) Sensing (d) PF(c) Data Latch

Selective
Precharge

Circuit

Analog Bit Counter
PBS[0:j-1]

DOUT
DPRE

nDEN

Switchable
RC sink

IRef

Sink
Circuit

IRef

M0

OUT[0:z-1]

(b) Analog bit-counting unit model

j Switchable RC sink circuits

iprobe
isource

Analog
Counter

DOUT

DPRE

nDEN

Ref[0]

DOUT

z Counters

IM0

Verilog

Digital Logics

Program Verify PF

 Loop 1

4'hF
MBS
[3:0]

PnF

Program Verify PF

 Loop 2

S data

XMODEL

Figure 6 : Key ideas for modeling NAND flash memory sensing systems

using XMODEL for the analog circuits and Verilog for the digital logics.

 １２

3.1. Cell Array Model

The cell array model has plane-block-string hierarchy. Plane

is consisted with multiple blocks and each block includes multiple

strings. Since the basic read, program and ereas operations in

NAND flash memories are performed within the single selected

block, the proposed cell array model has a separated 1-block

sized register for simulation efficiency (Figure 7). Based on the

block selection, the model loads the Vth values of the individual

cell stored in a data register into the active block and if the value

changes, their updated values get stored back to the Vth data array

before the next operation.

While it is straightforward to model a cell array as shown in

Figure 8(a), keeping its simulation efficient is difficult owing to

the large number of instances within the array and the dense

connectivity between them. Both the elaboration and simulation

phases of its SystemVerilog simulation can become considerably

slow as the array size increases.

 Recognizing that the SSLs and GSLs select only one string at

a time that drives a given BL, one can significantly reduce the

complexity of the cell array model without compromising the

accuracy. In other words, the proposed cell array model models

only the active string driving each BL, and dynamically updates its

cell Vth values based on the SSLs and GSLs values, as shown in

Plane

Block

Block

Block Block
WL

DecoderBlock
Addres

Decoder

1-Block
Sized

Register

BLK
ADDRESS

BLK
SELECT WL

WL
Decoder

Save

Load

Figure 7 : The architecutre of cell array model and its save and load

operations with sepereated register.

 １３

Figure 8(b). The Vth values of the individual cell are stored in a

data array and the model loads the Vth values into the active

strings when the SSLs and GSLs are switched to new values. The

active strings then produce the BL currents according to their cell

Vth values. In case of the program operations, the Vth values on

the active strings may change, and their updated values get stored

back to the Vth data array before the next operation.

Each active string in the cell array is modeled as a variable

resistor, which has a resistance Rstring equal to the sum of the

individual cell resistances (Figure 9). Its cell resistance Rcell,i is in

turn proportional to (VGS,i-Vth,i)
-1, assuming that the cell device

operates in the linear region:

(1)

where KP is a technology-dependent scale factor.

Figure 10 lists the SystemVerilog pseudo-code of the string

model. Each string is described as a series of two nmosfet and

one res_sw primitives, which are the XMODEL circuit primitives

for nMOS and switchable resistors, respectively. The resistance

value is computed according to Eq. (1). The cell array model

consisting of these string models runs efficiently in an event-

driven fashion, generating only one output event when receiving a

BL[0]

 S
tr

in
g

BL[1] BL[k-1]

SSL
WL[n-1]

WL[0]
GSL

SRC

Selected
WL

Vth
Vth

Vth

Ri

(a) NAND flash memory cell array (b) equivalent model

U
ns

el
ec

te
d

St
ri

ng
s

1D
array

2D
array

Figure 8 : (a) Cell array of NAND flash memory and (b) its equivalent

model.

 １４

new input event. The detailed SystemVerilog model for the cell

array plane and block are attached in the appendix.

VR

VSEL

VPASS

VSEL
VPASS

BL

SSL

GSL

WL[n-1]

WL[0]

WL[i]

SRC

BL

(b) equivalent model

SRC

Rstring
= ΣRcell

(Selected String)

BL

SRC

Rstring
= ∞

(Unselected String)

VSEL SSL

VSEL GSL

VUNSEL SSL

VUNSEL GSL

(a) NAND flash string

Figure 9 : (a) NAND flash memory string circuits and (b) its equivalent

model.

module nand_str #(
 parameter num_wl = 16,
 parameter VTH_SEL = 0.5,
 parameter KP_SEL = 1e-4,
 parameter KP_CELL = 1e-4
)(
 input xreal BL,
 input xreal SSL,
 input xreal GSL,
 input xreal SRC,
 input xreal [num_wl-1:0] WL,
 input longint mem_block
);
 real r_str, r_t, v_ov;
 int i;

 nmosfet #(.Vth(VTH_SEL), .Kp(KP_SEL)) MSSL (.g(SSL), .d(BL), .b(`ground), .s(sp));
 res_sw R0 (.neg(sn), .pos(sp), .R(r_str));
 nmosfet #(.Vth(VTH_SEL), .Kp(KP_SEL)) MGSL (.g(GSL), .d(sn), .b(`ground), .s(SRC));

 always @(posedge read_flag) begin
 if(MSSL.level>0 && MGSL.level>0) begin
 r_t = 0.0;
 for (i=0;i<num_wl;i++) begin
 if (sample(WL[i])<V_PASS) begin
 v_ov = (sample(WL[i])-getelem(mem_block,i));
 r_t += (v_ov>0) ? 1/(KP_CELL*v_ov) : `INFINITY;
 end
 end
 r_str = r_t;
 end
 else r_str = `INFINITY;
 end
endmodule

Figure 10 : SystemVerilog model for NAND flash string using XMODEL

primitives: nmosfet and res_sw.

 １５

3.2. Page Buffer Model

A page buffer senses the BL currents drawn by the selected

strings and produces full-digital read-outs. Therefore, its

operation is mixed-signal in nature and it is particularly important

to model the SO node timing, which varies with the BL current

level. Again, the XMODEL primitives allow us to model such

detailed analog behaviors in a digital simulator, SystemVerilog.

Figure 11 shows the proposed page buffer model modeling

the state-of-the-art page buffer circuits in [17]-[19] while

Figure 12 lists the corresponding pseudo-codes in SystemVerilog.

The set of nMOS transistors modeled with the nmosfet primitives

convert the BL input current to the SO node voltage via pre-

charging and discharging operation. A slice primitive then

compares the SO node voltage with a reference and produces a

digital output 1 or 0. The page buffer model also contains a latch

for the strobe operation, which is described with and_xbit and

nor_xbit (i.e., the AND and NOR gate with xbit input/output)

primitives. When the strobe pulse SET_S or RST_S is asserted,

the latch stores the sensed data. In addition, the page buffer

includes the PF circuits for bit-counting operations, which are

described later.

BLC
BLX

XXL
PRE

SO

PBS

BL

Vth,ref SET_S

RST_S S
PF

nS

CSO

CPBS

(a) BL Control Circuit (b) Sensing (d) PF(c) Data Latch

Selective
Precharge

Circuit

RD_S

Figure 11 : Page buffer model with XMODEL primitives.

 １６

module page_buffer #(

parameter real C_SO = 1e-14)(

input xreal BL,
input xreal BLC,
input xreal BLX,
input xreal XXL,
input xreal PRE,
input xreal PF,
input xreal PBS,
input xbit RD_S,
input xbit SET_S,
input xbit RST_S);

xreal SO;
xbit ilat_S, iRD_S, iPF;

// BL control circuit
nmosfet #(.Vth(0.5), .Kp(0.001)) MBLC (.g(BLC), .d(iBLC), .b(`ground), .s(BL));
nmosfet #(.Vth(0.5), .Kp(0.001)) MBLX (.g(BLX), .d(vdd), .b(`ground), .s(iBLC));
nmosfet #(.Vth(0.5), .Kp(0.001)) MXXL (.g(XXL), .d(SO), .b(`ground), .s(iBLC));
nmosfet #(.Vth(0.5), .Kp(0.001)) MPRE (.g(PRE), .d(vdd), .b(`ground), .s(SO));

// Sensing
capacitor #(.C(C_SO)) C0 (.neg(vss), .pos(SO));
slice #(.threshold(0.0)) MP0 (.in_ref(Vref), .in(SO), .out(ilat_S));

// Data latch
nor_xbit #(.num_in(2), .delay(0.0)) XP10(.out(S), .in({nS,iRST_S}));
nor_xbit #(.num_in(2), .delay(0.0)) XP11(.out(nS), .in({S,iSET_S}));
and_xbit #(.num_in(2), .delay(0.0)) XP12(.out(iRST_S), .in({ilat_S, RST_S}));
and_xbit #(.num_in(2), .delay(0.0)) XP13(.out(iSET_S), .in({ilat_S, SET_S}));

and_xbit #(.num_in(2), .delay(0.0)) XP14(.out(iRD_S), .in({S, RD_S}));
switch #(.R1(0.01), R0(`INFINITY), .ic(0))
SW0(.neg(SO), .pos(vss), .ctrl(iRD_S));

// PF
switch #(.R1(0.01), R0(`INFINITY), .ic(0)) SW0(.neg(iPF), .pos(vss), .ctrl(S));
nmosfet #(.Vth(0.5), .Kp(0.001)) MPRE (.g(PF), .d(PBS), .b(`ground), .s(iPF));
capacitor #(.C(C_PBS)) C0 (.neg(vss), .pos(PBS));

endmodule

Figure 12 : SystemVerilog model for page buffer using XMODEL.

 １７

Figure 13 shows the simulated waveforms of the page

buffer’s SO node in SystemVerilog, considering the best on-cell

current (BOC), worst on-cell current (WOC), and off-cell

current conditions. First, the BLC/BLX transistors pre-charge BL

and the PRE transistor pre-charges SO. Next, the string current

drawn from the BL input starts discharging BL. When BL is

discharged sufficiently, the XXL transistor may turn on, which

then starts discharging the SO node. The amount of change in the

SO node voltage is a function of the BL current and the ratio

between the BL capacitance and SO capacitance. Figure 13 shows

the SO’s discharging slope varying with the cell current

conditions. The sense time must be optimized to maximize the SO

difference between the off-cell current and WOC conditions.

BLC

PRE

XXL

BL

SO

BLX

Precharge Sense Strobe

BOC
WOC
OFF

BOC
WOC
OFF

Figure 13 : Simulated waveforms of proposed page buffer model while

performing sensing operations.

 １８

Figure 14 compares the simulated waveforms of a unit page

buffer model in XMODEL and the simulated waveforms of a unit

page buffer circuit in HSPICE. For both cases, the current

conditions of the cell are modeled using an equivalent resistor and

capacitor. Figure 14 shows that the results match well between

the XMODEL and HSPICE. However, XMODEL was 5.8 times

faster than HSPICE, thus demonstrating that the proposed page

buffer model can efficiently represent the sensing operation

without compromising accuracy in SystemVerilog.

SO
 (V

)

(a) BOC (b) WOC (c) Off-Cell

XMODEL
HSPICE

Figure 14 : Comparison between the XMODEL and HSPICE simulation

results with (a) best-on-cell current (BOC), (b) worst-on-cell current

(WOC), and (c) off-cell current conditions.

 １９

3.3. Analog Bit-Counter Model

Figure 15(a) illustrates the organization of the bit-counter

units that count the number of failing bits during the incremental

program/erase operations. The analog bit-counter counts the

number of failing bits in an analog fashion by aggregating the

voltages on the shared PBS lines. This so-called slow bit-

counter architecture is an effective way to estimate the

approximate number of failing bits with low-complexity and low-

power analog circuits [13]. After each sensing operation, a set of

m page buffers drives a shared PBS line with the charge indicating

the pass/fail result, which develops a voltage proportional to the

number of failed bits. The analog bit-counter then takes a set of j

PBS lines and compresses their information into z-bit digital

output using a set of current mirrors and resistor-capacitor (RC)

sink circuits. The digital bit-counter then further aggregates the

results from multiple analog bit-counters, producing the final

count CNT[0:z-1]. Finally, the PF checker unit compares

CNT[0:z-1] with a pre-determined reference and determines

whether the program/erase has succeeded or not. Figure 15(b)

illustrates the model of the analog bit-counter unit described with

the XMODEL circuit and function primitives. For instance, the

switchable RC sink is modeled with the switch, resistor, capacitor,

and nor_xbit (i.e., the NOR gate with xbit input/output) primitives.

The current mirror with the multiplication factor of M0 is modeled

with the iprobe, scale, and isource primitives. The output of the

current mirror is fed to another RC sink to produce a reference

voltage, which is then compared to DOUT by the slice primitive to

determine the final digital output OUT[0:z-1].

 ２０

PBS[0:j-1]

DOUT
DPRE

nDEN

Switchable
RC sink

IRef

Sink
Circuit

IRef

M0

OUT[0:z-1]

SEL

Analog Counter

PBS[j-1]

Page-buffers

Switchable RC Sink

DOUT0

Analog Counter

PBS[2j-1]

Page-buffers

Switchable RC Sink

DOUT1

Select

Digital Counter

PF Check

cCount

cPFCheck
Ref[0:z-1]

OUTSEL[0:z-1]

CNT[0:z-1]

OUT0[0:z-1]

Page Buffer
m stacks

PB-Dec

Analog
Counters

Digital
Counters

PF Check

OUT1[0:z-1]

(b) Analog bit-counting unit model

(a) Counter structure with shared PBS lines

j Switchable RC sink circuits

iprobe
isource

Analog
Counter

DOUT

DPRE

nDEN

Ref[0]

DOUT

z Counters

IM0

Figure 15 : (a) Organization of the bit-counter units in the slow bit-

counter architecture [13] and (b) the proposed model for the analog bit-

counter unit.

 ２１

Figure 16(a) shows the simulated waveforms of DOUT and

REF[0:z-1] using this analog bit-counter model. The model

essentially outputs a log function of the number of failed bits,

which provides the finer resolution counting small numbers with

the limited number of output bits. Figure 16(b) plots the output of

the analog bit-counter changing as the program iteration

progresses.

DPRE

DOUT
REF[3:0]

nDEN

(a) Simulation Results (b) Analog Counter Out

O
U

T
[3:0]

Program Loop

of

 C
el

ls
 (l

og
)

of Cells
Counter Out

Figure 16 : (a) Simulated waveforms of the analog bit-counter model and

(b) its output OUT[3:0] varying as the program loop progresses.

 ２２

3.4. Digital System Model

The digital circuits of the NAND flash memory sensing

system include the digital bit-counter, pass/fail (PF) checker, and

sequence control logic. These models are described in Verilog,

which run efficiently while carrying out long sequences of the

incremental/adaptive read, program, and erase operations.

Figure 17 illustrates the sequencing algorithms for the read

and program/erase operations for the SLC arrays modeled in this

work. For the read operation, sensing is performed in three

phases as explained earlier. For the program/erase operation,

sensing is performed after each program/erase execution step to

verify the results. The bit-counters and PF checker unit output

then serves as an indicator whether to continue or terminate the

iteration loop.

WL & BL Setup

Program/Erase Start

WL Setup
& BL Precharge

Sense

Strobe

Program/Erase

Verify

Bit Counting

FBS < Ref. bits ?

YES

NO

VPGM = VPGM + ISPP
or

VERS = VERS + ISPE

Modify Ref. bits

Change Conditions

(b) Program/Erase Sequence

Read Start

WL Setup
& BL Precharge

Sense

Strobe

Read

NO

Adaptive Read?

Bit Counting
YES

Last State?YES

NO

FBS < Ref. bits ? NO

Modify VR

Change
Conditions

+ Adjustment

(a) Read Sequence

EndEnd

Program/Erase
Execution

YES

Figure 17 : Flowcharts illustrating the sequences of (a) read and (b)

program/erase operations.

 ２３

Chapter 4. Experimental Results

The SystemVerilog model of the NAND flash memory sensing

system includes a block-size array of single-level cells (SLCs)

with 16 WLs, 192 BLs, and 4 SSLs. The threshold voltages of the

cell array are individually randomized to a Gaussian distribution

[20] with a mean of -2.5V and standard deviation of 0.5V. The

read and program operations are conducted per page containing

192 bits. The ISPP algorithm uses the initial VPGM of 15.4V,

incremental VPGM step of 1V, verify voltage (VVFY) of 3V, and

maximum number of loop iterations of 4. The SystemVerilog

simulations with the XMODEL primitives are carried out with the

Scientific Analog’s XMODEL release 2019.09 and Cadence

Xcelium version 19.03.009 on a 4-core Intel i5-4460 computer

with 16-GB memory. Figure 18(a) shows the run time of the

simulations varying with the numbers of BLs, WLs, and SSLs

within a block. And figure 18(b) shows how much the simulation

run time changes if the number of blocks in a plane increases.

Thanks to the models discussed in Section 3.1, the run time

increases only with the number of BLs and not with the numbers

of WLs or SSLs. And the number of blocks in a plane does not

affect the overall simulation time. The proposed model can

simulate a 40μs-long single-level cells (SLC) programming with

incremental step pulse programming (ISPP) sequence achieving

the maximum loop iteration count of 4 on a 12K-bit block in less

than 2 minutes.

 ２４

R
un

 T
im

e
(m

in
.)

Block Size (bits)

BL×2

BL×4

BL×8

WL×2
SSL×2

WL×4

SSL×4

WL×8

SSL×8192 BLs
16 WLs

4 SSLs

BL changes
WL changes
SSL changes

R
un

 T
im

e
(m

in
/m

in
)

Number of Blocks

(a) Simulation run time with a single block

(b) Simulation run time varying the number of blocks

Figure 18 : Run time of the presented SystemVerilog models

performing the 40 s of SLC program operations varying (a) the

numbers of BLs, WLs, and SSLs within a sinlge block and (b) the

number of blocks in a plane.

 ２５

4.1. SLC Program with Different ISPP Steps

Figure 19 shows the simulated waveforms of the key signals

going through the iterations of ISPP during the program operation.

The program voltage (VPGM) with incrementally increasing level is

applied to the WL. Depending on the resulting changes in the cell

Vth, the page buffers’ SO outputs change. As the number of the

programmed cells increases, the PBS voltages reflect the change

and the bit-counters and PF checker determine whether the

program is successful or not.

Figure 20 (a) and (b) plot the simulated progressions of the

cell Vth distribution during 16 SLC program operations. Figure

20(a) is the result with the VPGM step of 1.0 V and maximum loop

iteration count of 4. After the fourth iteration, the Vth distribution

of the cell has a mean (μ) of 3.245V and standard distribution

(σ) of 0.2692V. In contrast, Figure 20(b) shows the results

obtained with the VPGM step of 0.5V and maximum loop iteration

count of 7. When compared to Figure 20(a), this finer VPGM step

yields the narrower cell Vth distribution of σ= 0.1664V despite

WL

SO

PBS
[11:0]

Loop 1 Loop 2 Loop 3 Loop 4

4'hF 4'h8 4'h8 4'h8 0
MBS
[3:0]

PnF

Figure 19 : Simulated waveforms of the key signals during the SLC

program operation with 4 ISPP iteration steps.

 ２６

the slower programming speed (i.e. the more loop iterations

required). Figure 21(b) plots the trade-offs between the

standard deviation of the final cell Vth distribution and the required

loop iterations as the VPGM step varies. As expected, the finer

VPGM step yields a more tightly-controlled cell Vth distribution and

sacrifices the program performance. Based on this result, one can

choose the optimal VPGM step that satisfies both the performance

and reliability requirements.

(b) ISPP = 0.5V

of

 c
el

ls
 (l

og
)

(V)

of

 c
el

ls
 (l

og
)

(V)

(a) ISPP = 1.0V (default)

Initial
Loop1
Loop2
Loop3
Loop4

Initial
Loop1
Loop2
Loop3
Loop4
Loop5
Loop6
Loop7

Figure 20 : Simulated progressions of the Vth distributions of the cell

with various VPGM steps: (a) VPGM step of 1.0V, (b) VPGM step of 0.5V.

 ２７

(a) Final Cell Vth Distribution
(ISPP=1.0V vs ISPP=0.5V)

(b) Performance vs. Cell Vth

Distribution with ISPP Changes

(V)

of

 c
el

ls
 (l

og
)

Pr
og

ra
m

 L
oo

p
C

ou
nt

σ
 of Final C

ell V
th D

istribution (V
)

ISPP Step(V)

ISPP=1.0V
ISPP=0.5V

Program Loop
σ of Cell Vth

Figure 21 : (a) Comparison of their final cell Vth distributions, and (b)

trade-off between the program performance and reliability.

ISPP Steps(V) 0.5 0.75 1 1.25 1.5

Program

Loop Count
7 5 4 3 3

σ of Final

Cell Vth (V)
0.1664 0.1921 0.2692 0.4006 0.4392

Table 1 : Simulation results for the program loop count and cell Vth

distribution changes with various ISPP steps.

 ２８

4.2. SLC Program with Different Sensing Times

The presented model can also verify whether the sensing

timing margins are adequate for the page buffers to distinguish

between the on- and off-cells. If the sensing time is too short

(i.e., the period of the XXL pulse staying high in Figure 22), the

on-cells may not sufficiently discharge the SO node in time and

will be misinterpreted as off-cells. During programming, it implies

that the digital controller may incorrectly treat them as

programmed cells, and mark them in the program-inhibit state to

prevent further programming. Unlike previous studies in [6], [10],

the presented model can properly replicate these failures due to

the page buffer timings varying with the individual cell conditions.

Figure 23(a) shows the simulated results with various

sensing time conditions. When the sensing time is 25% shorter

than the optimal value, the resulting Vth distribution of cell after 4

loop iterations has the lower mean, implying that the programming

is insufficient. The results deteriorate further as the sensing time

is reduced by 37.5% and 50%, and the loop count is reduced to 3.

Figure 23(b) plots the mean value of the final cell Vth distribution

BLC/BLX

PRE

XXL

BL

SRC + ∆BL

SO

vdd

OP-amp vth

Precharge Sense strobe

ON cell → OFF cell

OFF

ON

Figure 22 : Timing diagram of the sensing operation with different sensing

times (XXL = ‘High’).

 ２９

varying with the sensing time. To the best of our knowledge, the

proposed model is the first one that can predict this correlation

between the sensing time and cell Vth distribution. This model can

help determine the adequate sensing times required for future

generations of NAND flash memories by employing new

ISPP/ISPE algorithms.

(V)

of

 c
el

ls
 (l

og
)

Normalized SO Sense Time

μ
 o

f
Fi

na
l V

th
 D

is
tr

ib
ut

io
n

(V
)

(a) Final Cell Vth Distribution
with Different SO Sense Time

(b) Vth Distribution Shift
with Different SO Sense Time

Loop 3

Loop 4

Original
-25%

-37.5%
-50%

μ of Final Vth Distribution

Figure 23 : (a) Simulated cell Vth distributions with different sensing

times and (b) their mean values () varying with sensing time.

 ３０

Chapter 5. Conclusions

This thesis presents an efficient SystemVerilog model for

NAND flash memory sensing systems, which describes its analog

and digital parts in XMODEL and Verilog, respectively. The model

enables efficient simulation in SystemVerilog carrying out long

sequences of the incremental/adaptive read, program, and erase

operations in sophisticated NAND flash memories while tracking

the progressions of the individual cell Vths and simulating their

impacts on the page buffer timings and sequencing algorithms. We

believe that the proposed model can serve as an effective

framework to evaluate performance and verify the correctness of

new ISPP/ISPE algorithms developed for NAND flash memories,

and can be extended to other types of non-volatile memories

employing similar incremental/adaptive algorithms.

 ３１

Bibilography

[1] D. Kim, et al., “A 1Tb 4b/cell NAND flash memory with

tPROG=2ms, tR = 110µs, and 1.2 Gb/s high-speed IO rate,” in

Proc. of IEEE Int’l Solid-State Circuits Conf. (ISSCC), pp. 218-

220, Feb. 2020.

[2] C. Kim, et al., “A 512-Gb 3-b/Cell 64-stacked WL 3-D-

NAND flash memory,” IEEE J. Solid-State Circuits, vol. 53, no.

1, pp. 124-133, Jan. 2018.

[3] Y. Kang, et al., “High-voltage analog system for a mobile

NAND flash,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp.

507-517, Feb. 2008.

[4] J. Kim, et al., “A 120-mm2 64-Mb NAND flash memory

achieving 180 ns/Byte effective program speed,” IEEE J.

Solid-State Circuits, vol. 32, no. 5, pp. 670-680, May 1997.

[5] K. Park, et al., “Three-dimensional 128Gb MLC vertical NAND

flash memory with 24-WL stacked layers and 50 MB/s high-

speed programming,” IEEE J. Solid-State Circuits, vol. 50, no.

1, pp. 204-213, Jan. 2015.

[6] P. Daglio, “A complete and fully qualified design flow for

verification of mixed-signal SoC with embedded flash

memories,” in Proc. of the Design Automation & Test in

Europe Conf. (DATE), pp. 1-6, Mar. 2006.

[7] K. Parat and A. Goda, “Scaling trends in NAND flash,” in Proc.

of IEEE Int’l Electron Devices Meeting (IEDM), pp. 2.1.1-

2.1.4, Dec. 2018.

[8] C. Chen, et al., “Study of fast initial charge loss and its impact

on the programmed states Vt distribution of charge-trapping

NAND flash,” in Proc. of IEEE Int’l Electron Devices Meeting

(IEDM), pp. 5.6.1-5.6.4, Dec. 2010.

[9] D. Kang, et al., “A 512Gb 3-bit/Cell 3D 6th-Generation V-

NAND flash memory with 82MB/s write throughput and 1.2Gb/s

interface,” in Proc. of IEEE Int’l Solid-State Circuits Conf.

(ISSCC), pp. 216-218, Feb. 2019.

[10] H. Oh, et al., “3-dimensional analysis on the cell string current

of NAND flash memory,” in Proc. of Non-Volatile Memory

Tech. Symp. (NVMTS), pp. 137-139, Nov. 2005.

 ３２

[11] S. Ray and J. Bhadra, “Abstracting and verifying flash

memories,” in Proc. of Non-Volatile Memory Tech. Symp.

(NVMTS), pp. 1-5, Nov. 2008.

[12] Scientific Analog, Inc., XMODEL Reference Manual, Sep. 2019.

[13] T. Kim, et al., “Non-volatile memory device and memory

system including the same,” U.S. Patent 20180075918 A1, Mar.

2018.

[14] S. Lee, et al., “A 1Tb 4b/cell 64-stacked-WL 3D NAND flash

memory with 12MB/s program throughput,” in Proc. of IEEE

Int’l Solid-State Circuits Conf. (ISSCC), pp. 340-342, Feb.

2018.

[15] R. Cernea, et al., “A 34MB/s-program-throughput 16Gb MLC

NAND with all-bitline architecture in 56nm,” in Proc. of IEEE

Int’l Solid-State Circuits Conf. (ISSCC), pp. 420-624, Feb.

2008.

[16] K. Suh, et al., “A 3.3V 32Mb NAND flash memory with

incremental step pulse programming scheme,” IEEE J. Solid-

State Circuits, vol. 30, no. 11, pp. 1149-1156, Nov. 1995.

[17] B. Lim, et al., “Nonvolatile memory device including page

buffer and method for verifying program operation thereof,”

U.S. Patent 20170278580 A1, Sep. 2017.

[18] S. Joo, et al., “Page buffer, memory device comprising page

buffer, and related method of operation,” U.S. Patent 9007850

B2, Apr. 2015.

[19] N. Shibata, et al., “13.1 A 1.33Tb 4-bit/Cell 3D-flash memory

on a 96-word-line-layer technology,” in Proc. of IEEE Int’l

Solid-State Circuits Conf. (ISSCC), pp. 210-212, Feb. 2019.

[20] Y. Cai, et al., “Threshold voltage distribution in MLC NAND

flash memory: characterization, analysis, and modeling,”

in Proc. of Design, Automation & Test in Europe Conf. &
Exhibition (DATE), pp. 1285-1290, Mar. 2013.

 ３３

Appendix

1. Cell array plane model

/*--
MODULE nand_plane.sv

= Purpose =
An array plane model of a NAND flash memory.
--*/

`include "xmodel.h"

module nand_plane #(
 parameter num_block = 1, // # blocks
 parameter num_bl = 192, // # strings/block
 parameter num_ssl = 4, // # strings/wl share
 parameter num_wl = 16, // # cells/string
 parameter num_pbs = 12, // # pgbufs/pbs
 parameter num_pf = 16, // # pgbufs/pf
 parameter real KP_CELL = 1e-4, // Kp of cell transistors
 parameter real KP_SEL = 1e-3, // Kp of GSL/SSL select transistors
 parameter real VTH_SEL = 0.5, // Vth of GSL/SSL select transistors
 parameter real VTH_MIN = -3.0, // minimum Vth of cell devices
 parameter real VTH_MAX = 5.0, // maximum Vth of cell devices
 parameter real V_PGM = 15.0, // minimum program voltage
 parameter real V_PASS = 8.0, // vpass voltage
 parameter real V_ERASE = -15.0, // minimum erase voltage
 parameter real ISPP_slope = 1.0, // program rate (ISPP Slope)
 parameter real OneShot_slope = 0.25, // Oneshot program efficiency
 parameter real K_ERASE = 1e4, // erase rate (V/s)

parameter real vth_std = 0.5, // standard deviation for the initial vth
distribution

parameter speed_mean = 0.95, // mean value for the cell program speed
parameter speed_std = 0.05, // standard deviation for the cell program

speed
 parameter real C_GSL = 1e-12, // load capacitance on each GSL
 parameter real C_SSL = 1e-12, // load capacitance on each SSL
 parameter real C_WL = 1e-12, // load capacitance on each WL
 parameter real C_BL = 1e-10, // load capacitance on each BL
 parameter real C_SO = 5e-12, // load capacitance on each SO
 parameter string filename = "" // initial memory state
)(
 input xreal [num_wl-1:0] WLPre,
 input xreal [num_ssl-1:0] GSL,
 input xreal [num_ssl-1:0] SSL,
 input xreal SRC,
 input xreal VBB,
 input xbit BLKWL,
 input xbit pgm_mode,
 input xbit ers_mode,
 input xbit read_mode,

input xbit [7:0] BLK_ADDR,
 input xbit ADDR_CMD,
input xbit CTL_1,

 ３４

input xreal VPP,
 input xbit XDEC_CTL,
 input xbit XDEC_Init,
input xreal vdd,
input xreal BLC,

 input xreal BLH,
 input xreal BLS,
 input xreal BLX,

input xreal CLK1,
 input xbit Monitor_M,
 input xbit Monitor_S,
 input xreal [num_pf-1:0] PF,
 input xreal [num_pbs-1:0] PBS,
 input xreal PRE,
 input xbit RST_M,
 input xbit RST_S,
 input xbit SET_M,
 input xbit SET_S,
 input xreal VH,
 input xreal Vref,
 input xreal XXL,

output xbit [num_bl-1:0] lat_S,
 output xbit [num_bl-1:0] lat_nS
);

 xreal [num_wl-1:0] WL;
 xbit [num_block-1:0] BLK_SEL;
 reg [num_block-1:0] BLK_SEL_BIT;

//--
// block decoder
//--

 blockdec #(.num_block(num_block)) blockdec0
(.BLK_ADDR(BLK_ADDR[7:0]), .BLK_SEL(BLK_SEL[num_block-1:0]), .ADDR_CMD(ADDR_CMD));
 xbit_to_bit #(.width(num_block)) xmodel_conn0 (.in(BLK_SEL[num_block-
1:0]), .out(BLK_SEL_BIT[num_block-1:0]));

//--
// nand block selection
//--

 int i, num_blocksel, blocksel;

 initial begin
 blocksel = 0;
 #100;
 for (i=0; i<num_block; i++) begin
 blocksel = blocksel + BLK_SEL_BIT[i];
 if(BLK_SEL_BIT[i]>0) begin
 num_blocksel = i;
 end
 end
 if (blocksel < 1 || blocksel > 1) $xmodel_error("Block selection fail");
 end

 ３５

xdec XDEC0 (.BLK(BLK_SEL[num_blocksel]), .WLPre(WLPre[num_wl-1:0]), .XDEC_CTL
(XDEC_CTL), .CTL_1(CTL_1), .WL(WL[num_wl-1:0]), .VPP(VPP), .XDEC_Init(XDEC_Init));

 nand_block
#(.filename(filename), .num_bl(num_bl), .num_ssl(num_ssl), .num_wl(num_wl), .num_pbs
(num_pbs), .num_pf(num_pf), .KP_CELL(KP_CELL), .KP_SEL(KP_SEL), .VTH_SEL(VTH_SEL), .
VTH_MIN(VTH_MIN), .VTH_MAX(VTH_MAX), .V_PGM(V_PGM), .V_PASS(V_PASS), .V_ERASE(V_ERAS
E), .ISPP_slope(ISPP_slope), .OneShot_slope(OneShot_slope), .K_ERASE(K_ERASE), .vth_
std(vth_std), .speed_mean(speed_mean), .speed_std(speed_std), .C_GSL(C_GSL), .C_SSL(
C_SSL), .C_WL(C_WL), .C_BL(C_BL), .C_SO(C_SO)) block0 (.ers_mode(ers_mode),
.vdd(vdd), .VBB(VBB), .XXL(XXL), .read_mode(read_mode), .BLX(BLX), .VH(VH), .SET_S(S
ET_S), .Monitor_S(Monitor_S), .PRE(PRE), .BLC(BLC), .RST_M(RST_M), .pgm_mode(pgm_mod
e), .BLKWL(BLKWL), .BLH(BLH), .CLK1(CLK1), .RST_S(RST_S), .SRC(SRC), .BLS(BLS), .SET
_M(SET_M), .Vref(Vref), .Monitor_M(Monitor_M), .WL(WL[15:0]), .GSL(GSL[num_ssl-
1:0]), .SSL(SSL[num_ssl-1:0]), .lat_S(lat_S[num_bl-1:0]), .lat_nS(lat_nS[num_bl-
1:0]), .PBS(PBS[num_pbs-1:0]), .PF(PF[num_pf-1:0]));

endmodule

 ３６

2. Cell array block model

/*--
MODULE nand_block.sv

= Purpose =
An array block model of a NAND flash memory.
--*/

`include "xmodel.h"

module nand_block #(
 parameter num_bl = 192, // # strings/block
 parameter num_ssl = 4, // # strings/wl share
 parameter num_wl = 16, // # cells/string
 parameter num_pbs = 12, // # pgbufs/pbs
 parameter num_pf = 16, // # pgbufs/pf
 parameter real KP_CELL = 1e-4, // Kp of cell transistors
 parameter real KP_SEL = 1e-3, // Kp of GSL/SSL select transistors
 parameter real VTH_SEL = 0.5, // Vth of GSL/SSL select transistors
 parameter real VTH_MIN = -3.0, // minimum Vth of cell devices
 parameter real VTH_MAX = 5.0, // maximum Vth of cell devices
 parameter real V_PGM = 15.0, // minimum program voltage
 parameter real V_PASS = 8.0, // vpass voltage
 parameter real V_ERASE = -15.0, // minimum erase voltage
 parameter real ISPP_slope = 1.0, // program rate (ISPP Slope)
 parameter real OneShot_slope = 0.25, // Oneshot program efficiency
 parameter real K_ERASE = 1e4, // erase rate (V/s)

parameter real vth_std = 0.5, // standard deviation for the initial vth
distribution

parameter speed_mean = 0.95, // mean value for the cell program speed
parameter speed_std = 0.05, // standard deviation for the cell program

speed
 parameter real C_GSL = 1e-12, // load capacitance on each GSL
 parameter real C_SSL = 1e-12, // load capacitance on each SSL
 parameter real C_WL = 1e-12, // load capacitance on each WL
 parameter real C_BL = 1e-10, // load capacitance on each BL
 parameter real C_SO = 5e-12, // load capacitance on each SO

parameter string filename = "" // initial memory state
)(
 input xreal [num_wl-1:0] WL,
 input xreal [num_ssl-1:0] GSL,
 input xreal [num_ssl-1:0] SSL,
 input xreal SRC,

input xreal VBB,
 input xbit BLKWL,
 input xbit pgm_mode,
 input xbit ers_mode,
 input xbit read_mode,

input xreal vdd,
 input xreal BLC,
 input xreal BLH,
 input xreal BLS,

input xreal BLX,
 input xreal CLK1,
 input xbit Monitor_M,
 input xbit Monitor_S,

 ３７

input xreal PRE,
 input xbit RST_M,

input xbit RST_S,
 input xbit SET_M,

input xbit SET_S,
input xreal VH,
input xreal Vref,

 input xreal XXL,
input xreal [num_pf-1:0] PF,

 input xreal [num_pbs-1:0] PBS,
output xbit [num_bl-1:0] lat_S,

 output xbit [num_bl-1:0] lat_nS,
);

 // local parameters
 localparam size_block = num_ssl*num_bl*num_wl; // size of a block
 xreal [0:num_bl-1] BL;

// gaussian random variables
 real mean, stdddev, gaussian;
 import "DPI-C" context function real xmodel_rand_gaussian(real mean, real
stddev);

 //--
 // initialization of memory array
 //--

 reg [0:0] XADDR;
 longint MEM_STATE, MEM_STATE_SPEED;
 reg [63:0] data_bin [0:size_block-1];
 integer file;
 integer output_file,output_file_speed;
 real init_vth, cell_speed;
 int i, j, k;

initial begin
 $display("block size = ", size_block);
 $display("mem block = ", idx_block*size_block);
 $display("Initializing memory state...");
 if (filename != "") begin
 file = $fopen(filename, "rb");
 if (file == 0) $xmodel_error("cannot read memory state file: ",
filename);
 MEM_STATE = NPRIMS_initarray_real(size_block);
 MEM_STATE_SPEED = NPRIMS_initarray_real(size_block);
 k = $fread(data_bin, file);
 if (k < size_block) $xmodel_error("insufficient data stored in file: ",
filename);
 for (j=0; j<size_block; j++) begin
 NPRIMS_putelem_real(MEM_STATE, i*size_block+j, $bitstoreal
(data_bin[j]));

end
 end
 else begin

 output_file = $fopen("initial_vth_out.txt","w");
 MEM_STATE = NPRIMS_initarray_real(size_block);

 ３８

for (i=0; i<size_block; i++) begin
 init_vth = xmodel_rand_gaussian(VTH_MIN,vth_std);
 $fwrite(output_file,"%f\n",init_vth);
 NPRIMS_putelem_real(MEM_STATE, i, init_vth);
 End

$fclose(output_file);

 output_file_speed = $fopen("cell_speed.txt","w");
 MEM_STATE_SPEED = NPRIMS_initarray_real(size_block);
 for (i=0; i<size_block; i++) begin
 cell_speed= xmodel_rand_gaussian(speed_mean,speed_std);

$fwrite(output_file_speed,"%f\n",cell_speed);
 NPRIMS_putelem_real(MEM_STATE_SPEED, i, cell_speed);
 end
 $fclose(output_file_speed);
 end
 $display("Done.");
 end

// wordline loads
 capacitor #(.C(C_WL)) cload_WL [num_wl-1:0] (.pos(WL[num_wl-1:0]), .neg(VBB));
 capacitor #(.C(C_GSL)) cload_GSL [num_ssl-1:0] (.pos(GSL[num_ssl-1:0]),
 .neg(`ground));
 capacitor #(.C(C_SSL)) cload_SSL [num_ssl-1:0] (.pos(SSL[num_ssl-1:0]),
.neg(`ground));

//--
 // array of cell strings
 //--

 int idx_block;
 longint mem_block;
 longint mem_block_speed;
 longint mem_string;

assign idx_block = int'(12'b0000_0000_0000);
 assign mem_block = NPRIMS_getarray_real(MEM_STATE, idx_block*size_block);
 assign mem_block_speed = NPRIMS_getarray_real(MEM_STATE_SPEED,
idx_block*size_block);

// selected memory block
 genvar gen_i;
 generate
 for (gen_i=0; gen_i<num_ssl*num_bl; gen_i++) begin:g1
 nand_str #(.num_wl(num_wl), .KP_CELL(KP_CELL), .KP_SEL(KP_SEL),
 .VTH_SEL(VTH_SEL), .V_PGM(V_PGM), .V_PASS(V_PASS), .ISPP_slope(ISPP_slope),
 .OneShot_slope(OneShot_slope), .str_idx(gen_i*num_wl))
str .BL(BL[$rtoi(gen_i/num_ssl)]), .WL(WL[num_wl-1:0]), .GSL(GSL[(gen_i%num_ssl)]),
.SSL(SSL[(gen_i%num_ssl)]), .SRC(SRC), .mem_block(mem_block), .mem_block_speed(mem_b
lock_speed), .pgm_mode(pgm_mode), .ers_mode(ers_mode), .read_mode(read_mode));
 end
 endgenerate

 ３９

//--
 // page buffers
 //--
 generate
 for (gen_i=0; gen_i<num_bl; gen_i++) begin:g3
 nand_pgbuf #(.C_BL(C_BL), .C_SO(C_SO)) pgbuf0 .BL(BL[gen_i]),
.lat_S(lat_S[gen_i]), .lat_nS(lat_nS[gen_i]), .PBS(PBS[$rtoi(gen_i/num_pf)]), .PF(PF
[gen_i%num_pf]), .BLX(BLX), .VH(VH), .XXL(XXL), .Monitor_S(Monitor_S), .SET_S(SET_S)
, .BLC(BLC), .PRE(PRE), .RST_M(RST_M), .BLH(BLH), .CLK1(CLK1), .RST_S(RST_S), .BLS(B
LS), .Monitor_M(Monitor_M), .SET_M(SET_M), .Vref(Vref), .vss(`ground), .vdd(vdd));
 end
 endgenerate

endmodule

 ４０

초록

NAND 플래시 메모리의 센싱 시스템은 대용량의 데이터를 저장할

수 있는 셀 어레이와 이를 구동시키기 위한 워드 라인 디코더, 페이지

버퍼, 아날로그 / 디지털 비트 카운터 및 디지털 시퀀스 컨트롤러로 구

성된 복잡한 혼성신호 회로이다. 본 연구에서는 개별 셀의 초기 조건과

특성에 따라 서로 다른 양상을 보이는 문턱 전압 (Vth)의 변화를 반영할

수 있으며, 페이지 버퍼의 특성을 포함한 상세한 아날로그 동작들의 모

델링하여 디지털 컨트롤러가 읽기, 프로그램 및 삭제 작업에 사용하는

다양한 알고리즘의 효율성을 평가할 수있는 모델 및 시뮬레이션 프레임

워크를 제안한다. 제안하는 모델은 디지털과 아날로그로 나뉘어진 검증

환경이 아닌 하나의 통합된 SystemVerilog기반으로 작성되었으며, 특히

XMODEL 프리미티브를 사용하여 아날로그 회로의 이벤트 기반 시뮬레

이션을 통해 효율적인 검증이 가능하게 되었다. 해당 시스템 모델을 기

반으로 12K 비트의 단일 레벨 셀 (SLC) 블록에서 최대 루프 반복 횟

수가 4 회인 40μs 길이의 ISPP (Incremental Step Pulse

Programming) 동작을 2 분 이내에 시뮬레이션 할 수 있었다. 또한, 검

증과정을 통해 얻게 되는 개별 셀 Vth 분포 분석을 통해서 프로그래밍

속도와 신뢰성 사이의 관계를 펄스 스텝 크기의 함수로서 표현할 수 있

었으며, 페이지 버퍼의 센싱 시간 조절을 통한 최종 셀 Vth 분포의 중심

치에 대한 영향에 대해서도 검증가능하다.

주요어 : 낸드플래시 메모리, 혼성신호회로, 셀 문턱전압 분포, XMODEL,

SystemVerilog.

학번 : 2018-29065

	Chapter 1. Introduction
	1.1. Study Background
	1.2. Thesis Organization

	Chapter 2. Background
	2.1. NAND Flash Memory Architecture and Its Operations
	2.2. Previous Works

	Chapter 3. Proposed SystemVerilog Model of NAND Flash Memory Sensing System
	3.1. Cell Array Model
	3.2. Page Buffer Model
	3.3. Analog Bit-Counter Model
	3.4. Digital System Model

	Chapter 4. Experimental Results
	4.1. SLC Program with Different ISPP Steps
	4.2. SLC Program with Different Sensing Times

	Chapter 5. Conclusions
	Bibliography
	Appendix
	Abstract in Korean

<startpage>6
Chapter 1. Introduction 1
 1.1. Study Background 1
 1.2. Thesis Organization 3
Chapter 2. Background 4
 2.1. NAND Flash Memory Architecture and Its Operations 4
 2.2. Previous Works 8
Chapter 3. Proposed SystemVerilog Model of NAND Flash Memory Sensing System 11
 3.1. Cell Array Model 12
 3.2. Page Buffer Model 15
 3.3. Analog Bit-Counter Model 19
 3.4. Digital System Model 22
Chapter 4. Experimental Results 23
 4.1. SLC Program with Different ISPP Steps 25
 4.2. SLC Program with Different Sensing Times 28
Chapter 5. Conclusions 30
Bibliography 31
Appendix 33
Abstract in Korean 40
</body>

