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Abstract

H>Cy;GCN: Heterogeneous and
Hierarchical Cross-Context Graph
Convolution Network

Chaeheum Park
Department of Computer Science & Engineering
The Graduate School

Seoul National University

Given attributed graphs, how can we accurately classify them using both topological
structures and node features? Graph classification is a crucial task in data mining,
especially in the bioinformatics domain where a chemical compound is represented
as a graph of attributed compounds. Although there are existing methods like graph
kernels or truncated random walks for graph classification, they do not give good
accuracy since they consider features present at a single resolution, i.e., nodes or sub-
graphs. Such single resolution features result in a biased view of the graph’s context,
which is nearsighted or too wide, failing to capture the comprehensive properties of
each graph.

In this paper, we propose HoCoGCN (Heterogeneous and Hierarchical Cross-
context Graph Convolution Network), an accurate end-to-end framework for graph
classification. Given multiple input graphs, HoCoGC'N generates a multi-resolution

tree that connects the given graphs by cross-context edges. It gives a unified view of



multiple graphs considering both node features and topological structures. We pro-
pose a novel hierarchical graph convolutional network to extract the representation
of each graph. Extensive experiments on real-world datasets show that HoCoGC N

provides the state-of-the-art accuracy for graph classification.

Keywords : Graph Classification, Graph Convolutional Network, Hierarchical Graph,
Attributed Graph

Student Number : 2019-20235
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Chapter 1

Introduction

Graph-structured data have become ubiquitous recently in the fields of web
analysis, social networks, bioinformatics, and chemoinformatics. There are many ap-
plications on networks where machine learning models have achieved a great per-
formance in both supervised and unsupervised fashions including node classifica-
tion [[I]], anomaly detection [2]], link prediction [3]], and recommendation [4]]. Graph
classification, which is to classify an entire graph to a discrete label, is an essential
task with many applications. For instance, in bio- and chemo-informatic domains,
chemical compounds are represented as graphs of atoms whose element types are
represented as node attributes; graph classification is used for detecting virus muta-
tions, solubility, or its effect toward cancer.

For graph classification the following two techniques have been proven success-
ful: graph kernels [55} [6]] and random walks [3 1} [7, 8, O]]. They summarize the prop-
erties of each graph as a single embedding vector to compute the similarity between
graphs or to learn typical classifiers such as support vector machines. However, the
previous works face the following three challenges. First, they focus on a single res-
olution when extracting an embedding vector, i.e., nodes or subgraphs, resulting in a
nearsighted or too wide view of the graph’s context. Second, they fail to capture the
common characteristics of multiple graphs that contain the general knowledge of the
domain. Third, they ignore node attributes present at each graph, focusing only on

the structural characteristics.
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In this work, we propose HoCoGC'N (Heterogeneous and Hierarchical Cross-

Context Graph Convolution Network), an accurate approach for graph classification

that addresses the aforementioned challenges. HoCoGCN consists of three steps.

First, HoCoG'C'N creates multi-resolution trees from given graphs whose nodes rep-

resent graph objects of three different resolutions: nodes, subgraphs, and graphs.

Then, HoCoGC N connects the trees with cross-context edges by comparing the sub-

graphs from different graphs. Finally, HoC>2GCN runs Hierarchical GCN, a novel

graph neural network that we propose to extract embeddings of multipartite graphs

having partial attributes, on the generated tree. The overall structure of HoCoGCN

is illustrated as Figure [1} assuming three input graphs as an example, for classifying

the property of chemical compounds.

Our contributions are as follows:
« Multi-Resolution Objects. We decompose each graph into objects of multi-
ple resolutions, making a balanced view of the graph’s context, and utilize the

relationships between all objects for end-to-end learning.

Cross-Context Information. We utilize the cross-context information of mul-
tiple graphs by connecting subgraphs with similar degree sequences. This al-

lows us to consider comprehensive information of all given graphs.

Hierarchical GCN. We propose Hierarchical GCN, a new graph neural net-
work for hierarchically structured graphs having partial node attributes. We
apply it to extract graph embeddings specialized for downstream tasks consid-

ering both the structural information and node attributes.

Experiments. Through extensive experiments on five benchmark datasets,
we show that HoCoGC'N outperforms five baselines for graph classification,

achieving up to 2.7 % points higher accuracy than the best competitors.



The rest of this paper is organized as follows. We first describe related works
of graph classification in Section [2| Then, we introduce HoCoGC'N in Section [3|and
describe experimental results for five real-world datasets in Section 4] comparing it

to the previous methods. We conclude at Section 5]



Chapter 2

Related Works

We review related works on four categories: single-resolution embedding, multi-
resolution embedding, graph kernels, and graph convolutional networks.

Single-Resolution Embedding. There are various approaches to obtain em-
beddings of different resolutions from a graph. Deepwalk [1] and node2vec [3] ex-
tract the embeddings of nodes using truncated random walks. subgraph2vec [10] and
graph2vec [8] focus on the embeddings of subgraphs and graphs, respectively, by uti-
lizing the structural information of graphs from a broader perspective than that of
node-based approaches. Our goal in this work is to generalize such approaches and
to consider multi-resolution information.

Multi-Resolution Network Embedding. MrMine [9] is a recent approach that
considers multi-resolution information for learning the embeddings of graphs. Mr-
Mine combines multiple input graphs as a new network and applies Deepwalk to
the generated network to extract the embeddings of every resolution such as nodes,
subgraphs, and graphs simultaneously while having the same embedding size for all
resolutions. However, MrMine shows a limited performance for graph classification,
because it ignores the node attribute information and it learns the embeddings and
the classifier separately rather than in an end-to-end way.

Graph Kernels. Graph Kernels use hand-crafted kernel functions to measure
the similarity of a pair of graphs. A widely used method is the Weisfeiler-Lehman

(WL) Kernel [5] that relabels nodes, compresses its labels, and uses a kernel function



to measure the similarity. Graph kernels cannot be used effectively for downstream
tasks except for computing the similarity of graphs. Moreover, graph kernel methods
are generally slow, since they have exponential computational time with regard to
node counts unless approximated [[11]].

Graph Convolutional Networks. Graph convolution networks [12] (GCN)
have been proven to be successful at extracting explicit node embeddings using a
convolution operation that extracts features from a node and its neighbors. The main
advantage of GCNs is the ability to consider both node attributes and structural in-
formation simultaneously by a single operation. We propose Hierarchical GCN, a
modified version of GCN capable of extracting node embeddings from hierarchically

structured graphs with multi-resolution views.



Chapter 3

Proposed Method

We propose HoCoGC'N, an accurate approach for graph classification that con-
siders both node attributes and cross-context features to maximize its accuracy. We
first provide a brief overview in Section Then we describe how to generate
multi-resolution trees and how to connect similar subgraphs in different graphs in
Sections and [3.0.3] respectively. Finally, we explain how HyCoGCN classifies

given graphs using a newly proposed Hierarchical GCN in Section [3.0.4]

3.0.1 Overview

Given multiple attributed graphs, our goal is to accurately classify them. There

are several challenges for achieving the goal.

1. How can we consider features from multiple resolutions such as nodes, sub-
graphs, and graphs for extracting the embeddings of graphs?

2. How can we utilize cross-context features between different graphs? In other
words, how can we propagate the information of a single graph to the others
to improve the overall quality of embedding vectors?

3. How can we learn task-specific embeddings of graphs in an end-to-end fashion

without the help of separate modules such as random walks?

Our ideas to solve the aforementioned challenges are as follows. The overview

of our HoCoGC'N is illustrated in Figure



1. Multi-resolution mapping (Section 3.0.2). In a graph there are multiple ob-
Jjects having different resolutions: nodes, subgraphs, and the graph itself. We
generate a new tree having the objects of each graph as its nodes, as in Fig-
ure [1b] to make them exchange multi-resolution information.

2. Cross-context edges (Section [3.0.3). We connect the subgraphs of multiple
graphs if their similarity is larger than a threshold, as the red dotted lines of
Figure [1b| combining the trees as a single multi-resolution cross-context tree
(M RCC'T) that contains information of all graphs simultaneously.

3. Hierarchical GCN (Section [3.0.4). We propose Hierarchical GCN, a graph
neural network specialized for hierarchically structured graphs having initial
features only for a subset of nodes. We apply the Hierarchical GCN to extract

graph embeddings suitable for graph classification.
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3.0.2 Multi-Resolution Mapping

Our idea to learn latent representations of graphs while considering different
objects from multiple resolutions is to transform the given graphs into a single tree
which we call Multi-Resolution Cross-Context Tree (M RCCT'). We present how to
generate a multi-resolution tree from each graph in this section, and then how to
combine the trees into the single M RCCT in Section[3.0.3]

We decompose each graph into objects with different resolutions: nodes, sub-
graphs, and the entire graph. Specifically, we extract subgraphs from the graph by
selecting a root node and extracting its k-hop neighborhood. Thus, the number of
subgraphs that we extract is the same as the number of nodes in the graph. Then,
we connect the extracted objects based on the membership relationships; there exists
an edge between a node object and a subgraph object if the node is included in the
subgraph. Likewise, all subgraphs are connected to the graph object, as they are all
included in the graph. This results in a hierarchical tree that contains the objects with
multiple resolutions in each graph.

Although this method carefully extracts key information of each graph with
multiple resolutions, it has a limitation of not considering the nodes’ attributes which
are important for understanding the graph. Thus, we group the subgraphs based on
their node attributes, greatly reducing the number of unique subgraphs. If two sub-
graphs have the same structure and node attribute information, they are treated as
the same object in the tree even though they contain different nodes in the origi-
nal graph. Figure [2| shows that grouping by node attributes decreases the number of
unique subgraphs by 153 x.

Algorithm 1] describes how to generate a multi-resolution tree from a graph. We

use object mapping functions m,,, ms, and m, for generating the node, subgraph,

10



Algorithm 1: Generating a multi-resolution tree from a graph.

Input: A graph G = (V,E), where V and E represent the sets of nodes and edges,

respectively, and object mapping functions m,,(-), ms(-), and mgy(-)
Output: A multi-resolution tree T’
1: S < Set of k-hop subgraphs extracted from G
2 Vp — {my(u) |u e VU {my(S) | S €S} U{my(G)}
3: Ep + {}
4: for each subgraph S € S do
5. for eachnode u € S do
6 Er < Er U{(my(u),ms(9))}
7. end for
s Er e BrU{(me(S), my(G))}
9: end for
10: T < (Vp,Er) # a multi-resolution tree to be returned

and graph objects in the multi-resolution tree, respectively. While m,, and m, simply
map objects to a new node in the tree, the subgraph mapping function mj transforms
two subgraphs into the same node in the tree if they are identical: m4(S1) = ms(S2)
if and only if S7 and Sy have the same structural and node attribute information.
The number of subgraphs is greatly reduced as we transform each subgraph S by m;

before putting it into the tree 7.

3.0.3 Cross-Context Mapping

We combine the multi-resolution trees to construct a single M RCCT that in-
cludes cross-context features between graphs. We first combine the subgraph objects
having identical structural and attribute information from multiple trees. Specifically,
if two subgraph objects from different graphs are identical we redirect associated
edges to one combined subgraph object node. As a result, most of the multi-resolution
trees are connected as they share subgraph objects, and the number of subgraph ob-

jects in the whole dataset is greatly reduced.

11



Algorithm 2: Generating M RCCT by connecting cross-context edges.

Input: Given aset T = {1}, 75, ...,T,} of multi-resolution trees, a threshold 7,
and a window size w
Output: The M RCCT network G’
: Vgr, Egr <~ Combine all nodes and edges in T with subgraph aggregation
S < Set of subgraph objects existing in V¢
S’ « Sort the subgraphs in S by the sum of values in the degree sequences
for each subgraph S; € §' do
for each subgraph S" € {S;_y, Si—w+1, "+, Sitw} do
if f(Qs,Qgs) < 7 then
Eq + Egr U{(S, S/)}
end if
end for
end for
: G' + (Vg Eqr) # the final M RCCT to be returned

R R AT L~ > e

_
= O

Then, we extend the cross-context information by comparing and connecting
subgraph objects with similar characteristics. We connect two subgraph objects when
their hierarchical degree sequences are similar. For example, subgraph S of Figure|[1b|
has a hierarchical degree sequence as Qg, = ((1),(1,1,2,1), (1)), where each num-
ber represents the degree of a node and the nodes in each hierarchy level are com-
bined together. We generalize the observation from previous work [9] that two sub-
graphs are similar if the hierarchical degree sequences are similar in terms of the
Spearman’s footrule distance.

Specifically, the distance between two subgraphs S; and S; with hierarchical

degree sequences of Qg; and ()s;, respectively, is defined as follows:

H T(h) .
f(QSia QSJ‘) = Z ‘ng (t) - ng (t) )
h=1 t=1
where H = max(|S;|,|S}|) is the maximum number of levels in the subgraphs,

12



T(h) = max(|S|, |S]h|) is the maximum number of nodes for level h, and Q% is a
sorted degree sequence of subgraph S at level h. For instance, Qs, = ((1), (1,1,1,2), (1))
in our example of Figure [1b} note that the order of nodes in level 2 is different from
that of ()5, . We also make the lengths of two degree sequences the same for the com-
parison by adding zero paddings in front of each degree sequence whose length is
smaller than the other.

However, it is computationally expensive to compare all pairs of subgraphs ex-
isting in the trees. Thus, we approximate the all-pairs comparison by introducing a
window parameter. We first sort all subgraphs by the sum of node degrees ignoring
the hierarchy. Then, we compare only the subgraphs in the sorted list whose dis-
tance is less than or equal to w; we ignore the distance between subgraphs whose
sums of node degrees are not similar. This results in speeding up the whole process
significantly without hurting the result.

Algorithm [2| describes how to connect many multi-resolution trees by gener-
ating cross-context information between subgraphs. In line 1, we combine all nodes
and edges in a set T of multi-resolution trees by combining identical subgraph objects
existing within different trees. In lines 2 to 3, we extract the set of unique subgraph ob-
jects and sort them by the sum of node degrees in the hierarchical degree sequences.
In lines 4 to 10, we select a subgraph S’ within the window w to compare with the
currently selected subgraph S and add the edge when the distance is smaller than a

predefined threshold 7.

3.0.4 Hierarchical GCN

H5C5GCN uses a graph convolutional network (GCN) [12] to extract latent

representations from M RCCT in an end-to-end fashion. Let H() be the feature

13



representations of the /th layer. Then, the feature H (1) of the next layer is computed

from the following propagation rule, which is called a graph convolution:
HY = o(D 2 AD 2 HOW D),

where A is the adjacency matrix, D is the degree matrix of A such that D;; = y Aij,
WU is a trainable weight matrix, and o(-) is an activation function such as ReLU.

However, a typical GCN cannot be directly used for the M RCCT network G/,
which results from Algorithm [2| because the graph- and subgraph-level tree nodes
in G’ do not contain initial feature vectors. We propose Hierarchical GCN, which ex-
tends traditional GCNs to multipartite graphs where node features are given only for
a subset of nodes. Our Hierarchical GCN effectively generalizes an existing approach
[13] designed for bipartite graphs, making it possible to learn graph embeddings in
an end-to-end fashion. For simplicity, we call the node-, subgraph-, and graph-level
nodes as level 1, 2, and 3 nodes, respectively.

First, we use only the level 1 nodes to propagate their initial features to the level
2 nodes. Thus, H? is newly computed only for the level 2 nodes. Then, the level 1
and 2 nodes both participate in the second propagation, computing H ®) for all nodes
in G’. This is simply done by using different adjacency matrices for the hierarchical
propagations. Unlike the traditional GCNs, we do not add self-loops to the adjacency
matrix, because the main characteristic of multipartite graphs is that no edges exist

in a single independent set.

14



Chapter 4

Experiments

We evaluate HoCyGCN on five real-world datasets to answer the following
questions:
+ Q1. Classification accuracy (Section[4.0.2). How well does HoC>GC'N clas-

sify multiple attributed graphs compared to previous approaches?

+ Q2. Model depth (Section[4.0.3). What is the best number of layers to include

cross-context features in HoCoGCN?

+ Q3. Ablation study (Section [4.0.4). Does considering cross-context features

and attribute information help improve the accuracy?

4.0.1 Experimental Settings

All experiments are performed on a workstation with Intel(R) Xeon(R) E5-2630

v4 2.2GHz with 512GB of RAM and 4 GTX1080Ti GPUs.

Datasets. We use five benchmark datasets in Table [1]for graph classification. MU-
TAG [[14] contains 188 aromatic and heteroaromatic nitro compounds, which are la-
beled as positive if they have a mutagenic effect on bacterium Salmonella typhimurium.
PTC [15] consists of 344 compounds whose classes indicate the carcinogenicity of
rats. PROTEINS [16] is a dataset whose nodes represent secondary structure ele-
ments and edges indicate neighborhood in the amino-acid sequence or in the 3D

space. NCI1 [17] and NCI109 [5] are datasets of chemical compounds screened for

15



Table 1: Summary of benchmark datasets.

# of # of # of Average

Dataset Graphs Classes Attributes # of Nodes
MUTAG!Y 118 2 7 17.9
pTCE 344 2 19 25.5
PROTEINSY 1,113 2 3 39.1
Ncn® 4,110 2 37 29.8
NCI10H 4,147 2 38 29.6

activity against non-small cell lung cancer and ovarian cancer cell lines, respectively.

All of our datasets are publicly available

Experimental Setup. We use 80% of each dataset as a training set and the remain-
ing 20% as a test set, while reserving 20% of the training set as a validation set. We
use a three layer Hierarchical GCN for HoCoGC'N except in Section[4.0.3| where we
study the effect of the depth. We train each model for 100 epochs with a learning rate

of 0.005, hidden layer size of 64, L2 regularization with weight decay of 0.001, and

dropout rate of 0.5, while using the Adam optimizer.

Competitors. We compare HC>2GCN to the following competitors.

« WL Kernel [5] uses label compression to relabel its nodes and calculates the

similarity of two graphs using a kernel function.

« Deep WL Kernel [18] extends the WL kernel by calculating an additional

kernel matrix that considers the similarities between subgraphs.

« node2vec [3] builds a corpus of random walks from each graph and learns

a skip-gram model to learn the embedding vectors of nodes. We average the

'https://1s11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

16
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embeddings of all nodes in each graph to make graph embeddings.

« graph2vec [8] is also based on the skip-gram model, but it is designed to pro-

vide graph-level embeddings instead of node-level ones.

« MrMine [9] is a classification method for graphs without node attributes, and

uses Deepwalk [[1]] to extract the embedding of objects.

17
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4.0.2 Classification Accuracy

Table |2| shows the classification accuracy of HoCoGC'N and its competitors.
HyCyGCON gives the highest accuracy for all five datasets, proving the effectiveness
of its main ideas. The improvement over MrMine [9] is especially noticeable when
the numbers of graphs and node attributes are large because HoCyGC'N extracts
the graph embeddings through Hierarchical GCN in an end-to-end way considering
the node attributes, while MrMine does not consider the attributes and separates the
embedding and classification steps.

At the same time, the previous approaches that use only a single resolution view
perform worse than HoCoGC'N. node2vec [3] produces near random performance
for large datasets, as it considers only nearsighted views when extracting graph em-
beddings as the average of all node embeddings. WL Kernel [5]], Deep WL Kernel [18]],
and graph2vec [8] perform better than node2vec, as they extract graph embeddings
directly from the structure, but still show lower accuracy than that of HoCoGCN

which utilizes multi-resolution features.

4.0.3 Model Depth

We investigate the effect of the number of convolution layers in Hierarchical
GCN, which is a core module of HoCoGCN that extracts the graph embeddings
for downstream tasks. We evaluate the accuracy of graph classification on the NCI1
dataset changing the number of layers from 2 to 5 in Figure[3al Unlike a typical GCN
that works the best when the number of layers is 2 [12]], HoCoGCN shows its high-
est accuracy when the number of layers is 3. This is because our Hierarchical GCN
is applied to tripartite graphs consisting of node, subgraph, and graph objects where

only the node objects have initial features. HoCoGC' N with two layers can propa-
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gate the node attributes to graph objects, but cannot utilize the cross-context edges
between subgraph objects. With three layers, it is possible for HoCoGC'N to utilize all
connections in the M RCCT by considering both multi-resolution and cross-context
information. The accuracy slightly drops when more layers are added after 3, since
the increased number of parameters leads to overfitting, but is still higher than that

of two layers.

4.0.4 Ablation Study

We perform an ablation study of HoC3GCN on the NCI1 dataset to verify the
effects of cross-context features and attribute information of nodes. We first exam-
ine the effect of cross-context features by removing the cross-context edges from
MRCCT, ignoring lines 2 to 11 of Algorithm [2| when generating M RCCT from
the given trees. Figure [3b[shows that considering the cross-context features enhances
the accuracy by 11.81 percent points. This illustrates that considering cross-context
features is crucial in graph classification.

We also examine the effect of attribute information by discarding the node at-
tributes from the node objects of M RC'CT and transforming node IDs into one-hot
vectors as their initial features. Figure [3b|shows that considering the node attributes
enhances the performance by 5.48 percent points, demonstrating that node attributes

essential information for extracting accurate embeddings.
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Chapter 5

Conclusion

We propose HoCoGC N, a graph classification method which considers cross-
context, multi-resolution, and attribute information to improve the classification ac-
curacy. HoCyGC N maps multiple graphs to a new network M RCC'T, and discov-
ers features thanks to its cross-context and multi-resolution analysis. We propose
Hierarchical GCN, a modified GCN capable of extracting embeddings on a hierarchi-
cally structured graph and apply it on M RCCT to extract graph embeddings while
adding support for attribute information to enrich the extracted embeddings. Exten-
sive experiments show that HoCoGC'N classifies multiple attributed graphs the most

accurately.
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