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Abstract

The use of memory is one of the key parts of modern computer architecture
(Von Neumann architecture) but when considering limited memory, it could be
the most lethal part at the same time. Advances in hardware and software are
making rapid strides in areas such as Big Data, HPC and machine learning and
facing new turning points, while the use of memory increases along with those
advances. In the server environment, various programs share resources which
leads to a shortage of resources. Memory is one of those resources and needs to
be managed. When the system is out of memory, the operating system evicts
some of the pages out to storage and then loads the requested pages in memory.
Given that the storage performance is slower than the memory, swap-induced
delay is one of the critical issues in the overall performance degradation. There-
fore, we designed and implemented a “swpTracer” to provide visualization to
trace the swap in/out movement. To check the generality of the tool, we used
mlock to optimize 429.mcf of Spec CPU 2006 based on the hint from swpTracer.
The optimized program executes 2 to 3 times faster than the original program in
a memory scarce environment. The scope of the performance improvement with
previous system calls decreases when the memory limit increases. To sustain the
improvement, we build a swap- prefetch to read ahead the swapped-out pages.
The optimized application with swpTracer and swap-prefetch consistently ex-

ceeds the performance of the original code by 1.5x.

Keywords: Memory, Swap, Visualization, Profile, Optimization

Student Number: 2019-25099
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Chapter 1

Introduction

Modern workloads are memory intensive. Machine learning, High Performance
Computing (HPC) workloads, Bioinformatics, etc. have shown enhanced results
with the support of advanced technology. However, these applications require
a huge capacity and high bandwidth of memory.

Memory is one of the key components that loads everything to operate
the system. As the amount of data to be processed increases, more memory is
needed which eventually becomes a bottle neck. Compared to the other compo-
nents of the computer, the scale of improvement in main memory is relatively
small. Besides DRAM, new techniques and products such as NVM and Persis-
tent Memory were suggested to complement each memory hierarchy. Still, there
is high latency between the main memory and storage.

Memory management is an important job for an operating system, or else,
the whole system will be blocked. Swap is one of the tricks for an operating
system to protect the priceless resource even though it contains latency during

the page transfer. The latency between the memory and storage is more critical



than the latency between the CPU and memory, but this also means that the
burden has just been doubled.

Because systems seem to suffer from a depletion of resources less nowadays
compared to the past few decades, swapping in a system might only be an is-
sue at some point. Nevertheless, in the following scenarios, the use of swap is
obviously necessary.

1) When sufficient memory is not available because of a temporal memory-

intensive workload, it is difficult to evict a file-backed page.

2) Hibernation for energy-limited environments.

3) System environments where responsiveness is critical.

4) Embedded environments with limited resources.

A good rule of thumb for swap in memory is that it should be differently
configured based on the scenarios and system resources. To solve the memory
shortage, the operating system exchanges pages between the main memory and
storage. If a page fault occurs because there is no page to access the page
table, the page fault handler reads the page from the hard disk and stores it in
memory. Because hard disks have a very different performance compared to the
main memory, the overall run time is increased by programs waiting to perform
a memory swap.

Understanding the memory usage pattern of a target application and se-
lecting an adequate memory management policy are one way to enhance the
performance. When complicated programs are split and analyzed, there are
common memory access patterns among applications. For example, a matrix
vector multiplication is the basis of big data analysis and machine learning.
Meanwhile, graph computations are one of the typical irregular access pattern

workloads which are used widely from network systems to web based applica-



tions. Considering the use of large amounts of data in recent computational
workloads and the regularity in memory access patterns, analyzing programs
can improve performance.

In this study, we designed and implemented swpTracer, a tool that visual-
izes memory swap generated during program performance in an offline manner.
It provides a hint to optimize the swap operation of the workloads. The purpose
of swpTracer is to provide an insight to the swap so the transfers between the
memory and storage can decrease when there is insufficient memory. Especially,
it focuses on helping programmers to trace down the features that are involved
with the swap during the process. To obtain the basic information about each
object, swpTracer parses the entire code statically and inserts a hint instru-
ment into the code before carrying out the program. swpTracer focuses on the
workloads with data locality. By analyzing the flow of the swap operation, users
can determine the overview of the program’s flow from the memory to the swap
area. swpTracer analyzes using the kernel log and memory map information
to extract the object to be optimized and visualizes the results of the analysis.
swpTracer itself may not be a solution for the problem, but it will provide a hint
to the programmers to help solve the problem. The memory access pattern will
be key to optimizing performance in program deployment. The contributions

of this paper are as follows:
e swpTracer visualizes the swap out memory latency.

e By automatically adding a few lines online in the compiling stage, it could

provide information about fault-able pages.

e swpTracer not only provides the native information of a faulted address

but also provides simple statistical information about the memory latency.



Chapter 2

Background

2.1 Page Reclamation Policy

Linux supports a virtual memory address which simulates a continuous physi-
cal memory for applications [10]. They may be physically fragmented and over-
flowing into disk storage. The Linux virtual memory system maps the virtual
address space in the application program into page frames. As a technique for
implementing the virtual memory, the system uses a demand paging scheme
that copies only attempts to access disk pages (i.e., if a page error occurs) in
the physical memory.

When the system runs out of memory, the kernel performs page frame recla-
mation. The page frame recovery procedure selects the victim page in a LRU
(Least Recently Used) or pseudo-LRU manner. Once the file-backed page be-
comes dirty, the kernel writes the contents of the page frame to that disk file. If
the page is an anonymous page, which is not backed with a disk file, the kernel

stores the page to the swap area. Each swap area consists of 4K byte blocks
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in a swap slot order and is used to include swap-out pages. The swap system
manages three types of pages: anonymous page memory of the process, dirty
pages of the process’s private memory and pages that are shared by multiple

processes.

2.2 Linux Swap Management

In the Linux OS, the swapped-out page resides in the swap area, and it has two
types: either a swapfile or device partition. The swapfile supports a more flexible
management compared to the device partition. On the other hand, using the
device partition as a swap area could perform faster.

The swap cache resides in the RAM and acts as a buffer for the swap area.
Shared pages are loaded on anonymous pages. For anonymous pages that are
shared by multiple processes, pages stay in the swap-cache. When the system
has insufficient memory, it scans the inactive list of pages and selects the page
and moves it to the swap cache. The swap cache bridges the page management
and data transfer between the memory and swap area. A page (or a memory
page) is mapped and managed in the page table as a continuous multi-block of
virtual memory. The virtual memory enables access to the pages in a typical
manner without considering the current state of each processor. The storage
performance is relatively slower than the memory; thus, instead of taking the

page out right away, a small partition of memory is used to still hold the evicted

page.

2.3 Linux System Calls

Linux supports system calls for high-level API() to pass the intention directly

to the system. madvise() [3] is used to pass the direction to the kernel about the



requested virtual address range with a flag to improve the system or application
performance. mlock() [2] locks part of the virtual address space for the calling
process preventing the page from being used in the swap operation. The built-in
functions builtin prefetch() from Ubuntu GCC [20] and pragma prefetch from
Intel ICC [21] provide built-in functions to prefetch the page from the cache
level. In compile-time, a user passes the intention of prefetching the page to

the system. However, there are no functions for directly prefetching a swap out

page.



Chapter 3

Design and Implementation

3.1 Design

In this section, we present the design and implementation of swpTracer. Figure
3.1 is a sketch of the swpTracer architecture which are divided into two big
modules. We first describe the mechanism at the kernel level and then explain

the user level modules.

3.2 Implementation

3.2.1 Kernel Level

After the user launches a task, the executor turns on Algorithm 1 of the sw-
pTracer kernel module. The swpTracer module manages the swpLogger, which
leaves a log when a kernel swap-related function is called. The kernel part of
swpTracer follows the kernel control flow. Figure 2.1b depicts the data struc-

ture of the pages in the system and the related actions. The swpTracer module



Kernel Level

Process
Management
System

Management
Subsystem

swplLogger

Hint

Target PID
Hint
swpTracermodule | 5
rsyslog |

rsyslog

Figure 3.1: swpTracer Architecture

Algorithm 1 kernel swap module

procedure SWPTRACE(pid_t, target)
if is_current_pid = target_child then
find the vma of anonymous page

reverse map and traverse anonymous page tree

handle error
end if

end procedure




controls the logger activation and checks whether the current process is derived

from the target process (launched).

3.2.2 Application Level

The application level consists of three modules: executor, analyzer, and visual-
ization. The execution module prepares the setup for the task user request and

launches by passing the process identifier to the kernel.

Algorithm 2 Code Injection

procedure (Injection(FILES))
for file in FILES do
if line ==regex.matched(re) then
extract data from line
modify line from extracted data
newline < modi fied_line
write to file
end if
end for

end procedure

Code Injection swpTracer supports the information of the object by pars-
ing the source code of program statically. With Flex, the injection module in
Algorithm 2 traverses through the program source code statically and searches
for memory allocations. The injector inserts the code to achieve several pieces
of information such as the file name, function, variable name, address and re-

quested size.

10 -’x_i'l'll.-i L



Once the analyzer module predicts whether it holds the locality, the module
generates a modified code with the system call mlock() while still taking into
consideration the available memory and the size of the data-object.

Analyzer and Visualization

The analyzer and visualization modules are called after the execution ter-
minates. From the rsyslog log file, the analyzer extracts data and normalizes
the value to calculate the ratio of each memory mapped region. The virtual
address address logs of the swapped pages are analyzed statistically and used
to determine whether they were sequential accessed and hold locality. The vi-
sualization module generates a scatter plot taking into consideration the nor-
malized region values. Figure 3.2 shows a collection of reports generated with
swpTracer applied to the benchmark Spec CPU 2006. Each plot displays the
trace of the swapped in/out pages. Each subfigure contains the linear accessing
interval with the swapping in/out of the pages. By combining the data object
information with the swap report, we could optimize the program. An example
is described in the evaluation part of this paper.

Additional: Swap-Prefetch Locking the page in memory or passing the
hint to the system call did work well in a state in which the available mem-
ory is slightly insufficient, but the percentage of speed up decreases when the
available memory becomes sufficient. To improve the speed up, swap-prefetch
in Algorithm 3 used an additional thread to read ahead the swapped-out pages
which are accessed soon afterwards. The usage of swap-prefetch is same as other
prefetch built-in functions [20, 21]. The loaded chunk size will be determined
by 1) the available memory, 2) the current position, 3) the total object size and
4) the starting point to launch the additional thread. Especially for the 4th
condition, unnecessary page loads when a swap did not occur will decrease the

performance because the swap prefetch targets swapped out pages.

]
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Algorithm 3 Swap Prefetch Example

procedure PREFETCH (address, size,of fset)
chunk = ( size - available ) / chunk_size
free(previous_chunk, chunk size);
map(next_chunk, chunk size);

end procedure

procedure LOOP_EXAMPLE(array, size)
for i < 1to N do
for j < 1 to N do
if do_prefetch = True then
thread(prefetch(array, size, [i, j]));
end if
/** do something **/
end for
end for

end procedure

12



Workloads Descriptions Memory (MiB)
401.bzip2 Compression 857
403.gcc C Language Optimizing Compiler 890
429.mcf Single-depot Vehicle Scheduling 1700
433.milc Physics / Quantum Chromodynamics 694
445.gobmk Artificial Intelligence 37
456.hmmer Profile Hidden Markov Model 32
462.libquantum Physics / Quantum Computing 104
464.h264ref Video Compression 72

Table 3.1: Workload descriptions and maximum memory usage

13
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Chapter 4

Evaluation

4.1 Experimental Setting

The experiment was done on a server with an Intel(R) Core (TM) i7-4790 CPU
@ 3.60GHz and 32 GiB DIMM DDR3 1600 MHz (8 GiB x 4). For the swap area,
the swap device partition was used with the Samsung SSD 850 (256GB, up to
5x0 MB/sec). The swpTracer supports Ubuntu and Centos as the operating
system and was tested in kernel versions from 5.1.14 to 5.6.9. The application
level was mostly implemented with python version 2.7.17 and other libraries
or the languages are specified in the requirements list. As a simulation of a

memory pressure environment, we used cgroup[12] to limit the memory usage.
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4.2 Experiment
4.2.1 Generality of swpTracer

Generality is an important factor so that the tool can be used broadly. 429.mcf
from Spec CPU 2006 was used to evaluate the effectiveness. mlock() was used
to increase the performance, which locks the requested virtual address range in
the memory. Figure 4.1 shows the result of the speed up per memory usage.
The value inside the parenthesis is the percentage compared with the maximum
usage. Once the system ran out of memory for 10%, the execution time increased

by about 3x from 1678 seconds to 5676 seconds.

4
3

o

=

- 2

]

]

& 1
0

1512 (90%) 1260 (75%) 840 (50%) 420 (25%)
Memory Usage (MiB)
W Base m Optimized
Figure 4.1: Speed up in 429.mcf

As a result of the enhancement, the application speeds up by 2x on average.
Especially, when there was a 10% lack in memory, it speeds up by 3x which

means that it maintains the speed same as in the full memory state.
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Optimization

Descriptions

Applied Parameters

base original code
madvise advice to the kernel report full address range of data
mlock lock part of virtual address space in RAM | lock full range of data if possible
prefetch adapt swap-prefetch address, chunk size, offset

Table 4.1: Optimization Types and Applied Parameters

4.2.2 Memory Optimization Method Comparison

To test the effectiveness of swpTracer and swap-prefetch, we created a micro
benchmark described in Algorithm 4 that traverses an array 3 times. We com-
pared the result of the original program as the baseline and tested three cases

for optimization: madvise, mlock and swap-prefetch as described in Table 4.1.

Algorithm 4 Micro-benchmark Example

procedure LooP(A[])

loop + 1
for loop < 1 to N do
for k + 1 to M do

for k< 1 to L do

/* do something */

end for
end for
end for

end procedure

We varied the size of the data arrays as 2, 4, 8, and 12 GiB. The charts in

17



Figure 4.2 are the result of the speed up per available memory. Swap-prefetch
was consistently 1.5 times faster compared to the baseline and madvise(). Rel-
ative to mlock(), it was 1.25 times faster on average. Swap prefetch was the
fastest when the data size was bigger than 2 GiB while mlock showed a higher
performance for a smaller object. Because mlock pins the requested range of
address in the main memory, it is the fastest way to manage the memory. Once
the memory ran out and the system could no longer keep the pages in the

memory, swap-prefetch exceeded the performance of mlock.
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Chapter 5

Related Work

Monitoring and analysis are combined so it is hard to separate the uses of
the tool. From the point of view of system optimization, we will focus on the
tool. Meanwhile, in aspect of the analysis, we want to explain the variety of
approaches to the analysis.

Monitoring tools Monitoring tools for memory management are catego-
rized into two interfaces: command line and a graphic user interface. Tradition-
ally, tools display the utilization of resources such as the CPU, memory, and
network in the command line [4, 7, 8, 11]. Lancet is used to measure the open-
loop tail latency present in ps-scale data center applications with high fan-in
connection patterns [25]. vimstat is mostly used to examine the swap status and
display the amount of swap in/out. Each enterprise supports analysis tools for
there own system architectures [5, 6].

Program Analysis and Optimization: The analysis of a program is
used for system forensics and optimization of system resources. Methods in-

clude reverse-engineering and analysis along the control flow of the programs.
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In reverse-engineering, hex editors are used to restore the source code. Conti
et al. presented design principles for file analysis with few semantic informa-
tion [13]. WinHex especially helps to interpret files reliably and accurately and
recover deleted files [14, 15].

Program analysis tools such as CAMP, LLVM, and FLex are used to de-
termine the memory access pattern [26, 34, 35, 36]. Alternatively, to determine
a narrow range of targeted information, hooking a library with a user defined
library is available. Hashemi et al. used the LSTM model to learn the access
pattern and optimize a program [18].. Ben-Nun et al. optimized a multi-core
with the memory access pattern [19].

There have been studies to that optimized the swap memory. Con Kolivas
suggested the a kernel patch which manages the swapped list with a timer and
prefetches the swap pages every 5 seconds within certain conditions [17]. Park
et al. presented the ten- dency of memory access patterns and passed along the
access patterns by code injection as a hint to im- prove the performance by
code injection [34, 35, 36]. Yu et al. verified that swap could be a great solution
in embedded and limited resource environments [20]. Choi et al. presented
optimized swap mechanisms for an in-memory file system [28]. swpTracer is the

a tool to that provides a novel approach in to swap management.
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Chapter 6

Conclusion

Considering that the use of memory is one of the key parts of modern computer
architecture, insufficient memory could be the most lethal problem for memory
intensive applications. The development of hardware and software has rapidly
led to areas such as big data, HPC, and machine learning. At the same time
the memory usage increases along and faces a new turning point.The sharing
of resources between heavy workloads in a server system results in memory
shortages. Memory is one of the scarcest resources and needs to be managed.
The operating system exports some pages to storage and then loads the
requested pages into memory. The delay due to the swap is one of the ma-
jor problems with the overall performance degradation, given that the storage
performance is slower than the memory performance. Thus, we designed and
implemented swpTracer that optimizes a program by analyzing and profiling
the program to prevent the swap from decreasing the performance. The swap
prefetching was consistently 1.5 times faster compared to the baseline and mad-

vise() and faster than mlock() on average by 1.25 times.
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