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Abstract

SMS: A Deep Synthetic Minority
Sampler for Imbalanced Binary

Classification

Jae-Won LEE
Department of Computer Science & Engineering

Graduate School
Seoul National University

Given an imbalanced dataset, how can we create high fidelity synthetic minority

instances for training robust and unbiased classifiers? Data imbalance is common in

mission-critical fields where costs associated with procuring minority instances are

prohibitively expensive. Training classifiers on imbalanced datasets result in unre-

liable predictions and low performance. Oversampling techniques are employed to

restore balance to the dataset, allowing the classifier to learn a more accurate rep-

resentation of the true data distribution. Thus, generating a set of synthetic samples

that are i) realistic, ii) containing varying degrees of class confidence, and iii) diverse

is essential. Existing methods create samples that do not satisfy all the desired prop-

erties.

We propose Synthetic Minority Sampler (SMS), an oversampling framework

designed for highly imbalanced datasets. SMS employs two generators to create a

balanced ratio of normal and borderline samples that teach classifiers a robust and
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unbiased class representation. SMS accounts for the scarce minority instances via

a class-conditional diversity loss to ensure that generated minority samples are di-

verse. Additionally, SMS stabilizes the training process by introducing a weighted

random sampler to balance the class proportion of mini-batches, and data augmen-

tation to prevent the discriminator from overfitting. Experimental results show that

models trained on an imbalanced dataset augmented with synthetic data sampled

from SMS outperform competitors in the binary classification task, achieving up to

10.06% higher F1-score than the competitors.

Keywords : Generative Adversarial Network, Data Imbalance, Oversampling

Student Number : 2019-25223
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Chapter 1

Introduction

Given an imbalanced dataset, how canwe create a set of realistic and diverse syn-

thetic minority instances for training robust classifiers that generalize well? Imbal-

anced datasets are common in mission-critical fields such as cancer or foreign object

detection, where highly prohibitive cost is associated with misclassifying the minor-

ity class instances.Thus, overcoming the data imbalance problem is crucial from both

the business and research standpoint.

Learning from imbalanced data is challenging for the following reasons: (i) se-

vere lack of minority instances makes learning accurate decision boundaries difficult,

and (ii) models are incentivized to minimize costs by focusing on majority class in-

stances. An appropriate solution is to oversample the minority class to augment the

imbalanced dataset. Existing works attempt to alleviate data imbalance via oversam-

pling using simple heuristics or generative models such as Generative Adversarial

Networks (GANs). To effectively oversample and train a robust classifier, we must

overcome the following challenges: (i) create realistic samples that contain varying

degrees of class confidence, empowering a classifier to learn an accurate and gen-

eral decision boundary, (ii) create diverse samples by avoiding mode collapse, and

(iii) stabilize training on imbalanced data. Realistic borderline samples with low class

confidence scores are valuable because they teach the classifier an unbiased decision

boundary. With highly imbalanced datasets, normal samples with high class confi-

dence scores close to real minority points help classifiers learn the class distribution.
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Figure 1: SMS enables achieving the highest predictive performance for imbalanced
classification.

Mode collapse occurs when the generator maps multiple points in the noise space to

the same point in the data space, thus stifling diversity. Discriminators are also prone

to ignoring or overfitting on the scarce minority samples, resulting in unbalanced

training. However, existing methods [1, 2, 3, 4] fail to generates points that contain

varying degrees of class confidence. Additionally, GAN-based methods [2, 3, 4] also

suffer from mode collapse and stability issues when trained on imbalanced datasets.

To address the aforementioned issues, we propose SMS (aDeep SyntheticMinority

Sampler for Imbalanced BinaryClassification), a novel GAN-based oversampling frame-

work for highly imbalanced datasets. By jointly learning borderline and normal fea-

tures, SMS generates realistic and diverse samples with varying degrees of class confi-

dence that guides classifiers to learn a robust and unbiased decision boundary through

its novel weight sharing dual generator model. Additionally, SMS tackles the second

challenge by adding a class-conditional diversity loss term that alleviates mode col-

lapse on minority instances. We stabilize GAN training by leveraging a weighted

random sampler and data augmentation strategies to add variations and balance the

ratio of majority and minority instances in each mini-batch. Due to its careful design,

SMS generates high-quality synthetic samples for training robust classifiers. We sum-

marize our main contributions as follows:

2



• Novel generation framework for imbalanced data. We generate samples

of both high and low degrees of class confidence to train a robust and unbiased

classifier (see Sections 3.2 and 3.4).

• Robustness to severe imbalance. Compared to existing methods, our model

is robust to severe data imbalance. Our class-conditional diversity loss (see Sec-

tion 3.3) selectively targets the minority class instances, alleviating mode col-

lapse on the minority class. Coupled with the training stabilization technique

(see Section 3.5), our model is capable of learning an accurate representation

of the minority class and its decision boundary.

• Experiment. Experiments (see Section 4) show that SMS generates the best

synthetic samples for training a classifier with imbalanced data (see Figure 1).

We review related works in Section 2, introduce our proposed method SMS in

Section 3, evaluate SMS and competitors in Section 4, and conclude in Section 5.
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Chapter 2

Related Works

Traditional data sampling techniques utilize simple heuristics to generate mi-

nority samples [1, 5]. Chawla et al. [1] proposed SMOTE, an over-sampling tech-

nique that interpolates new samples on the space between the target sample and a

randomly selected nearest neighbor. Although SMOTE works well on simple multi-

variate datasets, its inability to appropriately measure distance between images ulti-

mately results in samples that do not accurately represent the target class.

Real-world datasets contain borderline samples. These borderline points offer

valuable information for differentiating between majority and minority instances.

Creating only borderline samples results in a more brittle class distribution, due to

neglecting sparse safe regions where minority classes reside, and the possibility of

generating noisy samples. Last el al. [6] address this issue by proposing a method for

generating samples in safe and crucial regions of the data space, thus avoiding the

generation of noise and reinforcing the crucial sparse regions with synthetic points,

enabling models to learn a robust decision boundary.

Recent advancements in generative models [7, 8] have propelled research in the

field of synthetic image generation. Mirza et al. [9] proposed Conditional GAN, which

conditions a generator on class labels G(z|y) to generate samples that represent the

given class, providing a degree of control over the distribution of the generated sam-

ple. Odena et al. [3] proposed a conditional GAN framework that leverages an aux-

iliary classifier to generate high-fidelity samples. Although ACGAN works well on

4



balanced data, its classifier-driven training regime is not suited for training on imbal-

anced data.

Recent works [4, 10] have employed deep learning techniques to oversample

image datasets. DOS [10] generates multiple overloaded instances from each training

sample by pairing with different targets sampled in the linear subspace of the orig-

inal data to incrementally shift the targets to the class mean. Thus, DOS is limited

to sampling uniformly across the minority class distribution, resulting in a lack of

borderline samples. GAMO [4] introduces a novel three-way adversarial training be-

tween the generator, discriminator, and classifier to learn class decision boundaries.

However, because the convex hull and data distribution modeled by the conditional

discriminator is learned in the latent space, these learned representations may not

properly reflect the true data distribution, resulting in noisy or duplicate samples

when projected onto the data space.
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Chapter 3

Proposed Method

We propose SMS, a GAN-based oversampling framework for highly imbalanced

binary classification datasets. We provide a brief overview of our method in Sec-

tion 3.1. Then, we describe the normal and borderline sample generation in Sec-

tion 3.2, and introduce the class-conditional diversity loss in Section 3.3. We discuss

the generator, discriminator, and classifier training process in Section 3.4, and exam-

ine the weighted random sampling and data augmentation strategy in Section 3.5.

3.1 Overview

We design SMS to create synthetic points that emulate the distribution of real-

world datasets by generating a balanced proportion of normal and borderline sam-

ples. Figure 2 shows the overall architecture of SMS. We address the following chal-

lenges present in existing GAN-based oversampling frameworks.

1. Generating samples for training a robust and unbiased classifier. Aug-

mented datasets consisting only of points residing near existing minority in-

stances teach classifiers a biased representation. How can we generate samples

with key features required for training a robust and unbiased classifier?

2. Creating diverse samples. When GANs collapse, the generator maps mul-

tiple points in the noise space to the same image, which adversely impacts

diversity. How can we mitigate mode collapse?

6
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Figure 2: Architecture of SMS.The first two layers are shared betweenGB andGN to
learn common features. The remaining layers exploit the shared knowledge to gen-
erate normal and borderline samples.

3. Stabilize training on imbalanced data. The discriminator is likely to ignore

minority instances when training on highly imbalanced datasets. How can we

stabilize the training process?

We address the aforementioned challenges with the following ideas:

1. Normal and borderline sample generation. SMS employs a normal and bor-

derline generator to generate realistic samples with varying degrees of class

confidence. Together, these samples help train a robust classifier with substan-

tial generalization capabilities (details in Sections 3.2 and 3.4).

2. Class-conditional diversity loss.The class-conditional diversity loss encour-

ages the generators to map different points in the noise space to different out-

puts. By placing emphasis on the minority instances, we prevent mode collapse

7



for the minority class, enabling our model to generate a diverse range of mi-

nority samples (details in Sections 3.3 and 3.4).

3. Stabilizing training. We ensure that each mini-batch has approximately an

equal proportion of majority and minority instances. We then apply data aug-

mentation to the balanced mini-batch, preventing the discriminator from over-

fitting (details in Section 3.5).

3.2 Normal and Borderline Sample Generation

The main challenge for designing generators is to produce synthetic samples

with varying degrees of class confidence to train a robust and unbiased classifier.

We tackle the challenge by employing two generators, normal generator GN and

borderline generator GB .

Normal generator. Because of the lack of real minority instances, normal syn-

thetic minority instances are required to fortify sparse regions of the data distribu-

tion where minority instances reside.This helps the classifier learn a robust decision

boundary. C denotes the classifier network that models the conditional probability

p(y|x) as C(x) = P (y = 1|x), where y = 1 represents the minority class label. GN

minimizes the following loss function:

LGN
= Ez∼pz(z)[log(1−D(GN (z|y)))]

− Ez∼pz(z) [y logC(GN (z|y)) + (1− y) log(1− C(GN (z|y)))]
(3.1)

The loss function in Equation 3.1 drives GN to generate samples that are easy

to classify by fooling the discriminator D and minimizing the error of the classifier

C . GN is rewarded for creating realistic samples near regions where real minority

8



instances reside.

Borderline generator.Wegenerate borderline samples because they offer valu-

able information for differentiating between majority and minority instances that are

not present in the original dataset. This helps the classifier learn an unbiased class

representation. GB minimizes the following loss function:

LGB
= Ez∼pz(z)[log(1−D(GB(z|y)))]

+ Ez∼pz(z) [C(GB(z|y)) logC(GB(z|y)) + (1− C(GB(z|y)) log(1− C(GB(z|y)))]

(3.2)

In contrast to the normal generator GN , the borderline generator GB is re-

warded for generating points near the decision boundary by maximizing the entropy

of predictions generated from the classifier; that is, it aims to make the predictions

close to 50% as shown in Equation 3.2.The discriminator loss term regularizesGB so

that generated samples are bound to the estimated real data distribution modeled by

the conditional discriminator D(x|y) as shown in Figure 3.

Weight sharing. SMS employs two generators: GB and GN , responsible for

generating borderline and normal samples, respectively.GB andGN share weights in

the first two layers to exploit the fact that both normal and borderline instances share

similar features. As a result, knowledge of common features is shared between GB

andGN , allowing each model to learn a more accurate representation of normal and

borderline samples. Additionally, the number of parameters in the model is reduced

thanks to the weight sharing.

9
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Figure 3:GB aims to generate samples that are difficult to classify.The conditional dis-
criminatorD ensures that the generated samples do not diverge far from the learned
data distribution modeled by the conditional probability D(x|y). GN spawns points
in regions that are easy to classify, ensuring that the sparse, safe regions are not ne-
glected.

3.3 Class-conditional Diversity Loss

Mode collapse is an issue, because it severely limits the diversity of generated

samples. Due to the severe lack of minority instances, a reliable strategy is necessary

to steer the generators away from mode collapse. If such measures are not taken, the

generator is likely to collapse away from low density regions in the data space. We

propose a class-conditional diversity loss to create samples that vary from one an-

other in proportion to the pairwise distance in the noise space z. In Equation 3.3, let

β be a set of minority class examples {y, z} in a mini-batch. {yi, zi} and {yj , zj} refer

to two labels and noise vector pairs used to generate images. G refers to the gener-

ating function that maps labels and noise vectors to images. dist is the L1 distance

between a pair of generated images. The class-conditioning incentivizes the genera-

tor to mitigate mode collapse on the minority class, thus ensuring sample diversity.
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The diversity loss is defined as follows:

Ldiv = exp

!

"−
#

(yi,zi)∈β

#

(yj ,zj)∈β
‖zi − zj‖22 · dist(G(yi, zi), G(yj , zj))

$

% (3.3)

The loss function increases the pairwise distance between sampled points in

each batch in proportion to the pairwise Euclidean distance ‖zi − zj‖22 between the

noise vectors zi, zj .This loss function adapts the diversity loss [11] by penalizing the

generator based on the class-conditional pairwise distance between sampled points

in each batch to aptly account for minority instances.

3.4 Generators, Discriminator, andClassifier Train-
ing

Due to weight sharing, SMS optimizes both generators jointly. When training

the generators, we minimize the following loss function LG:

LG = LGN
+ LGB

+ λLdiv (3.4)

The discriminator ensures that generated samples are realistic and contains key

properties of the target class by conditioning on labels. During adversarial training,

the discriminator D is tasked with correctly identifying real and fake samples by

maximizing Equation 3.5:

LD = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(GN (z|y)))]

+Ez∼pz(z)[log(1−D(GB(z|y)))]
(3.5)
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The classifierC is tasked with classifying real and generated samples. It acts as a

critic, pushing the generators to become better at their respective tasks via constant

feedback.Weminimize the cross entropy loss, where y = 1 represents minority labels

and C(x) = P (y = 1|x) as defined in Section 3.2.

LC = −Ex∼pdata(x) [y logC(x) + (1− y) log(1− C(x))]

−Ez∼pz(z) [y logC(GN (z|y)) + (1− y) log(1− C(GN (z|y)))]

−Ez∼pz(z) [y logC(GB(z|y)) + (1− y) log(1− C(GB(z|y)))]

(3.6)

3.5 Stabilizing Training

We propose a combination of weighted random sampling and differentiable data

augmentation to stabilize training. We first leverage a weighted random sampler to

balance each mini-batch. The weighted random sampler adds weights to each sam-

ple in proportion to the class imbalance. For example, if there are 1,000 majority and

10 minority instances, the weights assigned to each majority and minority instances

will be 1, and 100, respectively. In other words, the probability of sampling a major-

ity instance on the first draw is 50% since the sum of weights assigned to majority

and minority instances add up to 1,000 each, with a grand total of 2,000. Afterwards,

we apply differentiable data augmentation proposed by Zhao et al. [12]. Although

the discriminator receives a balanced ratio of majority and minority samples, the

discriminator inevitably sees the same images repeatedly, eventuating in overfitting.

To address this issue, we apply differentiable data augmentation comprised of image

translations, cutout, and color changes to prevent the discriminator from overfitting

to the limited pool of minority instances.

We describe the training procedure of SMS. For each mini-batch, we create a

12



balanced mini-batch using the weighted random sampler. Afterwards, we generate

both normal and borderline samples and apply the augmentation techniques on both

the real and generated samples. We update the discriminator by maximizing the loss

function LD in Equation 3.5. Then, we update the classifier by minimizing the loss

function LC in Equation 3.6. Lastly, we update the generators by minimizing the loss

function LG in Equation 3.4.This process repeats until termination.

13



Chapter 4

Experiments

We run experiments to answer the following questions:

• Q1. Performance (Section 4.2). How well does a classifier perform when

trained on a dataset augmented by SMS? How effective is SMS when trained

on datasets with rare objects?

• Q2. Quality and diversity (Section 4.3). How realistic and diverse are the

synthetic minority samples generated by SMS?

• Q3. Ablation study (Section 4.4). Does the weight sharing strategy help im-

prove accuracy? What impact does the diversity loss have on performance?

4.1 Experimental Settings

Dataset. For each dataset, we select two classes to be the majority and minor-

ity class. The Fashion MNIST [13] dataset is made up of gray-scaled images that do

not follow the natural image distribution. We designate the trouser and coat as the

majority and minority class, respectively.The CIFAR-10 [14] dataset contains natural

images of various objects and animals. We designate the car and deer as the majority

and minority class, respectively. The SVHN [15] dataset features natural images of

street view house numbers. We designate the digits one and four as the majority and

minority class, respectively.The Waste classification dataset is a binary class dataset

featuring natural images of organic and recyclable objects. Because the original im-

14



Table 1: Dataset summary.

Dataset Dimensions Majority Class Minority Class
Training Test Training Test

FashionMNIST 1 1× 28× 28 6,000 1,000 30 200
CIFAR-10 2 3× 32× 32 5,000 1,000 25 200
SVHN 3 3× 32× 32 5,000 1,000 25 200
Waste 4 3× 32× 32 5,000 1,000 25 200

ages vary in size, we resize all images to 3×32×32 before feeding the training data to

each model. We designate the organic objects as the majority class, and the recyclable

objects as the minority class. We enhance the difficulty of the task by enforcing an

imbalance ratio of 200:1 on all datasets. For example, in the FashionMNIST dataset,

30 samples in the minority class are selected and combined with 6,000 majority in-

stances to create an imbalanced dataset. Unless otherwise specified, all experiments

are conducted on the datasets as specified in Table 1.

Competitor.We compare the performance of SMS to the following competitors.

• Random. This method randomly selects existing minority instances for over-

sampling.

• SMOTE [1]. Until the dataset is balanced, for each minority point, SMOTE

performs linear interpolation between the point and its randomly selected k-

nearest minority class neighbors.

• CDCGAN [2]. CDCGAN utilizes convolutional strides and transposed convo-

lutions for downsampling and upsampling, respectively.

• ACGAN [3]. ACGAN leverages an auxiliary classifier in the adversarial train-
1https://github.com/zalandoresearch/fashion-mnist
2https://www.cs.toronto.edu/∼kriz/cifar.html
3http://ufldl.stanford.edu/housenumbers
4https://www.kaggle.com/techsash/waste-classification-data
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ing process to generate high-quality samples for each class. During the adver-

sarial training process, the discriminator and the generator work together to

create samples that the auxiliary classifier can classify with ease.

• GAMO [4].GAMO is a minority oversampling framework that learns an inter-

mediate representation of the minority class via a three-way adversarial train-

ing between the classifier, discriminator, and generator. After training, it learns

to project the intermediate representations sampled by the generator back onto

the data space to create synthetic samples. We use the parameter settings spec-

ified in the GAMO paper to train the models.

Model training.Allmethods are trained on aDell PowerEdge T630 INTELZeon

E5-2630 2.2GHz server with Geforce GTX 1080Ti GPUs. We train each of our meth-

ods for 1200 epochs with the exception of GAMO, which is trained according to the

specifications provided in the supplementary materials of the GAMO paper.

Hyperparameters. With the exception of GAMO, we apply weighted random

sampling and data augmentation described in Section 3.5 to each GAN-based method

to prevent immediatemode collapse.We discovered that applying the aforementioned

technique to GAMO deteriorates performance. We train SMS by setting the weight of

the class-conditional diversity loss term λ to 1.The mini-batch size is set to 16 for all

datasets.The Adam optimizer [16] is used to train all models. We set the learning rate

of the discriminator, generator, and classifier in SMS to 0.0002, 0.0001, and 0.0002. We

apply weight decay of 10−5 to the classifier to avoid overfitting.

Evaluation. We train each method on the imbalanced dataset datareal. Af-

ter training, we oversample minority instances to create datasynthetic. The size of

datasynthetic is equal to the difference between the number of majority and minority

instances in datareal. We evaluate the effectiveness of the synthetic minority samples

16



by training a classifier on datareal+datasynthetic. Because the severe data imbalance

disqualifies accuracy as a suitable evaluation metric, we use the precision, recall, and

F1-score to evaluate the performance of the classifier.The evaluation model is a CNN

with two convolutional layers followed by max pooling and two dense layers. Eval-

uation is performed on test data datatest according to the specifications in Table 1.
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(a) CIFAR-10 (b) SVHN

Figure 4: Visualization of synthetic samples generated byACGAN, CDCGAN, GAMO,
and SMS (from top to bottom). (a) SMS creates realistic and diverse images despite
the lack of minority instances. (b) SMS generates diverse samples containing the key
features of the digit 4 while retaining large variations of noisy features for training a
robust classifier.

4.2 Performance

Standard evaluation. We evaluate the performance of classifiers trained with

real and synthetic minority samples generated by SMS and competitors. Table 2 and

Figure 1 shows the precision, recall, and F1-score of classifiers trained on datasets

augmented by SMS and its competitors. SMS helps the classifier achieve the highest

precision, recall, and F1-score compared to other classifiers trained using real and

synthetic minority samples generated by competitors for all datasets.The F1-scores of

the classifier trained with the dataset augmented by SMS are 1.77%, 10.06%, 1.95%, and

1.10% higher than that of the second-best performing method on Fashion MNIST,

SVHN, CIFAR-10, and the Waste classification dataset, respectively. Moreover, there

are large performance gaps between SMS and its competitors on SVHN in Figure 1c.

We observe in Figure 4b that SMS generates samples with both the key features of

the minority class and a diverse range of noise present in the original SVHN dataset,

which helps classifiers filter out the noise and focus on the important features for
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-4.75% -0.88% +3.10%

(a) Precision

+13.82%
+4.31%+4.97%

(b) Recall

+10.06%+0.04%+2.26%

(c) F1-score

Figure 5: Classifiers trained using real and synthetic minority samples generated by
SMS achieves the best performance on the severely imbalanced SVHN dataset. The
performance gaps between the classifiers trained on samples generated by SMS and
competitors are the largest when the ratio is 200:1.

identifying minority instances. We note that SVHN contains noisy features that may

distract networks from the key salient features such as the digit 2 next to the digit 4

on the bottom left hand image of Figure 4b. By generating samples with both high

and low degrees of class confidence, SMS creates samples that help train a robust and

unbiased classifier compared to its competitors.

Next, we evaluate the performance of classifiers trained using real and synthetic

minority samples generated by SMS and competitors under the imbalanced ratios

50:1, 100:1, and 200:1 on SVHN. Figure 5 shows that the classifier trained using real

and synthetic minority samples generated by SMS achieves the highest F1-score for

all three imbalance ratios. The performance gaps are the largest when the ratio is

200:1; SMS helps the classifier achieve up to 3.10%, 13.82%, and 10.06% higher pre-

cision, recall, and F1-score compared to the second-best performing method. These

results indicate that SMS helps train a robust classifier even on severely imbalanced

datasets.

Evaluation with rare objects. To further assess the ability of SMS to generate

synthetic samples on highly imbalanced datasets containing rare objects, we conduct
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Table 3: Classification performance of evaluation model on CIFAR-10 and SVHN
when trained on augmented dataset generated by SMS and its competitors. Each
method is trained on a dataset with an imbalance ratio of 400:1.

Method SVHN CIFAR-10

Precision Recall F1-Score Precision Recall F1-Score

Random 0.9198 0.5225 0.6664 0.9160 0.5895 0.7173
SMOTE 0.8684 0.5195 0.6501 0.9220 0.6120 0.7357
DC-GAN 0.9205 0.5275 0.6707 0.9322 0.6075 0.7356
AC-GAN 0.9198 0.5225 0.6664 0.9296 0.5900 0.7218
GAMO 0.9177 0.5075 0.6536 0.9274 0.5750 0.7099

SMS 0.9212 0.5425 0.6833 0.9394 0.6550 0.7718

additional experiments by reducing the number of majority and minority instances

in SVHN and CIFAR-10 to 4800, and 12, respectively. This creates two new datasets

with an imbalance ratio of 400:1. Table 3 shows that SMS achieves the highest F1-score

even on the severely imbalanced datasets. These results indicate that SMS generates

better quality samples for learning an unbiased, general class representation com-

pared to its competitors even on severely imbalanced datasets where real minority

instances are extremely scarce.

We additionally evaluate the performance of SMS on the Waste classification

dataset. We note that the minority class instances in the Waste classification dataset

come in many different forms as shown in Figure 6. Thus, the key features of the

minority class cannot be easily captured due to the large variations between samples

of the same class. This makes the task more challenging in comparison to the other

three datasets, where each class instance possesses common salient features. For ex-

ample, in SVHN, instances of the digit 1 have common salient features that clearly

distinguishes the instance from an instance belonging to the class digit 4. We note

that the recall and F1-score of the classifier trained with the dataset augmented by
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Figure 6: Examples of minority class instances (recyclable objects) in the Waste clas-
sification dataset. Despite belonging to the same class, each object has different key
salient features, making it difficult to identify common features defining the minority
class.

SMS are 1.72%, and 1.10% higher than that of the second-best performing method on

the Waste classification dataset as shown in Figure 1d. This demonstrates that SMS

performs better than its competitors even on more challenging datasets containing

rare objects.

4.3 Synthetic Image Quality and Diversity

We compute the Fréchet Inception Distance [17] scores for each method to eval-

uate the quality and diversity of the generated samples. The experimental results in

Table 4 show that SMS has the lowest FID-score, indicating that SMS generates the

most diverse and highest-quality images. To further examine the diversity and qual-

ity of generated images, we analyze the images generated by each framework. We

observe on the last row of Figure 4b that SMS generates the most diverse range of

samples including borderline features (see third image from the right on the last row).

Note that other competitors show large numbers of duplicates, which is evident from

observing images generated from SVHN and CIFAR-10 as shown in Figure 4a. We

omit the FID-scores for the Waste classification dataset due to the resizing require-
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Table 4: FID score results. Lower values indicate better image quality and diversity.
The best scores are highlighted in bold. SMS−W , SMS−D are variants of SMS without
the weight sharing and diversity loss components.

Method FashionMNIST CIFAR-10 SVHN

Random 32.3 37.3 30.2
SMOTE 39.4 34.9 28.3
DC-GAN 14.9 31.0 15.9
AC-GAN 12.7 20.8 17.2
GAMO 28.4 30.3 15.2
SMS−W 17.0 20.5 18.5
SMS−D 15.9 22.6 20.3
SMS 12.4 17.6 14.7

ments, which impacts the accuracy of the FID-score.The input images must have the

same size and dimensions during the training and testing phase. Because the origi-

nal dataset contains images of varying size and dimensions, the images are resized

to ensure that the dataset contains images of fixed size and dimension. Because the

generated samples are compared against the resized images, the calculated FID-score

will not accurately reflect the quality and diversity of the generated samples.

4.4 Ablation Study

Effect of Weight Sharing on Performance. SMS leverages weight sharing to

learn common features between normal and borderline samples. To verify the perfor-

mance enhancing properties of weight sharing, we compare SMS to SMS−W , which

does not use weight sharing.

Rows of SMS−W and SMS of Table 5 show the improvements of SMS via weight

sharing.We note that the classifiers trained using real and synthetic minority samples

generated by SMS outperforms that of SMS−W with an average precision, recall, and
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Table 5: Ablation studies. SMS outperforms both 1) SMS−W a variant of SMS with-
out weight sharing, and 2) SMS−D , a variant of SMS without the class-conditional
diversity loss term.

Method Metric FashionMNIST SVHN CIFAR-10 Waste

SMS
Precision 0.9851 0.9315 0.9482 0.9299
Recall 0.9635 0.7330 0.7420 0.5925
F1-score 0.9742 0.8204 0.8325 0.7238

SMS−W

Precision 0.9743 0.9282 0.9376 0.9120
Recall 0.9290 0.6985 0.7385 0.5770
F1-score 0.9511 0.7971 0.8262 0.7068

SMS−D

Precision 0.9276 0.9315 0.9330 0.8916
Recall 0.9485 0.6305 0.6940 0.5665
F1-score 0.9379 0.7417 0.7959 0.6928

F1-score improvement of 1.14%, 2.95%, and 2.13% across all four datasets.The consis-

tent results demonstrate that weight sharing does help the generators perform better

by jointly learning the common features between borderline and normal instances.

To further validate the performance difference, we analyze the FID-score of gener-

ated samples from each method. We note that the FID-score decreases by an average

of 20.53%, which indicates that the generated samples are more diverse and realistic

with weight sharing.This shows that weight sharing helps improve the quality of the

generated samples.

Effect of Class-conditional Diversity Loss on Performance. We verify the

effects of the class-conditional diversity loss term on the overall performance of SMS.

Rows of SMS−D and SMS of Table 5 show the accuracy improvement due to

the diversity loss term. Precision, recall, and F1-score of the classifier trained using

real and synthetic minority samples generated by SMS increase by 2.42%, 7.34%, and

5.89% on average across all four datasets. This demonstrates that the diversity loss
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term has improved the quality of the dataset by encouraging the generators to create

diverse samples. We validate the diversity of the generated samples by observing the

FID scores.

Rows of SMS−D and SMS in Table 4 show the FID score improvement due to

the diversity loss term. We note that the FID score decreases by an average of 23.77%.

The results show that the diversity loss term improves both the quality and diversity

of the generated samples.
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Chapter 5

Conclusion

We propose SMS, an oversampling framework for sampling high-fidelity mi-

nority instances. We observe that existing deep-learning based methods overfit or in

worst-cases, immediately collapse when trained on highly imbalanced data. More-

over, we note that existing methods either create borderline or safe samples but not

both. Based on observations, we introduced an oversampling framework that jointly

learns the common and borderline features to generate amorewell-rounded synthetic

dataset. Extensive experiments show that SMS generates the most diverse, classifier-

friendly synthetic dataset. Future works include extending the method to generalize

well to multi-class datasets.
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요 약

클래스가 불균형한 데이터가 주어졌을 때 어떻게 소수 클래스에 대한 데이터

를인공적으로증대하여클래스분류성능을높일수있을까?데이터불균형문제는

고장진단및질병분류와같이한쪽의클래스수가다른한쪽의수보다극단적으로

적을때발생하는문제를일컫는다.이러한불균형한데이터를통해학습된모델은

잘못된예측결과좋지못한분류성능을보인다.이를해결하기위해일반적으로소

수 클래스에 대해 인공적으로 샘플을 증대하여 각 클래스의 샘플의 수를 동일하게

하는방식을사용한다.인공적으로증대가된샘플은사실적이고기존의샘플과동

일하지않아야하며다양한성질을포함하여야하는데선행연구들은이러한요소를

충족하지못하고있다.

해당논문에서는불균형한데이터셋에서높은품질의인공데이터를오버샘플

링 (oversampling) 하는 프레임워크인 Synthetic Minority Sampler (SMS)를 제안한

다. SMS는두개의생성기를사용하여구분이명확한샘플과명확하지않은샘플을

적절한 비율로 생성하고 이를 통해 분류기를 더욱 견고하고 일반화된 방향으로 학

습시킨다. SMS는해당논문에서고안된손실함수 (class-conditional diversity loss)

를사용하여인공적으로생성된소수클래스샘플의다양성을보장한다.또한미니

배치의클래스비율을적절하게배분하는임의샘플러와구분기 (discriminator)의오

버피팅방지를위한데이터증강기법을사용하여 SMS의학습을안정화한다.실험

결과에서는 SMS 를 통해 생성된 인공 데이터를 기존의 데이터셋에 추가하여 학습

한모델이이진분류 (binary classification)문제에서탁월한성능을보였으며,경쟁

메소드보다 10.06%높은 F1스코어를기록하였다.

주요어 : 생산적적대신경망,불균형한데이터,오버샘플링
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