creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

FHAA TSI

) o)
i i i B |

!

Functionally and Temporally Correct
Simulation for ROS2 Cyber Systems of

Automotive Systems

ROS27]4t9] A} &=} Afo|y] A]|AHIS
et 715 A/ HEdS BAdH=

AAIZE A0l 71

20214 2¢

=gt
A

H H
- 4
e
e

al
I

Iz
o,

ral

Functionally and Temporally Correct
Simulation for ROS2 Cyber Systems of

Automotive Systems
ROS27|8E9] 252} AJo|d] A|AH-L 23t
715 AINTH A BASshe AR

Aol 71H
Azn4ol A

ol =& T =L R AEH

20204 119

Aedieta el

HA 0] B RS AT

20204 12¢ '
HeEF 5} & 3 X\Z‘;%
2993 axa (@
R 2 e @ (%

Abstract

Functionally and Temporally Correct
Simulation for ROS2 Cyber Systems of

Automotive Systems

Seonghyeon Park
Department of Computer Science and Engineering
The Graduate School

Seoul National University

This dissertation proposes an approach for functionally and temporally correct simu-
lation of cyber system based on ROS2 framework. In the previous work, the simula-
tion approach was proposed that overcomes the limitations, which only guaranteeing
the functional correctness of the existing simulation approach by guaranteeing the
temporal correctness and simultaneously performs the task efficiently by reordering
jobs. Recognizing that the ROS2 cyber system differs from the traditional automo-
tive cyber systems, this dissertation can be applied to the ROS2 cyber system while
maintaining the key idea of the previous simulation approach. In the proposed ap-
proach, a system model for ROS2 cyber system is defined. Based on this, the cyber
system’s schedule is predicted, and a precedence relationship graph is generated so
that the existing simulation technique can be applied. The proposed method mea-

sures the simulation capacity, together with other simulation algorithms, through a

randomly generated workload, and it is shown that the proposed approach has the
highest simulation capacity in a single core simulator. Therefore, the existing func-
tional/temporally correct simulation approach can be applied to the cyber system of
automotive system based on ROS2 framework, and by utilizing this, it is possible to

correctly and effectively simulate the ROS2 cyber system.

keywords : Automotive System, Real-Time Simulation, ROS2 Framework

Student Number : 2019-23556

ii ~ = L

Contents

1 Introduction
1.1 Motivation e e e

1.2 Organization.o v i e e e

2 Backgrounds
2.1 Overview of Functionally and Temporally Correct Simulation

2.2 ROS2 Scheduling

3 Proposed Approach
3.1 System Model for ROS2 Cyber System
32 OfflinePhase

3.3 OnlinePhase

4 Evaluation
4.1 Experimental Setup oL oL

4.2 SimulationResults o

5 Conclusion

References

il

10
10
11

14

18
18

19

21

23

List of Figures

10
11

12

Gap between predicted performance and real performance of LKAS

Example cyber system of automotive system

Execution scenario and simulation scenario of example automotive

Example ROS2 cyber system of automotive system
Execution scenario of ROS2 cyber system
Snapshots of Executor behavior
Construction of offline guider
Swapping scheduling algorithm AllSynctoOurs
Simulation results of increasing transactionratio.
Simulation results of increasing writeratio

Simulation results of increasing read ratio

v

11
12
13
14
17
19
20

21

List of Tables

1 Introduction

1.1 Motivation

For automotive system developers, it is important to validate the system performance
at the design phase[3]. In the automotive industry, simulation approach is commonly
used for the validation of the automotive systems such as Simulink[4]. However,
if there is a gap between real performance and simulation result, they need to go
through the process of redesigning and implementing the system which increases the
cost for developing the system. For example, Figure 4 shows the difference between
the simulated results and real performance by Simulink[4], which cannot guarantee
temporal correctness. Therefore, we need a simulation approach that guarantees not
only functional correctness but also temporal correctness.

For this, K.S. We et al. [5] already addressed this problem with a novel sim-
ulation approach which can guarantee both of functional correctness and temporal
correctness. By maintaining the same data and time as the real cyber system only
at the physical interaction point with the physical system, the approach can guaran-
tee not only correct simulation but also efficient simulation by reordering the jobs to
schedule more efficiently.

Since, the ROS(Robot Operating System)[6] and ROS2(the new released version
supporting real-time features)[7] have become popular in the automotive industry
because of its various libraries to develop robotic system and enormous community
to share information for system developers, we intend to use this simulation approach
for the automotive systems designed by ROS2 framework which is supporting the

real-time features.

simulated result
real performance --———————-

ar
o
|
B P
wr -
= !’ \\ I’ _'_,p = e
TU r -
3
o
-1.5
0 2 4 6 8 10 12 14 16 18
time (sec)

Figure 1: Gap between predicted performance and real performance of LKAS [1]

However, we cannot apply the simulation approach directly to the cyber sys-
tem based on ROS2 because of different execution behaviors of functions. In the
ROS2 system, we need to consider one more layer that affect to the execution behav-
iors. Therefore, we propose extended simulation approach for ROS2 cyber-system
by considering the difference of execution behavior. Our contribution is to keep the
functional and temporal correct simulation approach to the ROS2 cyber system by
analyzing the execution behavior of ROS2 cyber system and defining new features
for adapting existing simulation algorithm.

Our Contributions:

e We propose a system model for the cyber systems based on the ROS2 frame-

work, and to simulate this, we analyze the execution behavior of the ROS2

cyber system.

e We show the highest simulation capacity in the simulator PC which has an
uniprocessor by the simulation results of synthetic workloads so that we keep

the existing simulation approach on the ROS2 cyber system.

1.2 Organization

This paper is organized as follows. In Section 2, we review the functionally and tem-
porally correct simulation approach and define new system model for cyber systems
based on ROS2 framework. Then, Section 3 explains our proposed approach. In Sec-

tion 4, we show our experiment results. Finally, Section 5 concludes the paper.

2 Backgrounds

In this section, we review functionally and temporally correct simulations[5] and

ROS?2 scheduling[2].

2.1 Overview of Functionally and Temporally Correct Simulation

In the previous simulation approach, the cyber-systems consist of multiple ECUs
which have a specific preemptive fixed priority (i.e., RM[8]) scheduler. Those sched-

uler schedules periodic task 7T;, represented as five properties:

T = (E7¢)57Pi)clbcetvciwcer)

where F; denotes the function of control algorithm which is executed by 71;, ®; is the
offset from the system start time, P; is the period of T;. Cf’“” denotes the best execu-
tion time of t;, C}'“ denotes the worst case execution time of t;. The cyber system
of an automotive system can be given as Figure 2 shows. In the Figure 2(a), data read
interactions from the physical system are denoted by red dotted arrows and data write
interactions to the physical system are denoted by blue dotted arrows. For the data
producer consumer relations, we denoted the relation by black dotted arrows. For the
cyber system, tasks parameters are given as Figure 2(b). From the parameters, we
generate an execution scenario of the cyber system as shown in Figure 3(a). The Fig-
ure 3(a) shows the schedule of the real cyber system for a hyper period of tasks which
is 8. The upper arrows in physical system denote the incoming data and red arrows
denote the data interaction point for reading and blue arrows denote data interaction

point for writing. J;; in the box denotes the j-th instance of T;. From the schedule, we

N

:f Cyber system | ; ' P, C[-b Y '

! T2 feol : ! J

:v __, E ECUT{ T 0| 4 1 3

' [Ecu,] [Ecu,|[Ecus]: 210812

i i ECU;T3 | 4 8 | 1| 2
Physical-system | ECU;~| T4 | 3 | 8 | 4 | 5

(a) Cyber system design

(b) Task parameters

Figure 2: Example cyber system of automotive system

A A

ECUl{Tl J11 J12
T2 T ; J21 i L
ECUZ_T3 ; ’."’ /,// \\“b]31
ECUs~Ts | Ja1

t

PHYT//TI TII TlT

|
T
4

o -~

(a) Execution scenario of real cyber system

T, 1
Simulation PC 2 i @ :
T B -
Ty !] Jar o
! | v v
pyt t t tt t . 0
0 2 4 6 8

(b) Execution scenario of simulation

Figure 3: Execution scenario and simulation scenario of example automotive system

can know each job’s release time and start time range and finish time range. Using

the schedule, we construct a graph for representing precedence relation between the

jobs. As the above simulation scenario, we assume the following assumptions for the

Lk

e

)

I

TU

simulation:

e Execution time mapping function: For the same function F; of task t;, PC can
execute the function more faster than ECU. For the execution times, there is a
relation between real cyber system’s execution time and simulation execution

time. We call this mapping function and represent as e{f‘” = Mi(ef;:m) where M;

represents the execution time mapping function. e{j‘” represents the execution

time on the ECU and efj"-m represents the execution time on the simulation PC.

e Most Recent Data Use: Each data is updated in a single memory buffer. There-
fore, the memory buffer is overwritten by the most recent data which is pro-

duced by a job or physical systems.

e Entry Read and Exit Write: Each job read all the data at the entry of the

execution and write all the output at the exit of the execution.

o Tagged Data Read: Real cyber system keep only the most recent data, but the
simulation PC can log all the data history with tag which has timestamp and
producer information. Therefore, simulation PC can execute a job after data

logged.

e Delay Data Write: Real cyber system has to write output when execution is

done. But the simulation PC can delay write time of job’s output.

In the previous work, the simulation PC runs the jobs in the graph with effec-
tive EDF scheduling policy and Simulation PC has a single core. From the above
assumptions, it can delay data writing or read data with the same data with its real

instance in the real cyber system. For this, simulated job with red arrow must start

later than its real start time and the job with blue arrow must finish faster than its real
finish time. As a result, we can see that red arrow and blue arrow points same time as
shown. This means that we keep the same data and time with real cyber system with
enjoying the freedom of job scheduling. For keeping the functional and temporal cor-
rectness only at physical interaction points while enjoying the freedom of executing

job scheduling, we have to consider below constraints:

o Physical-read constraint: If a job J;; which reads data from the physical sys-
tem, the simulation PC must run the job later than its actual start time on the

real cyber system, i.e.,

S,sim S.real
6" > (1
S,sim S,real
where ;7" and ;7 represent the simulated start time of J;; on the simulation

PC and the actual start time on the real cyber system.

o Physical-write constraint: If a job J;; which writes data to the physical sys-
tem, the simulation PC must finish the job before its actual finish time on the

real cyber system, i.e.,

F,sim F,real
L <ty 2

Freal
ij

F,sim

where ¢ ; and ¢

represent the simulated finish time of J;; on the simula-

tion PC and the actual finish time on the real cyber system.

¢ Producer/consumer constraint: If a pair of jobs, J;; and J;;, which Jy; is a

producer job of J;; on the real cyber system, the simulation PC must finish J;

before the actual start time of J;; on the real cyber system, i.e.,

F,sim S,real
o < 15 3)

2.2 ROS2 Scheduling

In the ROS2 cyber system, despite assuming to use the ECUs using the same sched-
uler, it is essential to consider that the function execution behavior is different than
traditional cyber systems of automotive systems. In the traditional cyber systems,
tasks was scheduled by OS scheduler so that we can regard task as process. How-
ever, in the ROS2 process, which is running on the OS scheduler, there is a scheduler
in the main thread called ‘Executor’ which is the charge of executing the functions
called callback[2]. There are two types of implementation of executor in the ROS2:
single-threaded, multi-threaded. Single threaded executor executes callbacks one by
one, in other words, it is non-preemptive scheduler. Executor has a set of callbacks
to run. For executing the functions on the executor, there are four types of callbacks:
Timer, Subscriber, Service, Client. Timer callback is periodically released by system
timer, but subscriber call-back is released by its publisher callback which writes data
to its subscriber callbacks. As shown in Figure 4, the executor is updated whenever
there are no callbacks to run in the executor by looking for ready callback in commu-
nication layer. However, timer callbacks are not managed by communication layer.
When the ready set is updated, any timer callback whose timer is expired is executed.
If there is no timer callback, executor searches subscriber callbacks in the set and

execute them all. If there is no subscriber callback, executor searches service call-

Executor
If there is no callback to run

Running highest priority callback

rcl

4~| Check timer callback whose timer is expired |

If there is no timer
|
Set of callba%ks except timer callbacks

Update

Client callbacks

]

If there is no subscriber If there is no service

Subscriber callbacks || Service callbacks

After update, check timer first

Figure 4: Executor’s execution behavior [2]

backs in the set and execute them all. For the last, client callbacks are also executed
by same way. Note that timer callback is always checked between the time of run-
ning callbacks. Therefore, there is a scheduling policy in the executor for executing
those callback types. Timer callback has highest priority, but we have to know how
we distinct the priority if callbacks to run are same callback type. For this, they have
registration order which means that when you add the callbacks to executor, regis-
tration time of the callbacks will be priority of the callbacks. Then we can conclude

there are two policies: callback types, registration order.

o Callback Type: ROS2 has four callback type: timer, subscriber, service, client.
Executor considers callback type first. And their priority is given in the order

listed above.

o Registration Order: In the ROS2, the nodes which is callback container are
registered by executor. Therefore, even for callbacks of the same type, the pri-

ority depends on the order in which they were registered first.

3 Proposed Approach

In this section, we first define the system model for ROS2 cyber system and adapt the

functionally and temporally correct simulation approach to the ROS2 cyber system.

3.1 System Model for ROS2 Cyber System

In this paper, we assume that each ECU runs only one ROS2 process and we use
single threaded executor. By assuming this, we can neglect OS scheduler and focus on
non-preemptive execution behavior. We use only timer, subscriber call-back for the
system model and assume that all the callback has fixed execution time. Therefore, we
can consider these precedence relations as a chain of callbacks called “transaction”.
Each transaction denoted by 7; consists of a timer callback denoted by T;(at the

beginning and subscriber callbacks denoted by 7T; ; at the rest as shown in Eq. 4.

T = {Ti0,Ti,1,Ti2,--+Tij} 4

Furthermore, we should consider the executor’s scheduling policy. In the execu-
tor, there is a ready queue for released jobs called “ready-set” [2]. A job instance of
every callback becomes ready state when their message arrived, or their timer ex-
pired. For those ready jobs, there are data structures for each of them to storing their
jobs. By inspecting those data structures, executor decide which job to execute first
with two scheduling policy: Hierarchical callback scheduling, Registration order pri-
ority assignment. By hierarchical callback scheduling, a timer call-back always has a
higher priority than a subscriber call-back. If the call-back type is same, priorities are

assigned according to the registration order by registration order priority assignment

10 N = L

(\

| Cyber system ! Timer Callback Subscriber Callback

| :
'[Tl,O T1|1 T1,2 131 Il d)i Pi Ci ROL' Ci ROi
/. h [|
ST dTpq o 1 PN Typ| 2 | 1
Lm0 ‘; R Tyo 0 110 2 | 1 ECUF{ H 1
1) . T
\ ! ; ECU { 12| 2 | 2
NI AN Mt 0522
| sE========== t-—-=—-=-= 2 ’ Tp1| 3 1

: |/ ECUZ{
Physical-system ECUy|T30| 0 |10 3 | 1 31| 2 | 2

(a) ROS2 cyber system design (b) Task Parameters

Figure 5: Example ROS2 cyber system of automotive system

[2]. For the data exchanges between callbacks and physical interactions, we assume
that there are no transmission delay so that we do not consider the data transmission

delay in this paper.

3.2 Offline Phase

To represent the simulation steps, we design an example of ROS2 cyber system
which has two ECUs: {ECU;,ECU,} and three transactions 71 = {7 0,711,712},
T, = {120,721} and T3 = {73,731 }. For the example cyber system, Figure 5(a) is
given. In the Figure 5(b), for the timer callbacks, ®; is the task offset, P; is the period
of 7,0, C; is the constant execution time of T; and RO; is the registration order. For
the subscriber callbacks, we only use C; and RO;.

We can get the hyper period with the timer callbacks periods and in the exam-
ple case, it is 10. For this, we generate a schedule of real cyber system for 10-time
units as shown in Figure 6 before starting the simulation (offline phase). In the sched-
ule, we represent jobs denoted by J; j x which means k-th instance of task 7; ; in the

transaction 7;. As shown in Figure 6, we denote only timer callbacks release time

11 A =1

Tia!
ECU,q | \
T1,2 : | h J121
TZ,OT] N 4202 }‘\\i
I I ! ! l\
T2,1. ‘: N E -
A I 1! : !
ECU,A 3,0,],41,04 |‘\ ," i ! i
o —
pHyT tottt gt 1 Y v

Figure 6: Execution scenario of ROS2 cyber system

as upper arrows. For detail executor’s behavior, we show snapshots of executor as
shown in Figure 7. We abstract executor’s callback queue as a box container, when
the job instance of the callback released, then a box for representing the instance
fill the mapped container. As we assume that we use single-threaded executor, the
current running job cannot be interrupted. At the time unit O, there are two jobs Ji o |
and J, o | released, the executor runs higher priority job Jj o1 as shown in Figure 7(a).
Then, Jy o1 creates Jy 1,1, and Jo o starts. At this time, Jy 1, cannot enter readySet
because J o1 is running as shown in Figure 7(c). At time unit 3, when J; o 1 finished,
Jo.1,1 1s generated, but generated in ECU,. At this time, ECU, is in the idle state, and
the executor moves Jj ;1 to readySet, and because there is only one job in readySet,
it is executed immediately. When J; 1 finishes the execution, Ji 1 is created, but
J20,2 is released at the same time, and J> > is executed immediately because timer
callbacks always take precedence over subscriber callbacks. On the other hand, in

ECU,, since J3 1 is executed up to time unit 4, J5 11 cannot enter readySet and must

¥) -
12 o e el

Current Running Current Running Current Running Current Running Current Running

N

Ready Set Ready Set Ready Set Ready Set Ready Set
[] []

[]
| Vel | | il il

T10 T20 T11 T12{T10 To0 T1a T12 | Ta0 P20 P11 T12| %10 P20 T1a T12|T10 To0 T1a 12
(2) At time 0, two job released (b) At time 2, J; 1 1 released (c)Attime 2, Jo started (d) Attime 3, J; ;1 into readySet (e) At time 3, J; 1 ; started

Figure 7: Snapshots of Executor behavior

be pending. When J3 o 1 is finished, J3 1 1 is created, and ECU, becomes idle, so J3 1 1
and J; 11 enter readySet at the same time. Comparing the RO; of J> 11 and J3 1,
J.1.1 is higher, so J> 11 is executed first, followed by J3 1 1. Since we assume that a
fixed execution time for the tasks, the schedule for one hyper period will be repeated
infinitely. Therefore, we can get all the jobs J; ; ;’s release time, start time, finish time
by generating the schedule.

By the schedule in Figure 6, we have all jobs’ release time, start time and finish
time. for the functionally and temporally correct simulation, we need to know actual
start time and finish time for the physical read constraint and physical write constraint
respectively. However we already have these values so we don’t have to consider the
jobs which can affect the actual start time and finish time. For the producer consumer
constraint, the jobs in the same transaction can only be producer. Thus, the prece-
dence graph only consider the producer consumer relation of the transaction. Re-
garding this, we construct the job precedence graph G=V, E called “Offline guider”
as DAG(Directed Acyclic Graph). V is the set of nodes which represent the jobs and
E is the set of directed edges which represents precedence relation between jobs. In

the offline guider, “R” mark in the upper left side of the nodes denote read constrained

¥)
13 o e el

oD
R R
o a»
an a»
R
a
1)

Figure 8: Construction of offline guider

jobs, and “W” mark in the lower right of side of the nodes denote write constrained
jobs. As above mentioned, we already know the actual start time and finish time so
that there are no the other precedence edges for representing affection for start time
and finish time. Thus, in the ROS2 system with fixed execution time tasks, there are
no precedence edges are connected only for same transaction or its next period job

instances as shown in Figure 8.

3.3 Online Phase

To simulate the jobs in the offline guider, first we assign new deadlines for the jobs
in offline guider to keep the write constraint which simulated job should be finished
before the actual finish time. For assigning effective deadline we set the effective
deadline as their actual finish time for write constrained jobs, while setting other

jobs’ deadline as infinite. Then, we back-trace write constrained jobs predecessors

14 A= T4

and set their deadline as effective deadline as shown in Eq. 5, 6.

Fireal : .
‘ ;77" for write constrained job
tD,szm _ b (5)
ijk
oo, otherwise
D,sim __ . / Dsim : D,sim
t7k =min(;; ", min (557)) (6)

VI3, €T;

Then, we push the jobs without any precedence edge to the simulation ready queue.
However, if the job has read constraint, we first check whether the job satisfy its read
constraint. If the simulation time has not yet reached the real start time of the job,
pushing to the ready queue is suspended. For executing the ready jobs, we use three
simulation approaches: AllSync, Ours, TrueTime [5]. Considering these simulation
approaches, we generate a job of next hyper period whenever a job is finished on

simulation PC.

o QOurs: Ours is to execute the jobs in the ready queue by effective EDF schedul-
ing policy. Note that the optimal job scheduling algorithm for the jobs with
precedence constraints and effective deadline on uniprocessor is the preemp-

tive EDF scheduling [5, 9].

e AllSync: The AllSync approach is the easiest simulation approach and follows
the execution order of the real cyber system as much as possible while keeping
its real start time for all jobs. In this case, it cannot have job scheduling freedom

and hard to simulate enormous task set.

e TrueTime: In this paper, we use an extended version of TrueTime approach[5].

In the approach, only jobs with physical interaction points are executed later

15 x—g N :.-_ -:I

than or equal to the real start time. Thus, it has a small freedom to ordering jobs
with no physical interaction points. Note that if all the task in the task set are

timer callback, then TrueTime approach become same with AllSync approach.

We show our approach’s and AllSync execution scenario with the above example
case of ROS2 cyber system by showing the two schedules of a hyper period: AllSync
approach, our approach as shown in Figure 9(a) and Figure 9(b). In the Figure 9(a),
we represent the deadline miss of J; 2 1 which is 7 at the Figure 9(b) as its real finish
time. Thus, we can say that this task set cannot have a feasible schedule with the All-
Sync approach. On the other hand, we swap the scheduling approach to ours which
is based on effective EDF scheduling policy and we represent there are no deadline
miss in the schedule as shown in the Figure 9(b). Therefore, we show that our ap-
proach can keep the functionally and temporally correct simulation approach on the
ROS2 cyber system.

In summary, the simulation algorithm consists of offline phase and online phase.

For the offline phase:

e Generate Real Cyber System Schedule: From the cyber system design and
task parameters, we generate a real cyber system schedule for a global hyper

period.

e Construct Offline Guider: From the generated schedule, we construct a job

precedence graph called offline guider.

Note that we generate a schedule and offline guider for a global hyper period before
the simulation start. After the simulation start, whenever a job simulated, next hyper

period job instance is generated and update the offline guider. For online phase:

1 ™
16 *" == L]

T
1’0 Deadline Miss
Ti1|
] Ky
T12] Talfada

Simulation PCH 75 4! .
2,05 2,41 @,2
T2,1: :I’ E 1,1 [7= ,2

] 1 !
I ’ y N I
!

| |

[|

T3,1..°
4 6 8

PHY ft | T} 1 | 1
0 2
(a) Execution scenario of All-sync approach

1'1,0"_:-,

—> =

Simulation PCH 15! @’r Jogz,

T2,1! ‘F(J ,,,,,, O

1 ' ’ M [

R e - A |

1 -r- g it : 1
ruy 1 M t,t gt I S
0 2 4 6 8

(b) Execution scenario of Ours approach

Figure 9: Swapping scheduling algorithm AllSync to Ours

e Run Simulated Jobs: From the offline guider, we start the simulation by
scheduling jobs pushed from the offline guider with effective EDF scheduling

policy.

e Update Offline Guider and Generate Next Hyper Period Job Instance:
Whenever a job finished on the simulation PC, we generate next hyper pe-
riod job instance and update the offline guider considering removed jobs and

directed edges.

17] .-;rx% -:“il]_H X

4 Evaluation

In this section, we explain our exeperimental setup and the results of simulation.

4.1 Experimental Setup

We conduct our simulation with 1000 synthetic workloads. We first use simple map-
ping function for execution time which simulation PC is 3.3 times faster than ECU.
We set the period of timer callbacks with uniform [10ms, 100ms], and execution time
of timer callbacks with 0.2*P; o and the subscribers in the same transaction follows
the timers. The number of ECUs is uniform [3,10], and each ECU has tasks with
uniform [1,5]. The transaction ratio is basically 50%. The read and write constrained
jobs ratios are basically 30% respectively. The transaction ratio determines how many
of all tasks are designated as timer callbacks. If the ratio is 0%, then there are only one
timer callback so that the entire task set become one chain. The read ratio determines
how many transactions can have read constrained timers. The write ratio determines
how many transactions can have a write constrained subscriber. We run the simu-
lation with Ours, AllSync, TrueTime approaches with increasing three parameters:
transaction ratio, read ratio, write ratio from 0 to 100%. We measure the simulation
capacity called “simulatability” by measuring “Simulatable” case of 1000 synthetic
workloads. If there is a deadline miss for the schedule, then we call it “Not Simulat-

able”. If the approach generates feasible schedule, then we call it “Simulatable”.

18 N = L

1.0 1 =&= Ours
N —¥— AllSync
NN -©- TrueTime
N
SAm—mAel

0.8 Tl
~ S A -—e
° A
> N
N \\
> A
b=
a 0.6 |
©
-
i
=)
€ o4
(7))

0.2 A

0.0 0.2 0.v4 O.VG 0.8 1.0
Transaction ratio (%)

Figure 10: Simulation results of increasing transaction ratio

4.2 Simulation Results

As shown in Figure 10, we increase transaction ratio from 0 to 100%. If the transac-
tion ratio is 0%, the number of transaction is one. In this case, all the simulation ap-
proach’s simulatability is 100%. However, as the transaction ratio approaches 100%,
the number of tasks and the number of transactions become the same, that is, all tasks
become timer callbacks. If the number of transactions is one, the write ratio is mean-
ingless. On the other side, if the number of transactions is the same as the number
of tasks, the write ratio is critical because we assign the write constraint to the tasks
30% of the number of transactions.

For the write ratio, as shown in Figure 11, we increase the write ratio from 0 to
100%. If the write ratio is 0%, it means that the deadline for all jobs is infinite so that
simulatability is 1 for every approach. However, if the write ratio is close to 100%, it

is hard to simulate for AllSync and TrueTime. Because, in the case of AllSync, the

¥ [-
19 Sk

101 & -a- Ours
‘\ —¥— AllSync
B -8~ TrueTime
0.8
<
>
N
_éa 0.6 -
=
©
S
T 04
=]
£
0
0.2
Oo L T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Write ratio (%)

Figure 11: Simulation results of increasing write ratio

same execution order as the real cyber system, so the more write constrained jobs, the
more difficult it is to finish at their actual finish times. In the case of TrueTime, due
to a small freedom of scheduling, it shows a little higher simulatability than AllSync.
Finally, Ours shows the highest simulatability because we run the jobs with the EDF
scheduling policy.

For the read ratio, Figure 12 shows the simulation results with increasing read
ratio from O to 100%. In this case, for the AllSync approach the read ratio is an
irrelevant parameter. This is because the AllSync approach starts later than the start
time for all jobs. Therefore, it has lowest simulatability. In the case of TrueTime, it
shows better simulatabilty than the AllSync when the read ratio is low. However, as
the read ratio becomes 100%, its simulatability getting closer to AllSync approach

because its small scheduling freedom is limited to the non read constrained jobs.

20 S =3 -

0.9 A\ -&=- Ours

\\ /,A\ - Allsync
w’ Ame -9~ TrueTime
AL A
0.8 1 \ PN
— \\A/ AN -A
P Lo
X -
N
> 0.7
=
Q
©
=
© 06
=)
£
D o5
0.4 4
0.0 0.2 0.4 0.6 0.8 1.0
Read ratio (%)

Figure 12: Simulation results of increasing read ratio

5 Conclusion

This paper proposes an extended simulation approach that can guarantee functional
and temporal correctness on the ROS2 cyber system. We show the existing simulation
approach still works on the ROS2 cyber system by showing the simulation results
based on synthetic workloads. However, our approach still has practical issues for

the future work:

e Data Transmission Delay: In this paper, we assume that there is no data trans-
mission delay for the physical interactions and data exchanges between call-
backs. However, we need to consider those transmission time to ensure that
we can receive the same data with real cyber system from the physical sys-
tem and we can transmit the same data to the physical system. In the previous

work[5], the cyber system consists ECUs connected by CAN(Controller Area

¥ [, -
21 ot el

Network) with TDMA bus[10] and proposed the data receive time as sum of its
actual finish time, waiting time for its dedicated slot of TDMA bus and constant
transmission time. However, in the ROS2 cyber system, we need to consider
that ROS2 cyber system uses DDS(Data Distribution Service)[11] for the data

transmissions. In the future, we plan to consider those data transmission delay.

Fixed Execution Time: In this paper, we assume that all the tasks have fixed
execution time for executing its function. However, if we use fixed execution
time, we can not consider timing behavior caused by varying execution time.
Therefore, we need to extend the approach for the varing execution time for
the tasks. In the future, we expect to improve the practicality by considering

varing execution time.

Uniprocessor: In this paper, we assume that the simulation PC has uniproces-
sor so that we can keep the existing simulation approach on the ROS2 cyber
system. However, in practice, there are ECUs more than 80 in the automotive
systems. In the future, we plan to extend the approach to multi-core simulation

based on ROS2 cyber system[12].

22 N = L

References

(1]

(2]

(3]

[4]

(5]

[6]

[7]

[8]

Hyejin Joo, Kyoung-Soo We, Seunggon Kim, and Chang-Gun Lee. An end-to-

end tool for developing cpss from design to implementation. 2016.

D. Casini, T. BlaB3, I. L"utkebohle, and B. B. Brandenburg. Responsetime analy-
sis of ros2 processing chains under reservation-based scheduling. In Euromicro
Technical Committee on Real-Time Systems (ECRTS), 2019. Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2019.

Kancheepuram Kattankulathur. Systematic approach in v-model development

cycle for an automotive embedded control system.
Simulink. R20719a. MathWorks Inc., Natick, Massachusetts, 2019.

Kyoung-Soo We, Seunggon Kim, Wonseok Lee, and Chang-Gun Lee. Func-
tionally and temporally correct simulation of cyber-systems for automotive sys-
tems. In Real-Time Systems Symposium (RTSS), 2017 IEEE, pages 68-79.

IEEE, 2017.
ROS Overview. http://wiki.ros.org/R0S/Introduction. 2020.
ROS2 Overview. https://index.ros.org/doc/ros2/. 2020.

Chung Laung Liu and James W Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM (JACM),

20(1):46-61, 1973.

23 x—g N :.-_ -:I

http://wiki.ros.org/ROS/Introduction
https://index.ros.org/doc/ros2/

[9]

[10]

[11]

[12]

M. Spuri and J. A. Stankovic. How to integrate precedence constraints and
shared resources in real-time scheduling. In Transactions on Computers (TC),

1994, pages 1407-1412. IEEE, 1994.

Thomas Fuhrer. Time triggered communication on can (time triggered can-

ttcan). In Proceedings 7th International CAN Conference, 2000, 2000.

Gerardo Pardo-Castellote. Omg data-distribution service: Architectural
overview. In 23rd International Conference on Distributed Computing Systems

Workshops, 2003. Proceedings., pages 200-206. IEEE, 2003.

Wonseok Lee, Jachwan Jeong, Seonghyeon Park, and Chang-Gun Lee. Practi-
cal multicore extension of functionally and temporally correct real-time simula-
tion for automotive systems. In Cyber Physical Systems. Model-Based Design,

pages 127-152. Springer, 2019.

24 x—g N :.-_ -:I

L
—

Aol A
Ao A T

A
il

g%
—

1

o

(o)

HA

FApel A

S~

I

7IRte = AAH A

Al Al

(s}

Ao A%

p——

ﬁwﬂ%ﬂﬂﬂﬂ@?ﬂmmﬁﬂ%m W
o g T oy B oo Mooy B od o
—_— — 1]
T B MR E oY N WX
BRI REME U RS =
P I L . ,
P pTpgPagelepgrs g m
S == = = — AL ,._ml [
T r P T ERF WL a
Pom oo o N W XN oF
I - > e S I o I)
A Erw gl HmPo NN K
ol < N T T R o o= o — o
T E_a.ﬁR]u_éE._ o N
FET R e B RW TG 9 S
T oI RMR %
WX ™ e T o Lo ooy B 7l
ol fe g M m WM 2w W o Lo aa
Moo | X 28 N 5 B N os O = v
O__"E‘Ll o) O—L]X‘I‘q}‘._ i) N
__o“_xﬂm.mnwL_Lm._wﬂmaxerwumaa oy
mﬂ,w__o}aHL__oPo,WﬁlﬂﬁA_Wﬂﬂu <
T oo oA o KSR o X oo B -
— 270 = o X =0 | T — Xy o ~
S L S NN~ Sy <
il R G S I 2
Ho pe apHidzrs Wi =
Sy e R - B NPT of
%dpxﬁ_/ﬂmﬂjﬂﬂmz_ﬂ, < ~ ©

[\ ta =— = UA|E._O1FO_ ~X
%%ﬂﬁmo_exoﬂ__oLﬁaﬂﬂaﬂn_zﬂA_. N
O_EH%%R%O_E%EMEQ b Ar NN
r e N = —_— Mﬂ} —.1_0_
TN Tl O M ol SRR = 2
1J7_4..1Z17J,A|,m_.,_ﬁﬂu._ﬁo%ﬂomuﬂdﬂo§ -]
R - B PN o 5
J)oEm o] om K o AR g N A o
o N o A ook m X N oo W ome oo TR X o

	1 Introduction
	1.1 Motivation .
	1.2 Organization .

	2 Backgrounds
	2.1 Overview of Functionally and Temporally Correct Simulation . . .
	2.2 ROS2 Scheduling .

	3 Proposed Approach
	3.1 System Model for ROS2 Cyber System
	3.2 Offline Phase .
	3.3 Online Phase .

	4 Evaluation
	4.1 Experimental Setup .
	4.2 Simulation Results .

	5 Conclusion
	References

<startpage>9
1 Introduction 1
 1.1 Motivation . 1
 1.2 Organization . 3
2 Backgrounds 4
 2.1 Overview of Functionally and Temporally Correct Simulation . . . 4
 2.2 ROS2 Scheduling . 8
3 Proposed Approach 10
 3.1 System Model for ROS2 Cyber System 10
 3.2 Offline Phase . 11
 3.3 Online Phase . 14
4 Evaluation 18
 4.1 Experimental Setup . 18
 4.2 Simulation Results . 19
5 Conclusion 21
References 23
</body>

