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Abstract 
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This master‟s thesis presents two novel methods to mitigate lever arm effect in 

Redundant Inertial Measurement Units (RIMUs), each with different approaches. 

With the presence of a lever arm for each sensing axis, the unexpected 

accelerations such as Euler and centrifugal accelerations are added to the 

measurements through rotational motion, resulting in an estimation error of linear 

acceleration. Therefore, it was previously considered as the best option to minimize 

the length of the lever arm and compensate the lever arm effect from the 

accelerometer measurements. However, this approach cannot completely remove 

the estimation error as the compensated value is based on the estimated angular 

rates, where the magnitude of the error becomes more apparent with a RIMU 

composed of low-grade gyroscopes that shows a higher noise level. In order to 

solve this problem, we propose two methods that can mitigate estimation error 

using the specific arrangement of the lever arm vectors and the concentrated 
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likelihood method-based nonlinear least squares (NLS). By the proposed methods,  

the accuracy in compensating the lever arm effect can be increased by placing the 

lever arm vectors symmetrically or using the information from accelerometers 

when estimating angular rates. Besides, the suggested methods each have their own 

advantages in computational efficiency and overall navigation performance, 

compared to previous method. The effectiveness of the proposed methods is 

verified through simulations including misalignments of each redundant sensor. 
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1.1 Motivation and background 

Inertial navigation system (INS) is a self-contained system since the 

navigation process does not depend on signals from the vehicle or reception from 

other sources [1]. Based on the linear acceleration and angular velocity measured at 

a high sampling rate by Inertial Measurement Units (IMUs), the position, velocity, 

and attitude of the body frame on which the IMU is installed are calculated 

seamlessly over time. Due to these characteristics, it has a wide range of uses, from 

space navigation to pedestrian dead reckoning (PDR). 

Meanwhile, as more accurate and reliable navigation performance is required, 

the concept of redundant IMU (RIMU) has emerged where more measurements are 

utilized from additional IMUs. The redundancy improves navigation performance 

based on RIMU‟s acceleration and angular velocity estimates and allows on-line 

failure detection and fail-safe operation [2]. However, since the advantages of 

using RIMU are dependent on the orientation of sensing axes, numerous research 

has been conducted on the optimal configuration of extra sensors. 

The linear acceleration and angular rate of RIMU are estimated from 

measurement equations where the Jacobian matrix of it consists of n row vectors, 

each of which is a dot product of the sensing axis direction and the unit vector of 
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the RIMU frame [3]. Since the estimates of accelerations or angular rates are based 

on the least squares (LS) method, the optimal configuration that can minimize the 

estimation error is required. Therefore, various types of figure of merit (FOM), 

which characterize the estimation error covariance P , have been introduced as a 

cost function to be minimized. The most commonly used FOM is det( )P [3], [4], 

representing the volume of error ellipsoid. There are also other forms of FOM, such 

as trace of the error covariance matrix ( Tr( )P ) [5], which represents the geometric 

dilution of precision (GDOP), or the maximum eigenvalue of the error covariance 

matrix ( max ( ) P ) [6], which stands for the worst-case estimation. 

Although all of these FOMs differ slightly in terms of the sensitivity of the 

cost function values, the mathematical meaning behind them is fundamentally 

identical, yielding the same results. Eventually, the constraint expressed by Eq. (1.1) 

must be satisfied in order to minimize the estimation error as much as possible, 

where n is the number of redundant sensing axes, H  is the Jacobian matrix of 

measurement equation, and 3 3I  stands for the 3-dimensional identity matrix.  

  
1

T

3 3

3

n



H H I  (1.1) 

Depending on the number of redundant sensors, the determination of the 

sensing axes orientation satisfying Eq. (1.1) can be set based on the conical shape 

or platonic solid. Various optimal configuration can be referred to [7]–[12]. 

The fault detection and isolation (FDI) algorithms are based on the parity 

equations which reflect the failure status of the sensors. There are various ways to 

detect faults and isolate erroneous sensors from RIMUs such as generalized 

likelihood test (GLT) [13], [14], sequential analysis [15], squaresd-error analysis 
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[16], minimax analysis [17], Mahalanobis distance [18], wavelet transform based 

method [19] and so on. 

The ability of FDI performance is also affected by the configuration of sensing 

axes. Shim [8] suggested a cost function that finds the largest angle between the 

closest sensing axes to find the optimal configuration for FDI among the 

configurations satisfying Eq. (1.1). The probability of correct isolation (PCI) was 

confirmed by Monte Carlo simulation, and the results are also consistent with the 

results in [3]. 

 

1.2 Objectives and contributions 

As described above, based on the navigation performance and FDI 

performance, most of the previous works on RIMU has focused on the optimal 

configuration of sensing axes orientation. However, when designing an actual 

RIMU unit, consideration of the lever arm of each sensing axis is inevitable 

because of the physical size of redundant IMU. The illustration of lever arm vector 

id  is described in Figure 1.1, where the physical size of each sensor is depicted as 

a sphere. 

The effect of the lever arm is represented by Euler and centrifugal forces, 

which are the latter two terms of nonlinear equation Eq. (1.2). 

 

   i i i if       h f ω d ω ω d  (1.2) 

 i i  h ω  (1.3) 
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where i  is the index for the redundant sensors consists of multiple accelerometers 

and gyroscopes. f , ω , and ω  each stands for linear acceleration, angular rate, 

and angular acceleration of the RIMU. id  represents the lever arm that belongs to 

the ith sensor.  

For the application of RIMU in the long term navigation such as ship or 

airplane, the angular rate or angular acceleration of the body frame can be regarded 

as zero for most of the time. In those cases, it is valid to neglect the latter two terms 

in Eq. (1.2) for estimating the accelerations by LS. However, maneuverings of land 

vehicles or unmanned aerial vehicle (UAV) often contain some amount of angular 

motion, making the lever arm effect in Eq. (1.2) non-negligible. Therefore, if the 

conventional LS is applied without considering the lever arm effect, an estimation 

error will occur, and navigation performance will deteriorate. 

 

Figure 1.1: Traditional tetrahedron configuration considering the lever arms 
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So far, the best way to minimize the estimation error induced by the lever arm 

effect is addressed by the optimal allocation of lever arm vectors [6]. The minimum 

length and direction of lever arms for the case of four and five sensing axes is 

addressed in an optimal manner by assuming the size of each redundant sensors as 

a sphere of radius r. However, the optimization problem of assigning each lever 

arm vector becomes complex as the number of sensing axes increases, and different 

solutions can be obtained depending on how the physical shape of each sensor is 

assumed. Moreover, there still remains the estimation error with the optimized 

solution, since the lever arm effect to be compensated are based on the angular 

rates estimated from the noisy measurements.  

In this thesis, two methods are proposed to mitigate the lever arm effect with 

the presence of the multiple lever arms. One way is to cancel the lever arm effect 

using the specific configuration of the lever arm. By making multiple pairs of the 

sensing axes with the same orientation to each other have the lever arm vectors in 

the opposite direction, the summation of multiple nonlinear measurement equations 

falls into a single linear equation where lever arm effects are excluded. The other 

way uses concentrated likelihood method-based NLS on the lever arm of 

orientation parallel to its corresponding sensing axis. 

By following these methods, the estimation of acceleration is no longer 

affected by the turning motion, which leads to the enhancement in the navigation 

performance. Since the navigation performance of both methods does not depend 

on the length of the lever arm, it frees the burden of designing the optimal 

configuration of the lever arm vector when designing RIMU sensors. 
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2.1 Inertial navigation system 

Inertial Navigation System (INS) calculates vehicle‟s position, velocity, and 

attitude based on the output from Inertial Measurement Units (IMU), which is 

usually composed of a 3-axis accelerometer and a gyroscope, where each of the 

sensing axis is orthogonal to each other. Since the IMU has a high sampling rate, it 

leads to a seamless navigation by the principle of Dead Reckoning (DR) method. 

However, it also has the characteristics that the navigation error can diverge rapidly 

as the time goes by, and its navigation performance is sensitive to the initial error 

such as position error, velocity error, tilt error, and azimuth error. 

In this section, mechanization of the frame which the vehicle navigates 

through is firstly introduced. The navigation equations based on the various 

reference frames are derived including Earth Centered Inertial (ECI) frame, Earth 

Centered Earth Fixed (ECEF) frame, and local geographic navigation frame, 

starting from the fundamental navigation equation. Then, the process of calculating 

attitude, velocity, and position is addressed, step by step on the principle of 

kinematics. Base on the kinematic equations, the error equations is also derived in 

order to analyze the inertial navigation performance.  

Chapter 2   

 

Related Works 
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2.1.1 Frame mechanization 

The kinematics related to navigation can be differed by the reference frame. 

Starting from the ECI frame where its center is located on the center of the earth, 

the differential equations about velocity with respect to the observer located on the 

earth are derived on the ECEF, and local geographic navigation frame.  

 

2.1.1.1 Fundamental navigation equation 

In order to deal with the kinematics resolved in various frame, a basic 

equation should be derived for the further process. It is derived by the relation 

between the measurement outputs from the IMU located on the point P and its 

acceleration. The point P is located on the ECI reference frame as Figure 2.1 

 
2

2

ib
ib

i

d

dt
 

r
f g  (2.1) 

 

Figure 2.1: Position vector with respect to reference frame 
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The subscript i and b stands for the inertial frame and body frame respectively. 

The output of accelerometer is subtracted by the gravity vector from its own 

acceleration 
2

2

i

d

dt

r
, where subscript i is the standard frame where the derivatives 

are drawn.  

 

2.1.1.2 Earth centered inertial frame mechanization 

By the principle of Coriolis theorem, derivative of the position with respect to 

inertial frame can be expressed by the derivative described in ECEF as follows: 

 ib eb
ie eb

i e

d d

dt dt
  

r r
ω r  (2.2) 

By differentiating both side of the equation with respect to the ECI frame and 

reorganizing it: 

  
2

2

ib eb
ie eb ie ie eb

ii

d d

dt dt
     

r v
ω v ω ω r   (2.3) 

By substituting Eq. (2.1) into Eq. (2.3): 

 eb
ib ie eb l

i

d

dt
   

v
f ω v g   (2.4) 

where  l ie ie eb   g g ω ω r , which is also called by plum-bob gravity vector, and 

ieω  stands for the earth‟s rotation. Eq. (2.3) may be resolved in the ECI frame as 

bellow: 

 
i i b i i i

eb b ib ie eb l   v C f ω v g   (2.5) 
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where superscript i represents the frame where vectors are resolved. Although Eq. 

(2.4) is not used often in practical application, it is advantageous in that it is used to 

derive other following equations. 

 

2.1.1.3 Earth centered earth fixed frame mechanization 

Likewise, the derivation starts from the Coriolis theorem, now with its 

derivative form: 

 eb eb
ie eb

e i

d d

dt dt
  

v v
ω v   (2.6) 

By substituting Eq. (2.4) into Eq. (2.6): 

 2eb
ib ie eb l

i

d

dt
   

v
f ω v g    (2.7) 

Resolving Eq. (2.7) in the ECEF frame is therefore 

 2e e b e e e

eb b ib ie eb l   v C f ω v g    (2.8) 

The ECEF mechanization is useful for the missile guidance, as the ground 

station from which the tracking information is provided is fixed on the point of the 

earth. Both the missile and the tracking information from station should be 

resolved in the same reference. Moreover, for the short term navigation, the 

Coriolis term in Eq. (2.8) can be neglected and summarized as 

 
e e b e

eb b ib l v C f g   (2.9) 
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2.1.1.4 Local geographic navigation frame mechanization 

From the derivative form of the Coriolis equation: 

 eb eb
in eb

n i

d d

dt dt
  

v v
ω v   (2.10) 

By substituting Eq. (2.4) into Eq. (2.10): 

  2eb
ib ie en eb l

n

d

dt
    

v
f ω ω v g   (2.11) 

where 
enω  is the transport rate that describes the angular motion of the local 

geographic navigation frame caused by the maneuvering over the earth surface. 

Resolving Eq. (2.11) in the local geographic navigation frame (NED frame): 

  2n n b n n n n

eb b ib ie en eb l    v C f ω ω v g   (2.12) 

From the point of view in NED frame, 2 n n

ie ebω v  stands for the correction of 

the Coriolis acceleration which is the effect caused by the vehicle‟s velocity on the 

surface of a rotating earth, n n

en ebω v  is a correction for the centripetal acceleration 

of the vehicle. The mechanization derived in NED frame is mostly used in INS, 

and it describes the kinematics for the long term navigation. In this thesis, the 

mechanization about NED frame is selected to describe the simulated motion. 

 

2.1.2 Attitude update algorithm 

In order to calculate the vehicle‟s attitude in real time, the change rate of the 

attitude should be mechanized with respect to time. Each differential equation is 

derived for Euler angles, Direct Cosine Matrix (DCM), and quaternions, which are 

three representative methods of representing the vehicle‟s attitude relative to the 
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reference frame. The alignment process is also addressed, which is a way to 

determine the initial attitude. 

 

2.1.2.1 Euler angle 

The Euler angles are gimbal angles to be rotated in a specific order to 

represent the vehicle‟s attitude, where a gimbal is a mechanical frame that is free to 

rotate about a single-axis in order to isolate it from angular motion in the same 

direction. By using DCM, where each of its columns belongs to the projection of a 

unit vector along the reference axes, rotation with respect to each axes can be 

shown as bellows: 

 1

cos sin 0

sin cos 0

0 0 1

 

 

 
 

 
 
  

C   (2.13) 

 2

cos 0 sin

0 1 0

sin 0 cos

 

 

 
 


 
  

C   (2.14) 

 3

1 0 0

0 cos sin

0 sin cos

 

 

 
 


 
  

C   (2.15) 

where   is a rotation angle about z-axis,   is a rotation about y-axis, and   is 

a rotation about x-axis. If a transformation from reference frame to body frame is 

defined as 

 3 2 1

b

n C C C C  (2.16) 
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Eq. (2.16) implies that the vector multiplied by 
b

nC  is rotated under the order 

of z, y, and x axis. As the rotation around x-axis is performed at the last order, the 

propagation of Euler angles with time that transforms reference frame to body 

frame can be represented as follows: 

 
3 3 2

0 0

0 0

0 0

x

y

z nb

 

 

 

      
      

        
            

C C C  (2.17) 

where x , y , z  each stands for the change rate of the rotation vector projected 

on x, y, and z-axis. Note that Eq. (2.17) is the relation between the change rate of 

Euler angle and rotation angle that transforms reference frame to body frame. 

However, when it comes to the application of the navigation, the rotation angle that 

transforms body frame to reference frame is used typically. As the inversion matrix 

of b

nC  can be written as 

 T T T

1 2 3

n

b C C C C  (2.18) 

Therefore, the relation between Euler angle and the rotation vector that 

transforms the body frame to navigation frame is 

 
T T T

1 2 1

0 0

0 0

0 0

x

y

z bn

 

 

 

      
      

        
            

C C C  (2.19) 

Using Eq. (2.19), the error of roll, pitch, yaw is propagated as the following 

equations 
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T T T

1 2 1

0 0

0 0

0 0

cos cos sin 0

cos sin cos 0

sin 0 1

x

y

z

 

 

 

   

   

 

       
       

  
       
             

   
   


   
      

C C C

 (2.20) 

Therefore, 

 

sec cos sec sin 0

sin cos 0

tan cos tan sin 1

x

y

z

     

   

     

     
     

 
     
          

  (2.21) 

where x , y , z  each stands for the error of rotation vector. The 

propagation of Euler angle is not practically used as Eq. (2.19) is affected by the 

gimbal lock problem when 90   , where the yawing and rolling cause the 

change of attitude in the same fashion. However, the error equation derived from 

Eq. (2.19), which is Eq. (2.21), can be used as a measurement equation for the 

attitude and heading reference (AHRS) system. Eq. (2.21) also implies that the 

error propagation behaves differently between rotation vector and Euler angle. 

 

2.1.2.2 Direction cosine matrix 

As mentioned above, each column of DCM is composed of unit vectors 

containing information about direction relationship between body frame and 

reference frame. The amount of change in n

bC  during t  can be represented by 

dividing 
( )

( )

n t t

b t t







C  into separate two DCMs: 
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( ) ( )

( ) ( ) ( )n t t n t t

b t t b t t 



 

 C C A  (2.22) 

where ( )tA  is a DCM that transforms attitude from the b-frame at time t t  to 

the b-frame at time t (
( )

( )

b t

b t tC ) which regards the b-frame at time t  as a reference, 

and it is also the following result of
0

lim n

b
    

C  in Eq. (2.18). Therefore, 

 ( )t  A I Ψ  (2.23) 

 

0

0

0

 

  

 

 
 

 
 
  

Ψ  (2.24) 

As a result, the change rate of ( )n

b tC  is described as 

 

0 0

0 0

0

( ) ( )
lim lim

( )( ) ( ) ( )
lim lim

( ) lim

n n n
n b b b
b

t t

n n n

b b b

t t

n n b

b b nb
t

t t t

t t

t t t

t t

t
t

 

 



 

 

 

 





 

 



 
 

 
 

 

C C C
C

C I Ψ C C Ψ

Ψ
C C Ω

 (2.25) 

where  

 

0

0

0

z y

b

nb z x

y x

 

 

 

 
 

  
  

Ω  (2.26) 
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2.1.2.3 Quaternion 

The propagation of quaternion 
n

bq  follows the form of quaternion 

multiplication as bellow 

 
1

2

n n b

b b nb q q p  (2.27) 

where 
T

0b b

nb nb
   p ω , and the quaternion multiplication can be transformed 

into matrix-vector multiplication as 

 

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

0

1 1

2 2

x

y

z

q q q q q

q q q q q

q q q q q

q q q q q







       
     


      
     
     

     

Wq   (2.28) 

where  

 

0

0

0

0

x y z

x z y

y z x

z y x

  

  

  

  

   
 


 
 
 

  

W   (2.29) 

The discretized solution of Eq. (2.28) may be written as  

 
1

1

1
exp

2

k

k

t

k k
t

dt




 
  
 

q W q   (2.30) 

By reorganizing Eq. (2.30), the matrix-vector multiplication can be 

transformed into quaternion multiplication as 

 1k k k  q q r   (2.31) 
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where  

 
T

k c s x s y s za a a a     r ,  (2.32) 

 x xdt  , 
y ydt  , z zdt  ,  (2.33) 

 cos , sin
2 2

c sa a
    

    
   

,  (2.34) 

and 

 
2 2 2 2(0.5 0.25( x y z        .  (2.35) 

In this thesis, quaternion update is selected for navigation simulation. 

 

2.1.3 Velocity and position update algorithm 

In the local geographic navigation frame, the velocity update can be 

performed by Eq. (2.12). The turning rate of earth rotation and the transport rate 

expressed in the local geographic frame are written as follows with the 

consideration of the shape of the Earth: 

  cos 0 sin
Tn

ie ie ieL L  ω    (2.36) 

 
tann NE E

en

E N E

vv v L

R h R h R h

  
  

   
ω   (2.37) 

where 

 

2

2 2 3/2

(1 )

(1 sin )
N

R e
R

e L





,  (2.38) 
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2 2 1/2(1 sin )

E

R
R

e L



,  (2.39) 

 ( ) /f R r R  ,  (2.40) 

  
1/2

2e f f    ,  (2.41) 

R  is length of the semi-major axis, r  is length of the semi-minor axis, f  is the 

flattening of the ellipsoid, e  is major eccentricity of the ellipsoid, h  is height of 

the vehicle, L  is the latitude, 
Nv  and 

Ev  are velocity of the north and east 

direction, respectively. 
NR  is the radius of the ellipsoid when the Earth is cut by 

the surface that is spanned by the north and down axis of the local geographic 

navigation frame. In the similar way, 
ER  is the radius of the ellipsoid generated as 

the Earth is cut by the surface that is spanned by the east and down axis of the local 

geographic navigation frame. 
NR  and 

ER  is often called as a meridian radius of 

curvature (
mR ) and a transverse radius of curvature (

tR ) respectively. 

The change rate of the latitude, longitude and height are written as 

 N

N

v
L

R h



  (2.42) 

 
 cos

E

E

v
l

R h L



  (2.43) 

 Dh v    (2.44) 

The overall INS process is shown in Figure 2.2 
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Figure 2.2: Overall INS process 
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2.2 Redundant inertial measurement units (RIMU) 

Inertial navigation of RIMU is not so different from that of conventional IMU 

but the acceleration and gyro outputs are estimated from redundant sensors. Since 

the RIMU has advantage in redundancy, the fault detection and isolation (FDI) 

algorithm is also available, promising the reliability for the long term navigation. 

However, the problem is that the performance of navigation and FDI are both 

affected by the orientation of the sensing axes. Therefore, in this part, the 

configuration of the sensing axes orientation is mainly reviewed in terms of the 

optimal navigation and FDI performance. 

 

2.2.1 Sensing axes configuration for optimal navigation performance 

Suppose that there is a RIMU with n-axes accelerometers/gyroscopes. Then, 

the inertial measurement sensed in nth sensors can be depicted as Figure 2.3. The 

measurement equations of n sensors can be written as 

 

1 1 1
1 1

2 2 2
2 2

x

y

zn n n
n n

m n
w

m n
w

w
m n

       
     

         
     
      

      

i S j S k S

i S j S k S

i S j S k S

  (2.45) 

which can be summarized as 

 ( ) ( ) ( )k k k z Hx n   (2.46) 

where ( )kz  is a 1n  vector composed of measurements from n sensors, H  is 

a Jacobian matrix, xw , yw , and zw  is linear accelerations or angular velocity 

resolved in body frame, and ( )kn  is a 1n  vector composed of noise included 
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in sensors. It is assumed that each sensor has ideally calibrated. Then, the estimated 

solution can be derived as 

 
1ˆ ( )T Tx H H H z   (2.47) 

which is the result of conventional least squares. If estimation error is defined as 

 ˆ e x x   (2.48) 

The covariance of estimation error eP  can be derived as 

 2 1 2[ ] ( )T TE    
e

P ee H H P   (2.49) 

where   indicates the noise level of sensing axes. In this case, all sensors show 

identical level of noise.  

The cost function for minimizing estimation error can be set base on the 

characteristic of P , which is explained in Table 2.1. Typically, the cost function is 

called as a figure of merit (FOM). Although the cost function is different in terms 

of the sensitivity of the change rate in function value, the mathematical meanings 

are all identical, which is related to minimizing estimation error. 

Eventually, the criteria for optimizing navigation performance can be 

summarized as 

 

Figure 2.3: Inertial measurement sensed in the nth sensor 
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  
1 3

arg min(FOM1,2,3) T

n



 
P

H H I   (2.50) 

where n is the number of sensors used. The various configuration of RIMU is listed 

through Figure 2.4 to Figure 2.8 according to the various number of the inertial 

sensors[8]. 

 

 

Table 2.1: List of FOM and its meaning 

FOM Mathematical meaning 

 Tr( )P  Geometric dilution of precision 

det( )P  Volume of error ellipsoid 

max ( ) P  
Worst case estimation error  

(maximum eigenvalue of error covariance matrix) 
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(a) Cone-type (b) Cone-type with a 

sensor on z-axis 

(c) Cone-type with a 

sensor on x, y-axis each 

Figure 2.5: Configuration of sensor orientation for optimal navigation performance 

with 5 sensing axes 

  

(a) Tetrahedron (b) Octahedron 

Figure 2.4: Configuration of sensor orientation for optimal navigation performance 

with 4 sensing axes 

   

(a) Dodecahedron (b) Cone-type (c) Cone-type with 

sensors on x-y plane 

Figure 2.6: Configuration of sensor orientation for optimal navigation performance 

with 6 sensing axes 
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(a) Cone-type (b) Cone-type with a sensor on z-axis 

  

(c) Cone-type with sensors  

on x-y plane 

(d) Cone-type with sensors  

on each axis 

Figure 2.7: Configuration of sensor orientation for optimal navigation performance 

with 7 sensing axes 

  

(a) Icosahedron 1 (b) Icosahedron 2 

  

(c) Double cone-type (d) Double cone-type with a sensor  

on z-axis 

Figure 2.8: Configuration of sensor orientation for optimal navigation performance 

with 10 sensing axes 
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2.2.2 Sensing axes configuration for optimal FDI performance 

The FDI algorithm may be derived from setting parity equations using 

Jacobian matrix in Eq. (2.51). Let iv  be an n-dimensional vector that satisfies: 

 
T 0i v H   (2.51) 

Although iv  may be an arbitrary vector, the matrix V , which is constructed 

by iv , shows rank of at most n-3[33]. Therefore, the minimum number required 

for isolating sensor faults is derived as 5. The choice of V  can be performed 

based on the following two constraints: 

 0VH   (2.52) 

 
T VV I   (2.53) 

where Gram Schmidt orthogonalization can be considered to resolve V . 

Finally, the parity equations can be constructed as 

 p Vz   (2.54) 

where z  is the measurement vector from Eq. (2.46). Base on the parity equations, 

the decision function for fault detection ( DDF ) and fault isolation ( ,I jDF ) may be 

defined as 

 
T

DDF  p p   (2.55) 

 
2

, ( )T

I j jDF  p v   (2.56) 

where DDF  is compared with the properly adjusted threshold so that if its value 
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is over the threshold, the algorithm gives fault alarm. If fault alarms operates, 

,I jDF is calculated through all redundant sensors, where j  is the index for the 

sensors. Then, the index number for the maximum value of ,I jDF can be regarded 

as a faulty sensor. The example of FDI operation is described in Figure 2.9, where 

the RIMU of dodecahedron configuration, consists of 6-sensing axes, have fault 

measurements on sensor #1 at 30s. 

By adding specific constraint on the FOM, the configuration of sensing axes 

for the optimal FDI performance can be selected from the configurations listed in 

2.1.1 The revised form of cost function is as bellow. 

   
1

, ( )

3
max  subject to T T

i j
i j i j

J
n




 h h H H I   (2.57) 

 

Figure 2.9: Change of decision value function related to fault isolation 
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Eq. (2.57) means picking the configurations that has maximum angle between the 

neighboring sensing axes. The configuration that shows maximum J  among 

previously proposed configurations are listed in Figure 2.11 and Figure 2.10. 

 

 

 

   

(a) Cone-type (b) Dodecahedron (c) Cone-type with  

sensors on x-y plane 

Figure 2.11: Configuration of sensor orientation for optimal FDI performance  

with 5, 6, and 7 sensing axes 

 

  

(a) Icosahedron 1 (b) Icosahedron 2 

Figure 2.10: Configuration of sensor orientation for optimal FDI performance  

with 10 sensing axes 
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In this chapter, the analysis on the navigation performance based on the RIMU 

outputs are performed. Intuitively, it is natural that the navigation performance 

improves with the measurements from redundant sensors where more information 

is used to estimate linear acceleration or angular velocity of body frame. Given that 

all the redundant sensors are ideally calibrated, the exact value of decrement in 

noise level can be derived, which leads to the navigation performance enhancement.  

However, the size of the inertial sensors cannot be neglected, which induces 

the unwanted extra specific force such as Euler force and centrifugal force added to 

the measurements of acceleration when angular motions are applied. The 

measurement error in this case can be named as the lever arm effect, because the 

unexpected specific force is induced from the lever arm in real world RIMU case.  

Conventionally, this effect has been minimized by optimizing lever arm 

vectors along the redundant sensors, assigning optimized length to the lever arm of 

each of the inertial sensors. The suppressing effect of this methodology is reviewed 

through simulation, and the limitations are specified, which highlight the need for 

improved methods. 

 

Chapter 3   

 

Inertial Navigation based on RIMU 
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3.1 Navigation performance analysis 

3.1.1 Performance enhancement according to the number of 

redundant sensors 

Substituting Eq. (2.50) into Eq. (2.49) leads to: 

 
2 1 2 3

[ ] ( )T TE
n

   eP ee H H I   (3.1) 

which implies that the noise level of RIMU is reduced with the factor of 3 n . 

This can be confirmed in Figure 3.1. 

The navigation error induced by sensor noise cannot be resolved in 

deterministic manner. Therefore, the navigation performance according to the 

number of sensing axes is analyzed by Monte Carlo simulation. The sensor noise 

 

Figure 3.1: Noise level reduction according to the number or redundant sensors 
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specification used in the simulation is 300ug Hz , 0.1deg hr Hz  

respectively for accelerometer and gyroscope, and the sampling rate is 100Hz . 

The configurations used are listed in Figure 3.2. The vehicle used in simulation 

runs along the straight line for 60 seconds in order to exclude the lever arm effect. 

Improvement of navigation performance with the additional number of redundant 

sensors can be confirmed in Figure 3.3 

 

 

 

 

  

(a) Orthogonal 3 sensing axes (b) Cone-type (5 sensing axes) 

  

(c) Dodecahedron (d) Icosahedron 

Figure 3.2: Configuration used for navigation simulation 
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3.1.2 Performance degradation due to the presence of the lever arm  

The lever arm effect can be confirmed in the following equation as 

   i i i if       h f ω d ω ω d   (3.2) 

where id  is a lever arm vector for each of the redundant sensor. In order to reduce 

the navigation error induced by lever arm effect, the latter two terms, which is 

iω d  and  i ω ω d  where each of it stands for the Euler force and 

centrifugal force respectively, should be compensated.  

The Euler force is typically excluded by aligning the orientation of sensing 

axes and its corresponding lever arm vector, since the noise level of angular 

acceleration is inevitably bigger than that of angular rate. Also, thanks to the fact 

 

Figure 3.3: Position RMSE with various number of redundant sensors 
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that the measurement of angular rate is not affected by lever arm effect, which is 

 i i  h ω ,  (3.3) 

the estimation of angular rate is performed firstly in order to compensate the 

centrifugal force in Eq. (3.2). Although the estimates of the angular rate include 

some noise, for the IMUs with higher specification including tactical grade or 

navigation grade, the noise level of gyroscopes has little effect on the estimation. 

To examine the effect of the lever arm on navigation performance, maximum 

turning rate about 180deg sec  at x, y, and z axis of body frame is applied. The 

turning motion is described in Figure 3.4, where there are 2.5 seconds of static 

segments which is included to visualize the lever arm effect. To configure the 

orientation of sensing axes in RIMU, the tetrahedron in Figure 2.4 is used. The 

 

Figure 3.4: Turning motion of given RIMU configuration 
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noise level of the accelerometer and gyroscopes that comprises RIMU is set to be 

190ug Hz  and 0.1deg hr Hz . 

According to the Figure 3.5, it seems that there is no problem in estimating 

acceleration with low noise of gyroscopes. However, the remaining estimation 

error can be visualized with the low cost gyroscopes. if the gyroscope has noise 

level of 72deg hr Hz , the results of acceleration estimation including typical 

compensating method can be inspected in Figure 3.6. 

As RIMU usually use low cost mems IMU for its component rather than a 

tactical grade or navigation grade, the necessity to remove the lever arm effect 

cannot be neglected. 

 

 

Figure 3.5: Acceleration estimates with/without lever arm effect compensation 

(lower gyroscope noise) 
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3.1.3 Lever arm optimization for minimizing the lever arm effect 

One of the proposed method to minimize the lever arm effect is to solve the 

optimization problem regarding the length of the lever arm with the assumption 

that physical shape of each inertial sensor is approximated as a sphere of radius r

[6]. The overall process is derived as bellows.  

If each lever arm vectors are aligned with the orientation of the belonging 

sensing axes, the following is satisfied: 

    
T

0i i i i    h ω d d h ω   (3.4) 

which means that Euler forces measured in each sensors are excluded 

mathematically. By assuming that center of gravity of the redundant sensor 

assembly is equal to the origin of the case frame, the sum of all lever arm vectors 

 

Figure 3.6: Acceleration estimates with/without lever arm effect compensation 

(higher gyroscope noise) 
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can be written as 

 
1 1

0
n n

i i i

i i

k
 

  d h   (3.5) 

where ik  is the coefficient for the lever arm vectors. Eq. (3.5) can be reformulated 

by using matrix and vector notation as 

  

1

2 T

1 2 0n

n

k

k

k

 
 
   
 
 
 

h h h H k   (3.6) 

Using Eq. (3.6) as an additional constraint, the optimal k  can be selected by 

solving the following equation: 

 
, 2

arg min
i i j j

optimal
k k r


 


k h h

k k   (3.7) 

which subjects to Eq. (2.50) and Eq. (3.6), where r  is a radius for sphere to which 

each sensors physical shape is approximated.  

For a conic configuration with 4 redundant sensors, the Jacobian matrix of 

measurement equation is given as follows: 

 

sin 0 cos

0 sin cos

sin 0 cos

0 sin cos

 

 

 

 

 
 
 
 
 

 

H   (3.8) 

where 54.7356  , and its optimized lever arm may be calculated as 
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T

sin sin sin sin
optimal

r r r r

   

 
   
 

k   (3.9) 

For a conic configuration with 5 redundant sensors, the Jacobian matrix of 

measurement equation is given as follows: 

 

sin 0 cos

0 sin cos

sin 0 cos

0 sin cos

0 0 1

 

 

 

 

 
 
 
  
 

 
  

H   (3.10) 

where 65.9052  , and its suboptimal length of the lever arm can be calculated 

as 

  
T

2 2 2 2 0optimal r r r r  k   (3.11) 

Also, the results of lever arm optimization is visualized in Figure 3.8 and Figure 

3.7.  

For the lever arm vectors derived in an optimized manner, the lever arm effect 

can be compensated in Eq. (3.2), which leads to the minimization in estimation 

error of linear acceleration.  
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(a) Sensing axes orientation (b) Lever arm configuration 

Figure 3.8: Optimized lever arm vector with 4 sensing axes[6] 

  

(a) Sensing axes orientation (b) Lever arm configuration 

Figure 3.7: Optimized lever arm vector with 5 sensing axes[6] 
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In the previous chapter, the effect of lever arm is minimized by assigning 

optimal length to each lever arm vectors that are aligned with direction of sensing 

axes. However, estimation error still remains when applying least squares with 

compensated measurements. Also, the optimal configuration of the lever arm 

vectors should be calculated whenever the Jacobian matrix change, which is 

cumbersome as the number of redundant sensors increases. The method suggested 

in 3.1.3 also assume the shape of each sensors as a sphere, which means that the 

result of the solution is shape-dependent. 

To solve the listed above, two methods to remove the lever arm effect in 

RIMU is suggested in this chapter. These methods include the configuration of the 

lever arm vectors in an easier way with a suitable measurement fusion method. The 

performance of the suggested algorithms is shown by simulation. 

 

4.1 Symmetric lever arm configuration based on least 

squares method 

4.1.1 Lever arm configuration 

Suppose a RIMU which has its origin at point P and composed of two 

identical subsets. From now on, each of the subset will be called as a “basis 

Chapter 4   

 

Mitigating Lever Arm Effect in RIMU 
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configuration.” Figure 4.1 is the RIMU composed of basis configuration B1 and B2, 

where O1 and O2, is their own origin. Any kind of previously proposed 

configuration (platonic solids, cone, etc.) can be set to form a basis configuration 

for the optimal navigation performance. However, for the simplicity of 

visualization, the conical shape with the zero-length lever arm ( 0i d ) is chosen.  

Define the lever arm vector 1L  starting from P and ends at 1O . If 2O  is 

placed where 1O  is mirrored with respect to point P, the lever arm vector 2L  has 

the same magnitude as 1L  but the opposite direction (namely, 
1 2 L L ). For the 

case when a basis configuration B1 has its own non-zero lever arm vectors id  

( 1, ,5i  ) starting from their origin 1O , the corresponding counterpart B2 should 

have their lever arm vectors jd  ( 1, ,5j  ) so that 1 2( )i j   L d L d . 

With the careful inspection of Eq. (3.2), the two latter terms related to angular 

rate ω  and angular acceleration ω  are both multiplied once by the lever arm 

vector id . Therefore, Euler force and centrifugal force measured by the sensor 

 

Figure 4.1: Double conic configuration with symmetric lever arm vector 
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axis 1 5~z z  of 1B  have the exact same magnitude but the opposite direction at 

6 10~z z  of 2B . Eventually, the lever arm effect can be offset by each other, and 

the LS does not suffer from estimation error by the unwanted lever arm related 

force. The exact proof is shown in part III.  

By placing multiple pairs of basis configuration which have the exactly 

symmetric lever arm around the point P, the number of sensing axes can be safely 

added without suffering from the lever arm effect. Note that no process of 

optimization related to the lever arm vector is required for this kind of approach. 

 

4.1.2 Measurement fusion 

The followings are the process of proof that the sum of nonlinear equations 

based on each basis configuration can be transformed into a single linear equation 

without loss of generality. Suppose that there are m pairs of basis configurations, 

where each configuration is composed of n sensing axes (For example, RIMU 

configuration of Figure 4.1 is the case for 1m  , and 5n  ). In Figure 4.2, the 

 

Figure 4.2: General expression of lever arm configuration of RIMU with 

symmetric lever arm assignment 
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possible origins of each basis configuration are distributed around the RIMU case 

origin P, and each of the symmetric counterpart is depicted as the same color, 

where 
1 1( )i i i i    L d L d  for all 1,3, ,2 1i n  . Note that different pairs of 

configurations may have different lengths of lever arm compared to other pairs, 

which means that several layers of the spherical formulation of the different radius 

can be added. For example, kO  and 1kO   are the points on the smaller sphere in 

Figure 4.2. 

The measurement equation related to linear acceleration of basis configuration 

centered on 1O  in Figure 4.2 can be expressed as 

 

    

    

T T 2T
1 1 1 1 1 11 1

T T T 2

1 1n n n n n n

f

f

      
   

     
             

h ω L d h Ω L dh

f v

h h ω L d h Ω L d

  (4.1) 

Note that the noise level of angular acceleration would be inevitably greater than 

the angular rate, and its value would be amplified by the sampling rate. 

Considering the effect of the misalignment in each sensor, it is better to align the 

lever arm vectors to its corresponding sensing axes in order to cancel out the Euler 

force by using symmetric lever arm configuration. Therefore, the additional 

constraints of the lever arm vectors should be 
j i iL d h  for all 1,2, ,2i n  

and 1,2, ,j m , where the length of the vector 
jL  should be 0cm to satisfy the 

constraints. 

An example of basis configuration and its total configuration when 1m  , 

5n  , 0L cm , 1d cm  is shown in Figure 4.3. In this case, there are ten 

sensing axes, composed of conical shaped basis configuration of 5 sensing axes. 
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And every length of the lever arm from the center of RIMU is 1L d cm  . 

If the term regarding the lever arm effect is denoted as 
i

L , where i  is the 

index for a pair of basis configuration, the 2m  measurement equations can be 

shown as 

 

1 1 1

1

2 1 2

1

2 1 2 1

1

2 2

1

n

n

m m m

n

m m m

n





 





  

  

  

  

z Hx L v

z Hx L v

z Hx L v

z Hx L v

  (4.2) 

where 
1

i

nz  represents the n  measurements of acceleration, and i
v  is the noise 

vector of the ith basis configuration. x  is linear acceleration to be estimated, and 

H  is the Jacobian matrix composed of sensing orientation vector h . 

If the noise vector in Eq. (4.2) follows Gaussian distribution with a mean of 

zero, the sum of 2m  equations falls into 

 

1 2 2

1 1 1

2

n

n n n

m

   
 

z z z
Hx v  (4.3) 

 

Figure 4.3: RIMU composed of a pair of conic configuration with 10 sensing axes 
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The total sum of the noise vector v  also follows Gaussian distribution 

because it is the sum of independent random variables of Gaussian distribution. 

Therefore, the summation of nonlinear equations eventually results in a single 

linear equation, where lever arm related term is eliminated as 

   z Hx v  (4.4) 

  
1

T 1 T 1

OLS


   x H R H H R z   (4.5) 

where  1 2 2 2m m    R R R R , which represents the sum of 2n  

measurement covariance matrices divided by the total number of basis 

configuration. If the RIMU is composed of sensors with identical specification, 

then  R R . Since the angular rate is not affected by the lever arm, the 

estimation is simply done by applying LS. As a result, the estimation of angular 

rate and linear acceleration is completed by conventional LS and Eq. (4.5), 

respectively. 

 

4.1.3 Performance analysis 

The Jacobian matrix in Eq. (4.4) using 2mn  measurements is the same as 

the measurement equation using n  sensors, but the difference in the estimation 

covariance can be demonstrated by the following procedure. Let e  stands for the 

estimation error, which is the subtraction of estimates from the nominal value. 

Then, 
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  (4.6) 

The covariance of e  is defined as TE    P ee , which is organized as 

 

     

 

1

1 22

2
1

3 32

1
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4
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m









   
  



P H H H v v

I H H

  (4.7) 

By substituting Eq. (2.50) to Eq. (4.7), 

 
2

3 3

3

2mn
 P I   (4.8) 

Therefore, the covariance of estimation is reduced as a factor of 3 2mn , where 

2mn  is the total number of sensing axes. 

 

4.2 Nonlinear least squares method 

4.2.1 Lever arm configuration 

The other way to determine the acceleration and angular rate from RIMU 

measurements is the estimation based on the nonlinear Eq. (3.2), which includes all 

the state variables including the angular acceleration. This kind of approach is 

widely applied in the research area such as biomechanics, which primarily focuses 
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on the motion-sensing of human body parts by gyro free (GF) IMUs. The GFIMUs 

are composed of multiple orthogonal accelerometers, where rotational motion 

herein is estimated using the Euler and centrifugal forces generated from relative 

motion between multiple sensors. There are some good literature to refer to, 

dealing with the principle of estimating rotational motion by GFIMUs [20]-[25]. 

One way to solve Eq. (3.2) with nonlinear least squares (NLS) is using the 

concentrated likelihood method, where the estimation process is divided into two 

stages. The theoretical proof of the concentrated likelihood method can be found on 

[26], and its application can be found on [27], where I. Skog applied this method in 

inertial array to estimate the extreme value of the angular rate where saturation of 

the gyroscope occurs.  

At the first stage of the estimation, the turning rate is first to be determined 

with the weight of measurements is changed, namely, the likelihood is concentrated 

in order to maximize the likelihood for the afterward estimation. At the second 

stage, by substituting prior estimation of turning rate, Eq. (3.2) turns into a linear 

equation, including linear acceleration f  and rotational acceleration ω . 

However, the naïve application of NLS aforementioned is not helpful for 

estimating triad solutions in the RIMU system. Since LS at the second stage 

includes both f  and ω , the estimation error of linear acceleration is affected by 

that of angular acceleration. In other words, as the number of state variables to be 

determined is increased with the same amount of measurements, the distribution of 

information occurs. 

This problem can be solved by eliminating the angular acceleration term 

mathematically. Eq. (3.2) can be expressed with the multiplication of matrix and 

vector, which is described as Eq. (4.9). When the lever arm orientation is aligned 
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with the direction of the corresponding sensing axes, the value of  
T

i id h goes 

to zero, eventually simplifying Eq. (3.2) to Eq. (4.10) with the removal of Euler 

force. Therefore, the necessity of estimating angular acceleration has disappeared, 

and the estimation of angular rate and linear acceleration is completed by applying 

NLS under measurement Eqs. (3.3) and (4.10). 

 
   

T T T 2( )

i i i i i i

i i i i i i

f           

   

h f h ω d h ω ω d

h f d h ω h Ω d
  (4.9)    

 
T T 2

i i i if  h f h Ω d   (4.10) 

 

4.2.2 Measurement fusion 

Suppose a RIMU composed of n  accelerometers and n  gyroscopes, each 

of them satisfying Eq. (2.50). Its configuration is described in Figure 4.4, where 

each of the accelerometer‟s sensing orientation is aligned with their lever arm 

 

Figure 4.4: General expression of the lever arm configuration of RIMU with lever 

arms aligned with orientation of sensing axes 
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vectors, as mentioned in part II. To make the visualization simple and clear, the 

conic configuration is selected. id  of 1,2, ,i n  stands for the lever arm of 

ith accelerometer axis, and id  of 1, 2, , 2i n n n    is the lever arm vector 

of gyroscopes. Note that as long as Eq. (2.50) is met, the placement of the 

gyroscopes‟ lever arm is not of interest. Nonlinear least squares based on the 

concentrated likelihood method is composed of two stages.  

1) Estimation of the angular rate 

The following measurement equation is a concatenate of Eqs. (3.3) and (4.10): 
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  (4.11) 

which can be expressed as 

 ( , )  z M ω d Hf n   (4.12) 

where 
ih  is the direction vector of the redundant sensors, fn is a n dimensional 

vector composed of accelerometers‟ noise, n is a n dimensional vector composed 

of gyroscopes‟ noise, and z  is the 2 1n  vector including measurements from 

each redundant sensors. With the known Gaussian distributed covariance matrix of 

measurement vector R , the log likelihood function to be maximized is described 

as 
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21
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2
L c      

R
ω f z M ω d Hf   (4.13) 

where c  is a constant and 
2 T
A

x x Ax . 

As the angular rate and linear acceleration is divided separately in Eq. (4.12), 

the measurement equation is partially linear. Assuming that the lever arm vectors 

are known with sufficient accuracy, estimation of f  that maximize the log 

likelihood may be derived when the specific estimate of angular rate ω  is given, 

which can be properly set by applying conventional least square on Eq. (3.3). That 

is, 

  T 1 1 T 1ˆ( ) ( ) ( , )    f ω H R H H R z M ω d   (4.14) 

By substituting Eq. (4.14) into Eq. (4.13), the concentrated likelihood to be 

maximized with respect to angular rate can be described as 

 
21

( ) ( )
2

L c    
P

ω z M ω d   (4.15) 

Therefore, the estimation of ω  that maximize Eq. (4.15) is completed by 

using Gauss-Newton algorithm [29], where the process is conducted numerically: 

    
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T T

1
ˆ ˆ ˆ(k k k



    M M Mω ω J PJ J P z M ω   (4.16) 

where 
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2) Estimation of the linear acceleration 

Now complete the estimation by 

    
1

T 1 T 1ˆ ˆ(


   f H R H H R z M ω   (4.19) 

where ω̂  is the result of Eq. (4.16). 

4.2.3 Performance analysis 

The performance of the NLS suggested can be analyzed by deriving Fisher 

information matrix. For the parameter defined as 
T

TT 
 

θ ω f , the Fisher 

information matrix (   of RIMU composed of n  redundant accelerometers 

and n  gyroscopes can be derived as 
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where 

 T T

11 3 32 2
1

1

3

n

i i i i

if

n

 




  Ω h h Ω I   (4.21) 



49 

 

 T T

12 2
1

1 n

i i i

if 

 Ω h h   (4.22) 

 T

21 2
1

1 n

i i i

if 

 h h Ω   (4.23) 

 
22 3 323 f

n


 I   (4.24) 

  T

1

1
i i

n

i

in




   d ω ω d
Ω Ω Ω Ω .  (4.25) 

Using the Schur complement, the information related to angular rates can be 

expressed as 
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where 
f  and   is the noise level of the accelerometers and gyroscopes 

respectively, assuming that n  accelerometers have a similar level of noise, and 

n  gyroscopes do the same. It is not a simple task to expand Eq. (4.26), where 

there are n different 3-dimensional direction cosine vectors ih  in redundant 

configurations. In order to make the expansion easier, the lever arm vectors id  

which are set to be aligned with ih  as Figure 4.4, is assumed to have the length of 

1cm with the assumption that the same level of angular rates is given to each 

RIMU body frame axis, that is x y z      . Then, the Eq. (4.26) can be 

expressed as: 
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where 

          
2

11 ,1 ,1 ,1

1 1 1

3n n n

i i i i j i i i j j j

i i j

h h h
n  

          1 h h h h 1 h h 1 h h  (4.28) 

          
2

22 ,2 ,2 ,2

1 1 1

3n n n

i i i i j i i i j j j

i i j

h h h
n  

          1 h h h h 1 h h 1 h h  (4.29) 

          
2

33 ,3 ,3 ,3

1 1 1

3n n n

i i i i j i i i j j j

i i j

h h h
n  

          1 h h h h 1 h h 1 h h  (4.30) 

From Eq. (4.27), it can be deduced that when no angular motion is applied, 

where 0  , there is no information gained from the accelerometers. In that case, 

the inverse of the Eq. (4.27), which is the indicator of the Cramér Rao lower Bound 

(CRLB), shows the same value of Eq. (3.1). 

When the angular motion is applied, the amount of information is increased, 

and it is proportional inversely to the noise level of the acceleration. This means 

that when the RIMU is configured with the accelerometers with the better 

specification, the information gained from them will be increased. However, as the 

direction of each sensing axes is included in Eq. (4.28) to Eq. (4.30), the 

performance of the angular rate estimation in RIMU with accelerometers of lower 

noise will be sensitive to the misalignment. The effect of the misalignment is 

shown to be acceptable by simulation with the specification of MEMS grade IMU 

in 4.3.  

Although the result of Eq. (4.28) through Eq. (4.30) is difficult to analyze 
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explicitly, the qualitative interpretation is possible noting that  ,1i i ih  1 h h  in 

the first term have maximum value when ih  is perpendicular to the vector 1 , 

where 1  is originated from the given angular motion where 
x y z      , 

corresponding to the orientation of the rotation vector. This implies that maximum 

information can be acquired from the sensing axes that is normal to the rotation 

vector, where the lever arm effect is mostly magnified.  

Although the information is reduced by the second term, but it is cumbersome 

and trivial to prove that its value is always smaller than the information gained as 

the reduction effect will be minimized with the increasing number of 

accelerometers, leading the direction of the sensing axes around rotation vector to 

be evenly distributed. The value of Eq. (4.28) to Eq. (4.30) can be confirmed to be 

a positive with the previously proposed RIMU configurations with various number 

of redundant sensors. 

 

4.3 Simulation results 

4.3.1 RIMU configuration 

To confirm the effect of the proposed methods, the following scenario of the 

angular rate is simulated, where the maximum turning rate is about 180deg/s in 

each axis 
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Also, in order to clarify the performance difference when the turning motion is 

applied, there are 2.5 seconds of static segments at every 10 seconds, starting from 
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5s. The angular rate is described as Figure 4.5.  

Two kinds of RIMU configuration is used in this simulation. One is the 

conventional configuration of Icosahedron [8], where all those lever arm vectors‟ 

directions are aligned with their sensing axes in order to minimize the lever arm 

effect as described in [6], but the length is determined to be 3cm without 

considering its physical feasibility to simplify the optimization problem. Based on 

the Icosahedron configuration, the proposed nonlinear least squares method will be 

compared to the conventional LS method. 

The other configuration is composed of a pair of basis configuration where 

each of it has the sensing orientation of conical shape with five sensing axes, where 

the detail of it is described in Figure 4.3. All of the sensing axes are paired with a 

symmetric lever arm, which also has a length of 1cm. The two configurations are 

described in Figure 4.6.  

 

Figure 4.5: Turning motion of given RIMU configuration used in simulation 
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4.3.2 Navigation performance comparison 

Based on the two configurations, three methods are compared with each other, 

where the conventional LS on Figure 4.6(a) and NLS on Figure 4.6(b) will be 

suggested method, and the conventional LS on Figure 4.6(b) will be compared to 

the former methods. The simulated sensor follows the specification of Bosch 

SMI130, which has the velocity random walk of 190ug Hz , and angular 

random walk of 72deg hr Hz . The sampling rate is set to be 100Hz . Assume 

that each of the sensing axe s is calibrated. The details of RIMU calibration can be 

referred to [30]-[32]. The following results are driven by 500 times of Monte Carlo 

simulations. 

The RMSE of the estimated acceleration and angular rate is shown by Figure 

4.7 and Figure 4.8. The result of the proposed methods is denoted as „symmetric 

LS‟ and „NLS‟ respectively. The black line stands for the noise level of the single 

 
 

(a) Symmetric configuration (b) Conventional configuration 

Figure 4.6: Two configurations of RIMU which have 10 sensing axes. 
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MEMS IMU, and the „analytic value‟ of the noise corresponds to Eq. (4.8), where 

it corresponds to the result of conventional LS method without lever arm effect. 

The noise driven by the lever arm effect is mitigated by the proposed methods, 

which can be clearly shown by the comparison of the segment with/without turning 

motion in Figure 4.7(a). Note that without the misalignment, the RMSE of 

symmetric configuration follows the analytic value. As described in 4.2.3, the 

estimation of angular rates gets more accuracy as the lever arm effect is applied, 

which can be confirmed in Figure 4.7(b). In other words, for the given amount of 

information from redundant sensors, NLS uses more information to estimate the 

angular rate. Therefore, the RMSE of acceleration of NLS is slightly increases 

more than that of symmetric LS.  

To confirm the performance of the suggested methods under sever conditions 

that suffers from greater amount of lever arm effect, maximum turning rate about 

360deg/s is applied for the same condition. Figure 4.8 shows that the proposed 

methods are more robust to the conventional methods under such conditions. 

Based on the estimated acceleration and angular rate, the 3D position RMSE 

of the aforementioned methods with increasing length of lever arm and angular 

rates is shown in Figure 4.9. The 3D position RMSE of symmetric lever arm shows 

similar results to that of conventional method as it only has increased accuracy in 

acceleration estimates. Note that LS under symmetric lever arm does not include 

compensation. The position RMSE of NLS is greatly improves as it shows lower 

noise level both in linear acceleration and angular rates than that of conventional 

compensation method.   
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(a) Noise level of acceleration 

 
(b) Noise level of angular rate 

Figure 4.7: RMSE of acceleration and angular rates 
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(a) Noise level of acceleration 

 
(b) Noise level of angular rate 

Figure 4.8: RMSE of acceleration and angular rates under greater lever arm effect 
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(a) Position RMSE according to the angular rate 

 
(b) Position RMSE according to the length of the lever arm 

Figure 4.9: RMSE of 3D position 
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Meanwhile, most of the application of RIMU usually contains some amount of 

misalignment in each sensing axes. It can be referred to 4.1.3 and 4.2.3 that the 

suggested methods both includes orientation of sensing axes as a factor to their 

performance. Therefore, it can be deduced that the misalignment will act as an 

important factor. However, it is very complicated to verify the relationship between 

the magnitude of the misalignment in each axes and that of induced estimation 

error in each axes. Therefore, the effect of the misalignment is reviewed by adding 

misalignment in every axes with a certain amount of standard deviation.  

It is confirmed by simulations that for the misalignment following the normal 

distribution with the standard deviation of 0.1 degree, the suggested methods still 

show enhanced performance than the conventional method. Figure 4.10 shows the 

mitigation of lever arm effect including misalignments in each redundant sensors 

under angular rate of 180deg/s in each axis in body frame. Figure 4.11 is under the 

same condition but angular rate of 360deg/s is applied.  

The reduced amount of acceleration noise originated from the lever arm effect 

is calculated by averaging the difference of noise during the angular motion, where 

100% reduction indicates that the noise level is as the same amount as Eq. (4.8). 

The reduced amount of angular rate noise by NLS is also calculated in the same 

manner, where 100% reduction indicate the situation where noise level is 

approximated to 0. The results are organized in Table 4.1 and Table 4.2, where the 

length of each lever arm is 3cm. 

 

 

 



59 

 

 

 
(a) Noise level of acceleration 

 
(b) Noise level of angular rate 

Figure 4.10: RMSE of acceleration and angular rates with misalignments 
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(a) Noise level of acceleration 

 
(b) Noise level of angular rate 

Figure 4.11: RMSE of acceleration and angular rates under greater lever arm effect  

with misalignments 
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Table 4.1. Lever arm effect reduction rate with misalignment ~ N(0,0.1deg) 

Angular rate (deg/s) 180 360 540 900 1800 

 Symmetric LS 79.32% 91.11% 94.14% 95.72% 94.03% 

NLS 47.04% 73.62% 82.55% 87.14% 78.91% 

 

Table 4.2. Angular rate noise reduction rate with misalignment ~ N(0,0.1deg) 

Angular rate (deg/s) 180 360 540 900 1800 

NLS 33.54% 58.25% 69.67% 78.51% 77.91% 
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5.1.1 Conclusion and summary 

In this thesis, two methods are proposed to mitigate the lever arm effect in 

RIMU where both methods focus to increase the accuracy in compensating 

centrifugal force with different approach. One is making multiple pairs of the 

sensing axes with the same orientation have lever arm vectors in opposite 

directions, maintaining the lever arm vectors aligned with sensing axes. Since the 

measured centrifugal force can be removed by simply summing all the 

measurements from redundant sensors, this method also reduces the computational 

burden for RIMU with multiple sensing axes where conventional method requires 

compensating unwanted specific force from each of the sensors. 

The other method is using concentrated likelihood method-based nonlinear 

least squares to increase the estimation accuracy of angular rates. Since it utilizes 

information from accelerometers when angular motion is applied, not only it 

mitigate the lever arm effect, but also it uses lever arm effect to reduce the noise 

level of angular rates, contributing to the enhancement in overall inertial navigation 

performance. 

Although the performance of the suggested methods is sensitive to the 

misalignment, the robustness is confirmed by simulations where every redundant 

Chapter 5   

 

Conclusion 
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sensor are added with misalignments. The simulation was set that each sensors 

rotate with respect to a random rotation vector that cross the center of RIMU. The 

magnitude of the rotation follows a normal distribution with a standard deviation of 

0.1deg. 

In conclusion, for a RIMU consisting of low-grade gyroscopes, suggested 

methods are worth considering to mitigate lever arm effect that occurs during 

severe angular motion. Suggested methods are also useful when it is difficult to 

optimally assign a minimized length of the lever arm in a RIMU containing 

multiple sensing axes. Since first method requires doubling in total number of 

sensors and the second method requires additional computational effort, it is 

recommended that a designer should choose one of the proposed methods, 

considering between their benefits and drawbacks. 

 

5.1.2 Future works 

As the proposed methods show performance which is sensitive to the 

misalignment, the axis-wise quantitative error analysis based on the misalignment 

would contribute to understand the characteristics of estimation based on the 

various RIMU configurations. 

Moreover, since the kinematic relation between lever arm and inertial 

measurements are well established, additional performance enhancement may be 

possible with the aid of the reasonable measurement model augmented by Kalman 

filter. In addition to the function that the estimation of the acceleration would not 

be affected when rotational motion is added, using nonlinear observer may reduce 

the noise level when rotational motion is not added. 
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본 논문에서는 중첩 관성 센서에서 발생하는 레버암 효과를 완화하기 위한 

두 가지 새로운 기법을 제안한다. 중첩 관성 센서에서는 각 센서에 존재하

는 레버암에 의해 회전 운동이 가해질 때 마다 오일러 힘이나 원심력과 같

이 원치 않는 비력이 가속도 측정치에 섞여 추정 오차를 유발하게 된다. 

따라서, 이를 해결하기 위해 제시된 최선의 방법은 길이가 최소화된 레버

암에 의한 항 가속도 측정치로부터 보상한 값으로 추정하는 것이었다. 그

러나, 보상하는 값이 노이즈가 섞인 각속도 추정치에 기반하기 때문에 기

존 접근법은 추정 오차를 완전하게 제거할 수 없으며, 저가형 IMU와 같이 

자이로스코프의 잡음 수준이 큰 경우에 대해 오차가 더 커지는 것을 확인

할 수 있다. 이러한 문제를 해결하기 위해, 레버암 벡터를 특정한 형태로 

배치시키거나 집중 우도 방법에 기반한 비선형 최소 자승 방식을 사용하여 

추정 오차를 제거할 수 있는 방식을 제안한다. 제안된 방법에 따르면, 레버

암의 대칭적인 배치 형태를 사용하거나 가속도계의 정보를 사용하여 각속

도의 추정 오차를 우선적으로 줄여 궁극적으로 가속도 추정에 사용하는 보

상하는 값의 정확도를 높이는 방식으로 레버암 효과를 줄일 수 있다. 또한, 

제안된 방법은 각각 연산량의 효율성과 전반적인 관성항법 성능의 향상에

서 추가적인 이점이 있다. 제안한 방식의 효과는 비정렬 오차를 포함한 시

뮬레이션으로 검증하였다. 
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