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Executing deep learning algorithms on mobile embedded devices is challenging because

embedded devices usually have tight constraints on the computational power, memory

size, and energy consumption, while the resource requirements of deep learning algo-

rithms achieving high accuracy continue to increase. To cope with increasing computa-

tion complexity, it is common to use an energy-efficient accelerator, such as a mobile

GPU or digital signal processor (DSP) array, or to develop a customized neural pro-

cessor chip called neural processing unit (NPU). In the application domain, many opti-

mization techniques have been proposed to change the application algorithm in order to

reduce the computational amount and memory usage by developing new deep learning

networks or software optimization techniques that take advantage of the statistical nature

of deep learning algorithms. Another approach is hardware-ware software optimization,

which finds the performance bottleneck first and then distributes the workload evenly by

scheduling the workloads.

This dissertation covers hardware-aware software optimization, which is based on a

hardware processor or platform. First, we devise a systematic optimization methodology
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through the experience of participating in the Low Power Image Recognition Challenge

(LPIRC) [1, 2] and build a deep learning framework called C-GOOD (C-code Generation

Framework for Optimized On-device Deep Learning) based on the devised methodology.

For hardware independence, C-GOOD generates a C code that can be compiled for and

run on any embedded device. Also, C-GOOD is facilitated with various options for ap-

plication domain optimization that can be performed according to the devised methodol-

ogy. By applying the devised methodology to three hardware platforms, NVIDIA Jetson

TX2 [3], Odroid XU4 [4], and the Samsung Reconfigurable Processor (SRP) [5], we

demonstrate that the devised methodology is independent of the hardware platforms and

application domain optimizations can be performed easily with C-GOOD.

Recently, embedded devices are equipped with heterogeneous processing elements

(PEs), and the need for running multiple deep learning applications concurrently in the

embedded systems such as self-driving cars and smartphones is increasing at the same

time. In those systems, we devise an end-to-end methodology to schedule deep learning

applications onto heterogeneous PEs and implement a scheduling framework according

to the methodology. It covers from profiling on real embedded devices to verifying the

schedule results on the devices. In this methodology, we use a genetic algorithm (GA)-

based scheduling technique for scheduling deep learning applications onto heterogeneous

PEs and consider several practical issues in the profile step. Furthermore, we schedule

multiple applications with different throughput constraints considering the schedulability

of mapped tasks on each processor. After implementing a deep learning inference engine

that can utilize heterogeneous PEs using a low-level library of the ARM compute library

(ACL) [6], we verify the devised methodology by running two widely used convolution

neural networks (CNNs) on a Galaxy S9 smartphones [7] and a Hikey970 board [8].

While the previous optimization methods focus on the computation and processing

elements, the performance bottleneck of deep learning accelerators is the communication

between off-chip and on-chip memory. Moreover, the off-chip DRAM access volume
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has a significant effect on the energy consumption of an NPU. To reduce the impact of

off-chip DRAM access on the performance and energy of an NPU, we devise compiler

techniques for an NPU to manage multi-bank on-chip memory with two different objec-

tives: one is to minimize the off-chip memory access volume, and the other is to minimize

the processing delay caused by unhidden DRAM accesses. The main idea is that by or-

ganizing on-chip memory into multiple banks, we may hide the off-chip DRAM access

delay by prefetching data into unused banks during computation and reduce the off-chip

DRAM access volume by storing the output feature map data of each layer to on-chip

memory. By running CNN benchmarks on a cycle-level NPU simulator, we demonstrate

the trade-off relation between two objectives. The devised multi-bank on-chip memory

management (MOMM) techniques are extended to consider layer fusion that aims to

reuse feature maps between layers maximally. Since the pure layer fusion technique in-

curs extra computation overhead and increases DRAM access for filter weights, a hybrid

fusion technique is presented between a per-layer processing technique and the pure layer

fusion techniques, based on the devised MOMM techniques with two different objectives.

Experiment results confirm the superiority of the hybrid fusion technique to the per-layer

processing technique and the pure layer fusion technique.

Keywords : convolutional neural network, software optimization, on-device learning,

scheduling, genetic algorithm, heterogeneous processor, mobile device, accelerator, neu-

ral processing unit, multi-bank memory management, layer fusion, prefetching

Student Number : 2014-21780
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Chapter 1

Introduction

1.1 Motivation

Deep learning is making significant progress in almost all areas of machine learn-

ing, including image classification, object detection, and so on. Extensive research efforts

are being made to improve the accuracy of deep learning, paying a huge cost of compu-

tational, memory, and energy requirements. To apply such artificial intelligence to our

daily life, it is necessary to make edge devices intelligent. The current practice to make a

device intelligent is to use a cloud service accessed via a mobile network. There are sev-

eral concerns with this practice of cloud-based intelligence such as privacy, dependence

on the network condition, difficulty of personalization, and so on. As a consequence,

on-device learning or inference has recently been drawing keen research attention to run

deep learning algorithms directly on the device to relieve those concerns.

Executing deep learning algorithms on mobile embedded devices is challenging

because embedded devices usually have tight constraints on the computational power,

memory size, and energy consumption while the resource requirements of deep learning

algorithms achieving high accuracy continue to increase. Therefore, in order to reduce

computational and memory usage, many optimization techniques are proposed.

The optimization techniques can be categorized into three optimization areas: ap-

plication domain optimization, hardware domain optimization, and hardware-aware soft-
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ware optimization. Application domain optimization reduces the amount of computation

and memory usage by changing the application algorithm. One approach is to develop

new deep learning algorithms that seek to balance accuracy, speed, and resource require-

ments. SqueezeNet [10], Tiny-YOLO [11], and MobileNet [12] are such examples. An-

other approach is to develop software optimization techniques that take advantage of the

statistical nature of deep learning algorithms. Approximate computing can achieve al-

most the same accuracy with significantly reduced resource requirements and is used in

various approximation techniques such as pruning [13], quantization [14], and low-rank

approximation [15].

Hardware domain optimization accelerates deep learning computation with a cus-

tomized chip, called neural processing unit (NPU). Many pieces of research, such as Eye-

riss [16], TPU [17], NVDLA [18], and MIDAP [19], have been recently performed in this

optimization area to achieve higher performance per watt than GPU. Lastly, hardware-

aware software optimization is a method of optimizing a deep learning system by map-

ping and scheduling workloads onto multiple hardware resources to distribute the work-

loads evenly. First, to distribute the workload evenly, it is necessary to find the perfor-

mance bottleneck in the target system. After finding what the problem is, solve it by

scheduling the workloads or applying other optimization techniques to fix it.

The scope of this dissertation is hardware-aware software optimization. Since the

hardware-aware software optimization is based on a hardware processor or platform, this

dissertation contains optimization methods in two cases. One is for a commodity hard-

ware platform and the other is for a domain-specific accelerator. In this dissertation, there

are two optimization methods devised for a commodity hardware platform. First, we de-

vise a systematic optimization methodology using application domain optimizations and

traditional system optimizations. Based on the devised methodology, we build a novel

deep learning framework called C-GOOD (C-code Generation Framework for Optimized

On-device Deep Learning). It generates a C code that can be run on any device and is fa-
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cilitated with various software optimization options that can be performed according to

the optimization methodology devised in this dissertation. We explain how C-GOOD ap-

plies optimization techniques to various deep learning networks such as Darknet [20],

Darknet19 [20], Tiny-YOLO [11] and YOLOv2 [21] on three different hardware plat-

forms: the Jetson TX2 [3], the Odroid XU4 [4], and the Samsung Reconfigurable Proces-

sor (SRP) [5]. Experiments confirm that the devised methodology is independent of the

platforms and software optimizations can be performed easily with C-GOOD.

Embedded devices recently tend to be equipped with heterogeneous processors to

cope with deep learning applications’ high computing demand. Also, there is a growing

need to run multiple deep learning applications concurrently in emerging embedded sys-

tems such as self-driving cars and smartphones. It is necessary to schedule multiple deep

learning applications on the shared heterogeneous processing elements in those systems,

which is a challenging problem. To solve this problem, in this dissertation, we devise a

methodology to schedule multiple applications onto a heterogeneous embedded system

as the other optimization method for a commodity hardware platform. In addition, we

implement a scheduling framework that follows the devised methodology. The devised

methodology covers from profiling on real embedded devices to verifying the schedule

results on the devices. We use a genetic algorithm (GA)-based scheduling technique to

effectively schedule deep learning applications onto heterogeneous PEs, exploring both

data-parallelism and task-parallelism to find Pareto-optimal schedules in terms of real-

time performance and energy consumption. We consider several practical issues in the

profiling step, such as dynamic voltage frequency scaling (DVFS) and CPU hot-plug.

Moreover, we consider the schedulability of mapped tasks on each processor, which is a

critical issue in the parallel scheduling of multiple applications with different throughput

constraints. The devised methodology is verified by running two widely used convolu-

tional neural networks (CNNs) on a Galaxy S9 smartphone [7] and a HiKey970 board [8].

For the experimentation, we implemented a deep learning inference engine that can uti-
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lize heterogeneous PEs using a low-level library of the ARM compute library (ACL) [6].

Similar to most optimization methods for a commodity hardware platform, most

research on an NPU is focused on computation and aim to parallelize the convolution

operation with a number of multiplier-accumulator (MAC) units. However, the achiev-

able performance is much lower due to various causes such as resource contention delay,

memory access delay, and processing of non-convolution layers. For example, it is re-

ported that DPU-v2 achieves less than 40% utilization for GoogleNet and ResNet-50,

which commonly have a lot of memory operation [22]. Moreover, the off-chip DRAM

access volume has a significant effect on the energy consumption of an NPU. In the

case of DianNao [23] and Cambricon-X [24], it is reported that the energy consumed by

DRAM access accounts for 80% of total energy consumption [25, 26]. Thus, to reduce

the DRAM access volume, it is beneficial to increase the on-chip memory size. Nonethe-

less, the memory requirement for feature maps and filter weights is usually beyond the

on-chip memory capacity.

Because on-chip memory capacity is not enough to process all operations without

off-chip memory access, many NPU studies attempt to reuse data as much as possible in

on-chip memory [17, 16, 25, 27, 26]. However, although the output data is the input of

the next layer, many studies have focused on reusing only the data needed to process one

layer [16, 25, 26, 27, 28, 29]. It is because many NPUs are designed to transfer the output

feature data to off-chip memory after all calculations are completed [28, 29, 27] and many

studies reusing data in on-chip memory based on these NPUs. However, according to our

experiment in Section 4.4.2, data reuse between layers can reduce DRAM access volume

by up to 46.8% without bank management. There are some NPUs which store output data

in unified on-chip memory [17, 30]. However, they did not study how to reuse the data in

on-chip memory maximally. In this paper, we focus on how to efficiently reuse the output

data between consecutive layers in on-chip memory.

Although many NPUs have separate memory for input and output feature maps,
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it is more efficient to configure the memory for feature map data as unified memory,

considering data reuse between two consecutive layers. It is because separating memory

for feature map data limits the reused data size. For example, an NPU has two memory

of 256 KB: one for input data and the other for output data. In this case, we cannot reuse

the output data more than 256 KB. However, if an NPU has one memory of 512 KB

for all feature data, we could store the output data more than 256 KB and reuse it when

processing the next layer. Therefore, in this work, we organize the memory for feature

map data into unified memory.

The goal of the optimization for an NPU in this dissertation is to reduce the im-

pact of off-chip DRAM access and on-chip memory contention. By making a multi-bank

structure of on-chip memory, we can hide the DRAM access by prefetching the next

input data during computation. Also, off-chip DRAM access can be reduced by stor-

ing the output feature map data in on-chip memory since the data is the input feature

map data of the next layer. However, managing the multiple on-chip memory banks is

a problem, because both the input and output feature maps are stored in unified on-chip

memory, and the on-chip memory size for the feature map is limited. This dissertation

devises compiler techniques to manage multi-bank on-chip memory with two different

objectives to tackle the problem. One technique aims to minimize the off-chip memory

access volume, and the other aims to minimize the processing delay caused by unhidden

DRAM accesses. Both techniques reduce on-chip memory contention by assigning dif-

ferent feature map banks for computation and DRAM access, generating different bank

assignment sequences. There is a trade-off between DRAM access minimization and per-

formance maximization, which will be discussed in Chapter 4. In case a CNN network

contains multiple branches, we need to consider sharing the input feature map between

multiple branches. How to deal with multiple branches in the multi-bank on-chip memory

management (MOMM) problem is also presented in this work.

A layer fusion technique has recently been proposed to maximize the feature map
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reuse between consecutive convolution layers [31]. While it reduces the DRAM access

for feature maps, it may increase the DRAM access for filter weights as well as the

computation cycle due to duplicate computation. We apply the proposed MOMM tech-

niques to the network to which the layer fusion technique is applied and devise a hybrid

technique between the default per-layer processing technique and the layer fusion tech-

nique [31].

We perform experiments with several CNN benchmarks, using a cycle-accurate sim-

ulator of an adder-type CNN accelerator, MIDAP [19]. All the proposed techniques are

implemented as an optimization module of the compiler that produces the control code

for a given CNN specified in Caffe 2 [19]. Experimental results show the trade-off be-

tween energy consumption and performance with two proposed memory management

techniques. The proposed hybrid fusion technique is also compared with the per-layer

processing technique and the pure layer fusion technique with a ResNet 50 [32] bench-

mark. Experimental results confirm the goodness of our hybrid fusion technique that

includes the other techniques as extreme cases.
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1.2 Contribution

The contributions of this dissertation can be summarized as follows:

• We devise a systematic methodology for embedded systems to explore the wide de-

sign space of algorithm selection and software optimizations for a given hardware

platform.

– We build a C-code generation framework for embedded systems, which gen-

erates C code that can be compiled for and run on any embedded devices.

– The framework supports multiple profiling options and easy optimization ap-

plications to help users find performance bottlenecks and explore software

optimization techniques for deep learning applications.

• We devise a methodology for scheduling deep learning applications onto heteroge-

neous processors.

– We build a scheduling framework that maps (sub-) layers of a CNN on het-

erogeneous PEs such as CPU, GPU, and neural processing unit (NPU).

– The devised methodology considers the practical issues, including dynamic

voltage frequency scaling (DVFS) and CPU hot-plug.

– The devised scheduling framework is the first to schedule multiple deep learn-

ing applications on heterogeneous processing elements with processing shar-

ing, considering both data-level parallelism and task-level parallelism.

– The devised methodology is verified by running CNNs on two different em-

bedded devices: a Galaxy S9 smartphone [7] and a Hikey970 board [8].

• We devise two multi-bank on-chip memory management (MOMM) techniques for

NPUs.

– We define the multi-bank on-chip memory management problem.
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– We devise heuristic compile techniques to solve the multi-bank on-chip mem-

ory management problem with two different objectives: one is to minimize

the off-chip memory access volume, and the other is to minimize the process-

ing delay caused by unhidden DRAM accesses.

– We extend the multi-bank on-chip memory management techniques to con-

sider layer fusion that aims to reuse feature maps between layers.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 introduces our target

hardware platforms and reviews the optimization methods which is used in this disser-

tation. We devise two optimization methodology for a commodity hardware platform,

which is presented in Chapter 3. Chapter 4 contains our multi-bank on-chip memory

management techniques for a deep learning accelerator. Finally, we summarize the de-

vised methodology and techniques and discuss some future works in Chapter 5.
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Chapter 2

Background

2.1 Target Hardware

2.1.1 Commodity Hardware Platform

Commodity hardware is a device that is generally compatible with other devices of

its type. In other words, it can be replaced with other devices. Some level of abstraction is

required in order to enable multiple devices to be interchangeable, and the level of hard-

ware abstraction determines the coverage of the hardware platforms. The higher the level

of abstraction, the more hardware platforms are covered, but more restrictive optimiza-

tions can be applied. The lower the level of abstraction, the fewer hardware platforms are

covered, but more optimizations can be applied.

C language is a general-purpose language and is also the most used language [33].

Several languages such as python are emerging, but there are still many embedded de-

vices that only support the C language. Therefore, in this dissertation, in order to ex-

plore several optimization techniques without hardware dependency, the coverage of tar-

get commodity hardware platforms is devices that can be programmed with C language.

Chapter 3 explains how to optimize the hardware platforms that supports C language.
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Figure 2.1: Architecture types of CNN accelerators or NPUs

2.1.2 Application-specific Hardware Accelerator

Application-specific hardware accelerators, also known as domain-specific hard-

ware accelerators, are hardware computing engines that are customized for a specific

application domain [34]. The application-specific hardware accelerator targeting deep

learning applications, which is the target application for this dissertation, is called a neu-

ral processing unit (NPU). Recently, Extensive research on NPU has been performed to

overcome the high computational demand and energy consumption.

Convolution neural network (CNN) accelerators can be categorized into three types

based on the dataflow architecture to parallelize convolution operation as shown in Fig-

ure 2.1. An NPU of many-core type uses many processing elements (PEs), and each PE

computes a single multiply-accumulate (MAC) operation per cycle with local buffers that

store the assigned filter weights and input feature segments [16, 30]. The second type is

to use a systolic array architecture of MAC units to accelerate matrix multiplication in a

pipelined fashion [17]. Lastly, in the adder-tree type of an NPU [23, 24, 18, 19], each PE

contains a set of multipliers and an adder tree to accumulate the multiplication results to

produce a partial result of convolution for an output pixel.

In all architecture types, Off-chip access DRAM contention to the global on-chip
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memory may occur among three accesses; reading from or writing to the off-chip DRAM,

copying input feature segments and filter weights to local buffers in the datapath, storing

the output results computed from the datapath. In Chapter 4, we explain how to avoid

such access contention.

2.2 Convolutional Neural Network

2.2.1 Convolution

𝐶𝑖𝑛

𝐻𝑖𝑛

𝑊𝑖𝑛

* =𝐶𝑜𝑢𝑡

𝐶𝑜𝑢𝑡
𝑊𝑜𝑢𝑡

𝐻𝑜𝑢𝑡

𝑘𝑤

𝑘ℎ

𝐶𝑖𝑛

…

Figure 2.2: A convolution layer in a CNN

A convolution neural network, which is widely used for image applications such as

image classification and object detection, consists of a sequence of convolution layers

and activation and/or pooling layers between two consecutive convolution layers, as il-

lustrated in Figure 2.2. The input feature map to a convolution layer is represented as 3-D

data that consists of Cin channels of a 2-D image: each channel corresponds to a specific

feature of the 2-D image. The 2-D image size is set to Win×Hin. The input feature map

is convolved with a set of filters, each of which consists of Cin channels of kernel whose

size is kw×kh. Convolution with a filter produces one channel of output 2-D image whose

size is Wout ×Hout , and the total number of channels in the output image is Cout .

2.2.2 Optimization Methods for Convolutional Neural Network

The subject of this dissertation is hardware-aware software optimization, which im-

proves the performance of the entire system by scheduling the hardware resources asso-

ciated with the performance bottleneck and applying other application domain optimiza-
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tions. In this section, three optimization areas used in this thesis are introduced.

2.2.2.1 Approximate computing

Low-rank approximation In a software implementation of a convolution neural net-

work (CNN), a 3-D convolution is computed by matrix multiplication. Low-rank approx-

imation aims to minimize a cost function by approximating a given matrix with another

matrix with a lower rank. By reducing the rank of a matrix, we can reduce the required

computational and memory resources. While this technique has been widely used for

mathematical modeling and data compression, it has only recently been adopted for deep

learning as an effective approximated computing method, often coupled with matrix de-

composition techniques [15].

Quantization Quantization is a technique that reduces the bit width of data represen-

tation as much as possible while preserving the accuracy within a given bound. Quanti-

zation has been extensively researched for the design of hardware accelerators for DNNs

since smaller bit widths lead to simpler computations as well as smaller memory require-

ments [14]. The key technique is to train the bit-reduced weights carefully in the training

stage. A too-large reduction can lead to significant degradation of accuracy; What level of

reduction can guarantee a certain accuracy for a given network is still an open problem.

2.2.2.2 Parallelism

A deep learning inference algorithm is usually specified with an acyclic task graph

where a node represents a computation task, called a layer, and an arc represents the

dependency between two end nodes. Since a task or a layer contains massively parallel

computation inside, a task can be mapped to multiple processing cores to exploit data-

level parallelism of a task or intra-layer parallelism. On the other hand, multiple tasks that

have no dependency on each other can run in parallel to exploit task-level parallelism of
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the algorithm or inter-layer parallelism.

2.2.2.3 Data Reuse

Although the on-chip memory capacity of most deep learning accelerators is lim-

ited, the parameters of deep learning networks are getting bigger and bigger in order to

increase the accuracy of deep learning applications. Therefore, even though the off-chip

access is slow and gives a significant impact on energy consumption, it is inevitable to

access off-chip memory in the process of computing a deep learning network. To reduce

the amount of off-chip DRAM, data reuse techniques are recently proposed.

There are two types of data reuse techniques. One is to reuse data in a single layer by

applying loop interchange and loop tiling techniques. The other technique is to reuse data

between two adjacent layers by storing the previous layer’s output in on-chip memory and

using it when processing the next layer.
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Chapter 3

Optimization for a Commodity Hardware
Platform

In addition to the traditional system optimization techniques exploiting several par-

allelisms in the application, many techniques for optimizing convolution neural networks

(CNNs) have recently been studied. In this chapter, we devise two optimization method-

ologies for how to optimize CNN applications on commodity hardware platforms. The

first is a systematic optimization methodology that applies application domain optimiza-

tions and traditional system optimizations. To validate our methodology, we implement

a C-code generation framework called C-GOOD (C-code generation framework for op-

timized on-device deep learning) based on the methodology. The other is the study of

how to further exploit several parallelisms in CNN applications on the real embedded de-

vice. To exploit all parallelisms in CNN applications, we devise an end-to-end scheduling

methodology, from profiling on real embedded devices to verifying the schedule results

on the devices.

The remainder of this section is organized as follows. After the proposed systematic

optimization methodology is described in Section 3.1 based on experience in the Low

Power Image Recognition Challenge (LPIRC) [1, 2], Section 3.2 describes the C-code

generation framework based on the methodology. The scheduling method for heteroge-

neous processors is described in Section 3.3. Section 3.4 discusses the related work on
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these two methodologies.

3.1 Joint Optimization Method of Multiple Objectives

As there is a need to perform deep learning applications on embedded devices,

lightweight deep learning networks and software optimization methods have been pro-

posed. To encourage researchers to tackle the problems, the Low Power Image Recogni-

tion Challenge (LPIRC) [1, 2] was started in 2015 as an annual competition. It is designed

to evaluate the trade-off between accuracy and energy consumption. The final score of

LPIRC is computed as the ratio of the mean average precision (mAP) over the total en-

ergy consumption (Wh). The mAP is a widely used accuracy index for object detection

problems such as ILSVRC [35].

This section introduces how to build the image recognition system that won the

first prize in the LPIRC 2017. Among three conflicting goals of accuracy, speed, and en-

ergy consumption, we considered the trade-off between accuracy and speed first to select

NVIDIA Jetson TX2 as the hardware platform and Tiny YOLO as the image recogni-

tion algorithm. Next, we applied the existent software optimization techniques system-

atically in sequence. To increase the throughput performance and balance the utiliza-

tion of processing elements, pipelining is first applied to the network. After pipelining,

we applied two optimization methods, Tucker decomposition, and 16-bit quantization,

to improve the GPU performance. To speed up the CPU computation, we parallelized

the post-processing task with multi-threading. After all software optimizations are per-

formed, we considered the speed and energy consumption trade-off. To achieve the best

score, we explored the operating frequencies of CPU and GPU. At last, we tested our

implementation with a similar environment as the on-site competition. In this step, addi-

tional optimization was performed to reduce the overhead incurred in the test server. As

a result, we could achieve an accuracy of 0.24 mAP with energy consumption of 2.08Wh

in LPIRC 2017, which corresponds to the score of 0.11931, 2.7 times higher than the
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winner of 2017.

3.1.1 Hardware Platform

Since there was no specialized neural processor available to us, we compared com-

mercial embedded platforms in terms sof maximum performance. Table 3.1 compares

the peak performance of the GPU subsystem that is the main computing engine in each

device.

Table 3.1: Characteristics of candidate embedded devices

Platform GPU Chip Clock GFlops

Odroid XU4 Mali-T628 MP6 Exynos 5422 533MHz 102.4
Galaxy S8 Mali-G71 MP18 Exynos 8895 546MHz 371.2

Galaxy S8 Active Adreno 540 Snapdragon 835 710MHz 567
Jetson TX1 Maxwell Cores x 256 Tegra X1 1000MHz 512
Jetson TX2 Pascal Cores x 256 Tegra Parker 1465MHz 750

Odroid XU4 is an embedded device using Exynos5422 that is equipped with a quad-

core A15, a quad-core A7, and a Mali-T628 MP6 GPU. Exynos 8895 and Snapdragon

835 are the chipsets used in smartphones, where the Mali-G71 MP18 is the GPU on the

Exynos 8895, and the Adreno 540 is the GPU on the Snapdragon 835. Jetson TX2 is an

embedded AI computing device made by NVIDIA. It has a 2GHz quad-core ARM A57, a

dual-core Denver2, and a Tegra GPU with 256 Pascal CUDA cores running at 1301MHz.

It shows 1.46 times better performance than its predecessor, Jetson TX1 that was used in

the winner of LPIRC 2016.

Based on the comparison result, as Jetson TX2 shows the best peak performance,

it was selected as the hardware platform. Another benefit of using Jetson TX2 is the

existence of CUDA and cuDNN library. Since the main kernels are already optimized

in the cuDNN library, it is easy to implement deep learning networks on the device.

On the other hand, for the other devices in Table 3.1, it is necessary to develop custom
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Table 3.2: Performance comparison among object detection models for ImageNet Detec-
tion Dataset

Model (Framework) FPS mAP Predicted mAP

SSD (Caffe) 3.5 0.43 0.045
YOLOv2 (Darknet) 5.81 0.51 0.087
Tiny YOLO (Darknet) 17.4 0.32 0.167

deep learning kernels with OpenCL since there is no available DNN specific library like

cuDNN.

3.1.2 Deep Neural Network and Software Framework

Image recognition, also known as object detection, is a problem that finds all objects

and the associated bounding boxes that contain the objects in a given set of test images.

There are several neural networks proposed recently for image recognition. They are

largely divided into two approaches. One approach separates the detection of the bound-

ing boxes from the image classification, composing the network into two stages. In the

first stage, a CNN is used to extract the features and generate region proposals. Image

classification and box prediction in each region are performed in the second stage. Faster

R-CNN [36] and R-FCN [37] are two examples.

On the other hand, several networks have been recently proposed to take the other

approach that unites the region proposal and image classification in a single sequence

of layers. YOLO [21], Tiny YOLO [11], and SSD [38] are popular examples of this

approach. These networks are selected as the candidate networks because they promise

higher performance without accuracy loss than the first approach [21, 38].

We compared three candidate networks in terms of frame per second (FPS) perfor-

mance and mAP accuracy. The comparison result is summarized in Table 3.2. Since the

challenge uses the training data from ImageNet and the test images are “ImageNet-like,”

the networks were retrained with the ImageNet dataset and evaluation was also conducted
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with the ImageNet test dataset [39]. The first column lists the name of each network and

the associated software framework that runs the network on Jetson TX2. As shown in the

second and third columns of Table 3.2, YOLOv2 dominates SSD in both performance and

accuracy. However, there is no dominance relation between YOLOv2 and Tiny YOLO.

Since there is a time limit in the challenge, the accuracy was re-computed by considering

the time limit, which is listed in the last column, named Predicted mAP. For instance,

YOLOv2 can process 5.81×60×10 images in 10 minutes, which corresponds to 17.4%

of 20,000 images so that the Predicted mAP becomes 0.51×0.17 as the estimated mAP

of each algorithm in given 10 minutes. As a result, Tiny YOLO that gives the highest

value of Predicted mAP was chosen as the base network.

While many deep neural networks have one or more fully connected layers, Tiny

YOLO is a fully convolutional network (CNN) that consists of 9 convolution layers and

6 max-pooling layers without the fully connected layer. Table 3.3 shows the structure of

Tiny YOLO. The output tensor from the last layer includes all predictions of objects and

bounding boxes. Since some predictions are not accurate, the post-processing step, called

non-maximum suppression (NMS), is supposed to be run on the CPU side, which selects

meaningful ones with some threshold values.

Note that the baseline Tiny YOLO is included in the Darknet framework [40]. The

mAP accuracy and the FPS performance shown in Table 3.2 were obtained by running

the Darknet on Jetson TX2. Since it is an open-source framework written in C, we could

modify the Darknet directly to apply the software optimization techniques to the net-

work. For example, we inserted some codes for performance profiling of each layer. To

accurately measure the time spent in each layer, cudaDeviceSynchronize() API is used

to isolate the executions between layers. Also, the time spent was measured using the

clock gettime() API provided by the standard C time library.
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Table 3.3: Tiny YOLO layer information

Type Size/Stride # of In/Out Channels Output Size

Convolution 3 × 3 / 1 3 / 16 416 × 416
Maxpool 2 × 2 / 2 16 / 16 208 × 208

Convolution 3 × 3 / 1 16 / 32 208 × 208
Maxpool 2 × 2 / 2 32 / 32 104 × 104

Convolution 3 × 3 / 1 32 / 64 104 × 104
Maxpool 2 × 2 / 2 64 / 64 52 × 52

Convolution 3 × 3 / 1 64 / 128 52 × 52
Maxpool 2 × 2 / 2 128 / 128 26 × 26

Convolution 3 × 3 / 1 128 / 256 26 × 26
Maxpool 2 × 2 / 2 256 / 256 13 × 13

Convolution 3 × 3 / 1 256 / 512 13 × 13
Maxpool 2 × 2 / 1 512 / 512 13 × 13

Convolution 3 × 3 / 1 512 / 1024 13 × 13
Convolution 3 × 3 / 1 1024 / 1024 13 × 13
Convolution 1 × 1 / 1 1024 / 1025 13 × 13

3.1.3 Software Optimization Techniques

The overall flow of the proposed methodology is shown in Figure 3.1. After the

hardware platform and the neural network were selected in the first two steps, we applied

a sequence of software optimization techniques from step 3 to step 6.

To improve the throughput performance, we first pipelined the network, aiming to

overlap the CPU and GPU operations maximally. Afterward, other optimization tech-

1. Hardware
Platform Selection

2. Base Network
Exploration

3. CPU-GPU
Pipelining

4. Tucker
Decomposition

5. CPU
Parallelization

6. 16-bit
Quantization

7. CPU-GPU
Frequency Selection

8. Addtional
Optimization

Figure 3.1: Overall flow of the proposed optimization methodology
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Table 3.4: Step-by-step Performance Improvement Results

Step Running Time FPS Improvement ratio

Baseline 1150s 17.4 1.0×
Pipelining 660s 30.3 1.74×

Tucker 540s 37.0
Selective-Tucker 530s 37.7 1.25×

CPU Parallelization 502s 39.8 1.06×
16-bit Quantization 502s 39.8

Selective-Quantization 460s 43.5 1.09×

niques were performed to reduce the bottleneck time based on the profiled execution

times of CPU and GPU. To reduce the GPU execution time, we applied two techniques,

Tucker decomposition, and 16-bit quantization. To reduce the CPU execution time, we

parallelized the CPU computation by multi-threading.

After software optimization was performed, we explored the CPU and GPU frequen-

cies to minimize the energy consumption of the system in step 7. At last, we emulated the

end-to-end test scenario to check if the proposed solution performs as expected. During

this final test, we identified some unexpected bottlenecks and so applied an additional

optimization to solve the problems.

Table 3.4 summarizes the performance improvement from each optimization step.

In the rest of this section, software optimization techniques are explained in detail.

3.1.3.1 CPU-GPU Pipelining

While the CNN structure of Table 3.3 represents the main algorithm, an image

recognition system has a pre-processing step that fetches an input image from the disk

sequentially, and a post-processing step, non-maximum suppression (NMS) step, as ex-

plained in the previous section. Both steps are performed on the CPU side. In the baseline

Darknet implementation of Tiny YOLO, the pre-processing step and the other two steps

are pipelined as shown in Figure 3.2 (a). As the first step of optimization, we added
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Figure 3.2: Illustration of the CPU-GPU pipelining procedure

another pipeline stage between the second and third steps to overlap the CPU and GPU

operations as illustrated in Figure 3.2 (b). To this end, we modified the Darknet by adding

a buffer between these two steps.

Table 3.5 displays the profiled information on the execution times on CPU and GPU.

By simply pipelining the second and third steps, we could reduce the inference time from

1150 sec to 660 sec (42.6%) since the post-processing step takes a significant amount of

execution time.

Table 3.5: Execution time comparison between the baseline and the pipelined network

Inference Time CPU Time GPU Time

Baseline 1150 sec 488 sec 656 sec
Pipelined 660 sec 488 sec 656 sec

3.1.3.2 Tucker Decomposition

Since GPU is the bottleneck in the pipelined network, it was necessary to reduce the

execution time of the CNN. Since convolution layers are the most time-consuming and re-

quire large memory space, several approximate computing methods have been developed
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to reduce the computation time and memory requirements as explained in Section 2.2.2.1.

Tucker decomposition is one of such methods we adopted in the proposed solution [15].

Tucker Decomposition
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Figure 3.3: Tucker Decomposition

Figure 3.3 shows how one convolutional layer with 3×3 kernel size, Ci input chan-

nels, and Co filters can be decomposed to three small convolution layers that include

two 1× 1 convolution layers and one 3× 3 convolution layer by Tucker decomposi-

tion. The top figure represents the original convolution that convolves the 3-D input ma-

trix (h×w×Ci) and Co filter matrices of size 3× 3×Ci to produce an output matrix

(h×w×Co). The number of multiplications involved in this convolution is 3×3×Ci×Co

per pixel. As shown in the bottom figure, the weight matrix is decomposed into three 1

matrices with lower ranks and the original convolution is replaced with three smaller

convolutions that are cascaded. The matrix size and the number of filters are depicted in

the figure where C′i and C′o are smaller than Ci and Co respectively. This decomposition

reduces the total number of multiplications to Ci×C′i + 3× 3×C′i ×C′o +C′o×Co. The

memory requirements to save the filter matrices are also reduced by the same ratio.

In this technique, speed and accuracy trade-off can be adjusted by two variables, C
′
i

1If Ci or Co is small, the weight matrix is decomposed into two matrices by merging the first or the last
with the middle convolution, respectively.
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Table 3.6: Parameters for tucker decomposed layers

Layer Ci Co C′i C′o

Conv2 16 32 16 20
Conv3 32 64 20 32
Conv4 64 128 32 64
Conv5 128 256 64 128
Conv6 256 512 128 256
Conv7 512 1024 256 512
Conv8 1024 1024 512 512
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Figure 3.4: Execution time profile of convolution layers before and after Tucker decom-
position

and C
′
o. As a rule of thumb, we set C

′
i and C

′
o to the half of Ci and Co, respectively, as

depicted in Table 3.6 except two layers, Conv2 and Conv3. Since the number of input

channels is small in the Conv2 layer, we omit the first 1 × 1 convolution in Tucker

decomposition.

With Tucker decomposition, we could reduce the total inference time to process

20,000 images from 660 sec to 540 sec as shown in the fourth row of Table 3.4, which is

smaller than the time limit of 10 minutes.

From the layer-level profiling of execution times, it was observed that Tucker de-

composition is not always beneficial. As shown in Figure 3.4, three convolution layers
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from Conv2 to Conv3 become slower if Tucker decomposition is applied. Thus rather

than applying Tucker decomposition to all convolution layers, we selectively applied

Tucker decomposition to the layers. As a result, we could reduce the execution time to

530 seconds with the selective-Tucker method as reported in the fifth row of Table 3.4.

From the profiling, however, we observed that the post-processing step, the NMS step,

became the performance bottleneck that limits the speed improvement only by 10 sec-

onds after the selective Tucker is applied. Thus, we moved to the next optimization step

of CPU parallelization.

3.1.3.3 CPU Parallelization

Algorithm 1 Non-Maximum Suppression in Tiny YOLO network
1: procedure NMS(classes, predictions, thrs)
2: for c in classes do
3: t← predictions[c]
4: for each p in t do
5: if p.con f < thrs.con f then
6: remove p
7: for each (p1, p2) : p1.con f > p2.con f in t do
8: if IOU(p1, p2)> thrs.iou then
9: remove p2

10: print each element of t

Algorithm 1 shows the pseudo-code of the NMS step where the main loop is ap-

plied to each object class (line 2), which gives an opportunity of parallelization. Among

predictions made from the CNN, it first invalidates predictions whose confidence value

is smaller than a threshold (line 4 to 6). Then redundant predictions are removed (line 7

to 9). The intersection of union (IOU) is a metric to quantify how the proposed bounding

box is close to the ground truth bounding box [1]. Finally, the remaining predictions are

valid ones.

Since the Jetson TX2 platform has a multi-core CPU, we parallelized the NMS

step by using the OpenMP library [41]. In consequence, the CPU execution time of the

24



NMS step was greatly reduced the total inference time from 530 sec to 502 sec and GPU

became the performance bottleneck again.

3.1.3.4 16-bit Quantization

The next optimization method was to reduce the precision of data representation

from 32-bit floating-point to 16-bit floating-point, which is denoted as 16-bit quanti-

zation. While aggressive quantization has been extensively researched in the design of

specialized neural processors, there is no benefit of using smaller bit widths than 16-bit

in Jetson TX2 in the computation time.

Jetson TX2 supports 16-bit data type called fp16 and fp16 data type should be used

with the fp16 APIs, including the math function APIs and basic operation APIs such as

addition, subtraction, multiplication, and division. While the cuDNN library supports 16-

bit precision in Jetson TX2, we had to re-implement the GPU kernels that are directly

implemented by the Darknet with fp16 APIs for 16-bit Quantization. Also, the input

feature maps and the filter weights must be converted into fp16 precision.

Since quantization reduces the bit width of data only, it was expected that it is bene-

ficial in all convolution layers. Thus we applied fp16 operations to all Tiny YOLO layers.

Interestingly, as can be seen in the seventh row ‘16-bit quantization’ of Table 3.4, no

speed-up was obtained. From layer-level profiling, it was observed that the first three

convolution layers became slower after 16-bit quantization as shown in Figure 3.5,

To find the cause of this unexpected result, we examined the profiling data obtained

by the nvprof profiler provided by NVIDIA for the 1st and the 8th convolution layers

which showed the two largest differences between fp16 and float operations. Table 3.7

summarizes some data obtained from the nvprof profiler. The number cache accesses are

decreased with fp16 operations in both layers as expected since the same cache line con-

tains twice more data with fp16 types. The profiling result revealed that the performance

largely depends on the number of instructions. At the first convolution layer, the fp16

25



Table 3.7: Profiling results for two convolution layers before and after 16-bit quantization

Conv1 Conv8

FP16 Float FP16 Float
L2 Cache Read 419 K 858 K 2,247 K 5,109 K
L2 Cache Write 173 K 346 K 16 K 58 K

Total Number of Instructions 30 M 12 M 48 M 43 M

kernel executes 2.5× more instructions than the 32-bit kernel, which overshadowed the

benefit of reduced cache access in the execution time. On the other hand, there is a small

difference at the 8th convolution layer. Thus the reduced cache access results in the exe-

cution time reduction. It seems that the cuDNN library provides more optimized kernels

for 32-bit float data than the kernels for fp16 data.

Hence, to optimize the overall network, we applied the fp16 operation selectively

from the fourth convolution layer and the inference time was shortened from 502 sec to

460 sec (9.4%).
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Figure 3.5: Execution time profile of convolution layers before and after 16-bit quantiza-
tion
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Table 3.8: CPU-GPU frequency exploration results

CPU Freq. GPU Freq. Exec. Time(s) Energy Consumption(Wh)

1,114MHz 1,122MHz 58 0.180682
1,728MHz 1,122MHz 52 0.184183
1,728MHz 944MHz 59 0.184728
1,114MHz 1,301MHz 55 0.192547
1,728MHz 1,301MHz 49 0.195594
2,035MHz 1,122MHz 52 0.196636
2,035MHz 944MHz 58 0.196706
2,035MHz 1,301MHz 48 0.205224

3.1.3.5 CPU-GPU Frequency Selection

After a sequence of software optimizations, the total inference time is reduced to

460 seconds, which means that we could finish 140 seconds earlier than the time limit.

So we could use the spare time to minimize the energy consumption further by adjusting

the operating frequencies of processing elements. If we decrease the frequency, it will

increase the execution time, but decrease the power consumption. Since the energy is

the integral of power consumption until the completion time, we may reduce the total

energy consumption by lowering the frequency of processing elements, particularly if a

processing element is under-utilized.

Table 3.8 shows the measurement results on the execution time, and energy con-

sumption consumed to process 2,000 images with various pairs of CPU and GPU fre-

quencies. Note that the table includes the pairs of frequencies only that can meet the time

limit (60 sec). Energy consumption was measured with the WT310E power meter in Ta-

ble 3.8 and inference is performed with local images to exclude the network delay. From

this exploration of frequencies, the selected frequencies for CPU and GPU are 1,114MHz

and 1,122MHz, respectively.
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3.1.3.6 Additional Optimization

After finishing all optimizations, we tested the server-client program used in the

challenge. To reduce the communication counts between the device and the server, we

sent one packet of detection results for a group of 1000 images at once. It was observed

that the server took about 15 seconds to process one packet. To solve this problem, We

increased the confidence threshold from 0.01 to 0.1 in the NMS module to reduce the

number of valid predictions, which reduced the size of the packet and so the processing

time of the server.
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3.2 C-code Generation Framework for Optimized On-
device Deep Learning

The methodology obtained through the experience of participating in the Low Power

Image Recognition Challenge (LPIRC) [1, 2] is described in Section 3.1. In this section,

we build a C-code generation framework that helps users build a deep learning system

using the methodology explained.

3.2.1 C-GOOD Framework

Network

Architecture

User Specified Input

Generate Code

Run Network

Profiling

Comparison
& Selection

Generator

Optimization
0

20
40
60
80 FPS mAP

Problem

Figure 3.6: Overview of C-GOOD

Figure 3.6 shows the process of optimizing a deep learning network on a given em-

bedded device in the C-GOOD framework. First, a user specifies a network configuration,

a problem description, a platform description, and an optional optimization description.

Based on this input information, C-GOOD generates a code, compiles the generated code,

and performs layer-wise profiling during execution. Then the user determines which op-

timization technique will be used by comparing the execution times before and after a

specific optimization technique is applied. Unless the user specifies the order of optimiza-

tion techniques to be applied, a default order is followed in the proposed methodology.

Finally, it generates an optimized C code for the given network and hardware platform.
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[net]

[convolutional]
name=conv1
batch_normalize = 1
filters = 16
size = 3
stride = 1
padding = 1
activation = leaky
bottom=input

[pool]
name=pool1
pool_type = MAX
size = 2
stride = 2
bottom=conv1
…

[pipeline]

[tucker_decomposition]
Network=darknet-tucker.cfg
Weight=darknet-tucker.weights
Layerwise=1

[quantization]
Network=darknet-half.cfg
Weight=darknet.weight
Layerwise=1

[merge_batch_normalization]

[input_resolution]
Size=(256, 256) (224, 224) … (128,128)

Network Configuration Optimization Description

platform=x86
OpenCV=1
Thread=0
…

classes=200
test = validation.txt
problem = detector
dataset = imagenet
…

Platform Description Problem Description

Figure 3.7: An example of input information

3.2.1.1 Input Information

The input information of C-GOOD consists of one optional input file, an optimiza-

tion description file, and three necessary input files for network configuration, problem

description, and platform description. An example is shown in Figure 3.7. Since it is as-

sumed to use the Darknet framework for training a deep neural network, C-GOOD uses

almost the same input file format as Darknet for network configuration and problem.

However, the platform description file and the optimization description file are additional

input files that Darknet does not use.

Network Configuration The network configuration file represents how layers are com-

posed in a deep learning network, and specifies the parameters of each layer such as
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Figure 3.8: Overview of the software optimization flow

kernel size, stride, padding, and a flag indicating whether or not batch normalization

technique is used.

Problem Description The problem description file contains information about the prob-

lem. It includes the name of a dataset such as ImageNet, VOC, or Cifar, the type of the

dataset such as Detection or Classification, and the path of a text file that contains the

path of test images.

Platform Description The platform description file describes the HW platform that

the user wants to use. This file includes the architecture of the device, whether it supports

thread programming and a specific library such as OpenCV and CUDA, and so on.

Optimization Description The optimization description file is an optional file that se-

lects the optimization techniques and specifies the order of application. The optimization

techniques supported in the current implementation include loop unrolling, pipelining,

Tucker composition, quantization, merging batch normalization into weights, and input

size reduction. If the user does not provide this file, C-GOOD applies optimizations in

the default order proposed in the optimization methodology depicted in Figure 3.8. In the

example of Figure 3.7, C-GOOD proceeds pipelining first and Tucker decomposition,

quantization, merge batch normalization, and input resolution reduction in series.
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1
2
3
4
5
6

void main()
load_weight();
init_layers();
set_workspace();
inference();
wrap_up();

void inference()
for each test image

frontend(image);
forward_layers();
backend();

void forward_layers()
conv1_forward();
pool1_forward();

...
conv8_forward();
pool4_forward();

(a) (b) (c)

Figure 3.9: Baseline C-code (pseudo code) that is platform-independent

3.2.1.2 Code Generation & Optimization Methodology

Figure 3.8 shows the default optimization procedure in the proposed software op-

timization methodology. For a given network, a baseline code without any optimiza-

tion can be generated as shown in Figure 3.9. After allocating a workspace, or memory

space, for the network in set workspace(), inference() is called. After inference for all

images is completed, wrap up() frees dynamically allocated data structures. In infer-

ence(), we first read an image in frontend(), perform inference through multiple layers

in forward layers(), and produce results in backend(). Now we explain how the code is

modified after each optimization technique is applied.

Pipelining For embedded devices with heterogeneous processing elements, pipelining

can improve the throughput performance of the network. The network can be partitioned

into three stages: input preprocessing, network inference, and post-processing2 of the last

layer’s output feature map. By making the hardware accelerator or GPU take the network

inference stage and letting the CPU cores perform the other two stages, we can increase

the throughput performance.

To apply pipeline technique to the front-end, we make frontend thread and some

changes in inference. Figure 3.10 (a) shows how the code is changed in inference() to

apply pipelining at the front end, which is highlighted by red texts. A separate thread,

2In the final output feature map, each proposed answer is encoded as a tensor. The post-processing
includes a decoding of such data and selecting the final answers.
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void inference()
front_thread_init();
for each test image

while(front_flag);
forward_layers();
front_flag= 1;
backend();

void frontend_thread()
n = 0;
while(n < NUM_IMAGE)

while(!front_flag);
read_inputs(input_buf);
front_flag=0;
n++;

(a) (b)

1
2
3
4
5
6
7
8
9

void inference()
front_thread_init();
back_thread_init();
for each test image

while(front_flag);
forward_layers();
while(back_flag);
front_flag = 1;
back_flag=1;

void backend_thread()
n = 0;
while(n < NUM_IMAGE)

while(!back_flag);
processing_outputs();
back_flag=0;
n++;

(c) (d)

Figure 3.10: Code modification by applying pipeline

called fronend thread, is initialized and run in frontend thread init(). Two concurrent

threads are synchronized by an array of shared flags. A similar modification is made for

back-end pipelining as illustrated in Figure 3.10 (c) and (d).

Loop Unrolling [42] GEMM (General Matrix Multiplication), which is a popular func-

tion in convolution computation, consists of a 3-nested loop inside. In some architectures,

loop unrolling is an effective way to increase the utilization of processing elements for

effective parallel processing. Figure 3.11 shows how the loop body of gemm nn() can be

unrolled when the unrolling factor of each loop is set to 2 and the total unrolling factor

is 8. When unrolling factors are set, unrolling code is generated through three processes:

making as many temporary variables as the total unrolling factor to store the partial re-

sult, generating the unrolled loop body with temporary variables, and adding extra code

if the number of iterations is not a multiple of unrolling factor.

Tucker Decomposition As a low-rank approximation technique, we use Tucker de-

composition as explained in Section 3.1.3.2. Since the Tucker decomposition transforms
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void gemm_nn (float *A, float *B, float *C)
for (i=0; i<I; i++)

for (j=0; j<J; j++)
for (k=0; k<K; k++)

C[J*i + j] += A[K*i + k] * B[J*k + j];

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

void unrolled_gemm_nn (float *A, float *B, float *C)
float c0, …, c7;
for (i=0; i<I-1; i+=2)

for (j=0; j<J-1; j+=2)
for (k=0; k<K-1; k+=2)

c0 = A[K*(i+0) + (k+0)] * B[J*(k+0) + (j+0)];
c1 = A[K*(i+0) + (k+1)] * B[J*(k+1) + (j+0)];
c2 = A[K*(i+0) + (k+0)] * B[J*(k+0) + (j+1)];
c3 = A[K*(i+0) + (k+1)] * B[J*(k+1) + (j+1)];
c4 = A[K*(i+1) + (k+0)] * B[J*(k+0) + (j+0)];
c5 = A[K*(i+1) + (k+1)] * B[J*(k+1) + (j+0)];
c6 = A[K*(i+1) + (k+0)] * B[J*(k+0) + (j+1)];
c7 = A[K*(i+1) + (k+1)] * B[J*(k+1) + (j+1)];
c0 += c1; c2 += c3; c4 += c5; c6 += c7;
C[J*(i+0) + (j+0)] += c0;
C[J*(i+0) + (j+1)] += c2;
C[J*(i+1) + (j+0)] += c4;
C[J*(i+1) + (j+1)] += c6;

Figure 3.11: Unrolled GEMM Code

a convolution layer into a cascade of two or three convolutional layers, it is necessary

to change the network configuration input file but without code change. Since it is re-

ported that Tucker decomposition is not beneficial at all times [43], C-GOOD provides

a performance profiling function at each layer. In the current implementation, the user is

supposed to apply Tucker decomposition repeatedly with a set of candidate dimension

values of decomposed matrices (C′i and C′o in Figure 3.3) and find the best dimension val-

ues among the candidates for each layer. It will be a future work to automate this process

to find the best values of C′i and C′o.

Quantization C-GOOD gives users the option to use 16-bit data instead of 32-bit data,

which is denoted as quantization optimization. Since quantization does not improve per-

formance in all cases like the Tucker decomposition case, C-GOOD performs layer-wise

profiling before and after quantization is applied to decide in which layers quantization

is beneficial.
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void
forward_layers()

conv1_forward();
pool1_forward();

...
conv8_forward();
pool4_forward();

void forward_layers()
f2h(input_data);
conv1_forward();
pool1_forward();

...
conv8_forward();
pool4_forward();
h2f(pool4_data);

void forward_layers()
conv1_forward();
pool1_forward();
f2h(pool1_data);

...
conv8_forward();
pool4_forward();
h2f(pool4_data);

(a) (b) (c)

Half Type

Figure 3.12: Code changes for applying quantization and layer-wise quantization (f2h is
a function that converts float data to half and h2f do vise versa.)

Figure 3.12 (b) and (c) show two examples that apply quantization to different re-

gions of layers. For 16-bit quantization, we need to convert the input data to 16-bit before

the first convolution layer of the region and convert the result data to 32-bit data after

the last convolution layer of the region. Note that we use different libraries or function

definitions for 16-bit data at the lower level, which is not shown in the figure.

Merge Batch normalization Batch normalization is a technique to normalize the in-

put data to have unit variance and zero mean. It is known that normalization stabilizes

the learning process and accelerates learning. Since batch normalization is a linear trans-

formation, it can be merged with the previous convolution layer by adjusting the filter

weights at compile-time. It reduces the overall network execution time.

Input Resolution Reduction Since the computational complexity and the memory

space for activation data are proportional to the image size, it is advantageous to reduce

the input image size as much as possible while accuracy loss is tolerable. If the objective

function is defined as accuracy per power consumption, reducing the image size is advan-

tageous. If the user specifies the input size, the input image size is adjusted accordingly

by a front-end thread that performs image resizing.
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3.2.2 Experiments

We evaluate the effectiveness and viability of C-GOOD with three widely different

hardware platforms: the Jetson TX2 [3], the Odroid XU4 [4], and the Samsung Reconfig-

urable Processor (SRP) platform [5]. Jetson TX2 is an embedded AI computing device

made by NVIDIA. It consists of a quad-core ARM A57 CPU, a dual NVIDIA Denver

core, and a Pascal GPU that includes 256 CUDA cores. It is currently the most powerful

embedded device supported by the cuDNN libraries. Odroid XU4 consists of a quad-core

ARM A15, a quad-core ARM A7, and a Mali-T628 MP6 GPU. Since the platform does

not support CUDA, the proposed framework includes an OpenCL-backend to use the

Mali GPU.

The SRP is a coarse-grained reconfigurable array processor that has 16 heteroge-

neous processing elements and supports 32bit floating-point calculations with a peak

performance of 4GFlops. It contains a 320KB on-chip data SRAM. Since the array pro-

cessor can be configured as a single VLIW processor for the processing of sequential

programs, it can run the full DNN algorithm. However, the SRP does not run an operat-

ing system, and there is no support for libraries. Thus we need to generate a standalone

C-code that can be compiled for the array processor by the SRP compiler. Note that this

platform cannot run any existent DNN platform such as Caffe2 [44], Tensorflow lite [45],

and even Darknet [40].

3.2.2.1 Performance Comparison

Since the Darknet framework can be run directly on Jetson TX2, we first compare

the performance between the Darknet framework and the code generated by C-GOOD.

For comparison, we use three neural networks supported by the Darknet framework:

YOLOv2 [21] for object detection and the Darknet19 [20] and DenseNet [46] for image

classification, both with the ImageNet dataset. Table 3.9 displays the speed comparison

result and Table 3.10 compares the memory usage of two frameworks.
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Table 3.9: Speed comparison with Darknet (Unit: FPS)

Problem Networks Darknet Ours Piped3

ImageNet DET YOLOv2 [21] 5.81 6.39 7.11

ImageNet CLS Darknet19 [20] 21.26 23.37 32.44
ImageNet CLS DenseNet201 [46] 12.39 17.45 21.03

Darknet reads multiple images at once by multithreading for object detection, which

is similar to pipelining in its effect on the performance while no such technique is used

for image classification. The table shows both the FPS measured without pipelining and

the FPS with front-end pipelining only in C-GOOD. For object detection, the Piped code

generated by C-GOOD should be compared with Darknet for a fair comparison. It is

observed that C-GOOD shows 22.4% higher performance. For image classification, C-

GOOD is 9.9% faster than Darknet without pipelining for Darknet19 and 40.8% faster

for DenseNet201. If front-end pipelining is applied, the performance improvement is

increased to 52.6% and 69.7%, respectively. Because both approaches use cuDNN for

convolution layers, the gain is mainly attributed to network-specific code generation and

skipping operations for the reshape layer which changes the shape of the feature map.

When concatenating feature maps from two or more previous layers, the code generated

by C-GOOD allocates memory more efficiently.

Table 3.10: Memory usage comparison with Darknet (Unit: MB)

Problem Networks Darknet Ours Piped3

ImageNet DET YOLOv2 [21] 861 761 777

ImageNet CLS Darknet19 [20] 655 649 675
ImageNet CLS DenseNet201 [46] 734 657 687

Memory footprint is an important metric for an embedded device that has a limited

size of memory. Table 3.10 displays the maximum resident set size (RSS) value of the

process, measured by using ps command. For object detection, the Piped code generated
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by C-GOOD uses 84MB less memory than Darknet. This gain comes from two reasons.

First, C-GOOD optimizes the memory usage for the reshape layer. Second, there is a

difference in pipelining implementation between C-GOOD and Darknet: darknet uses

four threads to read input, but C-GOOD uses two threads. It is observed that Darknet19

for image classification shows a similar size of memory for both C-GOOD and Darknet

since Darknet19 does not include a reshape layer nor does it contain multithreading for

reading input. In the case of DenseNet201 that includes 98 reshape layers, C-GOOD uses

77MB less memory than Darknet. Even with pipelining, it uses 47MB less memory.

Table 3.11: Memory usage and speed when using Caffe2

Problem Networks Speed
(Unit:FPS)

Memory
(Unit:MB)

ImageNet CLS DenseNet121 [46] 13.89 1,061
ImageNet CLS DenseNet201 [46] 7.69 1,459

Caffe2 [44] was recently introduced as a deep learning framework for embedded

systems and is becoming popular. Table 3.11 shows the memory usage and speed for

the Caffe2 framework with two networks, DesneNet201 and DenseNet121, on the same

Jetson TX2 board. DenseNet121 model is obtained from the Caffe2 official github [47]

and DenseNet201 is manually converted from the Caffe model [48]. For DenseNet201, it

is observed from Table 3.9 that C-GOOD performs more than twice better than Caffe2 in

terms of speed. Because YOLOv2 and Darknet19 have a layer not supported by Caffe2,

a comparison with those networks could not be made.

3.2.2.2 Jetson TX2

The next set of experiments is conducted by applying the proposed software op-

timization procedure, using C-GOOD, to a Jetson TX2 platform. Figure 3.13(a) shows

how the computation speed improves as the optimization process is applied to the Dark-

net19 network for image classification. In the figure, the horizontal axis indicates the
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Table 3.12: Applied optimization techniques

No. Technique No. Technique

(1) Frontend Pipelining (5) Quantization
(2) Backend Pipelining (6) Layer-wise Quantization
(3) Tucker Decomposition (7) Merge BatchNorm
(4) Layer-wise Tucker (8) Loop Unrolling

Base (1) (1)+(2) (1)+(2)
+(3)

(1)+(2)
+(4)

(1)+(2)+
(4)+(5)

(1)+(2)+
(4)+(6)

(1)+(2)+
(4)+(6)+
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(a) Performance change with application of optimization methods
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Figure 3.13: Restuls of methodology application in two different devices results for image
classification using the C-GOOD framework
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optimization methods added from the origin and the vertical axis indicates the FPS per-

formance. Each number represents an optimization technique shown in Table 3.12. As an

optimization method is added, the performance is improved, and after all optimizations

are applied, the performance reaches a 2.8 × improvement compared to the baseline im-

plementation that is identical to that shown in Table 3.9.

It can be observed that the Tucker decomposition yields the largest improvement

and layer-wise exploration produces additional gains for both Tucker decomposition and

quantization. There is no gain with backend pipelining because the workload of postpro-

cessing is negligible. Figure 3.13(b) shows the trade-off between accuracy and speed as

the input image size varies. The speed increases almost linearly with the input size while

the accuracy drops rather abruptly when the input size decreases too much.

A similar experiment is conducted with YOLOv2 for object detection. As shown in

Figure 3.14(a), we were able to achieve significant performance improvements by 3.35

times compared with the baseline implementation. Figure 3.14(b) shows the trade-off be-

tween speed and accuracy as the input size is changed. We observe an outlier consistently

when the input size decreases from 384 to 352, which needs further investigation in the

future.

3.2.2.3 Odroid XU4

For Odroid XU4 that does not support CUDA, C-GOOD generates an OpenCL code,

based on our own OpenCL kernels for the DNN layers. 4 Since the Odroid XU4 platform

has much lower computation power than Jetson TX2, experiments are conducted with

smaller networks: Darknet with the ImageNet dataset for image classification and Tiny-

YOLO with the VOC dataset for object detection. The optimization flow presented in

Section 3.2.1.2 is applied except quantization since the MALI-T628 GPU does not sup-

port 16-bit half-precision computations. Experimental results are displayed in the same

4Since the OpenCL kernels are not fully optimized, there is still room for improvement.
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Figure 3.14: Restuls of methodology application in two different devices results for object
detection using the C-GOOD framework
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figures as those of the Jetson TX2 experiments from Figure 3.13(a) to Figure 3.14(b).

Software optimization results in a 2.2× performance improvement for Darknet and an

8.7× improvement for Tiny-YOLO. Unlike the Jetson TX2 case, there is no performance

gain achieved with pipelining since the CPU workload is negligible compared with the

GPU workload for inferencing. The steep accuracy drop is observed at a larger input size

than the Jetson TX2 case for image classification, but no difference is observed for object

detection.

3.2.2.4 The Samsung Reconfigurable Processor

Since the SRP processor has limited computing power and on-chip SRAM size, we

applied our methodology to Darknet [20] only for image classification. From the original

Darknet network, three max-pooling layers are removed since the dataset is changed to

CIFAR that assumes a smaller image size than ImageNet. Experiments are conducted on a

cycle-accurate simulator instead of a real device since access to a development board was

not available. Note that there exists no DNN framework that supports the SRP processor

except the proposed framework.

Figure 3.15(a) shows performance improvements on the SRP when our methodol-

ogy is applied. Because SRP does not support thread or 16-bit data type, we cannot apply

the optimization techniques using threads and the quantization technique. The hardware-

specific optimization step is applied as the first step to generate loop-unrolled C-code

to ease compiler-optimization. These loop-unrolling compiler optimizations achieve a

10.93× performance improvement. Similarly to the other platforms, the speed of infer-

ence is improved by more than a factor of two by the Tucker decomposition in all layers,

while the Merge-BN optimization does not raise performance noticeably. Experimental

results for varying input sizes are shown in Figure 3.15(b). Again, we have to find a

good compromise between accuracy and performance (or power) for the given objective

function.
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3.3 Scheduling Deep Learning Applications Onto Het-
erogeneous Processors

As the need for on-device machine learning is increasing recently, embedded de-

vices tend to be equipped with heterogeneous processors that include a multi-core CPU, a

GPU, and/or a DNN accelerator called a neural processing unit (NPU). In the scheduling

of multiple deep learning applications in such embedded devices, there are several techni-

cal challenges. First, a task can be mapped onto a single core or any number of available

cores. So we need to consider various possible configurations of CPU cores. Second, em-

bedded devices usually apply dynamic voltage and frequency scaling (DVFS) to reduce

energy consumption at run-time. We need to consider the effect of DVFS in the profiling

of task execution times. Third, to avoid overheat condition, it is recommended to limit

the core utilization. Lastly, some cores will be shut-down at run-time if core utilization is

not high enough, in case the hot-plugging option is turned on. In this paper, we propose

a scheduling technique based on Genetic Algorithm to run deep learning applications

on heterogeneous processors, considering all those issues. First, we aim to optimize the

throughput of a single deep learning application. Next, we aim to find the Pareto optimal

scheduling of multiple deep learning applications in terms of the response time of each

deep learningh application and overall energy consumption under the given throughput

constraints of deep learning applications. The proposed technique is verified with real

deep learning networks running on two embedded devices, Galaxy S9 and HiKey970.

The remainder of this section is organized as follows. First, in Section 3.3.1, we

calculate the size of the search space for the problem we are dealing with in this schedul-

ing work. The hardware platform and system model used are described in Section 3.3.2.

In Section 3.3.3, we describe the overall flow and how to profile execution time and

communication time of each layer on different PEs. After the scheduling technique for a

single application is explained in Section 3.3.4, Section 3.3.5 describes how to extend our
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scheduling framework to multi-application scheduling. Section 3.3.6 verifies our schedul-

ing method by comparing the scheduling results with the results obtain from the actual

implementation.

3.3.1 Search Space Size

Table 3.13: The number of possible solutions when scheduling a convolutional neural
network to a device with 4 CPUs, 1 GPU, and 1 NPU

Network # of Layers # of all possible solution

SqueezeNet [10] 40 42×638 ≈ 5.9×1030

MobileNet v1 [12] 31 42×629 ≈ 5.9×1023

MobileNet v2 [49] 67 42×665 ≈ 6.0×1051

DenseNet 40 [50] 64 42×662 ≈ 2.8×1049

Let K be the number of layers in a deep learning network, and let the number of

CPU, GPU, and NPU in an embedded device be Nc, Ng, and Nn. Then, the total number

of solution is 2Nc × (K−2)(Nc+Ng+Nn). The first term is the number of cases where the

first and the last tasks are mapped to the CPU, and the second term is the number of cases

where the other tasks are mapped to all PEs including CPU, GPU, and NPU. Table 3.13

shows the number of all possible solutions when scheduling a single CNN network to a

device with 4 CPUs, 1 GPU, and 1 NPU. It can be seen that the results in this table are

very large even though they are the number of possible solutions when scheduling a CNN

network. In the case of scheduling multiple networks, it can be obtained by multiplying

the number of possible solutions when scheduling each network. Therefore, there are so

many possible solutions that we cannot perform an exhaustive search to find the optimal

Pareto solution.

3.3.2 Hardware Platform and System Model

Since the proposed framework is applied to embedded devices, we first explain

the characteristics of hardware platforms used in this work: Galaxy S9 smartphone and
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HiKey970 board. Galaxy S9 is a heterogeneous system that consists of a Mali-G72 MP18

GPU and big.LITTLE CPUs with a quad-core M3 CPU running at 2.7GHz and a quad-

core Cortex-A55 CPU at 1.79GHz. HiKey970 is also a heterogeneous system that con-

sists of a Mali-G72 MP12 GPU and big.LITTLE CPUs with a quad-core A73 running

at 2.36GHz and a quad-core Cortex-A53 at 1.8GHz. Besides, it has an NPU that can

accelerate deep learning applications. We believe that our approach can be applied to

other hardware platforms since it uses a black box model for each processing element

(PE) with the profiled execution time and communication time at the task level without

assuming a specific hardware architecture.

Since reducing the energy consumption is critical in mobile embedded devices,

Galaxy S9 adopts an aggressive DVFS policy, called schedutil, which lowers the fre-

quency and the voltage level of CPU cores if the average utilization of cores is below

a pre-specified threshold. No DVFS policy is used in HiKey970. Galaxy S9 even shut-

downs some cores dynamically using a CPU hot-plug feature supported by Linux. Since

the overheating induces unexpected slow-down of an application, the maximum CPU

core utilization is usually set to avoid such an unpleasant situation. We profile deep learn-

ing networks considering DVFS and hot-plug, and propose a mapping technique that can

limit CPU utilization.

For software implementation of deep learning applications on ARM processors,

ARM provides an open-source software development kit, called ARM NN [51]. Unfortu-

nately, it does not support Galaxy S9. Moreover, it does not support the parallel execution

of a deep learning network on a heterogeneous system. Thus partitioned deep learning

applications need to be written manually using ACL [52] that contains OpenCL imple-

mentation of deep learning operations for GPUs and NEON 5 implementation for CPU.

APIs for utilizing the NPU are more limited. Even though HiKey970 has an NPU inside,

the software development environment is not open to the public so that the NPU could

5NEON is a SIMD architecture extension for ARM Cortex-A processors.
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Figure 3.16: Five different CPU core configurations considering inter-layer parallelism
and intra-layer parallelism

not be used to verify our schedule results in Section 3.3.6.

Most deep learning libraries and previous works consider a multi-core CPU as a

single processor and exploit the data-parallelism of the mapped layer or task 6 using

multi-threading. For instance, ACL executes a convolution layer either on a multi-core

CPU or a GPU exploiting the data-parallelism in the layer to reduce overall inference

time. In contrast, we model the quad-core CPU as a set of logical processing elements

since multiple layers may run concurrently on different cores in the CPU. Figure 3.16

illustrates five different configurations that we can choose with four CPU cores. Each

figure in Figure 3.16 shows that four CPU cores can be utilized differently with different

combinations of inter-layer and intra-layer parallelism degree that is indicated by num-

bers below the figures. The degree of inter-layer parallelism indicates how many layers

are executed concurrently, and the degree of intra-layer parallelism is given as a tuple that

represents how many cores are assigned to the layers running concurrently. For example,

Figure 3.16 (b) illustrates the case in which the degree of inter-layer parallelism is 2 and

that of intra-layer parallelism is (3, 1), meaning that two layers are mapped on the CPU

of which one layer is executed by 3 cores while the other layer by 1 core.
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3.3.3 Proposed Scheduling Framework and Profiling

Figure 3.17 displays an overview of the proposed scheduling framework of deep

learning applications on an embedded device. While the proposed methodology is applied

to two specific embedded devices in this work, it is applicable to other embedded devices.

Before a scheduling decision is made, it should be known how much time is taken to

execute a task on each processing element (PE) and the communication overhead between

two dependent tasks, which would vary if they are mapped to different PEs. Such profiles

are obtained by running the deep learning application on each PE in the preprocessing

step.

With the profiled task information, we perform static scheduling of deep learning

applications on the heterogeneous processors in the given hardware platform to optimize

6In this scheduling work, we use the terms, task and layer, interchangeably.
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a given objective function under the constraint on the CPU utilization. For a single deep

learning application, the objective is to increase the throughput and to minimize energy

consumption. The output of the framework is a set of Pareto optimal schedules, which

includes mapping information of layers onto PEs.

When scheduling multiple deep learning applications, we assume that the period of

each application is given as the throughput constraint. While we can use other objectives,

the scheduling objective assumed in this paper is to minimize the response time of each

application and the total energy consumption of the system. The deadline is set to be the

same as the period. The framework finds a set of Pareto optimal schedules that meet the

deadline of each application. Before we explain the proposed scheduling techniques in

subsequent sections, we elaborate on the profiling and performance estimation technique

in this section.

3.3.3.1 Task Profiling and Estimation

Profiling is performed with an in-house deep learning framework [53] that generates

an OpenCL code for the Mali GPU and multi-threaded NEON code for the multi-core

ARM CPU in the device using ACL. By adding a time-stamping code at each task (or

layer) boundary, the elapsed time between any two points of interest can be measured.

For the GPU, the kernel time can be measured by using OpenCL profiling APIs.

The GPU execution time is easy to obtain since OpenCL utilizes all GPU cores, and

the task execution time does not vary in a deep learning application. On the other hand,

CPU profiling of a task is tricky, with many issues that should be taken into account. First,

the five different CPU configurations should be considered as discussed in Figure 3.16:

a task should be profiled with a varying number of cores from 1 to 4, as shown in Ta-

ble 3.14. For profiling with the different number of CPU cores, a Linux command taskset

is used to assign specific CPU cores to a process.

Second, the CPU execution time should be adjusted since the embedded device may
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Table 3.14: An example of profiling (network: SqueezeNet)

Layer 4 core 3 core 2 core 1 core 1 core* GPU

c1 3,951 6,958 8,178 14,569 13,358 1,628

c9 734 1,205 1,362 2,253 1,755 536

c14 324 400 477 589 417 590
1 core* means that no ACL thread is created. (Unit: µs)

run a Dynamic Voltage Frequency Scaling (DVFS) governor that changes the CPU fre-

quency depending on the utilization. Moreover, the Linux kernel may turn on and off

a CPU core at run-time, supporting the CPU hot-plug feature. For example, if a task is

executed on a single core and no other applications or processes are running on the other

cores, Galaxy S9 would turn off the other cores to reduce the energy consumption and

increase the CPU frequency up to the maximum of 2.7 GHz. If a task is mapped to all

four cores, on the other hand, the DVFS governor would lower the CPU frequency to

1.79GHz to reduce the heat and power consumption. With two cores assigned, a task is

run at the frequency of 2.31GHz. Since other processes may be running while the target

deep learning applications are running, it is safe to assume that all CPU cores will be busy

in reality. Thus the profiled CPU execution time is calibrated based on the observed CPU

frequency, assuming that all cores are busy even though a task is not mapped onto four

cores. For instance, the execution time profiled on a PE with two CPU cores has to be

increased by 2.31
1.79 . This simple interpolation is based on the assumption that computation

time will increase inversely proportional to the CPU frequency, which is a source of error

between our profiling results and the actual measurements.

More detailed profiling of convolution layers is performed to examine the cause of

varying speedup ratio. Table 3.15 shows the measured execution time of four kernels in-

volved in each convolution layer for c1, c9, and c14. Note that a convolution operation is

computed by GEMM (general matrix multiplication) after converting the input image to

a suitable matrix. If a target device has four cores, the ACL creates three threads in addi-
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Table 3.15: Intra-Layer Parallelism Analysis

Layers Kernel Computation Time Sync Overhead

c1

Im2Col 182,341 18,449
GEMM 623,818 215,803
Col2Im 2,567,736 310,425
ReLU 198,487 51,220

c9

Im2Col 25,097 32,840
GEMM 95,607 15,418
Col2Im 307,815 52,362
ReLU 59,717 38,172

c14

Im2Col 30,455 30,312
GEMM 111,703 6,195
Col2Im 23,583 38,762
ReLU 7,328 29,714

Unit: ns

tion to the main thread. The main thread first distributes the workload to the threads and

computes the remaining workload. Then, it synchronizes with other threads waiting for

them to be joined. In the table, Sync Overhead is this waiting time including the condi-

tional wait API overhead. In c1 and c9, the synchronization overhead is small compared

to the computation time. In c14, however, the overhead is comparable to or even larger

than the computation time. It makes the CPU cores idle and hinders the performance

improvement of c14 when intra-layer parallelism is four, as shown in Table 3.14.

It is noteworthy that, in some layers, Col2Im time is greater than the GEMM time.

This is because the memory access pattern of Col2Im has very poor locality: the kernel

mainly consists of memory operations, but the stride of the write operations is the 2-D

output tensor size (width × height), and the size per access is only 4 Bytes.

3.3.3.2 Communication Overhead Profiling and Estimation

Communication overhead between two tasks should be considered in making a

scheduling decision. In ACL, the input and output tensor buffers of each layer (or task)
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should be defined statically. If two adjacent tasks are mapped onto the same PE, the out-

put tensor buffer of a task can be shared with the input tensor buffer of its successor task,

resulting in no communication overhead between them. If they are mapped onto different

PEs, however, a buffer cannot be shared, but separate buffers are required for each ten-

sor in order to run tasks in a pipelined fashion. Likewise, the two adjacent tasks that are

mapped to different logical PEs among four cores in a CPU cannot share a tensor buffer.

Data should be copied between separate buffers using memcpy. For the communication

between CPU and GPU, map and unmap OpenCL APIs are used. The map API is used

to access the data in the GPU memory address space from the CPU, while the unmap

releases the mapping so that the mapped data can then be computed by the GPU.

Thus communication overhead is estimated differently depending on the types of

communicating PEs. Communication time between different CPU PEs is equal to mem-

cpy time, and the time from GPU to CPU is set to (map + memcpy) time since the

OpenCL maps GPU memory to the host and then copies the data to CPU. The time from

CPU to GPU is set to (map+memcpy+unmap) time since it has to map GPU memory

to the host (CPU) in order to send data to GPU and then unmap it for the next layer’s

GPU processing.

To measure the overhead of those APIs, we made a micro-bench and ran it 1000

times, from which the averaged overhead was obtained. By changing the data size in

the APIs, the overhead of memcpy on Galaxy S9 is approximated as 1.06× 10−2 ×

(DataSize)2 + 2.75× 10−1× (DataSize)+ 1.70, unmap as 9.97× (DataSize)+ 526.39,

and map as 21.75× (DataSize)+569.25.

3.3.3.3 NPU Profiling and Estimation

Accurate profiling on an NPU could not be made since the API for executing a

layer on an NPU is not available, which makes direct profiling impossible. Instead, per-

formance estimation on the NPU in HiKey970 is made indirectly by assuming that the
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Figure 3.18: Task-clustering mapping of an application

NPU is about 6.5 times faster than that of the quad-core CPU based on the performance

comparison reports in [54, 55]. Also, the communication time between CPU and NPU is

assumed to be the same as the time between CPU and GPU. For energy consumption, a

similar estimation is made with the comparison reported in [54, 55] since it is not pos-

sible to measure the power consumption of a task on each PE. As a result, the power

consumption of CPU, GPU, and NPU is assumed to be 3.5W, 4W, and 2W, respectively.

3.3.4 Scheduling a Single Deep Learning Application

3.3.4.1 Baseline Task-clustering Scheduler

As a baseline scheduling method, we partition the DNN into a set of sub-networks,

map them onto processors, and run them in a pipelined fashion. The intuition for this

is to minimize the communication overhead, also keeping the code complexity low. The

mapping problem is defined as the task-clustering problem in which the input, a deep

learning application, is partitioned into a number of PEs. A processing element (PE) is

assigned a single task-cluster only. One exception is allowed for a logical PE of CPU,

as illustrated in Figure 3.18 (a) where the CPU is assigned two task-clusters: the first

cluster and the last cluster. If we attach the scheduler of the second iteration and move
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the cluster of one period, however, the schedule becomes as shown in Figure 3.18 (b)

so that the restriction still holds. We implement this scheduler using ILP to find the best

solution in this restricted solution space.

Let L = {L1, L2, . . . , Ln} be a set of layers, or tasks, in a deep learning application

sorted in the topology order, and PE = {PE1, PE2, . . . , PEm} be a set of logical PEs in

the device7. E j
i is the computation time of Li on PE j and T j,k

i is the communication time

taken when transferring Li’s output from PE j to PEk.

There are three sets of constraints in the ILP formulation. First, a task is mapped onto

only one PE. When M j
i is a binary decision variable that indicates whether Li is mapped

to PE j, the following constraint, expressed by Eq. (3.1), makes each task mapped onto

only one PE. Let pred(Li) and succ(Li) be the set of preceding and succeeding layers of

layer Li, respectively.

∀Li ∈ L,
m∑

j=1

M j
i = 1 (3.1)

The second set of constraints is related to task-clustering mapping. We introduce

two additional binary variables, dep j
i and Pipe j

i . The former indicates whether any pre-

decessor of Li is mapped on the PE j. The Pipe j
i variable indicates whether a cluster or

pipeline stage starts from layer Li on PE j. The definitions of dep j
i and Pipe j

i are presented

in Eq. (3.2) and Eq. (3.3), respectively:

dep j
i =


1, ∃Lk ∈ pred(Li), M j

k = 1

0, otherwise
(3.2)

Pipe j
i =


M j

i , i = 1

M j
i ∧¬dep j

i , otherwise
(3.3)

7n is the number of layers in the deep learning application, and m is the number of PEs in the device.
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With these two variables, Eq. (3.4) tells that only one pipeline stage is allowed for

each PE, except the PE onto which the first and last stages are mapped.

∀PE j ∈ PE,
n∑

i=1

Pipe j
i − (M j

n∧M j
1) = 1 (3.4)

Lastly, we need to specify dependency constraints. Let Start(Li) be the start time of

a task or layer Li, End(Li) be the end time of Li, and m(Li) be the index of the PE onto

which layer Li is mapped. Then, the following two constraints of Eq. (3.5) and Eq. (3.6)

enforce all dependencies between tasks to be satisfied.

∀Li ∈L, ∀L j ∈ succ(Li),

Start(L j)≥ End(Li)+T m(Li),m(L j)
i (3.5)

∀Li ∈L, ∀L j /∈ succ(Li), j > i,

Start(L j)≥ End(Li)− ((1−Mm(L j)
i )×∞) (3.6)

Note that we aim to maximize the throughput of a deep learning application, which

is determined by the longest cluster in the pipelined execution. Thus we define the cluster

execution time, CT (PE j), as follows:

CT (PE j) =

n∑
i=1

M j
i × (E j

i +
∑

Lk∈succ(Li)

T j,m(Lk)
i ) (3.7)

Then the objective function is to minimize the longest cluster execution time, which is

presented as follows:

minimize( max
PE j∈PE

(CT (PE j)) (3.8)
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3.3.4.2 Proposed GA-based Scheduler
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Figure 3.19: Overview of the proposed GA scheduler

Genetic algorithm (GA) is a widely used meta-heuristic inspired by evolutionary

processes in nature, where a solution of the problem is encoded as a chromosome, and the

fitter survives to the next generation, populating new chromosomes with operations such

as crossover and mutation on their chromosomes. The proposed scheduling algorithm is

displayed in Figure 3.19. The overall flow and population generation procedure is not

much different from the standard GA algorithm.

Figure 3.20 shows an example of a chromosome configured to solve the problem

using the proposed GA scheduler. A chromosome consists of an array, where each el-

ement represents a layer, and the number in the array indicates the PE onto which the

layer is mapped. For example, the chromosome shown in Figure 3.20 indicates that the

first layer is mapped on PE 0 (CPU PE) and the third layer is mapped on PE 4 (GPU PE),

0 1 4 0 2 3 1 4 2 1
*) CPU cores (0 – 3)
*) GPU core (4)

the number of layers in network

Figure 3.20: GA chromosome structure with PE configuration (1, 1, 1, 1)
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and so on. Since encoding varies depending on the configuration of the multi-core CPU,

we iterate this encoding with a different number of PEs (i.e., different maximum number

in the array) for each possible configuration.

The objective of the proposed scheduling is to maximize throughput and to minimize

energy consumption. The CPU utilization should not be higher than some threshold to

avoid overheating. Thus we define the fitness function with the following three terms and

let GA find the solutions with the minimal fitness value. The first term is the inverse of

the throughput that is obtained by Eq. (3.9) [56].

T hroughput(graph) = lim
n→∞

n
time to f inish n iterations

(3.9)

The second term is the total energy consumption, which is computed by multiplying the

execution time of the mapped tasks on each PE and the power consumption of the PE.

The third term is the penalty in case the CPU utilization is greater than a given utilization

constraint.

3.3.4.3 Experimental Results

The proposed scheduler is implemented with DEAP [57] and SPEA2 [58] is used

as the selection algorithm, which is known to perform well for multi-objective problems.

MobileNet v1 [12], MobileNet v2 [49], SqueezeNet [10], and DenseNet-40 (k=32) [50]

are selected as benchmark applications in this work.

Throughput Performance We first set the optimization criteria of single application

scheduling to be the throughput performance ignoring energy consumption. Figure 3.21

shows the scheduling results of the GA-based scheduler and the ILP-based task-clustering

scheduler. The x-axis represents the CPU configurations that determine how to exploit

intra- and inter-layer parallelism on a CPU. The y-axis represents the average inference

time of a single input image in µs. The throughput performance is the reciprocal of the
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Figure 3.21: Comparison of the GA-based method and the ILP-based method (Device:
Galaxy S9 / Unit: µs)
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Figure 3.22: Scheduling results from Hikey 970 (Unit: µs)

average inference time. Since the typical CPU utilization limit to avoid overheating is

within the range of [40%, 70%], we set the constraint within the range and compare the

result with the one without any constraint (100%). Note that the CPU utilization is the

average utilization across the whole CPU cores.

From Figure 3.21, we make three observations. First, as the CPU utilization con-

straint gets tighter, the inference time increases and the throughput decreases, as ex-

pected. In Figure 3.21(g), the inference time does not decrease with a larger CPU utiliza-

tion constraint, which is indicating that the GPU execution is the performance bottleneck.

Second, the throughput performance is the best with (1,1,1,1) PE configuration in

most cases, which implies that exploiting inter-layer parallelism is more beneficial than

exploiting intra-layer parallelism. From this observation, we decided to use (1,1,1,1)

PE configuration for scheduling multiple applications, as will be explained in the later

section. Figure 3.22 shows that (1,1,1,1) configuration also gives the best throughput

performance for HiKey970. There is one exception in the proposed GA-based schedul-
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(a) ILP-based mapping method
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(b) Proposed mapping method

Figure 3.23: Scheduling results from two different methods

ing result: the inference time of (2,1,1) PE configuration, indicated by a red arrow, is

smaller than (1,1,1,1) configuration when the utilization constraint is 100% as shown in

Figure 3.22(d).

The third observation is that the GA-based scheduling outperforms the task-clustering

scheduling in almost all cases. It is because the partitioning restriction imposed on the

task-clustering method prunes the solution space too much. To understand the difference

between the two methods, Figure 3.23 compares the results of scheduling methods for

a single problem instance (SqueezeNet with (3,1) CPU configuration under 60% CPU

utilization constraint). The figure shows that the GA-based method can better utilize the

CPU cores than the task-clustering method.

Multi-Objective Scheduling As shown in Figure 3.24, the proposed GA scheduler

generates Pareto optimal solutions in terms of throughput and energy consumption. Each

Pareto optimal solution is associated with a different scheduling result. Thus a user can

find the best trade-off from the results.
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Figure 3.24: Multi-objective scheduling results
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Figure 3.25: Multiple application scheduling example

3.3.5 Scheduling Multiple Deep Learning Applications

3.3.5.1 Schedulability Analysis

Since the schedule of an application affects the other applications, schedulability

analysis can be performed only after the mapping and scheduling decisions are made. On

the other hand, we need to consider schedulability when making mapping and scheduling

decisions. The proposed GA-based scheduler solves this cyclic-dependency naturally in

an iterative fashion.

Suppose that we map two applications on three heterogeneous processors as shown
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in Figure 3.25 and AppA has a higher priority than AppB.8 Figure 3.25(c) shows a

scheduling example of AppA and AppB. The green box in Figure 3.25(c) illustrates that

task B3 in application AppB is delayed by the tasks A2 and A3 of application AppA which

has higher priority. As we do not know the relative offset of AppA to AppB, we have to

consider the worst-case scenario of interference from AppA in calculating the delay of

task B3. In addition, task B5 on another PE is delayed due to the dependency with task B3

as shown in the red box in Figure 3.25(c).

There are two methods to check the schedulability of multiple task graphs. One is

to convert each task graph into a set of independent real-time tasks with relative dead-

lines and starting offsets. Dependency between tasks is expressed by the relative starting

offsets of the tasks. The other method is the schedule-based analysis method proposed in

[59].

The schedule-based analysis is based on the scheduling results of each application.

For this analysis, the maximum resource demand (MRD) and maximum allowable in-

terference (MAI) are computed. The former, MRD, means the maximum duration for

which a high priority application can delay lower priority applications, while the latter

(MAI) means the maximum duration for which a task can be delayed by higher priority

tasks. MRD can be obtained by using the demand bound function (DBF) that returns the

maximum processor execution time during a time interval given as an argument [60].

MAI is derived from the mobility concept of behavioral synthesis by subtracting the As-

Soon-As-Possible (ASAP) schedule offset from the As-Late-As-Possible (ALAP) sched-

ule offset [61].

For each task Ti, let Pi be the period of the task Ti, M(Ti) be the processor onto which

Ti is mapped, and H(Ti) be the application set whose priority is higher than Ti. Also, let

db fpe(A, t) be the demand bound value of the tasks in an application A which are mapped

onto pe during time interval t. Then, the application is schedulable if each task Ti satisfies

8A lower number means a higher priority.
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the following equation: Eq. (3.10)9.

MAITi−
∑

hp∈H(Ti)

db fM(Ti)(hp,Pi)≥ 0 (3.10)

Since we assume non-preemptive scheduling as GPU and NPU cannot support pre-

emptive scheduling, we modify Eq. (3.10) such that it considers the maximum possible

interference by a lower priority task. If we denote a set of applications whose priority is

lower than Ti as L(Ti) and the computation time of task l p as Cl p, then the final equation

becomes Eq. (3.11).

MAITi−
∑

hp∈H(Ti)

db fM(Ti)(hp,Pi)− max
l p∈L(Ti)

(Cl p)≥ 0 (3.11)

3.3.5.2 GA-based scheduler

The scheduler shown in Figure 3.19 is applied to the scheduling of multiple applica-

tions with a similar chromosome structure. For the scheduling of multiple deep learning

applications, the fitness function is redefined since the objective and the constraints are

changed. We set multiple objectives, minimizing the response time of each application,

and minimizing the total energy consumption. Thus the fitness function has as many

terms as the number of applications, each of which is the response time of the corre-

sponding deep learning application, plus the term for the total energy. If the response

time of an application is greater than the throughput constraint of the application, a large

penalty is added to the term so that it cannot be selected.

9In the general case, after subtracting the interference of one higher priority application from the MAI,
the MAI value should be updated iteratively, but this equation does not include that part for simplicity.
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Figure 3.26: Pareto-optimal solutions in terms of relative response time when scheduling
SqueezeNet (SQ), MobileNet v1 (MBv1), and MobileNet v2 (MBv2)

3.3.5.3 Experimental Results

The same configurations are used as in Section 3.3.4.3 except that the three CNNs

are scheduled together and the objectives are different: to minimize response times of

three applications and total energy consumption of the device. The CPU configuration is

fixed to (1,1,1,1), as this configuration has resulted in better solutions for a single deep

learning application in most cases.

Figure 3.26 and Figure 3.27 show the scheduling result of three benchmark CNNs

with different periods; SqueezeNet, MobileNet v1, and MobileNet v2. Each application

has periods of 33, 40, and 50 ms, respectively. In this experiment, the highest priority is

assigned to SqueezeNet while the lowest one to MobileNet v2.

Figure 3.26 shows 288 Pareto-optimal solutions in terms of the relative response

times of the three applications. We do not include energy information on this chart for

a simple illustration. The grayscale indicates the response time of MobileNet v2: the
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darker is the color, the smaller is the response time. The x-axis indicates the relative re-

sponse time of SqueezeNet to the fastest response time of SqueezeNet on the device. The

minimum response times of SqueezeNet, MobileNet v1, and MobileNet v2 are 10.3 ms,

13.7 ms, and 16.9 ms, respectively. The y-axis and z-axis represent the relative response

time of MobileNet v1 and MobileNet v2 respectively. We could observe that the appli-

cation with the higher priority has the smaller response time, as expected: the minimal

relative response times of SqueezeNet, MobileNet V1, and MobileNet v2 are 1, 1, and

1.43, respectively.

Figure 3.27 shows the change in energy consumption as the response time of two

different application changes. The darker color indicates less energy consumption. In

Figure 3.27(a), we can observe that the energy consumption is low when the response

times of SqueezeNet and MobileNet v1 are 1 and 1.8, respectively.

3.3.6 Verification with Real Hardware Platforms

Based on the scheduling results of a single deep learning application, we parallelize

two benchmark networks, MobileNet v1 and MobileNet v2, on two hardware platforms:

Galaxy S9 and HiKey970. Since there is no existent software framework to generate

the parallelized code, we extended our own deep learning software framework [53]. For

pipelined execution, we make a separate thread for each logical PE in CPU and imple-

ment double buffering for the tensor of which the source layer and the destination layer

are mapped onto different PEs. And we use the conditional wait API for synchronization.

Due to the limitation imposed by ACL, however, we could not implement all PE

configurations of the multi-core CPU, and we could not verify the scheduling of multiple

deep learning applications. The current ACL implementation does not allow more than

one task to use multi-threading for data-parallel execution simultaneously. For example,

(2,2) configuration is not allowed since it would have two tasks, each of which in turn

would create two threads. In (1,1,1,1) configuration, we disable the threading option for
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Table 3.16: Verification results on two hardware platforms

HW Conf. Net Schedule Actual Error

HiKey970 C1 MN v1 18.5 19.7 -6.1%
HiKey970 C2 MN v1 21.1 19.8 6.6%
HiKey970 C1 MN v2 23.9 28.8 -17.0%
HiKey970 C2 MN v2 27.5 27.4 0.4%

Galaxy S9 C1 MN v1 15.4 16.5 -6.7%
Galaxy S9 C2 MN v1 23.5 23.2 1.3%
Galaxy S9 C1 MN v2 24.8 25.5 -2.7%
Galaxy S9 C2 MN v2 31.1 (31.2) 31.2 -0.3 (0)%

MN: MobileNet / Unit: sec

data-parallelism. Consequently, we could verify the scheduling results of a single deep

learning application for the following two cases:

• (C1): With ACL scheduler disabled, scheduling with (1, 1, 1, 1) PE configuration

• (C2): With ACL scheduler enabled, scheduling with a quad-core CPU: (4) config-

uration

In this experiment, the scheduling objective is to maximize the throughput under no

CPU utilization constraint, and comparison is made in terms of the processing time for

1000 images. Since we can change the DVFS governor and GPU frequency of HiKey970,

unlike Galaxy S9, we chose the performance CPU governor and 767MHz GPU frequency

for HiKey970. Neural Processing Unit (NPU) is not used even though HiKey970 has it.

Table 3.16 shows the verification results. It can be observed that the performance

difference of the parallelized MobileNet v1 between the scheduling result and the mea-

sured one is less than 7% on both hardware platforms for two PE configurations. For

MobileNet v2, the performance gap is relatively larger, particularly on HiKey970 for

(C1) configuration. The main reason is that we underestimate the communication cost

between processors in HiKey970. We found that Galaxy S9 uses only two CPU cores in-

stead of four for (C2) configuration with MobileNet v2, turning off two CPU cores as the
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CPU utilization becomes lower than the given threshold that is not known to us. Thus we

re-run the GA-based scheduler with profiling results with two CPU cores for the layers.

Then, we could obtain no performance difference as shown with parentheses in the last

row of Table 3.16.
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3.4 Related Work

3.4.1 Deep Learning Framework

New algorithms are being developed every day, and many software optimization

techniques exist. It is thus necessary to develop a systematic methodology to explore the

wide design space of algorithm selection and software optimizations for a given hard-

ware platform. On the other hand, many convolution neural network (CNN) algorithms

are developed on a deep learning framework such as Caffe [62], Torch [63], or Tensor-

flow [64] that is assumed to run directly on the target hardware. Since the framework

itself is performed on the target hardware to perform from building a CNN graph to op-

timizing and inferencing the graph, it is slow and consumes more hardware resources.

Also, most CNN applications built with these frameworks are implemented in scripting

languages such as Python, and most frameworks use many libraries that are not supported

by embedded systems. This makes it difficult to apply to embedded devices.

Darknet [40] is another neural network framework written in C language. It pro-

vides options to use various functions for image processing in the OpenCV library, and

to optimize a CNN algorithm on NVIDIA GPUs using CUDA or cuDNN. To improve

efficiency and portability, three major extensions are made in C-GOOD. One is to make

new function definitions or provide a different set of libraries if a library is not supported

in the target platform. For the Odroid platform [4] that does not support CUDA, for in-

stance, C-GOOD provides and generates OpenCL kernels for GPU computation. The

second extension is to generate a target-specific C code. For the Samsung Reconfigurable

Processor (SRP) platform [5], loop unrolling techniques are applied in the code genera-

tion step to help the SRP compiler optimize the deep learning operations efficiently. The

last extension is to optimize some operations for inferencing. When batch size is 1, for

example, a reshape layer, which changes the shape of the feature map while merging two

or more previous feature maps into one feature map, can be skipped by allocating the
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previous layers’ output memory continuously. It also reduces memory allocation.

3.4.2 Deep Learning Compiler

While there is a trend to perform deep learning applications on a variety of hard-

ware devices, current frameworks rely on specific libraries, and deploying workloads

to new hardware platforms requires considerable manual work. To reduce the effort to

deploy workloads to every new hardware, several deep learning compilers have been

proposed [65, 66]. TVM [65] is an end-to-end compiler that allows the deployment of

deep learning workloads specified in high-level frameworks to diverse hardware back-

ends. It introduces scheduling primitives and proposes a machine learning based opti-

mization system to automatically explore and search for optimized tensor operations.

Tiramisu [66] is a polyhedral compiler for dense and spare deep learning and data-parallel

algorithms.

These two compiler works are similar to ours in that they take deep learning net-

works as inputs and generate optimized code. However, while these two studies optimize

and schedule in one convolution operation, our methodology optimizes multiple layers

or a whole network by applying several software optimization techniques such as het-

erogeneous PE mapping and layer decomposition. Also, the devised methodology uses

libraries, such as cuDNN and ARM compute library (ACL), to perform the optimizations

that the two compilers do.

3.4.3 Scheduling Deep Learning Application

There are many recent studies for executing deep learning applications on embedded

devices. While they mostly consider a single deep learning application, we also consider

the scheduling of multiple applications that share the processors. CNNDroid [67] is a

library that accelerates a DNN by dividing layers into GPU and CPU. It simply maps

the convolution and fully-connected layers to GPU and the other layers to CPU. RSTen-
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sorflow [68] is a framework for users to use heterogeneous processors such as CPU and

GPU easily. It uses RenderScript [69] to manually parallelize the computation workloads

in a layer, such as matrix multiplication and convolution, across CPU cores and GPUs.

Mirhoseini et al. [70] proposed a hierarchical DNN model for the efficient placement

of a neural network graph onto hardware devices. The Grouper groups graph operations

and the Placer maps them to the devices. Even if they also try to utilize not only GPUs

but also CPUs in the system, unlike our approach, they do not consider the various con-

figurations with multi-cores in a CPU, nor the pipelining scenario: only task-parallelism

with parallel edges is considered.

µLayer [71] is the latest work to accelerate a DNN on heterogeneous processors on

Samsung Galaxy Note 5 and Galaxy A5. It aims to exploit only data-level parallelism

of each layer using the heterogeneous PEs, unlike ours which also exploits task-level

parallelism. Since all PEs need to be synchronized and data communication between PEs

is necessary at the end of each layer, the communication and synchronization overhead

is significant. Also, it did not consider a DVFS policy and CPU utilization constraints of

the smartphone. Nonetheless, experimentation with the real smartphone is laudable since

practical issues need to be resolved like this work.

DeepX [72] considers data-level parallelism in the mapping and scheduling of deep

learning applications on heterogeneous multi-processor platforms. DeepX performs layer-

wise partitioning first and divides the workload of a layer into a group of unit blocks that

are defined as the computation requirements to update a single output node in a layer.

The authors propose an integer linear programming (ILP) formulation to find a trade-off

between energy consumption and latency by allocating the unit blocks to PEs layer by

layer. While they show the experimental results of layer-wise partitioning onto the het-

erogeneous PEs, no performance comparison is reported between the simple layer-wise

partitioning and the ILP-based block-level partitioning. Their work differs from ours in

that they do not consider task-level parallelism and their objective function does not con-
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sider throughput constraint.

3.4.4 Scheduling Multiple Applications on Heterogeneous Pro-
cessors

3.4.4.1 Scheduling techniques on heterogeneous processors

Since scheduling acyclic task graphs on a heterogeneous system is a well-known

NP-hard problem, several heuristics have been proposed to solve this problem. Topcuoglu

et al. [73] proposed a Heterogeneous Earliest Finish Time (HEFT) algorithm and a Criti-

cal Path On a Processor (CPOP) algorithm, which both greedily reduce task finish time.

HEFT uses the concept of rank, which calculates the execution time of a critical path

from one task to the last task, to prioritize each task, and schedules tasks by mapping

them to the processor in a way that minimizes the finish time. CPOP, on the other hand,

reduces the overall latency of the application by first mapping all tasks in the critical path

to one fastest processor. When HEFT and CPOP schedule tasks on heterogeneous PEs,

the rank of a task is determined by the average execution time on all processors. On the

other hand, the Predict Earliest Finish Time (PEFT) algorithm proposed by Arabnejad et

al. [74] uses the Optimistic Cost Table (OCT), which has different task execution times

for each processor. These heuristics are concerned about the scheduling of a single task

graph. Roy et al. [75] proposed an Integer Linear Programming (ILP) algorithm to find

the optimal schedule result in terms of a makespan, or response time, of an application.

This work differs from other works in that it finds the optimal schedule. While this work

considers only one application, our method can schedule multiple applications. Also, our

method maximizes throughput when scheduling a single application, while other studies

aim to reduce the makespan.

Zhao et al. [76] have addressed the scheduling problem of multiple applications.

Their solution is to simply merge multiple applications into one large task graph. Hence

it does not allow applications to have different periods and random starting offsets. Xie
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et al. [77] proposed two static heuristic algorithms, F MHEFT and D MHEFT, which are

global scheduling algorithms that schedule multiple applications with mixed-criticality

levels on heterogeneous PEs. They present two scheduling algorithms; F MHEFT aims

to improve the system performance based on the fairness policy while D MHEFT aims

to meet the deadline of high-criticality applications. D MHEFT is similar to our method

in that it schedules the target applications with deadlines of tasks in mind. However, we

schedule multiple applications with different periods and starting offsets, and also con-

sider the worst interference by other application tasks. To apply D MHEFT to multiple

applications with different periods and starting offsets, it would have to simulate all pos-

sible cases.

3.4.4.2 Schedulability when scheduling multiple applications

When we schedule multiple applications onto a multiprocessor system, a popular

solution is to partition the processors to the applications spatially and/or temporarily.

In other words, each PE is assigned exclusively to a single application. Then, each ap-

plication can run on the assigned set of processors exclusively without worrying about

schedulability. If we allow a processor to be shared among multiple task graphs, how-

ever, any parallel scheduling should check if the mapped tasks are schedulable on each

processor.

There are two approaches to tackle this scheduling problem. One is to transform

the task graph into a set of independent tasks that have different starting offsets and

relative deadlines [78]. In this approach, the starting offsets and deadlines should be con-

servatively assigned, considering the dependency between tasks. After transformation,

the conventional schedulability analysis method for independent tasks is applied.

The second approach is to compute the time range in which each task should be

scheduled to guarantee the satisfaction of the deadline and to check if the possible in-

terference from the other applications is smaller than the range [59]. Since the former
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approach, the transformation approach, checks schedulability pessimistically [59], we

choose the latter approach, the schedule-based approach.

3.4.4.3 Scheduling techniques considering data parallelism in-
side a task

Even though there exist numerous scheduling techniques that have been proposed

for homogeneous or heterogeneous multi-core systems, they mostly assumed that a task

is run on a processor, and seldom considered data parallelism inside a task. Some recent

studies considered data parallelism of tasks as well as task parallelism. Liu et al. [79]

proposed heuristic algorithms to minimize the scheduling length of a task graph with

data-parallel tasks. Yang et al. [80] proposed an evolutionary algorithm to schedule a

task graph, considering task parallelism, data parallelism, and pipelining, with an objec-

tive to maximize the throughput performance. The same authors proposed an ILP based

technique for minimizing the total processor cost while satisfying the time constraints.

The previous works are usually based on a static model of a hardware platform.

They do not consider the characteristics of the actual hardware platform on which the

scheduling algorithm will run. Thus it is simply assumed that the execution time of a task

on each PE is given and the processor configuration is also fixed. On the other hand, we

integrate the characteristics of the hardware platform into problem formulation by pro-

filing each task considering various processor configurations. This makes our approach

distinguished from the existent ones. Moreover, the scheduling results are verified with

actual implementations, which has not been carried out in most of the previous works.
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Chapter 4

Optimization for an Application-specific
Hardware Accelerator

The main factors affecting the performance and energy consumption of a neural

processing unit (NPU) are off-chip memory access and on-chip memory contention. For

example, in the case of DianNao [23] and Cambricon-X [24], it is reported that the en-

ergy consumed by the off-chip DRAM access accounts for 80% of total energy consump-

tion [25, 26]. Besides, DPU-v2 [22] is reported to be under 40% utilization for GoogleNet

and ResNet-50, which commonly have a lot of memory operation. Thus, we reduce the

impact of off-chip memory access by reusing the feature map data between consecutive

layers. To avoid on-chip memory contention, we organize the on-chip memory to multi-

ple banks and manage them.

4.1 Multi-Bank On-chip Memory Management Prob-
lem

4.1.1 Main Idea

This work’s key idea is to manage multi-bank on-chip memory to reduce perfor-

mance and energy consumption due to off-chip memory access. This section explains

the key idea with the help of Figure 4.1 and explains why multi-bank on-chip memory
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Figure 4.1: NPU operations with multi-bank on-chip memory

management is required.

Suppose we have multiple memory banks to store filter weights and feature maps,

as illustrated in Figure 4.1. After loading the filter weights and an input feature map from

the off-chip DRAM, computation is performed in the datapath or processing elements

(PEs) by accessing three memory banks without access conflict. By prefetching the filter

weights and input feature map to available memory banks that are not accessed by the

datapath, we may hide the DRAM access delay. Thus multi-bank structure is usually

adopted to reduce the access contention in neural processing units (NPUs) [16, 19, 81].

Note that the output feature map had better be stored in the on-chip memory to reduce

the DRAM access since it will be the input feature map of the next convolution layer.

By doing so, if the sum of the input feature map and output feature map is smaller than

the total size of feature map banks, we can avoid the DRAM access completely between

two consecutive convolution layers. Otherwise, we need to manage the memory banks

judiciously for storing the input and output feature maps.

4.1.2 Assumed Dataflow

Dataflow is important as it is a major factor in determining the amount of data that

can be reused in on-chip memory, which is the subject of this paper. A convolution oper-

ation can be represented by six nested for statements. From the six nested for statements,

the dataflow of each accelerator is determined by three optimization terms: loop order,
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partitioning loop iteration, and hardware mapping of each partition [16, 28, 82]. Figure 2

shows the assumed dataflow in this paper. To efficiently reuse data between layers, we

reduce the time that partial sum data occupies on-chip memory by moving for statements

related to one output pixel into the on-chip computation. Also, we prioritize input reuse

over weight reuse. Based on this dataflow, the proposed compiler generates a sequence

of the instructions for when and how much to load or process input.

Algorithm 2 Dataflow of the convolution operation assumed in this paper using variables
in Figure 2.2

1: Variables
2: O Output Tensor
3: I Input Tensor
4: K Weight Filter
5: for w = 0;w <Wout ;w++ do
6: for h = 0;h < Hout ;h++ do
7: // Load inputs
8: for f = 0; f <Cout ; f ++ do
9: // Load weights

10: // On-chip computation
11: for c = 0;c <Cin;c++ do
12: for kw = 0;kw < Kw;kw++ do
13: for kh = 0;kh < Kh;kh++ do
14: MAC(O, I, K, w, h, c, f, kw, kh)

4.1.2.1 Delay Estimation

Since a key motivation of using a multi-bank structure is to hide the off-chip DRAM

access delay by prefetching as much as possible, it is necessary to compare the DRAM

access delay and the computation time. As a part of input information to the MOMM

problem, we need to estimate the DRAM access delay and the processing delay of an

input FMEM bank. As shown in Figure 4.2(a), the DRAM access delay model is obtained

by regression of the DRAM simulation results with Ramulator [83]. We assume that

LPDDR4 3200Mbps with 2 channels and 1 rank is used. Figure 4.2(b) shows the read

latency obtained by Ramulator and the regression result by varying the data size.
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Figure 4.2: DRAM access delay model

From the simulation result, we derive the DRAM access delay, Dm(B) where B is

the data size, as follows:

Dm(B) =
B

BWm
+Lm(B) (4.1)

Lm(B) = (Dinit +Pd×⌊
B

Psz
⌋+Rd×⌈

B
Rperiod

⌉) (4.2)

The first term of eq. (4.1) is the data transmission time from the row buffer, which

corresponds to the slope in Figure 4.2(b). The second term, Lm(B), represents the other

delay that corresponds to sporadic jumps in the figure, which is as a function of B. In

eq. (4.2), Dinit is the initial read delay, Pd is the delay to read a new row whose size

is Psz, and Rd is the delay caused by DRAM refresh whose period is Rperiod . With three

delay parameters obtained by regression, the estimated delay by eq. (4.1) becomes almost

identical to the simulation result, as shown in Figure 4.2(b).

To verify the DRAM delay model’s accuracy, we perform a preliminary experiment

to compare two different simulation results. In the first experiment, the Ramulator is con-

nected to the NPU simulator; the DRAM access trace generated by the NPU simulator is

passed to the Ramulator, and the simulated delay is fed back to the simulator whenever a
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Figure 4.3: MOMM problem definition

DRAM is accessed. In the second experiment, we use the DRAM delay model in the NPU

simulator instead of running the Ramulator. The delay error between the experiments is

at most 3.8%, on average 2.8%.

For computation time estimation, we compute the total number of cycles to process

a convolution layer, assuming that MACs are fully utilized, no dynamic behavior exists

due to resource contention inside the data path, and no zero skipping is used. Therefore,

once the target NPU is determined, the execution time can be estimated with a specific

formula.

4.1.3 Multi-bank On-chip Memory Management Problem

As shown in Figure 4.3(a), the inputs of this problem are the layer information and

the current bank state. Let I and O be the input feature map and output feature map of a

given layer, respectively. Then, I = ∪{I j} where I j is the j-th input tile and O = ∪{Ok}

where Ok is the k-th tile of the output feature map. Let T be the set of input and output

tiles, then T is obtained as T = I ∪O. Also, we could define FMEM, F , as F = ∪{Fk}

where Fk is the k-th FMEM bank where k ∈ {1,2, . . . ,N} and N is the number of FMEM

banks. The size of each tile is limited to the size of an FMEM bank.

Bank state information g is a function that receives a bank as an input and gives

which data is currently stored in that bank. Therefore, the domain and the codomain of

g are the bank domain F and feature map tile domain including an empty state (T ∪

{ /0}), respectively. Then, g(Fk) = I j means that the j-th input tile is mapped onto the
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Figure 4.4: An example of MOM Manager

k-th FMEM bank, and g(Fk) = /0 means no feature map tile is mapped on k-th bank. In

Figure 4.3(b), the bank state indicates that F0, F1, and F2 store I3, O1, and I2, respectively.

Since there is currently no tiles mapped to F3, the bank state of F3 is /0 as shown in the

figure. The layer information includes the input size, filter kernel size, and the number of

filters.

As shown in Figure 4.3(a), the output of the proposed Multi-bank On-chip Memory

Manager (MOM Manager) includes control code sequence, tile mapping information,

and updated bank state. The control code sequence determines the NPU behavior by a

sequence of control codes. Tile mapping information provides a mapping location for

each input and output tile during computation. That is, the tile mapping information is a

function that receives an input or output tile and provides in which banks the tile is stored.

Therefore, tile mapping information is represented by the function f from I/O tile domain

T to the FMEM bank domain including NULL and DRAM (F ∪{NULL,DRAM}). In

Figure 4.3(b), the tile mapping information indicates that I1, I2, and I3 is mapped to F3,

F2, and F0, respectively. Also, it informs that O1 is mapped to F1. Note that F3 is currently

empty as explained in the previous paragraph, but I1 is mapped to the bank. That means

that I1 was previously mapped to F3 and then processed, so F3 is empty now.

Figure 4.4 shows an example MOMM step during the convolution computation. In

this example, we assume that there are four FMEM banks while the required number

of banks for the input feature map and the output feature map is four each. For a simple
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illustration, we further assume that one input tile produces one output tile. Note that these

assumptions are for ease of explanation, and processing one input bank can produce more

than or less than one bank in this work. The first row ( 1 ) shows the input information to

this step: the first two input tiles are already mapped on two banks, and the remaining two

banks are empty. We can make several choices when processing the input feature map,

and the figure illustrates three choices from the second ( 2 ) to the fourth row ( 4 ). Each

choice corresponds to a pictorial representation of the associated control code. There are

more than one possible control codes we can generate. The state of each FMEM bank is

categorized into five states that are distinguished by different colors in the figure.

The first choice ( 2 ) is to use an empty bank to store the output feature map and

prefetch the third input segment to a remaining empty bank. This choice allows us to

hide the DRAM access for the next input tile by prefetching. Nevertheless, the filter

weights are used for one input tile only. The second choice is to process two input banks

consecutively and use two banks to store the produced output tiles. In case the size of

filter weights is larger than the size of WMEM, the loaded filter weights can be reused to

process two FMEM banks. Thus the second choice ( 3 ) reduces the number of DRAM

access for weight loading than the first choice. However, it disallows prefetching of the

next input feature segment. After finishing processing two FMEM banks, we need to wait

until the next input tile is loaded from the off-chip DRAM. Remind that that the loading

time of filter weights can be hidden by prefetching into WMEM banks.

The third choice ( 4 ) is to reserve only one bank to store the output feature map

and use the other empty bank for prefetching while processing two input banks together.

It seems to retain the benefits of the previous two choices, allowing prefetching to hide

the DRAM access delay and reusing the loaded filter weights to process two FMEM

banks together. However, it incurs additional overhead to access DRAM to store an output

feature map segment. Surely there may be other choices not shown in the figure. For

instance, we may use two empty banks both to prefetch the next input segments while
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storing the first two output feature map segments to the off-chip DRAM to minimize the

loading count of filter weights. Since there are trade-offs among various choices, selection

should be made carefully depending on the objective function of MOM management.

In case a CNN has parallel branches, the problem becomes more complicated. Fig-

ure 4.5 shows a segment of a CNN network with multiple paths; a circle in Figure 4.5(a)

represents a layer, and the numbers in the circles represent the layer number and the pro-

cessing order. Note that three layers (layers 2, 3, and 5) share the output of layer 1 as their

input. Therefore, if the output of layer 1 is kept in the on-chip FMEM after processing

layer 2, there is no need to load the data from the off-chip memory when processing layer

3. Figure 4.5(b) shows the possible choices in the processing of multiple paths, particu-

larly after layer 3. The first choice ( 2 ) is to reserve one bank to keep one output tile of

layer 1. This choice will allow layer 4 to use the remaining three banks to reduce off-chip

memory access. However, when processing layer 5, the other output tiles of layer 1 need

to be loaded from the off-chip memory. The second choice ( 3 ) is to keep two FMEM

banks for layer 1’s output. Then layer 4 can use only two other banks for its input and

output feature maps, which would incur more DRAM accesses during computation than

the first choice. If we keep all three banks of layer 1’s output to reuse them for layer 5,

layer 4 has only a single bank for computation ( 4 ). This example shows that we need

to consider how many input banks need to be kept for parallel branches, considering the

memory usage of all layers and bank state carefully.

There are two objective functions considered in this paper for the MOMM problem.
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One is to minimize the processing time, and the other is to minimize the DRAM access

volume for energy minimization. We consider both feature maps and filter weights in the

computation of DRAM access overhead.

4.2 Proposed Multi-bank On-chip Memory Management
Techniques

How to efficiently use the multiple on-chip memory banks defines the Multi-bank

On-chip Memory Management (MOMM) problem. More specifically, it is about how to

allocate the on-chip memory banks. There are three decisions to solve this problem: what

data is stored, which banks to store the data, and how many banks to store. In this work,

we decide which banks to store the data by simply allocating one by one from the queue

that contains empty banks. Therefore, two decisions remain.

Suppose the on-chip memory is big enough to store all feature maps necessary dur-

ing processing. In that case, the MOMM problem can be solved easily by assigning avail-

able banks to the feature maps, avoiding access contention. Otherwise, it is necessary to

access the off-chip DRAM while processing a convolution layer. Therefore, we first con-

sider when the output feature map is too large to store all output in on-chip FMEM. We

propose to store the overflowed output feature map to the off-chip DRAM first called

‘DRAM-first Storing’ (DFS) policy, which will be discussed below. Next, we propose

two bank management techniques with different objectives based on the DFS policy.

One is to minimize the DRAM access size, and the other is to maximize the performance

by hiding the DRAM access as much as possible. Lastly, we discuss how to apply the

proposed techniques to parallel branches.
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Figure 4.6: Comparison between DLS and DFS policy

4.2.1 DRAM-first Storing Policy

To minimize the DRAM access, we aim to store the output feature map to the on-

chip memory as much as possible since it will be used as the input feature map in the

subsequent layer. Since the FMEM banks are shared between the input feature map and

the output feature map, we need to decide how to allocate the available banks to input

and output feature maps. Note that the number of remaining input tiles decreases while

the number of output tiles increases as the convolution computation proceeds. In case we

cannot accommodate the entire output feature map in the on-chip FMEM banks, the pro-

posed technique, called DRAM-first storing (DFS) policy, stores the overflowed output

feature map to DRAM first to minimize the number of banks to store the output feature

segments during computation.

Figure 4.6 illustrates the difference between the proposed DFS policy and the naı̈ve

DRAM-last storing (DLS) policy that accesses DRAM only after there is no available

bank in the on-chip memory. This example assumes that the input feature map and the
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output feature map require 4 FMEM banks each, and three banks store the input tiles

initially. Since there is one available bank for the output feature map, the DLS policy

assigns it to the output tile, as shown in Figure 4.6 (a). After finishing the processing of

Bank 0 ( 2 ), the bank becomes available for the second output tile that corresponds to the

input tile stored in Bank 1 ( 3 ). After finishing all three input tiles, it is necessary to load

the last input tile from the off-chip DRAM, as shown in the fifth row ( 5 ) of Figure 4.6

(a), which incurs visible DRAM access delay during computation. After loading is com-

pleted, the last output tile is stored to the off-chip DRAM since there is no available bank

in the on-chip memory.

On the other hand, in the proposed DFS policy, we store the first output tile to

DRAM and use one available bank, Bank 3, for prefetching of the remaining input tile

( 1 ). After finishing the processing of Bank 0, the bank becomes available for the second

output tile that corresponds to the input feature map segment stored in Bank 1 ( 2 ). By

reusing the FMEM bank of the just-finished input tile for the next output tile, we can store

the remaining three output tiles into the on-chip memory without DRAM access. The

DFS policy allows efficient use of bus resources by loading input data from the DRAM

earlier than DLS and reduces processing time without visible DRAM access delay. We

always use the DFS policy because it gives better performance than the DLS policy.

4.2.2 DRAM Access Minimization Policy (MIN policy)

The MIN policy aims to minimize the DRAM access volume in the processing of a

convolution layer. In this policy, we need to consider three DRAM access sources: input

feature map load, filter weights load, and output feature map store. As an example, Fig-

ure 4.7 shows the compilation result for the 25th convolution layer of WideResNet50 [9]

for an NPU that has 4 FMEM banks of 128KiB each. The layer is 1×1 convolution layer

in which the size of the input feature map is 32× 32× 512, and that of the output feature

map is 32 × 32 × 512. Thus, the weight’s total size is 512 × 512( = 256KiB), which is
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Figure 4.7: Effect of the number of FMEM banks assigned to the output feature map with
the 25th convolution layer of WideResNet 50 [9]

assumed larger than the WMEM size in this example.

In order to maximize the feature map reuse between two consecutive layers, we may

want to assign 3 FMEM banks to the output feature map, as shown in Figure 4.7(a). In this

case, we need four control steps, producing one output tile at each step. Since we assume

that the WMEM size is smaller than the total volume of filter weights, we need to load

the filter weights from the off-chip DRAM every step. Suppose that we assign 2 FMEM

banks to the output feature map. Then, only two control steps are sufficient, as shown in

Figure 4.7(b) where two input tiles are processed together, sharing the filter weights. As a

result, the filter weights need to be loaded only twice from the off-chip DRAM. Between

these two options, which one is better in terms of DRAM access volume? If we assign

3 FMEM banks, we reduce 2 FMEM bank accesses, one for storing and the other for

loading an input tile in the next layer. However, the filter weights of 256KiB need to be

loaded twice more. Thus assigning 2 FMEM banks is better in this example scenario. It

is noteworthy that if the WMEM size is big enough to accommodate all filter weights, in

both cases, we only load the filter weights once to process the layer. Therefore, assigning

3 FMEM banks is better.

Figure 4.8(a) shows an overall flow of the proposed techniques. Since the control
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Figure 4.8: The proposed techniques

sequence and the DRAM access volume depend on the number of FMEM banks to be

assigned to the output feature map, each policy first determines the number of banks

to store output feature maps according to its objective (Figure 4.8(a)(1)). In the case of

the MIN policy, it decides the number of output banks which reduces the DRAM ac-

cess volume most. The do step generates a control code for each step in mom manager

according to the number of output FMEM banks. In do step, it first checks if there are

input tiles to prefetch and decides how many input tiles to load, considering FMEM bank

state and the output to be stored (Figure 4.8(a)(2)). If there are input tiles to load, it loads
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Figure 4.9: Control code example

all input tiles to empty banks. Otherwise, it determines the set of input tiles to process

(Figure 4.8(a)(3)). It processes all possible input tiles for more reuse of filter weight data.

After the command is determined, it updates input and output mapping and bank state.

This process is repeated until all layers have been computed.

Figure 4.8(b) shows an example where the output should be considered when deter-

mining the number of input banks to load (Figure 4.8(a)(2)). In this example, let us as-

sume that the total number of banks for the input feature map and output feature map are

four and three, respectively. In other words, processing one input bank produces a three-

quarters output bank. Figure 4.8(b) shows two choices. The first is to prefetch two input

tiles to the remaining two banks as shown in Figure 4.8(b)(i). The other is to prefetch only

one input tile (Figure 4.8(b)(ii)). In both cases, as shown in Figure 4.8(b), the FMEM

stores the second input tile and the first output tile ( 1 ). Note that processing the second

input bank produces data to be stored in the first and the second output bank because

three-quarters of the first output bank store the output data after processing the first input

bank. Therefore, in the case of (i), we cannot store the second output tile because of the

lack of FMEM bank. To solve this case, the proposed compiler check if there are banks

for the outputs to be stored in advance, and if there is no empty bank, it reduces the input

bank to load. Similar logic is required when determining the number of banks to process

(Figure 4.8(a)(3)), which is described in Appendix A.2.
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Figure 4.9 shows an example of a control code sequence generation by the MIN

policy to produce three output tiles in the FMEM as the example of Figure 4.7(a). To

simplify our control code, we define an abbreviated control instruction as ({L,P},num)

where L and P mean loading and processing, respectively, and num is the number of tiles

to which the instruction is applied; for instance, (P,2) means “processing 2 input tiles”

with the fetched weights. A mapping is defined as (ix,{I/O}num) where ix means which

bank to store the input or output tile indexed by num. Initially, three input tiles are loaded,

as shown in the figure’s first row of the bank state. When the first control code, (L,1), is

applied, the fourth input tile is loaded to the last FMEM bank. Note that the load is a

non-blocking operation, meaning that the next control code may start its execution before

the load operation is completed. While loading is processed, the next control code, (P,1),

is applied to process one input tile and write the first output tile to the off-chip DRAM

by the DFS policy. The first two lines merged into a single row in Figure 4.7(a) since

two control codes are running concurrently. The next three control codes are the same,

processing one input tile to write one output tile into the FMEM bank that becomes

available after the previous step completes.

4.2.3 DRAM Access Hiding Policy (HIDE policy)

The DRAM access hiding policy, called HIDE policy, aims to hide the DRAM ac-

cess as much as possible to minimize the execution time. If the processing delay of an

FMEM bank is larger than the loading delay of an FMEM bank and filter weights from

DRAM, we can hide the DRAM access delay by prefetching. The DRAM access delay

that cannot be hidden by prefetching incurs an additional delay called PE delay, and the

HIDE policy aims to minimize the total PE delay. To guarantee the existence of input

banks to be processed next, the HIDE policy maintains at least one input bank at each

control step if there exist unprocessed input tiles.

Figure 4.10 demonstrates the difference between the MIN policy and the HIDE pol-
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Figure 4.10: An example with the MIN and the HIDE policies

icy with a convolution layer that has 6 input tiles and produces 3 output tiles; processing 2

input tiles produces 1 output tile. Starting with the same initial bank status with 3 loaded

input tiles, each policy shows different final bank status. While the MIN policy assigns

three FMEM banks to the output feature map, the HIDE policy assigns two FMEM banks

only to make one bank for prefetching during the computation. The control sequence of

each policy is depicted in the figure. Even though the loading operation is non-blocking,

the next processing operation has to wait until the load operation is completed in some

cases that are highlighted by a red box in Figure 4.10. Such waiting incurs the extra

processing delay due to DRAM access. While the MIN policy has the processing delay

twice, the HIDE policy has no delay. In the MIN policy, we process as many input tiles as

possible to reuse the weight filters. On the other hand, the HIDE policy may use a smaller

number of input tiles in the processing step, as indicated by a green box in the seventh

control step of the HIDE policy; only one bank is processed even though there are two

input tiles.

To determine the number of output banks, the HIDE policy also performs an exhaus-

tive search by varying the number of input tiles as depicted in Figure 4.8(a)(1). However,

unlike MIN policy, HIDE policy searches the number of output banks in terms of the

processing cycle. In other words, it decides the number of output banks which reduce the
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processing cycle most. The processing cycle can be estimated by fast timing simulation

using the estimated cycle explained in Section 4.1.2.1. Then, it checks whether there is

any input tile to load considering outputs as described in Section 4.2.2. If there is no input

tile to load, it determines the number of input banks to process (Figure 4.8(a)(3)). One

of the main differences between MIN policy and HIDE policy is how many input tiles to

process. As explained in Section 4.2.2, the MIN policy processes all possible input tiles.

However, the HIDE policy can reduce the number of input banks to process to avoid PE

delays due to the lack of input banks to process next. The algorithm to reduce the number

of input banks to process is included in the Appendix A.3.

4.2.4 Multiple Path Consideration

While the proposed techniques are explained with consecutive convolution layers

above, special care should be taken if there are multiple paths of layers. In this case, we

have to make two decisions that are related to each other. One is to determine how many

shared input tiles to be stored in the FMEM banks, as discussed in Section 4.1.3 with

an example of Figure 4.5. The other is to determine the order of path processing. Note

that the number of input tiles to leave in the FMEM for the next path can be determined

independently of the path processing order while it affects the memory access overhead

and the computation time of the current path. Suppose that the number of FMEM banks

is N and the number of parallel paths is B. The total number of cases to be compared is

B!× (N−1)B−1 where the first term is the number of all possible processing orders, and

the second term is the number of total scenarios of how many inputs to be left from each

path. Since at least one on-chip memory bank is required to process layers in a path, the

maximum number of tiles to be left is (N−1), and the minimum number is set to one in

order to avoid the unhidden DRAM access delay in the start of the next path. In the case

of Inception v3 [84], however, it takes too much time to compare all possible cases. If the

number of on-chip memory banks is eight and there are four paths like Inception block A,

91



the total number of cases is 4!×73 = 8,232. To reduce the complexity, a greedy heuristic

is devised to reduce the number of cases to compare; For a given path ordering, we

determine the number of input tiles to leave sequentially from the first path. We compare

all the selected cases to find the best decision about the path processing order and the

number of input tiles to leave from each path.

4.3 Layer Fusion Technique

In the proposed multi-bank on-chip memory management techniques, as explained

in previous sections, we allow the output feature map to be stored in the on-chip FMEM

in order to reduce the DRAM access volume between two consecutive convolution layers.

Such feature map reuse is extended over consecutive convolution layers in the recently

proposed layer fusion technique [31]. The layer fusion technique transforms a deep learn-

ing network into a new one by splitting one layer path into multiple paths. Therefore, after

applying the layer fusion technique to make a new deep learning network that gives the

same calculation result, the proposed technique can be applied. In this section, we first

review the layer fusion technique and point out that it may increase the off-chip memory

access for filter weights as well as computation delay. Next, we present a hybrid method

between the layer fusion and the per-layer processing that has been assumed so far, in

order to obtain better performance than them.

4.3.1 Layer Fusion Technique

Layer fusion is a method of fusing the processing of multiple layers to minimize

off-chip feature map data transfer. Basically, a computation pyramid is formed for an

output pixel at the bottom layer, as shown in Figure 4.11(a). The number of input pixels

on an upper layer increases as the layer goes higher. The key idea is that the feature map

segments in the computation pyramid are processed without DRAM access, storing all

intermediate feature maps (green color in the figure) in the on-chip memory. We may
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Figure 4.11: Layer fusion techniques and computation overhead

expand the computation pyramid by having more than one output pixel at the bottom

layer. Layer fusion parameters, including how many layers can be fused and how many

output pixels to include, need to be determined considering the on-chip memory size.

In case the on-chip FMEM is large enough to store the entire input feature map, layer

fusion becomes identical to per-layer processing that is assumed so far. Thus layer fusion

is meaningful when the input feature map size is larger than the on-chip FMEM size.

Figure 4.11(a) shows two possible fusing candidates; Four layers can be fused in a single

pyramid or in two pyramids. The fusion technique proposed in [31] explores the design

space of fusing exhaustively to make the best fusing decision.

While the fusing technique maximizes the feature map reuse across multiple layers,

it brings about penalties in computation and extra DRAM access. Figure 4.11(b) shows

the source of the computation penalty. In the figure, the black box and the red box repre-

sent two computation pyramids, sharing a set of pixels in the intermediate layers, colored

orange in the figure. Convolution computation of two pyramids produces those pixels

twice, which corresponds to the computation penalty. If the pixels in the intermediate

layer are stored in on-chip memory, the redundant computation may be avoided. But it

will reduce the number of available memory banks used to process other layers and incur
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additional DRAM accesses. Thus, we assume that pure layer fusion causes delay over-

head due to duplicate computations. On the other hand, in case all filter weights in the

computation pyramid cannot be stored in the on-chip memory, we need to load the filter

weights from the DRAM for each computation pyramid. Thus we need to compare the

gain and the penalty to determine if the fusing technique is beneficial.

4.3.2 Hybrid Fusion Technique

In search of a good balance between feature map reuse by fusing and filter weight

reuse by per-layer processing, we propose a hybrid method that performs fusing layers,

relaxing the constraint that all feature maps involved in the computation pyramid should

be stored in the on-chip FMEM. In the proposed hybrid method, called hybrid fusion,

the feature map size can be larger than the FMEM size in a computation pyramid. We

apply the proposed MIN or HIDE policy for the computation pyramid in the hybrid fusion

method.

Figure 4.12 shows how three techniques differ in terms of computation overhead,

off-chip memory access for feature maps, and off-chip memory access for filter weights:

per-layer processing without fusion, pure layer fusion, and the proposed hybrid fusion. It

is assumed that the input feature map of Layern is divided into four computation pyramids

in the pure layer fusion technique. The first column shows the computation overhead due

to duplicate computation of the overlapped pixels between two computation pyramids.

If two pyramids have an overlapped region (colored orange) in Layern, the red-colored

portion of the feature map in the next layer, Layern+1, is computed twice. Thus the pure

fusion technique incurs duplicate computations for the overlapped region three times, as

illustrated in the second row, while there is no such penalty in the per-layer processing.

If we form two computation pyramids only in the hybrid method, such a computation

penalty is paid only once.

The second column of the figure compares the off-chip memory access volume re-
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quired for feature maps. The portion of the feature map, colored green, can be stored in

the on-chip FMEM, and the remaining portion needs to be stored to the off-chip memory

after processing Layern and read back to process in Layern+1. In the per-layer processing

technique, only a part of the feature map can be stored in the on-chip memory, while all

feature maps can be stored in the pure fusion technique. On the other hand, the hybrid

fusion technique increases the green part of the feature map even though it incurs off-chip

DRAM memory access for the remaining part.

The third column of Figure 4.12 compares the volume of the filter weights that need

to be loaded from the off-chip DRAM in the processing of Layern in case the on-chip

WMEM cannot accommodate all filter weights. Since the exact value cannot be formu-

lated analytically but obtained by simulation with the assumed MIN or HIDE policy, we

denote it as a function of the size of the input feature map segment, fP(Sin), policy ∈

{MIN,HIDE}. As mentioned in Section 4.3.1, when the layer fusion technique is ap-

plied, the overlapping feature map may occur in the intermediate layer. In Figure 4.12(c),

the size of the additional feature map is represented by α. If the increasing slope of the

function fP over the input size is less than 1, which is usually the case, the per-layer
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processing technique requires the smallest DRAM access volume.

In summary, the proposed hybrid method is located in the middle in all three compar-

ison metrics between the per-layer processing technique and the pure fusion technique.

In the proposed technique, we vary the computation pyramid size and choose the best

size, considering all three metrics. Note that the per-layer processing and the pure fusion

technique are two extreme cases of the proposed hybrid fusion technique; the former is

obtained by making the pyramid include the entire feature map and the latter by making

the pyramid include the maximum portion of the feature map that can be stored in the

on-chip FMEM.

4.4 Experiments

4.4.1 Setup

4.4.1.1 Target Neural Processing Unit

We implement the proposed technique as the compiler for MIDAP [19], whose ab-

stract model is illustrated in Figure 4.13. There are N f adder trees to produce the partial

result for N f output pixels. Each adder tree is associated with a separate filter buffer and

a shared input feature map buffer. If the width of the adder tree is Npe, the total num-

ber of MAC units becomes N f ×Npe. A pixel is assumed to be an 8-bit fixed point. In

MIDAP, different banks are assigned for feature maps and filter weights to avoid read

access conflicts; there are N banks to store feature maps (FMEM) and M banks for fil-

ter weights (WMEM). Separation of FMEM banks and WMEM banks can be realized

by hardware or software that assigns different address ranges for feature maps and filter

weights. Note that the unit of read access from FMEM and WMEM to buffers is Npe

pixels in the channel direction while the unit of write access is N f output pixels produced

simultaneously from the datapath. As we assume in this paper, MIDAP has one unified

memory for the feature map, and a compiler controls the NPU behavior. Moreover, we
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Figure 4.13: MIDAP architecture

can get the cycle-accurate results from the simulator 1, because MIDAP has no dynamic

resource contention in the datapath as well as between on-chip memory and buffers.

The architecture parameters we can vary are shown in Table 4.1. The other NPU

parameters, N f , Npe, and the number of WMEM banks, are set to 16, 64, and 32, respec-

tively. Note that the number of WMEM banks is fixed to 2 for each PE group to support

double buffering while we vary the number of FMEM banks.

Table 4.1: Hardware architecture parameters used in the experiments

Parameters Values

On-chip FMEM size (KiB) 256, 512, 768, 1024
# of FMEM bank 4, 8

On-chip WMEM size (KiB) 288
Off-chip DRAM LPDDR4*

DRAM data rate (GT/s) 1.6, 2.4, 3.2
*: 32bit per channel / 2 channels / 1 rank

1https://github.com/cap-lab/MidapSim
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4.4.1.2 Comparison Targets

For comparison purpose, we implement two comparison techniques: baseline and

‘naive reuse.’ The baseline technique is a technique that does not reuse data between

consecutive layers. Therefore, it uses all FMEM banks for input. To reduce the PE delay

due to off-chip DRAM access, we implement the double buffering technique.

The only difference between the baseline and the ‘naive reuse’ is that the ‘naive

reuse’ reuses data between consecutive layers. To implement the ‘naive reuse’ technique,

we assign two banks each for the input and the output and implement the double buffering

technique in the two input banks to reduce delay caused by the off-chip memory access.

Also, to reuse data between consecutive layers, the roles of input and output memory are

switched each time processing a layer is completed.

4.4.2 Performance Comparison of MOMM Techniques

In the first set of experiments, we vary the number of banks for feature maps and

compare the policies with the widely used CNNs as follows: Inception v3 (IC v3) [84],

MobileNet v2 (MB v2) [49], ResNet 152, 50 (RN152, RN50) [32], and WideResNet 50

(WRN50) [9]. In all experiments, the input image size is 224 × 224 except for Inception

v3, whose input size is 299 × 299. The input size is set to each network’s default input

size when inferencing the ImageNet dataset [39]. Since the on-chip memory size is fixed

to 512KiB, as the number of banks increases, the size of each bank becomes smaller.

Figure 4.14(a) shows the relative volume of DRAM access during execution, compared

with the baseline technique. It can be observed that the baseline technique accesses off-

chip memory a lot. Especially for the MobileNet v2, the volume of off-chip memory

access is about 1.88 times larger than ‘naive reuse.’ The performance gain comes from

data reuse between layers because other configurations, such as on-chip memory size and

the number of banks, are the same. However, in the case of WRN50, the ‘naive reuse’

technique has more DRAM access than the baseline because the WRN50’s filter weight
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Figure 4.14: Performance comparison: The number of banks is shown in the parenthesis

is large, and the baseline technique, which uses all FMEM banks for input, can reuse

more filter weights.

Although the ‘naive reuse’ reduces off-chip DRAM access by reusing data between

consecutive layers, the proposed policies further reduce off-chip memory access. Since

the ‘naive reuse’ technique also uses feature map data reuse between layers, the perfor-

mance gain is attributed to multi-bank management by judiciously sharing the FMEM

banks for input and output feature maps. As expected, the MIN policy produces the min-

imum DRAM traffic, up to 28.1% gain over the ‘naive reuse’ technique. Policies MIN(4),

MIN(8), HIDE(4), and HIDE(8) reduce DRAM access by an average of 19.2%, 20.3%,

16.9%, and 19.2%, respectively, compared to the ‘naive reuse’.

The second comparison is made on the PE delay caused by unhidden off-chip DRAM

accesses. Firstly, we could observe that the PE delay takes a significant portion of the end-

to-end computation time of applications in the ‘naive reuse’ technique: 6.7, 19.1, 8.8,

16.0, and 10.2% for Inception v3, MobileNet v2, ResNet 152, ResNet 50, and WideRes-

Net 50, respectively. As shown in Figure 4.14(b), in the case of the baseline, it can be

observed that a lot of the PE delay occurs because the input of the next layer has to be
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loaded from the off-chip memory. As expected, the HIDE policy reduces the PE delay

most. Since the ‘naive reuse’ also uses the double buffering technique, the PE delay re-

duction comes from multi-bank management. The largest gain, about 66.0% over the

‘naive reuse,’ is obtained for the Inception v3 network that confirms the importance of

careful on-chip bank management. Since it has many parallel branches, the number of

active feature maps varies widely depending on the layer processing order and bank as-

signment. Policies MIN(4), MIN(8), HIDE(4), and HIDE(8) reduce the PE delay by an

average of 31.8%, 47.2%, 36.8%, and 49.7%, respectively, compared to the ‘naive reuse’.

From Figure 4.14, we can notice the trade-off between DRAM access size and the

PE delay time between the MIN policy and the HIDE policy in three benchmarks, Incep-

tion v3, MobileNet v2, and WideResNet 50. On the other hand, for two ResNet bench-

marks, it is observed that the performance gap between the MIN policy and the HIDE

policy is not significant. It is because minimizing the DRAM access size also reduces

the PE delay in most convolutional layers, and the majority of the PE delay is caused by

the residual connection, which cannot be hidden by the HIDE policy. For example, when

compiling ResNet 152 with the MIN policy with 4 FMEM banks, 73.5% of the PE delay

is attributed to the residual connections, and the only 26.5% comes from convolutional

layers.

4.4.3 Multiple Path

As explained in Section 4.2.4, we need to determine the processing order of mul-

tiple paths and the number of banks for reusing shared inputs. Since Inception v3 has

five different types of blocks that all consist of multiple paths, we evaluate the proposed

technique to handle multiple paths in this experiment. Table 4.2 shows the experimental

results for five different types of Inception blocks [84] using the MIN policy. The second

row represents the proposed method that searches the best processing order by exhaustive

search and uses a greedy heuristic to determine the number of reused banks for each path.
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The reused banks are banks that store shared inputs that will be used for the next layer

path. The four rows in the next group show the results when we fix the number of reused

banks after finding the best processing order for each case, and the last row shows the

results obtained by exhaustive search to determine the number of reused banks. In the ta-

ble, four cells are blank, meaning infeasible scenarios. It is noteworthy that the proposed

heuristic could find the best solution in all Inception blocks.

Table 4.2: Comparison of DRAM access size with different methods to determine the
number of banks for reusing shared inputs between paths in Inception v3 blocks (FMEM:
128KiB×4, unit: KiB)

# of reused banks A B C D E

Greedy Search 1,696 1,924 2,656 1,807 6,195

No reuse 2,760 2,971 3,293 2,458 6,803
1 bank 2,291 2,622 3,013 2,075 6,195
2 banks 1,822 2,273 2,656 1,807 -
3 banks 1,870 1,924 - - -

Best 1,696 1,924 2,656 1,807 6,195

4.4.4 Design Space Exploration of NPU Architecture

In the next set of experiments, we vary the other architecture parameters as presented

in Table 4.1, fixing the number of feature map banks to four. Figure 4.15 shows the

off-chip DRAM access size, varying the overall size of on-chip memory and off-chip

DRAM data rate. Figure 4.16 shows the PE delay. In this experiment, we only compare

the proposed techniques with the ‘naive reuse’ technique because the baseline shows too

bad results compared to others in PE delay comparison. Three policies are distinguished

by colors: grey for ‘naive reuse,’ blue for MIN, and orange for HIDE policy. In all figures,

the numbers below the x-axis represent the data rate of LPDDR4 and the total size of the

on-chip memory in the second row.

Three observations can be made from this experiment. First, the DRAM access size
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Figure 4.15: DRAM access size comparison by varying the on-chip FMEM size and off-
chip DRAM data rate

is only affected by the total on-chip size in the MIN policy because it just reduces the

memory access volume ignoring the DRAM data rate. On the other hand, the DRAM

access size varies in the HIDE policy. As the on-chip memory size increases, the gap

between the HIDE policy and the MIN policy tends to decrease in all benchmarks. Sec-

ond, as the size of on-chip memory reduces, the bank management becomes more critical

in the performance so that the HIDE policy outperforms the MIN policy more in terms

of PE delay. Third, as discussed in Section 4.4.2, the difference between the MIN pol-

icy and HIDE policy is not significant in ResNet 50. Lastly, as the on-chip memory size

increases, the off-chip DRAM access size and the PE delay tend to decrease as expected.
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(b) MobileNet v2
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(c) ResNet 50

Figure 4.16: PE delay comparison by varying the on-chip FMEM size and off-chip
DRAM data rate

In all benchmarks, we could observe that the trade-off between the HIDE policy and

the MIN policy. Compared to the MIN policy, the HIDE policy reduces the PE delay by

up to 18.0, 17.0, and 6.2% for Inception v3, MobileNet v2, and ResNet 50, respectively.

On the other hand, the MIN policy reduces the DRAM access size for Inception v3, Mo-

bileNet v2, and ResNet 50 by up to 4.5, 6.5, and 2.7%, respectively, compared to the

HIDE policy. For Inception v3 and ResNet 50, the architecture parameters that show

the greatest differences between the MIN policy and the HIDE policy are 256KB total

FMEM size and 3.2 GT/s DRAM data rate. For MobileNet v2, the architecture parame-

ters are the FMEM size of 768 KB and DRAM data rate of 3.2 GT/s.
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4.4.5 Hybrid Fusion Technique

Lastly, we compare the proposed hybrid fusion technique with the per-layer pro-

cessing technique and the pure layer fusion technique with ResNet 50 [32] that consists

of 16 blocks that have three or four convolution layers inside. Refer to [32] for the net-

work structure. ResNet 50 is used as a backbone network in various image segmentation

networks that take a large size of the input image; the input image size is 512 × 512. We

assume that the total FMEM size is 512KiB and the FMEM has four banks of 128KiB

each.
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Figure 4.17: Comparison between three fusing techniques (network: ResNet 50, input
Size: 512×512, FMEM: 128KiB×4)

Figure 4.17 displays two experimental results with different objective functions; One
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is to minimize the DRAM access volume with the MIN policy, and the other is to mini-

mize the latency with the HIDE policy. Figure 4.17(a) compares the DRAM access size

among three techniques, separating the requirements for feature maps and filter weights.

Since the DRAM access size depends on the initial bank state, we make three techniques

have the same initial bank state that is obtained after the hybrid technique is assumed to

be used for the previous block. For instance, the initial bank state for the second block is

assumed to be the same as the output bank state of the first block with the hybrid tech-

nique. The experimental results show that the pure fusing technique is better than the

per-layer processing technique in the initial blocks, from Block 1 to Block 8, while the

reserve is true from Block 9 to 16 since it increases the DRAM access volume for filter

weights significantly as discussed in [31]. Note that the proposed hybrid fusion method

is no worse than the other two methods in all blocks since it includes the other methods

as extreme cases, searching for the best size of the computation pyramid exhaustively.

By applying the hybrid method, 16.8% of off-chip access is reduced compared to the

per-layer processing method.

The processing delay due to DRAM access and duplicate computation are com-

pared among the three techniques in Figure 4.17(b). It is obtained by running the entire

networks on the cycle-level simulator with each technique separately, considering the ex-

tra delay due to unhidden DRAM access for feature maps and filter weights as well as

resource contention. The per-layer processing is par with the hybrid method and faster

than the pure fusion technique in the latter blocks; it means that most of the DRAM ac-

cess can be hidden by our HIDE policy in the per-layer processing technique. The hybrid

method is faster than the per-layer processing technique in Block 1, Block 2∼3, and Block

4 by 20.6%, 23.2%, and 9.8%, respectively.

In summary, if we compare the end-to-end results of the given network among the

three techniques, the hybrid fusion technique gives noticeably better performance, reduc-

ing 10.6% memory access volume than the pure layer fusion technique and 25.1% PE
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delay than the per-layer processing technique.

4.5 Related Work

Since reducing DRAM access is well recognized as an important objective in the

NPU design, all NPU architectures aim to maximize the data reuse in the on-chip mem-

ory. There are two approaches to maximize data reuse in on-chip memory. The first one

is to maximize data reuse within one convolution operation in on-chip memory [25, 26].

SmartShuttle [25] and ROMANet [26] propose to switch different data reuse schemes

and the corresponding tiling factor for each convolution layer. However, they do not con-

sider sharing feature maps between adjacent layers, which is a key issue in the proposed

techniques.

The other approach is to reuse feature map data between adjacent layers in the on-

chip [31, 85, 86, 87]. FusedCNN [31] fused multiple CNN layers to share the feature

maps between two adjacent layers, which is already reviewed in Section 4.3.1. As de-

scribed in Section 4.3, we apply the proposed techniques to the network to which the

layer fusion technique was applied and improve the layer fusion technique in a hybrid

manner. Tangram [85] also attempted to reuse the output feature map in the accelerator

through the inter-layer pipelining. MEM-OPT [86] used the input cache scheduling al-

gorithm, which prioritizes the reuse of input and output, on the secondary cache system

architecture for feature map data reuse. The other work proposed by Kim et al. [87] de-

cides the processing order of layers when the network has parallel branches, considering

the feature map sharing between connected layers. However, all these works differ from

ours in that they did not consider the DRAM access delay and multi-bank management.

Similar to the proposed method, Shortcut Mining [88] reused the output feature map

in the on-chip buffers and increased the utilization of the on-chip buffer by allocating data

per bank. However, they separated the buffers for each role, such as buffers for computing

input, buffers for a residual connection, and buffer for prefetching. Also, they fixed the
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number of banks for each role to make bank management easier. On the other hand, in the

proposed method, banks can be used more freely because banks’ role is not specified, and

we optimize DRAM access size and processing delay further by changing the number of

banks to be processed even during processing one layer.
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Chapter 5

Conclusion

In this dissertation, we devise three methods for hardware-aware optimization of

an embedded deep learning system. First, a systematic optimization methodology is de-

vised to apply software optimizations for deep learning and traditional system optimiza-

tions through the experience of participating in the Low Power Image Recognition Chal-

lenge (LPIRC) [1, 2]. Based on the methodology, we implement a novel deep learning

framework, called C-GOOD, that generates a C code that can be run on any embedded

platform. It is an optimization-aware framework in which a user can specify which op-

timization techniques will be applied to a given network. Then the optimized C-code is

automatically generated, which helps the user to explore the design space of network

selection and software optimization. A software optimization methodology is also in-

troduced to apply optimization techniques systematically: pipelining, layer-wise Tucker

decomposition, layer-wise quantization, merging batch normalization into weights, and

input size reduction. The proposed methodology has been applied to three different hard-

ware platforms: the Jetson TX2 [3], the Odroid XU4 [4], and the Samsung Reconfig-

urable Processor [5]. Experimental results show that the baseline C code generated from

C-GOOD is better than the Darknet framework in terms of fps performance. In addition,

the proposed optimization methodology improves the performance by 2.2 to 25.83 times

over the baseline unoptimized code for a given hardware platform.

108



Next, we devise a scheduling framework of deep learning applications for embed-

ded devices with heterogeneous processors. We exploit both task-level and data-level

parallelism in the scheduling of a deep learning application. In particular, we propose to

consider five different PE configurations for a multi-core CPU to exploit both types of

parallelism in various ways. We also consider the DVFS policy and the CPU utilization

constraints to avoid thermal throttling in the profiling of tasks on each processing ele-

ment. We use a GA-based method for scheduling a single deep learning application. The

GA-based scheduler is also applied to the scheduling of multiple deep learning applica-

tions. We modify the schedule-based schedulability analysis to apply to non-preemptive

tasks. We verified the proposed scheduling methods by comparing the results with the

measured ones in two real hardware platforms: Galaxy S9 and HiKey970. By consider-

ing several practical issues in the real implementation, we could achieve quite an accurate

estimation, with the error smaller than 7% except for one case. The primary source of er-

ror is the inaccuracy of task and communication profiling. Nonetheless, we believe the

comparison with the actual implementation is a meaningful contribution.

Finally, for a deep learning accelerator, we first define the multi-bank on-chip mem-

ory management (MOMM) problem to minimize the DRAM access overhead in the pro-

cessing of convolution neural networks (CNNs) on a CNN accelerator with a multi-bank

on-chip memory. By estimating the processing time and the memory access delay, and

considering the memory contention, we devise three on-chip memory management poli-

cies. The DRAM first Storing (DFS) policy stores the overflowed output feature map to

DRAM, to reduce the bank occupation by the output feature map during execution. The

DRAM access minimization policy and the DRAM access hiding policy determine the

assignment of feature map banks to the input and output feature maps considering the

objective function, minimizing the DRAM access volume and minimizing the process-

ing delay, respectively. In addition, we propose a method of determining the processing

order and the number of banks for reusing shared input when a CNN has parallel paths.
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Furthermore, we extend the MOMM problem to layer fusion and propose a hybrid fu-

sion technique that searches for an optimal computation pyramid structure by varying

the input feature map size of the top layer. Experiments have been conducted by running

benchmark CNNs on a cycle-accurate adder-type NPU simulator. Experimental results

confirm the superior performance of the proposed techniques over the baseline technique

and ‘naive resue’ technique. The proposed methods reduce the off-chip DRAM access

and the processing delay up to 55.0% and 79.4%, respectively, compared to the baseline.

For layer fusion, we demonstrate the superiority of the proposed hybrid fusion technique

through ResNet 50 simulation with an input size of 512 × 512. The proposed hybrid fu-

sion technique reduces 10.6% DRAM access volume than the pure layer fusion technique

and 25.1% PE delay than the per-layer processing technique.

Since many deep learning applications and accelerators are still being researched,

there are many future research topics for optimizing embedded deep learning systems. In

particular, since there is a need for a multi-NPU system by bundling multiple NPUs, it is

future work to expand the MOMM method devised in this dissertation to optimize multi

deep learning applications in a multiple NPU system.
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Appendix

A Proposed Multi-bank On-chip Memory Management
Algorithm

A.1 Multi-bank On-chip Memory (MOM) Manager

Algorithm 3 shows the proposed compiler’s pseudocode. First, the function COM-

PILE NETWORK determines the layer processing order (line 10) and initializes the bank

state information as all empty (line 11). How to determine the layer processing order

is determined by searching all paths as described in Section 4.2.4. After determining

the processing order, it generates the control code for each layer in the processing order

(line 12 ∼ line 14). The LAYER COMPILER first determines the number of banks to store

output activation or feature map according to its objective. As explained in Section 4.2.2

and Section 4.2.3, MIN policy selects the number of output banks which reduces the off-

chip DRAM access most, and HIDE policy selects the number of output banks which

reduces the processing delay most.

After determining the number of output banks, the MOM MANAGER generates other

control instruction information such as ‘Process’ and ‘Load’ commands and tile mapping

information. We first set up the information on input, output, and operation with layer

information, l, in line 19. When the manager processes all input tiles, the iteration is

halted in line 22. Tile mapping information is a function that receives an input or output

tile and provides in which banks the tile is stored. Therefore, the tile mapping information

is represented by the function f from I/O tile domain T to the FMEM bank domain
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Algorithm 3 Proposed compiler technqiue pseudocode
1: Variables
2: l Layer information
3: g Current FMEM bank state information
4: numo Number of output banks
5: C Control code list
6: PI A set of the processed input tiles
7: MI A set of input tiles currently mapped on FMEM
8: f Tile mapping information
9: procedure COMPILE NETWORK

10: order← determine the layer processing order.
11: g← empty FMEM bank information
12: for each l from order do
13: C, f , g←LAYER COMPILER(l, g)
14: APPEND CODE(C, f ) ▷ Append the control code

15: procedure LAYER COMPILER(l, g)
16: numo← the number of banks to store output activation
17: return MOM MANAGER(l, g, numo)
18: procedure MOM MANAGER(l, g, numo)
19: SETUP LAYER(l)
20: C ← []; PI ← /0

21: f ,MI ← GET INITIAL STATE(g)
22: while PI ̸= I do
23: Ls,Ps← DO STEP( f , g, MI, PI, numo)
24: C.append((Ls,Ps)) ▷ Add a control code
25: MI←MI∪Ls−Ps ▷ Update input mapping
26: PI← PI∪Ps ▷ Update processed input tiles

27: return C, f , g

including NULL and DRAM (F∪{NULL,DRAM}). Bank state information is a function

that receives a bank as an input and gives which data is currently stored in the bank.

Therefore, the domain and the codomain of g are the bank domain F and feature map tile

domain including an empty state (T ∪{ /0}), respectively. The MOM Manager generates

a control code at each iteration step, represented as a tuple of input tile sets (Ls,Ps), as

shown in line 23. Ls and Ps indicate input tile sets to be loaded on FMEM and processed

at the current step, respectively. According to the decision made at DO STEP, PI and MI

are updated for each step, in line 25 and 26.
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A.2 MIN policy

Algorithm 4 shows the pseudocode of the MIN policy. As described in Section 4.2.2,

the MIN policy compares the total DRAM access volume by varying the number of on-

chip output feature map and selects the best one (line 13 in MIN POLICY). The DO STEP

generates a control code for each step in MOM MANAGER according to the given num-

ber of output FMEM banks. In each step, it first checks whether there are input tiles to

prefetch and determines the input tiles to load (GET AVAILABLE LOAD). If there is no

input tile to load, it determines the set of input tiles to process (PROCESS). After the

command is determined, it updates input and output mapping (UPDATE IO MAPPING).

Since the number of FMEM banks is limited, it is necessary to reduce the number of

input banks to process by considering the bank state, g, and the number of output banks,

numo. Suppose that three out of four FMEM banks store the input feature map and one

input bank produces one output bank. In this case, if three input banks are processed, only

one bank can be used to store the output feature map. If we want to store more output

banks in FMEM, the number of input banks to be processed must be reduced. Let O be

a set of all output tiles to be stored on FMEM, and MO be a set of output tiles currently

mapped on FMEM. If there remain output banks to be stored in FMEM (line 29), update

the mapped output tile set, MO, by adding available FMEM banks (line 30). Afterward,

we determine how many input banks to process by checking the corresponding output

banks are mapped to DRAM or included in MO (lines 32-37). Remind that DO STEP not

only generates a control code but also update f and g as shown in line 24.
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Algorithm 4 DRAM Access Minimization Policy
1: Variables
2: l Layer information
3: g Current FMEM bank state information
4: mino Number of output banks with least DRAM access
5: Ls Input tiles to be loaded
6: Ps Input tiles to be processed
7: PI A set of the processed input tiles
8: MI A set of input tiles currently mapped on FMEM
9: UI A set of input tiles unloaded to FMEM

10: O A set of output tiles to be stored in FMEM
11: MO A set of output tiles currently mapped on FMEM
12: procedure MIN POLICY

13: mino← argminnumo
(GET DRAM ACCESS(MOM MANAGER(l, g, numo))

14: ▷ Determine the # of output banks to remain on FMEM.
15: return MOM MANAGER(l, g, mino)
16: procedure DO STEP( f , g, MI, PI, numo)
17: Ls,Ps← /0

18: UI← I−MI−PI
19: if UI ̸= /0 then ▷ If there are banks to load, load inputs.
20: Ls← GET AVAILABLE LOAD(UI, g, numo)
21: ▷ Leave the banks to store the outputs and load the inputs into the remaining banks.

22: if Ls = /0 then ▷ If there is no bank to load, process the inputs.
23: Ps← PROCESS(g, MI, numo)
24: UPDATE IO MAPPING( f , g, Ls, Ps)
25: return Ls, Ps

26: procedure PROCESS(g, MI, numo)
27: O← GET OUT TILES(numo)
28: MO← GET OUT TILES ON FMEM(g)
29: if len(MO) < numo then ▷ If there are output banks to be mapped on FMEM,
30: MO ← MO ∪ MAP OUTPUT TO FMEM(g, O, MI)
31: nump ← 0
32: for ip in MI do ▷ For all input banks mapped to FMEM,
33: if OUTPUT(ip) ̸⊂ O or OUTPUT(ip)⊆MO then
34: ▷ If the outputs corresponding to ip are mapped on DRAM or belong to MO,
35: nump++
36: else
37: break
38: else
39: nump← len(MI)

40: return (MI[: nump])
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A.3 HIDE policy

Algorithm 5 Pseudo-code on how to determine the number of input tiles to process in
the HIDE policy

1: Variables
2: l Layer information
3: g Current FMEM bank state information
4: mind Number of output banks with least PE delay
5: d, delay PE delay estimated by fast timing simulation
6: lnext Layer to be processed next
7: maxo Maximum number of banks which can store outputs
8: procedure HIDE POLICY

9: mind ← argminnumo
(GET PE DELAY(l, g, numo))

10: ▷ Determine the # of output banks to remain on FMEM.
11: return MOM MANAGER(l, g, mind)
12: procedure GET PE DELAY(l, g, numo)
13: d← ESTIMATE DELAY(MOM MANAGER(l, g, numo))
14: lnext ← GET NEXT LAYER(l)
15: d← d + ESTIMATE DELAY(MOM MANAGER(lnext , g, maxo))
16: return d
17: procedure REDUCE TILE NUM(MI,nump)
18: min delay← int max
19: for numi in range(1, nump) do ▷ For all input banks that can be processed
20: delay← PREDICT DELAY(MI, numi) ▷ Get the estimated DRAM delay
21: if min delay≥ delay then
22: min delay← delay
23: reduced nump← numi

24: return reduced nump

The key challenge in the HIDE policy is to determine the number of input tiles to

process. The proposed solution is to perform an exhaustive search by varying the number

of input tiles as depicted in line 19 in Algorithm 5. The maximum number of input tiles,

nump, and a set of the input tiles mapped on FMEM, MI, are given as the arguments of

the REDUCE TILE NUM. The PREDICT DELAY function at the 20-th line provides the PE

delay due to off-chip memory access through fast timing simulation with estimated de-

lays. The REDUCE TILE NUM function is applied between lines 39 and 40 in Algorithm 4

to reduce the number of input tiles to process. The other difference from the MIN policy
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is that when deciding how many output tiles to leave in the on-chip memory, it considers

the effect on the next layer since the number of input tiles is critical to the PE delay if the

layer is memory-bound. Therefore, in function GET PE DELAY, it estimates the PE delay

of the next layer as well as the delay of the current layer using fast timing simulation, and

it selects the number of output tiles that minimizes the overall delay in line 9. When the

PE delay of the next layer is estimated, the number of output banks in FMEM is fixed to

maxo, which is (the number of FMEM banks) − 1.
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요약

임베디드기기는대개계산량,메모리크기,에너지소모량등의제약사항이있기때문

에,딥러닝응용을임베디드기기에서수행하는것은쉽지않다.딥러닝응용의계산량

증가를해결하기위해서에너지효율적인모바일 GPU,디지털신호처리프로세서을

사용하거나,또는새로운뉴럴프로세서칩을만드려는하드웨어영역의최적화방법

이있다.반면에딥러닝응용영역에서는새로운딥러닝응용을만들거나,딥러닝의

통계적인특성을이용한근사계산방법을이용하여최적화방법을제안하고있다.그

리고또다른최적화방법으로는먼저하드웨어플랫폼의성능병목부분을찾고,일을

동등하게 여러 계산 자원에 분배하여 최적화하는 하드웨어를 고려한 최적화 방법이

있다.

본 논문에서는 하드웨어를 고려한 소프트웨어 최적화 방법들을 고안하였다. 먼

저, LPIRC [1, 2]대회에참가한경험을바탕으로임베디드딥러닝시스템을최적화하

는체계적인방법론을고안하고,그방법론에따른 C-GOOD이라는딥러닝프레임워

크를구현하였다. C-GOOD은하드웨어플랫폼에독립적으로작동하기위해대부분의

임베디드 기기에서 컴파일, 수행이 가능한 C 코드를 생성한다. 또한 여러 가지 딥 러

닝 응용 영역의 최적화 방법을 적용할 수 있는 옵션과 시스템 성능을 측정할 수 있는

기능을 제공하였다. 이 방법론을 Jetson TX2 [3], Odroid XU4 [4], SRP [5] 등의 서로

다른 3개의기기에적용해봄으로써,고안된방법론이하드웨어플랫폼에독립적이며

C-GOOD을통해쉽게여러딥러닝응용최적화방법을적용할수있음을확인하였다.

최근임베디드기기에이종프로세서들이많이탑재되고있고,동시에자율주행

자동차와스마트폰등의하나의임베디드기기에서여러개의딥러닝응용을동시에

수행하는것이필요해지고있다.본논문에서는여러딥러닝응용을이종프로세서들

을 탑재한 임베디드 기기에 스케줄하는 방법을 고안하고, 스케줄링 프레임워크를 구

현하였다.이방법론은실제기기에서의프로파일링부터스케줄결과를실제기기에서

확인하는과정까지포함하며,실제기기에서발생하는이슈들인 DVFS, CPU Hot-plug

등을 고려하였다. 이종 프로세서로의 스케줄링 기법으로는 많이 사용되는 메타 휴리

스틱알고리즘은유전알고리즘을사용하였다.특히,서로다른주기와상대오프셋을
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가지고있는여러응용을동시에스케줄하기위해서모든태스크들의스케줄가능성을

고려하여 스케줄하였다. 스케줄 결과를 검증하기 위해서, ACL의 코어 라이브러리를

이용하여 딥 러닝 추론 응용을 구현하였으며, 스케줄 결과와 같이 각 레이어들을 실

제하드웨어의서로다른프로세서매핑하도록구현하였다.갤럭시 S9스마트폰 [7]과

Hikey 970보드 [8]에서서로다른두개의딥러닝네트워크를수행하고,스케줄결과와

비교하여방법론을검증할수있었다.

이전 최적화 방법들이 딥 러닝 응용의 계산량과 프로세서들에 집중하였는데, 딥

러닝 가속기 또는 NPU의 성능 병목이 생기는 원인은 오프 칩 메모리와 온 칩 사이의

통신이다.더욱이오프칩메모리 DRAM접근은 NPU의전력소모의많은부분을차지

한다고 알려져있다. 따라서 이와 같은 오프 칩 DRAM 접근으로 인한 NPU의 성능과

에너지영향을줄이고자본논문에서는온칩메모리뱅크를관리하는컴파일러기법

을고안하였다.온칩메모리를여러개의뱅크로구성하고연산도중에인풋데이터를

미리 로드함으로써 연산 지연 시간을 줄일 수 있다는 점과 레이어의 아웃풋을 온 칩

메모리에서 재사용하여 오프 칩 메모리 접근을 줄일 수 있다는 점을 이용하여 서로

다른 두 가지의 목적 함수를 가진 두 가지 기법을 고안하였다. 목적 함수는 각각 오프

칩메모리접근을최소화하는것과오프칩메모리접근으로인한프로세서들의처리

지연시간을줄이는것이다.서로다른 5개의딥러닝네트워크를사이클레벨 NPU시

뮬레이터에서수행하여두목적함수에따른절충 (Trade-off)관계를확인하였다.또한

온칩메모리뱅크관리기법을레이어간피처데이터를최대한재사용하는레이어융

합방법으로확장하였다.기존의순수한레이어융합방법의경우에는중복계산하는

오버헤드와추가적인필터웨이트로드가생긴다.따라서본논문에서는기존의레이

어 별로 처리하는 방법과 순수한 레이어 융합 방법 사이의 하이브리드 레이어 융합

방법을 고안하였다. 두 온 칩 메모리 뱅크 관리 기법을 기반으로 하이브리드 레이어

융합 방법이 기존의 레이어 별 처리하는 기법과 순수한 레이어 융합 방법보다 좋은

성능을보임을확인할수있었다.

주요어 : 컨볼루션 신경망, 소프트웨어 최적화, 온 디바이스 딥 러닝, 스케줄링, 유전
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