

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Towards Fast and Accurate

Information Transmission in

Deep Spiking Neural Networks

딥스파이킹뉴럴네트워크의

빠르고정확한정보전달

2021년 2월

서울대학교대학원

전기·컴퓨터공학부

김세준

Abstract

One of the primary reasons behind the recent success of deep neural networks

(DNNs) lies in the development of high-performance parallel computing systems and

the availability of enormous amounts of data for training a complex model. Nonethe-

less, solving such advanced machine learning problems in real world applications

requires a more sophisticated model with a vast number of parameters and training

data, which leads to substantial amounts of computational overhead and power con-

sumption. Given these circumstances, spiking neural networks (SNNs) have attracted

growing interest as the third generation of neural networks due to their event-driven

and low-powered nature. SNNs were introduced to mimic how information is en-

coded and processed in the human brain by employing spiking neurons as computa-

tion units. SNNs utilize temporal aspects in information transmission as in biological

neural systems, thus providing sparse yet powerful computing ability.

SNNs have been successfully applied in several applications, but these applica-

tions only include relatively simple tasks such as image classification, and are lim-

ited to shallow neural networks and datasets. One of the primary reasons for the

limited application scope is the lack of scalable training algorithms attained from

non-differential spiking neurons. In this dissertation, we investigate deep SNNs in a

much more challenging regression problem (i.e., object detection), and propose a first

object detection model in deep SNNs which is able to achieve comparable results to

those of DNNs in non-trivial datasets. Furthermore, we introduce novel approaches

to improve performance of the object detection model in terms of accuracy, latency

and energy efficiency. This dissertation contains mainly two approaches: (a) object

detection model in deep SNNs, and (b) improving performance of object detection

model in deep SNNs. Consequently, the two approaches enable fast and accurate

object detection in deep SNNs.

The first approach is an object detection model in deep SNNs. We present a

spiked-based object detection model, called Spiking-YOLO. To the best of our knowl-

edge, Spiking-YOLO is the first spiked-based object detection model that is able to

achieve comparable results to those of DNNs on a non-trivial dataset, namely PAS-

CAL VOC and MS COCO. In doing so, we introduce two novel methods: a channel-

wise weight normalization and a signed neuron with imbalanced threshold, both of

which provide fast and accurate information transmission in deep SNNs. Our ex-

periments show that Spiking-YOLO achieves remarkable results that are comparable

(up to 98%) to those of Tiny YOLO (DNNs) on PASCAL VOC and MS COCO.

Furthermore, Spiking-YOLO on a neuromorphic chip consumes approximately 280

times less energy than Tiny YOLO, and converges 2.3 to 4 times faster than previous

DNN-to-SNN conversion methods.

The second approach aims to provide a more effective form of computational ca-

pabilities in SNNs. Even though, SNNs enable sparse yet efficient information trans-

mission through spike trains, leading to exceptional computational and energy effi-

ciency, the critical challenges in SNNs to date are two-fold: (a) latency: the number

of time steps required to achieve competitive results and (b) synaptic operations: the

total number of spikes generated during inference. Without addressing these chal-

lenges properly, the potential impact of SNNs may be diminished in terms of energy

and power efficiency. We present a threshold voltage balancing method for object de-

tection in SNNs, which utilizes Bayesian optimization to find optimal threshold volt-

ages in SNNs. We specifically design Bayesian optimization to consider important

characteristics of SNNs, such as latency and number of synaptic operations. Further-

more, we introduce two-phase threshold voltages to provide faster and more accurate

ii

object detection, while providing high energy efficiency. According to experimental

results, the proposed methods achieve the state-of-the-art object detection accuracy

in SNNs, and converge 2x and 1.85x faster than conventional methods on PASCAL

VOC and MS COCO, respectively. Moreover, the total number of synaptic operations

is reduced by 40.33% and 45.31% on PASCAL VOC and MS COCO, respectively.

keywords: Neural Network, Deep Learning, Spiking Neural Network, Energy

Efficiency, Object Detection, Bayesian Optimization

student number: 2013-23104

iii

Contents

Abstract i

List of Figures ix

List of Tables x

1 Introduction 1

2 Background 10

2.1 Object detection . 10

2.2 Spiking Neural Networks . 16

2.3 DNN-to-SNN conversion . 18

2.4 Hyper-parameter optimization . 21

3 Object detection model in deep SNNs 25

3.1 Introduction . 25

3.2 Channel-wise weight normalization 27

3.2.1 Conventional weight normalization methods 27

3.2.2 Analysis of limitations in layer-wise weight normalization . 29

3.2.3 Proposed weight normalization method 30

3.2.4 Analysis of the improved firing rate 38

3.3 Signed neuron with imbalanced threshold 39

3.3.1 Limitation of leaky-ReLU implementation in SNNs 39

3.3.2 The notion of imbalanced threshold 41

iv

3.4 Evaluation . 43

3.4.1 Spiking-YOLO detection results 43

3.4.2 Spiking-YOLO energy efficiency 57

4 Improving performance and efficiency of deep SNNs 60

4.1 Introduction . 60

4.2 Threshold voltage balancing through Bayesian optimization 62

4.2.1 Motivation . 62

4.2.2 Overall process and setup 67

4.2.3 Design of Bayesian optimization for SNNs 69

4.3 Fast and accurate object detection with two-phase threshold voltages 74

4.3.1 Motivation . 74

4.3.2 Phase-1 threshold voltages: fast object detection 76

4.3.3 Phase-2 threshold voltages: accurate detection 76

4.4 Evaluation . 79

4.4.1 Experimental setup . 79

4.4.2 Experimental results . 79

5 Conclusion 85

5.1 Dissertation summary . 86

5.2 Discussion . 88

5.2.1 Overview of the proposed methods and their usages 88

5.3 Challenges in SNNs . 90

5.4 Future Work . 92

5.4.1 Extension to various applications and DNN models 92

5.4.2 Further improve efficiency of SNNs 93

5.4.3 Optimization of deep SNNs 94

Bibliography 95

Abstract (In Korean) 110

v

List of Figures

2.1 Image classification vs. object detection 11

2.2 Two-stage object detection vs. one-stage object detection 12

2.3 Example of object detection datasets 13

2.4 Calculation of mean average precision (mAP) 15

2.5 Example of pruning neural networks 16

2.6 Overview of Spiking Neural Networks 17

2.7 Dynamics of integrate-and-fire neurons 18

2.8 Overview of DNN-to-SNN conversion method 19

2.9 Example of under- and over-activation 20

2.10 Step-by-step process of layer-wise weight normalization 21

2.11 Overview of grid and random search 22

2.12 Overview of Bayesian optimization 23

3.1 Normalized maximum activation via layer-wise weight normaliza-

tion in each channel for eight convolutional layers in Tiny YOLO.

Blue and red lines indicate the average and minimum of the normal-

ized activations, respectively. 28

3.2 Proposed channel-wise weight normalization; Alj is jth activation

matrix (i.e., feature map) in layer l. 30

3.3 Firing rate distribution for layer-norm and channel-norm on channel

2 of Conv1 layer (single image) 32

3.4 Average firing rate distribution for layer-norm and channel-norm on

channel 2 of Conv1 layer (5,000 test images) 33

vi

3.5 Firing rate of 16 channels in Conv1 layer for layer-norm and channel-

norm of Tiny YOLO (single image) 34

3.6 Average firing rate of 16 channels in Conv1 layer for layer-norm and

channel-norm of Tiny YOLO (5,000 test images) 35

3.7 Average firing rate of 8 layers for layer-norm and channel-norm of

Tiny YOLO (5,000 test images) 36

3.8 Raster plot of 20 sampled neurons’ spike activity; layer-norm (left)

vs. channel-norm (right) . 37

3.9 ReLU vs. Leaky-ReLU . 39

3.10 Distribution of activation on each convolutional layer 40

3.11 Overview of proposed signed neuron featuring imbalanced threshold;

two possible cases for a spiking neuron 42

3.12 Overview of proposed signed neuron featuring imbalanced threshold 43

3.13 Experimental results of Spiking-YOLO on PASCAL VOC (left) and

MS COCO (right) for various configurations (weight normalization

methods + signed neuron w/ IBT + decoding scheme); maximum

mAP is in parentheses. 44

3.14 Object detection accuracy as time step increases for various slope

(alpha) values . 45

3.15 Object detection results (Tiny YOLO vs. Spiking-YOLO with layer-

norm vs. Spiking-YOLO with channel-norm) 48

3.16 More object detection results (Tiny YOLO vs. Spiking-YOLO with

layer-norm vs. Spiking-YOLO with channel-norm) 49

3.17 More object detection results (Tiny YOLO vs. Spiking-YOLO with

layer-norm vs. Spiking-YOLO with channel-norm) 50

3.18 More object detection results (Tiny YOLO vs. Spiking-YOLO with

layer-norm vs. Spiking-YOLO with channel-norm) 51

3.19 More object detection results (Tiny YOLO vs. Spiking-YOLO with

layer-norm vs. Spiking-YOLO with channel-norm) 52

vii

3.20 More object detection results (Tiny YOLO vs. Spiking-YOLO with

layer-norm vs. Spiking-YOLO with channel-norm) 53

3.21 More object detection results (Tiny YOLO vs. Spiking-YOLO with

layer-norm vs. Spiking-YOLO with channel-norm) 54

3.22 More object detection results (Tiny YOLO vs. Spiking-YOLO with

layer-norm vs. Spiking-YOLO with channel-norm) 55

3.23 More object detection results (Tiny YOLO vs. Spiking-YOLO with

layer-norm vs. Spiking-YOLO with channel-norm) 56

3.24 Energy comparison of Tiny YOLO and Spiking-YOLO for MAC and

AC operations; 32-bit FL (left) and 32-bit INT (right) 59

4.1 Comparison of object detection accuracy (mAP %) as the time step

increases for various threshold voltage configurations 64

4.2 Overall process of threshold voltage balancing through Bayesian op-

timization . 66

4.3 Dynamics of IF neuron depending on different threshold voltages . . 70

4.4 Object detection accuracy (mAP %) curve of phase-1 threshold volt-

ages (V fast
th) as time step increases 72

4.5 Two-phase threshold voltages for fast and accurate object detection

in SNNs . 75

4.6 MSE comparison of baseline vs. phase-1 voltages vs. proposed (two-

phase threshold voltages) as time step increases 78

4.7 Object detection accuracy (mAP %) as time step increases on (a)

PASCAL VOC and (b) MS COCO for various threshold voltage con-

figurations . 80

4.8 Object detection accuracy (mAP %) as a number of spikes increases

on (a) PASCAL VOC and (b) MS COCO for various threshold volt-

age configurations . 82

5.1 Final overview of all the proposed methods 89

viii

5.2 Object detection accuracy (mAP %) as a number of time increases

for all proposed methods with and without noise 91

ix

List of Tables

3.1 Experiment results for Spiking-YOLO (mAP %) 46

3.2 Energy table in 45nm CMOS process [Horowitz, 2014] 57

3.3 Energy comparison of Tiny YOLO (GPUs) and Spiking-YOLO (neu-

romorphic chips) . 58

4.1 Hyper-parameters in Bayesian optimization 68

4.2 Rank correlation coefficients of proxy evaluation of SNNs in Bayesian

optimization . 74

4.3 Optimal threshold voltages obtained in each convolutional layer for

two-phase voltages . 79

4.4 Comparison of object detection accuracy (mAP %) in SNNs using

various methods . 83

x

Chapter 1

Introduction

Over the past decade, deep neural networks (DNNs) have been becoming one of the

most popular choice for solving machine learning problems. Given its great success

in a variety of applications such as image classification [51, 34], speech recogni-

tion [4, 14], and natural language processing (NLP) [17, 15], DNNs are now being

further applied in more intriguing tasks such as genome sequencing [3, 101], and

self-driving [62, 48], making our daily lives better in all aspects. One of the primary

reasons behind the recent success of DNNs can be attributed to the development of

high-performance computing systems and the availability of large amounts of data

for model training.

However, solving more intriguing and advanced problems in real-world applica-

tions requires more sophisticated models and training data, which results in signifi-

cant increase in computational overhead and power consumption. To overcome these

challenges, many researchers have attempted to design computationally- and energy-

efficient DNNs using pruning [30, 36], compression [33, 50], quantization [28, 70],

and knowledge distillation [37, 56], some of which have shown promising results. De-

spite these efforts, the demand for computing and power resources will most likely

1

to increase as deeper and more complicated neural networks achieve higher accu-

racy [86]. For instance, [11] recently proposed a GPT-3 language model which has

175 billion parameters and requires approximately 3.11× 1023 floating point opera-

tions (FLOPs) to train the model. Nonetheless, GPT-3 has already shown remarkable

performance in various NLP tasks such as generating news articles, language trans-

lation, and answering standardized test questions.

Spiking neural networks (SNNs), which are the third-generation neural networks,

were introduced to mimic how information is encoded and processed in the human

brain by employing spiking neurons as computation units [60]. Unlike conventional

neural networks such as DNNs, SNNs transmit information via the precise timing

(temporal) of spike trains consisting of a series of spikes (discrete), rather than a real

value (continuous). That is, SNNs utilize temporal aspects in information transmis-

sion as in biological neural systems [61], thus providing sparse yet powerful comput-

ing ability [66, 6]. Moreover, the spiking neurons integrate inputs into a membrane

potential when spikes are received and generate (fire) spikes when the membrane po-

tential reaches a certain threshold, which enables event-driven computation. Driven

by the sparse nature of spike events and event-driven computation, SNNs offer ex-

ceptional power efficiency and are the preferred neural networks in neuromorphic

architectures [63, 75].

Despite their excellent potential, SNNs have been limited to relatively simple

tasks (e.g., image classification) and small datasets (e.g., MNIST and CIFAR) on

a rather shallow structure [52, 94]. One of the primary reasons for the limited ap-

plication scope is the lack of scalable training algorithms due to complex dynam-

ics and non-differentiable operations of spiking neurons. The direct training method

of SNNs consists of unsupervised learning with spike-timing-dependent plasticity

(STDP) [18] and supervised learning with gradient descent and error back-propagation

2

[52]. Although STDP is biologically more plausible, the learning performance is sig-

nificantly lower than that of supervised learning. Recent works proposed a supervised

learning algorithm with a function that can approximate the non-differentiable part

(e.g., integrate-and-fire) of SNNs [44, 52] to improve the learning performance. Fur-

thermore, [98] proposed temporal spike sequence learning back-propagation to train

SNNs with fewer steps while improving classification accuracy. Despite these efforts,

most previous works have been limited to the image classification task and MNIST

and CIFAR dataset on relatively shallow neural networks.

DNN-to-SNN conversion methods, as an alternative approach, have been studied

widely in recent years [13, 19, 83]. These methods are also known as in-direct train-

ing method of SNNs and are based on the idea of importing pre-trained parameters

(e.g., weights and biases) from a DNN to an SNN. In the DNN-to-SNN conversion

method, DNNs are converted into SNNs that can be directly mapped to spike-based

neuromorphic hardware with minimum performance loss [13]. DNN-to-SNN conver-

sion methods have a great advantage over the direct training methods in a way that

it is not necessary to train sophisticated deeper neural networks in SNNs, but simply

use trained parameters from DNNs in SNNs. DNN-to-SNN conversion methods aim

to bridge a large performance gap between DNNs and SNNs and have successfully

achieved comparable results in deep SNNs to those of original DNNs (e.g., VGG and

ResNet); however, the results from MNIST and CIFAR datasets were competitive,

while those of complex dataset, such as ImageNet dataset, were unsatisfactory when

compared with DNN’s accuracy.

Object detection is a core task in computer vision that is adopted in a wide

range of applications such as autonomous driving [92, 54], surveillance systems [67],

robots [43], and drone navigation [12]. It is often considered as a more challenging

task than image classification, as it involves recognizing multiple and possibly over-

3

lapping objects, calculating precise coordinates of bounding boxes, and predicting

associated class probabilities. Since localizing objects in object detection is referred

to as a regression problem, high-numerical precision is required to achieve high ob-

ject detection accuracy, which leads to large computational overhead. This limits their

ability to perform real-time detection. In recent years, various architectures and tech-

niques have been proposed to enable real-time and efficient object detection, namely

one-stage detectors [79, 8, 59], their variants [91, 25, 39, 24], and quantized detectors

[55, 20, 89]. Nevertheless, these efforts still fall short of the demand of real-world ap-

plications on resource-constrained edge devices.

In this dissertation, we first investigate a more advanced machine learning prob-

lem in deep SNNs, namely object detection, using DNN-to-SNN conversion methods.

Object detection is regarded as significantly more challenging as it involves both rec-

ognizing multiple overlapped objects and calculating precise coordinates for bound-

ing boxes. Thus, it requires high numerical precision in predicting the output val-

ues of neural networks (i.e., regression problem) instead of selecting one class with

the highest probability (i.e., argmax function) as performed in image classification.

Based on our in-depth analysis, several issues arise when object detection is applied

in deep SNNs: (a) inefficiency of conventional weight normalization methods and (b)

absence of an efficient implementation method of leaky-ReLU in an SNN domain.

To overcome these issues, we introduce two novel methods; channel-wise weight

normalization and signed neuron with imbalanced threshold. Consequently, we present

a spike-based object detection model, called Spiking-YOLO. As the first step to-

wards object detection in SNNs, we implemented Spiking-YOLO based on Tiny

YOLO [80]. To the best of our knowledge, this is the first deep SNN for object de-

tection that achieves comparable results to those of DNNs on non-trivial datasets,

PASCAL VOC and MS COCO.

4

Chapter 3 is based on the following paper:

• Seijoon Kim, Seongsik Park, Byunggook Na, Sungroh Yoon, ”Spiking-YOLO:

Spiking Neural Network for Energy-Efficient Object Detection,” in Proceed-

ings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI),

2020.

Our contributions in Chapter 3 can be summarized as follows:

• First object detection model in deep SNNs We present Spiking-YOLO, a

model that enables energy-efficient object detection in deep SNNs, for the first

time. Spiking-YOLO achieves comparable results to original DNNs on non-

trivial datasets, i.e., 98%.

• Channel-wise weight normalization We developed a fine-grained weight nor-

malization method for deep SNNs. The proposed method enables a higher, yet

proper firing rate in multiple neurons, thus leads to fast and accurate informa-

tion transmission in deep SNNs.

• Signed neuron featuring imbalanced threshold We proposed an accurate

and efficient implementation method of leaky-ReLU in an SNN domain. The

proposed method can easily be implemented in neuromorphic chips with min-

imum overheads.

The proposed Spiking-YOLO improves efficiency of object detection [49] when

compared to object detection models in DNNs. However, one of its drawbacks is that

it requires a significant amount of time steps (latency) and spikes (synaptic opera-

tions) to provide high-numerical precision and high object detection accuracy, which

can directly translate into higher energy and power consumption. For instance, SNNs

executing object detection would require over 2x the latency and 100x the number of

5

spikes, when compared to image classification [47, 83, 49]. Without addressing these

problems properly, the potential impact of SNNs can be diminished, particularly in

terms of energy efficiency. Consequently, the significant benefits of SNNs over DNNs

may no longer be the same. For instance, in image classification, SNNs (e.g., VGG

and ResNet architecture) yield latency of between 2,000 and 2,500 time steps and

generate up to 86.5M spikes on CIFAR-100 [47, 83]. As for a more complex object

detection, SNNs (e.g., Tiny YOLO) require up to 5,000 time steps and produce 38.2B

spikes on PASCAL VOC [49]. That is, SNNs executing object detection would re-

quire over 2x the latency and 100x the number of spikes, when compared to image

classification.

In recent years, various approaches have been proposed to improve performance

of SNNs in terms of both accuracy and efficiency, but these have been limited to im-

age classification. These approaches include weight and threshold voltage balancing

methods [19, 73, 83] and neural coding schemes [71, 97, 72]. In most of the exist-

ing approaches, the firing rate of neurons is regulated by a single uniform value in

each channel (e.g., maximum activation value) while having the same threshold volt-

age. In neuroscience literature, neurons in different regions of brain represent distinct

dynamics and process information differently than other regions [10, 87, 100]. The

threshold voltage of neurons is also known to have a broad range rather than a single

value [5]. A few studies have used various threshold voltages, but these values were

determined heuristically, leaving much room for optimization [32, 31].

Inspired from these observations, we propose a threshold voltage balancing method

that improves object detection performance in SNNs in terms of three important as-

pects: accuracy, latency, and number of synaptic operations. The proposed threshold

voltage balancing method can automatically scale the threshold voltages in each hid-

den layer to optimal values by employing Bayesian optimization. We specifically de-

6

sign Bayesian optimization such that it considers distinctive characteristics of SNNs,

namely, latency and number of synaptic operations. We thoroughly investigated opti-

mal evaluation procedure and hyper-parameters of Bayesian optimization specifically

for SNNs. Moreover, proxy evaluation is introduced to accelerate optimization pro-

cess with a consideration of accuracy-latency trade-off in SNNs.

Furthermore, we introduce the concept of two-phase threshold voltages. The

threshold voltages in each phase have two different objectives; phase-1 for fast object

detection and phase-2 for accurate object detection. By utilizing phase-1 threshold

voltages for the early part of time steps in SNNs, then swapping in phase-2 threshold

voltages later, SNNs achieve not only fast convergence speed but also state-of-the-art

object detection accuracy with significantly less number of synaptic operations.

Chapter 4 is based on the following paper:

• Seijoon Kim, Seongsik Park, Byunggook Na, Jongwan Kim, Sungroh Yoon,

”Towards Fast and Accurate Object Detection in Bio-Inspired Spiking Neural

Networks Through Bayesian Optimization,” in IEEE Access, 2021.

The key contributions of Chapter 4 can be summarized as follows:

• Threshold voltage balancing through Bayesian optimization We present a

threshold voltage balancing method using Bayesian optimization that finds op-

timal threshold voltages to improve performance of SNNs in terms of accuracy,

latency and number of synaptic operations.

• Bayesian optimization specifically designed for SNNs We design Bayesian

optimization to consider two important characteristics of SNNs in addition to

object detection accuracy: latency, and number of synaptic operations. More-

over, we employ proxy evaluation of SNNs to reduce large computational over-

head of the optimization process.

7

• Two-phase threshold voltages for faster and more accurate object detec-

tion in SNNs We introduce the concept of two-phase threshold voltages that

can provide low latency while achieving state-of-the-art object detection ac-

curacy. By substantially reducing latency and number of synaptic operations,

the proposed methods can provide highly energy-efficient object detection in

SNNs.

In summary, this dissertation underlines the importance of energy efficiency of

DNNs, which are increasingly becoming a critical factor as we try to deploy DNNs

in resource-constrained environments (e.g., embedded systems, edge devices) for var-

ious applications. As demonstrated in Chapter 3, we propose the first object detection

model in SNNs, namely Spiking-YOLO, which can significantly improve energy ef-

ficiency compared to DNNs while achieving detection accuracy close to DNNs (up

to 98%). In Spiking-YOLO, we propose two approaches: channel-wise weight nor-

malization and signed neuron with imbalanced threshold voltage. Furthermore, in

Chapter 4, we propose a new threshold voltage balancing method and introduced

two-phase threshold voltages which can improve performance of Spiking-YOLO in

terms of detection accuracy, latency, and total number of synaptic operations.

All the proposed methods in Chapter 3 and 4 ultimately enable fast and accurate

object detection while offering extremely high energy efficiency. Other than signed

neuron with imbalanced threshold voltage, the proposed methods in Chapter 3 and 4

are interchangeable and compliment with others. To elaborate on this point, signed

neuron with imbalanced threshold precisely implements a leakage term in leaky-

ReLU for SNNs, and object detection model struggles to detect objects without the

proposed signed neuron with imbalanced threshold. Thus, signed neuron with im-

balanced threshold are used by default in the object detection model. On the other

hand, channel-wise weight normalization and threshold voltage balancing through

8

Bayesian optimization are compliment to each other and using the both provides

more sufficient activation of spiking neurons in deep SNNs. Furthermore, two-phase

threshold voltages can be looked as a results from various design choices of the pro-

posed threshold voltage balancing through Bayesian optimization, which are obtained

by alternating a number of time steps during evaluation in Bayesian optimization.

The rest of the dissertation is organized as follows: Chapter 2 illustrates back-

ground in details. Chapter 3-4 present the proposed methods that enable fast and

accurate information transmission in deep SNNs while providing high energy effi-

ciency. We conclude this dissertation with conclusion and future work in Chapter 5.

9

Chapter 2

Background

2.1 Object detection

Object detection is one of the most fundamental computer vision task that is ap-

plied in a variety of applications such as autonomous driving [92, 54], surveillance

systems [67], robots [43], and drone navigation [12]. It aims to provide semantic

understanding of an image or video by recognizing multiple and possibly overlap-

ping objects (if existed), classifying associated class that each object belongs to, and

predicting location of each object with precise coordinates. Thus, it requires high

numerical precision in predicting the output values of neural networks (i.e., regres-

sion problem) instead of selecting one class with the highest probability (i.e., argmax

function) as performed in image classification. Figure 2.1 compares object detection

and image classification.

With the recent success of DNNs, object detection has made a significant im-

provement in terms of detection accuracy over the last decade. However, there are

still difficulties encountered in general, namely overlapped objects, objects in ex-

tremely small size, and quality of an input image (or video) (e.g., occlusion, blur, and

10

1?

2?

10?

Softmax

logits

Seven

Image classification Object detection

x
y
w
h

regressor

Figure 2.1: Image classification vs. object detection

different angle). These have led to much attention to neural network in object detec-

tion to overcome such difficulties and various algorithms and techniques have been

proposed in recent years [26, 81, 59, 79, 79]. Nonetheless, the main challenges in

object detection to this date are detection speeds (FPS: frame per second) and com-

putational overhead (FLOPS: floating point operations per second) while providing

high object detection accuracy.

These main challenges originated from how traditional object detection frame-

work was designed. As mentioned previously, object detection aims to recognize

objects, classifies their associated class (classification), and draws precise bounding

boxes around them (localization). Naturally, the traditional object detection frame-

work was designed in two stages: (a) first stage searches for possible regions that

would have objects in them (i.e., region proposals) using algorithms such as selective

search, (b) second stage classifies each region proposal. This two-stage object detec-

tion framework limits their ability to perform real-time detection. To provide real-

time object detection, one-stage object detection frameworks have been proposed.

These frameworks perform classification and localization in unified network to sig-

nificantly reduce computation overhead and execution time. The details of two-stage

and one-stage object detection framework is shown in Figure 2.2 and is explained in

11

Region
proposal

Conv. layers

Feature maps

Selective search
Region proposal network

Feature extraction

Object
classification

Box
regression

Object
classification

Box
regression

For each grid

For each region

Compute
features

Input image

Input image

Two-stage object detection

One-stage object detection

Figure 2.2: Two-stage object detection vs. one-stage object detection

details as follows.

Region-based CNN (R-CNN) [27], two-stage object detection framework, is con-

sidered to be one of the most significant advances in object detection. R-CNN extract

a set of vector from each region proposal through selective search [88]. Then each

proposal is scaled and fed into a CNN model trained on ImageNet to extract features.

Linear SVM classify the object in one image at the last layer of the CNN. Then, a

linear regressor predicts the bounding box coordinates of the classified object more

precisely. Although R-CNN has made great progress, its drawbacks are redundant

overlapped proposals without sharing computation. This leads to an extremely slow

detection speed. To improve detection performance and speed, various extended ver-

sions of R-CNN have been proposed, namely fast R-CNN [26], faster R-CNN [81],

and Mask R-CNN [35]. Nevertheless, R-CNN based networks suffer from a slow in-

ference speed due to multiple-stage detection schemes, and thus are not suitable for

real-time object detection.

As an alternative approach, one-stage object detection framework has been pro-

12

(a) PASCAL VOC (b) MS COCO

Figure 2.3: Example of object detection datasets

posed, where the bounding box information is extracted and objects are classified in

a unified network. In one-stage object detection framework, Single-shot multi-box

detector (SSD) [59] and You only look once (YOLO) [79] achieve the state-of-the-

art performance. YOLO divides the image into grids and predicts bounding boxes

and probabilities for each region simultaneously. The author has made a series of im-

provements on basis of YOLO and has proposed its YOLO v2 [78], YOLO v3 [79],

which further improve the detection accuracy while keeps a detection speed. Partic-

ularly, YOLO has superior inference speed (FPS) without a significant loss of accu-

racy, which is a critical factor in real-time object detection. In recent years, variants of

these one-stage object detection framework have been proposed such as architecture

variants [91, 25, 39, 24], and quantized detectors [55, 20, 89]. Nevertheless, these ef-

forts still fall short of the demand of real-world applications on resource-constrained

edge devices. Recent years have seen considerable interest in SNNs because of their

exceptional energy efficiency.

Popular datasets for object detection are PASCAL VOC [22] and MS COCO [57].

PASCAL VOC is based on PASCAL Visual Object Classes Challenges that took

place in 2005 to 2012. PASCAL VOC 2012 is consisted of total of 20 classes includ-

ing person, dogs, horses, chairs, sofas and so on. The train and validation data has

11,530 images containing 27,450 ROI annotated objects and 6,929 segmentations.

13

Most of the researchers to date uses PASCAL VOC (2007 + 2012) when validating

performance of their proposed model. Another popular dataset for object detection

is MS COCO which is known to be more challenging dataset than PASCAL VOC.

It includes large-scale object detection, segmentation, and captioning dataset. The

train and validation data has over 300k images (200k are labeled) with 1.5 million

instances and 80 object classes. Moreover, MS COCO has sample boxes of 7.4 per

image when compared to 2.4 in PASCAL VOC (2007 + 2012). Since MS COCO is

considered as more challenging object detection dataset and detection accuracy on

PASCAL VOC is somewhat saturated, more researchers in the recent years use MS

COCO dataset to report detection performance in their research paper.

In image classification, accuracy is often used as performance metric of the model.

Since image classification only involves predicting a class of an input image, accu-

racy can be easily calculated by comparing ground truth and class prediction of the

model. On the other hand, object detection involves multiple objects with their asso-

ciated classes and bounding boxes. That is, performance metric for object detection

has to consider both classification and bounding boxes regression. Thus, object de-

tection uses mean average precision (mAP) as the performance metric. In order to

calculate mAP, we first need to calculate recall and precision which can be defined as

Precision = True positive
True positive + False positive

, (2.1)

Recall = True positive
True positive + False negative

. (2.2)

In object detection, precision measures false positive rate and can be defined

as fraction of correctly predicted objects among all predicted objects made by the

model. Recall, also refers to sensitivity, measures false negative rate and can be de-

14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Recall

Original precison-recall curve
Precision-recall curve for interpolated precision

Figure 2.4: Calculation of mean average precision (mAP)

fined as fraction of correctly predicted objects among all objects in an image. Then

precision-recall curve is computed in order to calculate average precision (AP). Us-

ing the precision-recall curve, AP computed as average of maximum precision values

on 11 sample points in recall as shown in Figure 2.4. Please note that precision value

at each sample point is obtained with the maximum precision value to the right of the

sample point. AP is calculated on each class then mAP calculates average of AP for

the entire classes. Also note that intersection over union (IoU) is a measure of how

two bounding boxes are overlapped which can be calculated as

IoU = Area of overlap
Area of union

. (2.3)

IoU over 50% between the ground truth and predicted bounding box is considered as

correct prediction (correct = True). In MS COCO, mAP is calculated on multiple IoU

values rather than a single IoU at 50% (PASCAL VOC). For instance, [79] reports

mAP in three different IoU values (i.e., mAP, mAP50, mAP75).

15

Original network Pruned network

Figure 2.5: Example of pruning neural networks

2.2 Spiking Neural Networks

Recently, many have attempted to design energy- and computation-efficient DNNs

via pruning [30, 36, 65], compression [33, 50], and quantization [28, 70, 21], some

of which have shown promising results. Pruning [36] and compression [33] tech-

niques aim to reduce computational overheads by eliminating redundancy, keeping

only important parts of network, while preserving accuracy. [70] adopted a quanti-

zation technique to reduce number of bits required to represent a model, which led

to a decrease in amount of storage and memory access needed. Recently, concept of

knowledge transfer has been proposed to enhance compression ratio of a network by

transferring the knowledge (e.g., attention map [96], softened distribution [37]), from

a teacher (larger) network to a student (smaller) network.

Despite these efforts, employing DNNs in a resource-constrained environment re-

mains a great challenge due to the nature of how DNNs are designed in the first place.

DNN processes information based on continuous value through number of hidden

layers. Through heavy matrix multiplications and summations, DNN predicts a final

answer based on extracted features and any patterns learned from training data. DNNs

negate the fact that an actual biological neuron in the human brain processes infor-

mation based on discrete signals known as a spike train (a group of spikes), rather

16

Spike trains

Time
Predicted outputInput

Figure 2.6: Overview of Spiking Neural Networks

than a continuous value. Although the recent success of DNNs cannot be overlooked,

DNNs are not biologically plausible, and overall, their efficiency and performance do

not even come close to those of the human brain.

In contrary to DNNs, SNNs use spike trains consisting of a series of spikes to

convey information between neurons. The integrate-and-fire neurons accumulate in-

put z into a membrane potential Vmem as

V l
mem,j(t) = V l

mem,j(t− 1) + zlj(t)− VthΘl
j(t), (2.4)

where Θl
j(t) is a spike, and zlj(t) is the input of jth neuron in the lth layer with a

threshold voltage Vth. zlj(t) can be described as

zlj(t) =
∑
i

wli,jΘl-1
i (t) + blj , (2.5)

where w and b are weight and bias, respectively. A spike Θ is generated when the

integrated value Vmem exceeds the threshold voltage Vth as

Θl
i(t) = U(V l

mem,i(t)− Vth), (2.6)

where U(x) is a unit step function. Due to the event-driven nature, SNNs offer

17

Vth
Vmem

t

w2

w1

w3

Input spikes

t

Vout

IF neuron

Output spike

Figure 2.7: Dynamics of integrate-and-fire neurons

energy-efficient operations [73]. However, they are difficult to train which has been

one of the major obstacles when deploying SNNs in various applications [94].

The training method of SNNs consists of unsupervised learning with spike-timing-

dependent plasticity (STDP) [18] and supervised learning with gradient descent and

error back-propagation [52]. Although STDP is biologically more plausible, the learn-

ing performance is significantly lower than that of supervised learning. Recent works

proposed a supervised learning algorithm with a function that approximates the non-

differentiable portion (integrate-and-fire) of SNNs [44, 52] to improve the learning

performance. Despite these efforts, most previous works have been limited to the

image classification task and MNIST dataset on shallow SNNs.

2.3 DNN-to-SNN conversion

As an alternative approach, DNN-to-SNN conversion methods have been recently

proposed [83, 19, 13]. These methods are based on the idea of directly importing pre-

trained parameters such as synaptic weights from a DNN to an SNN while employing

spiking neurons (e.g., integrate-and-fire neurons) as shown in Figure 2.8. [13] pro-

posed a DNN-to-SNN conversion method that removed biases, and used spatial linear

sub-sampling instead of max-pooling operation. In subsequent work, [19] proposed

18

Pre-trained DNN model

Import parameters
(e.g., weights and biases)

SNN model

Figure 2.8: Overview of DNN-to-SNN conversion method

data-based normalization (also known as layer-wise weight normalization) to prevent

insufficient activation of spiking neurons (i.e., over- and under- activation which is il-

lustrated in Figure 2.9) by normalizing weights in a specific layer using the maximum

activation of the corresponding layer. This led to sufficient and balanced activation

of neurons, and achieved impressive results on MNIST dataset when compared to

existing works. The layer-wise weight normalization can be calculated by

wl → wl
λl−1

λl
and bl → bl

λl
, (2.7)

where w, b and λ are weights, bias and maximum activation in a layer l, respectively.

Note that normalizing the weights by the maximum activation will have the same

effect as normalizing the output activation.

[82] proposed robust normalization and demonstrated that biases can be imple-

mented in SNNs with a constant input current. They also proposed an conversion

method of batch normalization and implementation of spike max-pooling in SNNs.

In [83], the authors aimed to expand the conversion method to deep SNNs (e.g.,

VGG and residual architectures) and proposed a spike-norm algorithm which bal-

ances the threshold voltage of each layer during the conversion process rather than

before, which is commonly done in the most previous works.

More recent work [49] applied object detection in deep SNNs for the first time.

19

Under-activation Over-activation

x2

x1

x3

w2

w1

w3

Vth
Vmem

t

Vth
Vmem

t

x2

x1

x3

w2

w1

w3

Figure 2.9: Example of under- and over-activation

In doing so, they proposed signed neuron with imbalanced threshold which can effi-

ciently implement leaky-ReLU in SNNs, and developed a more fine-grained weight

normalization method, called channel-wise weight normalization to provide fast and

accurate information transmission in deep SNNs. The channel-wise weight normal-

ization can be expressed as

w̃li,j = wli,j
λl−1
i

λlj
and b̃lj =

blj
λlj
, (2.8)

where i and j are indices of channels. Weights w in a layer l are normalized (same

effect as normalizing the output activation) by maximum activation λlj in each chan-

nel. In the following layer, the normalized activations must be multiplied by λl−1
i to

obtain the original activation prior to the normalization. Note that the threshold volt-

age is set to 1V for all neurons. The weight normalization is equivalent to threshold

voltage balancing, carrying out the same effect in terms of providing sufficient and

balanced activation of the spiking neurons. In case of the threshold voltage balancing,

the threshold voltages will be scaled instead of the weights.

Nonetheless, the conventional conversion methods can be considered as a con-

servative approach. They strictly regulate firing rate of all neurons between 0 and 1

20

1. Pre-trained DNN model
2. Find maximum activations

w/ training dataset (layer-wise)
3. Normalize weights

and biases

λ2λ1

λ3

w2
norm = w 2 * (λ1 / λ2)training dataset

λ2λ1

λ3

w1
norm w3

normw2w1 w3w2w1 w3 w2
norm

Figure 2.10: Step-by-step process of layer-wise weight normalization

by normalizing the weights with a single value (e.g., maximum activation, λlj) and

retain a fixed threshold voltage of 1V for all neurons. To improve performance in

terms of both latency and accuracy, a several approaches have explored in using dif-

ferent threshold voltages other than 1V, yet the threshold voltages were determined

in a very heuristic manner. In their work, the threshold voltages is simply multiplied

by a scaling factor (e.g., 0.8, 0.6, 0.4 and 0.2) and seeing if the overall performance

improves [31]. Moreover, a single threshold voltage is applied to the entire network.

[31] claims that the scaling factor of 0.8 achieves the optimal accuracy-latency trade-

off but fails to provide an adequate proof nor address an important perspective in

terms of a number of synaptic operations (spikes) which is more likely to increase

due to lower threshold voltage.

2.4 Hyper-parameter optimization

Despite the much success of deep neural networks, design space exploration of the

neural network has been gaining significant interests with much of the focuses cen-

tered on designing network architectures and tuning hyper-parameters. These design

choices, typically, are complex and high dimensional, involving a large search space

which makes difficult for humans to efficiently navigate all possible choices to pro-

21

Important parameter

rete
marap tnatrop

min
U

Random searchGrid search

U
ni

m
po

rta
nt

 p
ar

am
et

er

Important parameter

Figure 2.11: Overview of grid and random search

duce the best performance of the model. In the same vein, AutoML is a vital re-

search area in that it automatically finds the optimal neural network design or hyper-

parameters, taking the human out of the equation. In general, AutoML can be divided

into three major categories; (a) automated feature learning, (b) architecture search

and (c) hyper-parameter optimization. In this dissertation, we specifically focus on

the hyper-parameter optimization.

The grid search is well-known to be a standard approach to hyper-parameter op-

timization over the years. However, it became highly ineffective as the search space

dimension continues to increases for more sophisticated and bigger neural networks.

To overcome such challenges, other approaches have been proposed such as gradient-

based optimization [7], random search [1], and Bayesian optimization [85, 41, 2].

[7] optimizes hyper-parameters based on computed gradient of the model selection

criterion with respect to the hyper-parameters have been chosen to be optimized.

[1] empirically demonstrated that the random search outperforms the grid search

while consuming less computational time in several cases. This is because the hyper-

parameters have different degrees of importance to the model in that the grid search

22

acquisition
function

acquisition
max value(xn, f(xn)) Update

surrogate
model

xn xn+1

objective
functionsurrogate

model

Figure 2.12: Overview of Bayesian optimization

may suffer from lack of converge in possibly important dimensions owing to pre-

defined grid size. The random search can eliminate unnecessary search space and

enables stochastic search for values located between the two grid points.

As illustrated in Figure 2.12, Bayesian optimization aims to efficiently find opti-

mal input value x of objective function f(x), so that the obtained value x maximizes

the output value of f(x) while using as few input candidates as possible. The input

value x can be multiple hyper-parameters. Bayesian optimization first constructs a

probabilistic model called surrogate model,M , based on input-output evaluation pair

(x1, f(x1), ... , (xt, f(xt)) obtained from previous iteration. Then an acquisition func-

tion, u, suggests the most promising input value x(t+1) for the next iteration based

on the probabilistic estimation results obtained thus far. By fitting a surrogate model

M to the samples of an unknown objective function f , the Bayesian optimization

procedure iteratively selects the new sample Xt+1 as follows:

Xt+1 = argmaxXA(X|Dt), (2.9)

whereA is the acquisition function andDt are the samples drawn from f . Various ex-

tended version of Bayesian optimizations have been proposed, namely Spearmint [85],

SMAC [41], and TPE [2]. [85] uses a typical Gaussian process model as the sur-

23

rogate model. [41] constructs a response surface model P (y|x) based on random

forests to optimize expected improvement criterion[xx] and also supports categorical

parameters and multiple instances. [2] utilizes Adaptive Parzen Estimator to produce

a variety of densities over the configuration space and optimizes the expected im-

provement in tree-structured configuration spaces. In this work, we used Spearmint

implementation of Bayesian optimization which showed the best results among the

other Bayesian optimization algorithms according to our preliminary experiments.

24

Chapter 3

Object detection model in deep

SNNs

3.1 Introduction

Despite their excellent potential, SNNs have been limited to relatively simple tasks

(e.g., image classification) and small datasets (e.g., MNIST and CIFAR), on a rather

shallow structure [52, 94]. One of the primary reasons for the limited application

scope is the lack of scalable training algorithms due to complex dynamics and non-

differentiable operations of spiking neurons. DNN-to-SNN conversion methods, as

an alternative approach, have been studied widely in recent years [13, 19, 83]. These

methods are based on the idea of importing pre-trained parameters (e.g., weights and

biases) from a DNN to an SNN. DNN-to-SNN conversion methods have achieved

comparable results in deep SNNs to those of original DNNs (e.g., VGG and ResNet);

however, results from MNIST and CIFAR datasets were competitive, while those of

ImageNet dataset were unsatisfactory when compared with DNN’s accuracy.

In this chapter, we investigate a more advanced machine learning problem in deep

25

SNNs, namely object detection, using DNN-to-SNN conversion methods. Object de-

tection is regarded as significantly more challenging as it involves both recognizing

multiple overlapped objects and calculating precise coordinates for bounding boxes.

Thus, it requires high numerical precision in predicting the output values of neural

networks (i.e., regression problem) instead of selecting one class with the highest

probability (i.e., argmax function) as performed in image classification. Based on our

in-depth analysis, several issues arise when object detection is applied in deep SNNs:

(a) inefficiency of conventional normalization methods and (b) absence of an efficient

implementation method of leaky-ReLU in an SNN domain.

To overcome these issues, we introduce two novel methods; channel-wise weight

normalization and signed neuron with imbalanced threshold. Consequently, we present

a spike-based object detection model, called Spiking-YOLO. As the first step to-

wards object detection in SNNs, we implemented Spiking-YOLO based on Tiny

YOLO [80]. To the best of our knowledge, this is the first deep SNN for object de-

tection that achieves comparable results to those of DNNs on non-trivial datasets,

PASCAL VOC and MS COCO. Our contributions can be summarized as follows:

• First object detection model in deep SNNs We present Spiking-YOLO, a

model that enables energy-efficient object detection in deep SNNs, for the first

time. Spiking-YOLO achieves comparable results to original DNNs on non-

trivial datasets, i.e., 98%.

• Channel-wise weight normalization We developed a fine-grained normaliza-

tion method for deep SNNs. The proposed method enables a higher, yet proper

firing rate in multiple neurons, thus leads to fast and accurate information trans-

mission in deep SNNs.

• Signed neuron with imbalanced threshold We proposed an accurate and effi-

26

cient implementation method of leaky-ReLU in an SNN domain. The proposed

method can easily be implemented in neuromorphic chips with minimum over-

heads.

3.2 Channel-wise weight normalization

3.2.1 Conventional weight normalization methods

In a typical SNN, it is vital to ensure that a neuron generates spike trains according

to the magnitude of the input and transmits those spike trains without any informa-

tion loss. However, information loss can occur from under- or over-activation in the

neurons given a fixed number of time steps. For instance, if a threshold voltage Vth

is extremely large or the input is small, then a membrane potential Vmem will require

a long time to reach Vth, thus resulting in a low firing rate (i.e., under-activation).

Conversely, if Vth is extremely small or input is large, then Vmem will most likely

exceed Vth and the neuron will generate spikes regardless of the input value (i.e.,

over-activation). It is noteworthy that the firing rate can be defined as N
T , where N is

the total number of spikes in a given time step T . The maximum firing rate will be

100% since a spike can be generated at every time step.

To prevent under- or over-activation in the neurons, both the weights and the

threshold voltage need to be carefully chosen for sufficient and balanced activation

of the neuron. Layer-wise weight normalization [19] (abbreviated to layer-norm) is

one of the most well-known weight normalization methods; layer-norm normalizes

weights in a specific layer using the maximum activation of the corresponding layer,

calculated from running the training dataset in a DNN. This is based on an assumption

that the distributions of the training and test datasets are similar. In addition, note that

normalizing the weights using the maximum activation will have the same effect as

27

0

0.5

1
Conv1

0 5 10 15
0

0.5

1
Conv2

0 5 10 15 20 25 30

0

0.5

1
Conv3

0 10 20 30 40 50 60
0

0.5

1
Conv4

0 20 40 60 80 100 120

0

0.5

1
Conv5

0 50 100 150 200 250
0

0.5

1
Conv6

0 100 200 300 400 500

0

0.5

1
Conv7

0 200 400 600 800 1000
0

0.5

1
Conv8

0 200 400 600 800 1000

Figure 3.1: Normalized maximum activation via layer-wise weight normalization in
each channel for eight convolutional layers in Tiny YOLO. Blue and red lines indicate
the average and minimum of the normalized activations, respectively.

normalizing the output activation. Layer-norm can be calculated by

w̃l = wl
λl−1

λl
and b̃l = bl

λl
, (3.1)

where w, λ, and b are the weights, the maximum activations calculated from the

training dataset, and bias in layer l, respectively. As an extended version of layer-

norm, [82] introduced an approach that normalizes the activations using the 99.9th

percentile of the maximum activation; this increases the robustness to outliers and

ensures sufficient firing of neurons. However, our experiments show that when ob-

ject detection is applied in deep SNNs using the conventional weight normalization

methods, the model suffers from significant performance degradation.

28

3.2.2 Analysis of limitations in layer-wise weight normalization

Figure 3.1 represents the normalized maximum activation values in each channel ob-

tained from layer-norm. Tiny YOLO consists of eight convolutional layers; the x-axis

indicates the channel index and the y-axis represents the normalized maximum ac-

tivation values. The blue and red lines indicate the average and minimum values of

the normalized activations in each layer, respectively. As highlighted in Figure 3.1,

for a specific convolutional layer, the deviation of the normalized activations on each

channel is relatively large. For example, in the Conv1 layer, the normalized maxi-

mum activation is close to 1 for certain channels (e.g., channels 6, 7, and 14) and

0 for other channels (e.g., channels 1, 2, 3, 13, and 16). The same can be said for

the other convolutional layers. Clearly, layer-norm yields exceptionally small nor-

malized activations (i.e., under-activation) in numerous channels that had relatively

small activation values prior to the normalization.

These extremely small normalized activations were undetected in image classi-

fication, but can be extremely problematic in solving regression problems in deep

SNNs. For instance, to transmit 0.7, 7 spikes and 10 time steps are required. Apply-

ing the same logic, transmitting 0.007 would require 7 spikes and 1000 time steps

without any loss of information. Hence, to send either extremely small (e.g., 0.007)

or precise (e.g., 0.9007 vs. 0.9000) values without any loss, a large number of time

steps is required. The number of time steps is considered as the resolution of the in-

formation being transmitted. Consequently, extremely small normalized activations

yield low firing rates which results in information loss when the number of time steps

is less than what it needs to be.

29

, = ,

−1

where = 1,2,…,

−1 where = 1,2,…,

−1

−1

Filter (:,)

A −1

−1 = max (A −1) = max (A)

A

Normalized Filter (~

~

:,)

DNN-to-SNN
Conversion

(Channel-wise
normalization)

,

−1

Figure 3.2: Proposed channel-wise weight normalization; Alj is jth activation matrix
(i.e., feature map) in layer l.

3.2.3 Proposed weight normalization method

We propose a more fine-grained weight normalization method, called channel-wise

weight normalization (abbreviated to channel-norm) to enable fast and efficient infor-

mation transmission in deep SNNs. Our method normalizes the weights by the max-

imum possible activation (the 99.9th percentile) in a channel-wise manner instead of

the conventional layer-wise manner. The proposed channel-norm can be expressed as

w̃li,j = wli,j
λl−1
i

λlj
and b̃lj =

blj
λlj
, (3.2)

where i and j are indices of channels. Weights w in a layer l are normalized (same

effect as normalizing the output activation) by maximum activation λlj in each chan-

nel. As mentioned before, the maximum activation is calculated from the training

30

dataset. In the following layer, the normalized activations must be multiplied by λl−1
i

to obtain the original activation prior to the normalization. The detailed method is

depicted in Algorithm 1 and Figure 3.2.

datasets were competitive, while those of ImageNet dataset
were unsatisfactory when compared with DNN’s accuracy.

Algorithm 1: Channel-wise normalization
// Calculate maximum activation (λ) for each channel from

training dataset

1 for l in layers do
2 for j in output channels do
3 λl

j = max (Al
j) // A = activation matrix

// Apply channel-norm on inference (test dataset)

4 for l in layers do
5 for j in output channels do
6 b̃lj = blj / λl

j // b = bias

7 for i in input channels do
8 if l = first layer then
9 w̃l

i,j= wl
i,j / λl

j // w = weight

10 else
11 w̃l

i,j = wl
i,j / λl

j λ
l−1
i

Normalizing the activations in the channel-wise manner eliminates extremely

small activations (i.e., under-activation), which had small activation values prior to

the normalization. In other words, neurons are normalized to obtain a higher yet

proper firing rate, which leads to accurate information transmission in a short period

of time.

31

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

Fi
rin

g
ra

te
 (%

)

10
0

10
1

10
2

10
3

10
4

10
5

Frequency (log scale)

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n

Fi
gu

re
3.

3:
Fi

ri
ng

ra
te

di
st

ri
bu

tio
n

fo
rl

ay
er

-n
or

m
an

d
ch

an
ne

l-
no

rm
on

ch
an

ne
l2

of
C

on
v1

la
ye

r(
si

ng
le

im
ag

e)

32

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

Fi
rin

g
ra

te
 (%

)

10
0

10
2

10
4

10
6

Frequency (log scale)

Fi
gu

re
3.

4:
A

ve
ra

ge
fir

in
g

ra
te

di
st

ri
bu

tio
n

fo
rl

ay
er

-n
or

m
an

d
ch

an
ne

l-
no

rm
on

ch
an

ne
l2

of
C

on
v1

la
ye

r(
5,

00
0

te
st

im
ag

es
)

33

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

C
ha

nn
el

 in
de

x
of

 c
on

vo
lu

tio
na

l l
ay

er
 1

0510152025 Firing rate (%)

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n

(b
)

Fi
gu

re
3.

5:
Fi

ri
ng

ra
te

of
16

ch
an

ne
ls

in
C

on
v1

la
ye

rf
or

la
ye

r-
no

rm
an

d
ch

an
ne

l-
no

rm
of

Ti
ny

Y
O

L
O

(s
in

gl
e

im
ag

e)

34

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

C
ha

nn
el

 in
de

x
of

 c
on

vo
lu

tio
na

l l
ay

er
 1

05101520 Average firing rate (%)

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n

Fi
gu

re
3.

6:
A

ve
ra

ge
fir

in
g

ra
te

of
16

ch
an

ne
ls

in
C

on
v1

la
ye

rf
or

la
ye

r-
no

rm
an

d
ch

an
ne

l-
no

rm
of

Ti
ny

Y
O

L
O

(5
,0

00
te

st
im

ag
es

)

35

1
2

3
4

5
6

7
8

In
de

x
of

 c
on

vo
lu

tio
na

l l
ay

er

01234567 Average firing rate (%)
Sp

ik
in

g-
YO

LO
 w

/ l
ay

er
-w

is
e

no
rm

al
iz

at
io

n
Sp

ik
in

g-
YO

LO
 w

/ c
ha

nn
el

-w
is

e
no

rm
al

iz
at

io
n

Fi
gu

re
3.

7:
A

ve
ra

ge
fir

in
g

ra
te

of
8

la
ye

rs
fo

rl
ay

er
-n

or
m

an
d

ch
an

ne
l-

no
rm

of
Ti

ny
Y

O
L

O
(5

,0
00

te
st

im
ag

es
)

36

Neuron index 0 5101520

Ti
m

e
st

ep
s

0
10

0
20

0
30

0
40

0
50

0

Neuron index 0 5101520

Ti
m

e
st

ep
s

0
10

0
20

0
30

0
40

0
50

0

Fi
gu

re
3.

8:
R

as
te

rp
lo

to
f2

0
sa

m
pl

ed
ne

ur
on

s’
sp

ik
e

ac
tiv

ity
;l

ay
er

-n
or

m
(l

ef
t)

vs
.c

ha
nn

el
-n

or
m

(r
ig

ht
)

37

3.2.4 Analysis of the improved firing rate

In Figure 3.3, the x- and y-axes indicate the firing rate and the number of neurons

that produce a specific firing rate on a log scale, respectively. For channel-norm,

numerous neurons generated a firing rate of up to 80%. In layer-norm, however, most

of the neurons generated a firing rate in the range between 0% and 3.5%. This is

a clear indication that channel-norm eliminates extremely small activations and that

more neurons are producing a higher yet proper firing rate. Figure 3.3 is measured on

a single image and Figure 3.4 is average firing rate distribution on 5,000 test images.

In addition, Figure 3.5 presents the firing rate of each channel in the convolutional

layer 1.

Evidently, channel-norm produces a much higher firing rate in majority of the

channels. Particularly in channel 2, channel-norm produces a firing rate that is 20

times higher than that of layer-norm. Figure 3.7 also presents firing rate of each chan-

nel in the convolutional layer 1 for 5,000 test images while Figure 3.5 is measured on

a single image. Moreover, Figure 3.6 is average firing rate of 8 layers for layer-norm

and channel-norm of Tiny YOLO for 5,000 test images. In all layers, channel-norm

showed improved firing rate. Lastly, Figure 3.8 presents a raster plot of the spike ac-

tivity from 20 sampled neurons. It can be seen that numerous neurons are firing more

regularly when channel-norm is applied.

Our detailed analysis verifies that the fine-grained channel-norm normalizes ac-

tivations better, preventing insufficient activation that leads to a low firing rate. In

other words, extremely small activations are normalized properly such that neurons

can transmit information accurately in a short period of time. These small activations

may not be significant and have little impact on the final output of the network in

simple applications such as image classification; however, they are critical in regres-

sion problems and significantly affect the model’s accuracy. Thus, channel-norm is a

38

f (y)

f (y) = y

f (y) = 0
f (y) = -ay

f (y) = y

f (y)

a = 0.1

Figure 3.9: ReLU vs. Leaky-ReLU

viable solution for solving more advanced machine learning problems in deep SNNs.

3.3 Signed neuron with imbalanced threshold

3.3.1 Limitation of leaky-ReLU implementation in SNNs

ReLU, one of the most commonly used activation functions, retains solely positive

input values and discards all negative values; f(x) = x when x ≥ 0, otherwise

f(x) = 0. Unlike ReLU, leaky-ReLU contains negative values with a leakage term,

slope of α, which is typically set to 0.01; f(x) = x when x ≥ 0, otherwise f(x) =

αx [95].

Most previous DNN-to-SNN conversion methods have focused on converting

integrate-and-fire neurons to ReLU, while completely neglecting the leakage term

in the negative region of the activation function. Note that negative activations ac-

count for over 51% in Tiny YOLO. The details of distribution of activation on each

convolutional layer in Tiny YOLO is depicted in Figure 3.10. To extend the activation

function bound to the negative region in SNNs, [82] added a second Vth term (−1).

Their method successfully converted BinaryNet [40] to SNNs, where the activations

were constrained to +1 or −1 on CIFAR-10.

39

Conv1

Fr
eq

ue
nc

y

2500

5000

7500

17500

20000

15000

12500

10000

0
0 10 20 30 40 50

Conv2

5000

25000

30000

20000

15000

10000

0
-10 0 10 20 30

Conv3

2500

5000

7500

17500

15000

12500

10000

0
-5 0 10 15 20 25 305

Conv4

1000

2000

3000

7000

8000

6000

5000

4000

0
-2.5 0 2.5 5.0 7.5 10.0 12.5

Conv5 Conv6

Conv7 Conv8

500

1000

1500

3500

3000

2500

2000

0
-2 0 4 6 8 10 122

5000

2000

1500

1000

0
0 2 4 6 8

200

400

600

1400

1600

1200

1000

800

0
-5 0 4 6 8 10 122

1000

2000

3000

7000

6000

5000

4000

0
-1 0 2 3 4 5 61 7

Fr
eq

ue
nc

y

Activation value

Activation valueActivation value

Activation value

min: -6.574
max: 54.20
pos: 41.93%
neg: 58.07%

min: -8.394
max: 34.72
pos: 52.50%
neg: 47.50%

min: -4.601
max: 28.80
pos: 40.33%
neg: 59.67%

min: -3.214
max: 13.61
pos: 24.38%
neg: 75.62%

min: -2.183
max: 12.99
pos: 15.38%
neg: 84.62%

min: -1.317
max: 8.210
pos: 9.01%
neg: 90.99%

min: -4.896
max: 32.60
pos: 23.37%
neg: 76.63%

min: -0.7618
max: 32.60
pos: 49.27%
neg: 50.73%

Activation value Activation value

Activation value Activation value

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Figure 3.10: Distribution of activation on each convolutional layer

40

Currently, various DNNs use leaky-ReLU as an activation function, yet an accu-

rate and efficient method of implementing leaky-ReLU in an SNN domain has not

been proposed. Leaky-ReLU can be implemented in SNNs by simply multiplying

negative activations by the slope α in addition to a second Vth term (−1) as shown

in Figure 3.12. However, this is not biologically plausible (the spike is a discrete sig-

nal) and can be a formidable challenge when employed on neuromorphic chips. For

instance, additional hardware would be required for the floating-point multiplication

of the slope α. Figure 3.10 represents distribution of activation values in each con-

volutional layer prior to normalization. The ratio of positive and negative activation

values for each convolutional layer are also shown in Figure 3.10.

3.3.2 The notion of imbalanced threshold

We herein introduce a signed neuron featuring imbalanced threshold (hereinafter ab-

breviated as IBT) that can not only interpret both positive and negative activations,

but also accurately and efficiently compensate for the leakage term in the negative re-

gions of leaky-ReLU. The proposed method also retains the discrete characteristics of

the spikes by introducing a different threshold voltage for the negative region, Vth,neg.

The second threshold voltage Vth,neg is equal to the Vth divided by the negative of

the slope, −α, and Vth,pos is equal to Vth as before. This would replicate the leakage

term (slope α) in the negative region of leaky-ReLU. The underlying dynamics of

signed neuron with IBT are represented by

fire(Vmem) =

1 if Vmem ≥ Vth,pos(Vth)

−1 if Vmem ≤ Vth,neg(− 1
αVth)

0 otherwise, no firing.

(3.3)

41

≥

x1

x2

x3

fire

refractory
period

leaky-
integrate

−
1

x1

x2

x3
fire

refractory
period

leaky-
integrate

−
1

≤

A.

B.

=

= −
1

mem

mem

th,pos

th,neg

thth,pos

th,neg th

th

th

th

th

Figure 3.11: Overview of proposed signed neuron featuring imbalanced threshold;
two possible cases for a spiking neuron

As shown in Figure 3.11, if the slope α = 0.1 then the threshold voltage responsible

for a positive activation Vth,pos is 1V , and that for a negative activation, Vth,neg, is

−10V ; therefore, Vmem must be integrated ten times more to generate a spike for the

negative activations in leaky-ReLU.

It is noteworthy that a signed neuron also enables implementation of excitatory

and inhibitory neurons, which is more biologically plausible [16, 90]. Using signed

neurons with IBT, leaky-ReLU can be implemented accurately in SNNs and can di-

rectly be mapped to the current neuromorphic architecture with minimum overhead.

Moreover, the proposed method will create more opportunities for converting various

DNN models to SNNs in a wide range of applications.

42

− × vth

-vth

-vth

f (y) = -ay

f (y) = y

f (y)

Leaky-ReLU

Figure 3.12: Overview of proposed signed neuron featuring imbalanced threshold

3.4 Evaluation

As the first step towards object detection in deep SNNs, we used a real-time ob-

ject detection model, Tiny YOLO. Note that the YOLO has superior inference speed

(FPS) without a significant loss of accuracy, which is a critical factor in real-time

object detection. Thus we selected Tiny YOLO as our object detection model, which

is a simpler but efficient version of YOLO. We implemented max-pooling and batch-

normalization in SNNs according to [82]. Tiny YOLO is tested on non-trivial datasets,

PASCAL VOC and MS COCO. Our simulation is based on the TensorFlow Eager and

we conducted all experiments on NVIDIA Tesla V100 GPUs.

3.4.1 Spiking-YOLO detection results

To verify and analyze the functionalities of the proposed methods, we investigated

the effects of the presence or absence of channel-norm and signed neuron with IBT.

As depicted in Figure 3.14, when both channel-norm and signed neuron with IBT are

applied, Spiking-YOLO achieves a remarkable performance of 51.83% and 25.66%

on VOC PASCAL and MS COCO, respectively. The target mAP of Tiny YOLO

is 53.01% (PASCAL VOC) and 26.24% (MS COCO). In fact, channel-norm out-

43

0510152025

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

C
ha

nn
el

-n
or

m
 w

/ I
BT

 +
 V

m
em

 (2
5.

66
)

C
ha

nn
el

-n
or

m
 w

/ I
BT

 +
 S

pi
ke

 c
ou

nt
 (2

1.
54

)
La

ye
r-n

or
m

 w
/ I

BT
 +

 V
m

em
 (2

4.
66

)
La

ye
r-n

or
m

 w
/ I

BT
+

Sp
ik

e
co

un
t (

20
.9

3)

C
ha

nn
el

-n
or

m
 +

 V
m

em
 (0

.7
4)

C
ha

nn
el

-n
or

m
 +

 S
pi

ke
 c

ou
nt

 (3
.0

2)
La

ye
r-n

or
m

 +
 V

m
em

 (0
.7

4)
La

ye
r-n

or
m

 +
 S

pi
ke

 c
ou

nt
 (2

.8
2)

0

mAP (%)

Ti
m

e
st

ep

Ta
rg

et
 m

A
P:

 2
6.

24
%

01020304050

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

0

mAP (%)

Ti
m

e
st

ep

Ta
rg

et
 m

A
P:

 5
3.

01
%

C
ha

nn
el

-n
or

m
 w

/ I
BT

 +
 V

m
em

 (5
1.

83
)

C
ha

nn
el

-n
or

m
 w

/ I
BT

 +
 S

pi
ke

 c
ou

nt
 (4

7.
19

)
La

ye
r-n

or
m

 w
/ I

BT
 +

 V
m

em
 (4

8.
94

)
La

ye
r-n

or
m

 w
/ I

BT
+

Sp
ik

e
co

un
t (

46
.2

9)

C
ha

nn
el

-n
or

m
 +

 V
m

em
 (5

.6
1)

C
ha

nn
el

-n
or

m
 +

 S
pi

ke
 c

ou
nt

 (7
.3

1)
La

ye
r-n

or
m

 +
 V

m
em

 (3
.8

6)
La

ye
r-n

or
m

 +
 S

pi
ke

 c
ou

nt
 (6

.8
7)

Fi
gu

re
3.

13
:E

xp
er

im
en

ta
lr

es
ul

ts
of

Sp
ik

in
g-

Y
O

L
O

on
PA

SC
A

L
V

O
C

(l
ef

t)
an

d
M

S
C

O
C

O
(r

ig
ht

)
fo

r
va

ri
ou

s
co

nfi
gu

ra
tio

ns
(w

ei
gh

t
no

rm
al

iz
at

io
n

m
et

ho
ds

+
si

gn
ed

ne
ur

on
w

/I
B

T
+

de
co

di
ng

sc
he

m
e)

;m
ax

im
um

m
A

P
is

in
pa

re
nt

he
se

s.

44

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
Ti

m
e

st
ep

0102030405060 mAP(%)

D
N

N
 T

ar
ge

t(a
=0

.1
)

D
N

N
 T

ar
ge

t(a
=0

.2
D

N
N

 T
ar

ge
t(a

=0
.0

1)
a=

0.
1

a=
0.

2
a=

0.
01

Fi
gu

re
3.

14
:O

bj
ec

td
et

ec
tio

n
ac

cu
ra

cy
as

tim
e

st
ep

in
cr

ea
se

s
fo

rv
ar

io
us

sl
op

e
(a

lp
ha

)v
al

ue
s

45

performs layer-norm in detecting objects by a large margin, especially on PASCAL

VOC (53.01% vs. 48.94%), and converges faster. For instance, to reach the maxi-

mum mAP of layer-norm (48.94), channel norm only requires approximately 3,500

time steps (2.3x faster). Similar results are observed in MS COCO where channel-

norm converges even faster than the layer-norm (4x faster). Please refer to Table 3.1

for more detailed results.

Table 3.1: Experiment results for Spiking-YOLO (mAP %)

Signed
neuron

Norm.
method

PASCAL VOC (53.01)a MS COCO (26.24)a

Vmem Spike count Vmem Spike count

w/out IBT
Layer 3.86 6.87 0.74 2.82
Channel 5.61 7.31 0.74 3.02

w/ IBT
Layer 48.94 46.29 24.66 20.93
Channel 51.83 47.19 25.66 21.54

a Target mAP in parentheses

Notably, without the proposed methods, the model failed to detect objects, re-

porting 6.87% and 2.82% for VOC PASCAL and MS COCO, respectively. When

channel-norm is applied, the model still struggles to detect objects, reporting approx-

imately 7.31% and 3.02% at the best. This is a great indication that signed neuron

with IBT accurately implements the leakage term in leaky-ReLU. Thus, the rest of

the experiments were conducted using signed neuron with IBT as the default.

For further analysis, we performed additional experiments on two different output

decoding schemes: one based on accumulated Vmem, and another based on spike

count. The quotient from Vmem / Vth indicates the spike count, and the remainder is

rounded off. This remainder will eventually become an error and lost information.

Therefore, the Vmem-based output decoding scheme is more precise for interpreting

spike trains; Figure 3.14 verifies this assertion. The Vmem-based output decoding

46

scheme outperforms the spike-count-based scheme and converges faster in channel-

norm.

Figure 3.15 illustrates the efficacy of Spiking-YOLO in detecting objects as the

time step increases. For each example, the far-left image (Tiny YOLO) shows the

ground truth label that Spiking-YOLO attempts to replicate. In the top-left example

(three ships), after only 1000 time steps, Spiking-YOLO with channel-norm success-

fully detects all three objects. Meanwhile, Spiking YOLO with layer-norm failed to

detect any objects. After 2,000 time steps, it starts to draw bounding boxes around

the objects, but there are multiple bounding boxes drawn over a single object, and

their sizes are all inaccurate. The detection performance improves as the time steps

increase but is still unsatisfactory; 5,000 time steps are required to reach the detec-

tion performance of the proposed channel-norm. This remarkable performance of

Spiking-YOLO is also shown in the other examples in Figure 3.15. The proposed

channel-norm shows a clear advantage in detecting multiple and microscopic objects

accurately in a shorter period of time. Please refer to Figures 3.16 - 3.23 for more

object detection results.

47

Ti
m

e
st

ep
 1

,0
00

Fi
gu

re
3.

15
:O

bj
ec

td
et

ec
tio

n
re

su
lts

(T
in

y
Y

O
L

O
vs

.S
pi

ki
ng

-Y
O

L
O

w
ith

la
ye

r-
no

rm
vs

.S
pi

ki
ng

-Y
O

L
O

w
ith

ch
an

ne
l-

no
rm

)

48

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n
(p

ro
po

se
d)

tim
e

st
ep

 2
00

0
tim

e
st

ep
 3

00
0

tim
e

st
ep

 4
00

0
tim

e
st

ep
 5

00
0

tim
e

st
ep

 1
00

0

Fi
gu

re
3.

16
:M

or
e

ob
je

ct
de

te
ct

io
n

re
su

lts
(T

in
y

Y
O

L
O

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
la

ye
r-

no
rm

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
ch

an
ne

l-
no

rm
)

49

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n
(p

ro
po

se
d)

tim
e

st
ep

 2
00

0
tim

e
st

ep
 3

00
0

tim
e

st
ep

 4
00

0
tim

e
st

ep
 5

00
0

tim
e

st
ep

 1
00

0

Fi
gu

re
3.

17
:M

or
e

ob
je

ct
de

te
ct

io
n

re
su

lts
(T

in
y

Y
O

L
O

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
la

ye
r-

no
rm

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
ch

an
ne

l-
no

rm
)

50

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n
(p

ro
po

se
d)

tim
e

st
ep

 2
00

0
tim

e
st

ep
 3

00
0

tim
e

st
ep

 4
00

0
tim

e
st

ep
 5

00
0

tim
e

st
ep

 1
00

0

Fi
gu

re
3.

18
:M

or
e

ob
je

ct
de

te
ct

io
n

re
su

lts
(T

in
y

Y
O

L
O

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
la

ye
r-

no
rm

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
ch

an
ne

l-
no

rm
)

51

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n
(p

ro
po

se
d)

tim
e

st
ep

 2
00

0
tim

e
st

ep
 3

00
0

tim
e

st
ep

 4
00

0
tim

e
st

ep
 5

00
0

tim
e

st
ep

 1
00

0

Fi
gu

re
3.

19
:M

or
e

ob
je

ct
de

te
ct

io
n

re
su

lts
(T

in
y

Y
O

L
O

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
la

ye
r-

no
rm

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
ch

an
ne

l-
no

rm
)

52

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n
(p

ro
po

se
d)

tim
e

st
ep

 2
00

0
tim

e
st

ep
 3

00
0

tim
e

st
ep

 4
00

0
tim

e
st

ep
 5

00
0

tim
e

st
ep

 1
00

0

Fi
gu

re
3.

20
:M

or
e

ob
je

ct
de

te
ct

io
n

re
su

lts
(T

in
y

Y
O

L
O

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
la

ye
r-

no
rm

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
ch

an
ne

l-
no

rm
)

53

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n
(p

ro
po

se
d)

tim
e

st
ep

 4
00

0
tim

e
st

ep
 6

00
0

tim
e

st
ep

 8
00

0
tim

e
st

ep
 1

00
00

tim
e

st
ep

 2
00

0

Fi
gu

re
3.

21
:M

or
e

ob
je

ct
de

te
ct

io
n

re
su

lts
(T

in
y

Y
O

L
O

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
la

ye
r-

no
rm

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
ch

an
ne

l-
no

rm
)

54

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n
(p

ro
po

se
d)

tim
e

st
ep

 2
00

0
tim

e
st

ep
 3

00
0

tim
e

st
ep

 4
00

0
tim

e
st

ep
 5

00
0

tim
e

st
ep

 1
00

0

Fi
gu

re
3.

22
:M

or
e

ob
je

ct
de

te
ct

io
n

re
su

lts
(T

in
y

Y
O

L
O

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
la

ye
r-

no
rm

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
ch

an
ne

l-
no

rm
)

55

Sp
ik

in
g-

YO
LO

 w
/ l

ay
er

-w
is

e
no

rm
al

iz
at

io
n

Sp
ik

in
g-

YO
LO

 w
/ c

ha
nn

el
-w

is
e

no
rm

al
iz

at
io

n
(p

ro
po

se
d)

tim
e

st
ep

 2
00

0
tim

e
st

ep
 3

00
0

tim
e

st
ep

 4
00

0
tim

e
st

ep
 5

00
0

tim
e

st
ep

 1
00

0

Fi
gu

re
3.

23
:M

or
e

ob
je

ct
de

te
ct

io
n

re
su

lts
(T

in
y

Y
O

L
O

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
la

ye
r-

no
rm

vs
.S

pi
ki

ng
-Y

O
L

O
w

ith
ch

an
ne

l-
no

rm
)

56

3.4.2 Spiking-YOLO energy efficiency

To investigate energy efficiency of Spiking-YOLO, we considered two different ap-

proaches: a) computing operations of Spiking-YOLO and Tiny YOLO in digital sig-

nal processing and b) Spiking-YOLO on neuromorphic chips vs. Tiny YOLO on

GPUs.

Firstly, most operations in DNNs occur in convolutional layers where the multiply-

accumulate (MAC) operations are primarily responsible during execution. SNNs,

however, perform accumulate (AC) operations because spike events are binary op-

erations whose input is integrated (or accumulated) into a membrane potential only

when spikes are received. For a fair comparison, we focused solely on the compu-

tational power (MAC and AC) used to execute object detection on a single image.

According to [38], a 32-bit floating-point (FL) MAC operation consumes 4.6 pJ (0.9

+ 3.7 pJ) and 0.9 pJ for an AC operation. A 32-bit integer (INT) MAC operation

consumes 3.2 pJ (0.1 + 3.1 pJ) and 0.1 pJ for an AC operation.

Table 3.2: Energy table in 45nm CMOS process [Horowitz, 2014]

Operation Energy (J)

32 bit int ADD 0.1
32 bit float ADD 0.9
32 bit int MULT 3.1

32 bit float MULT 3.7

Based on these measures, we calculated the energy consumption of Tiny YOLO

and Spiking-YOLO by multiplying FLOPs (floating-point operations) and the energy

consumption of MAC and AC operations calculated, as shown below. FLOPs of Tiny

YOLO are reported on [77], and that for Spiking-YOLO are calculated during our

simulation. Figure 3.24 shows that regardless of the weight normalization methods,

Spiking-YOLO demonstrates exceptional energy efficiency, over 2,000 times better

57

than Tiny-YOLO for 32-bit FL and INT operations.

Secondly, SNNs on neuromorphic chips offer excellent energy efficiency, which

is an important and desirable aspect of neural networks [73]. We compare the en-

ergy consumption of Tiny YOLO and Spiking-YOLO when each ran on the latest

GPU (Titan V100) and neuromorphic chip (TrueNorth), respectively. The power and

GFLOPS (Giga floating-point operation per second) of Titan V100 were obtained

from [69], and GFLOPS/W for TrueNorth is reported on [63]. We define one time

step as equal to 1ms (1 kHz synchronization signal in [63]).

Based on our calculations shown in Table 3.3, Spiking-YOLO consumes approxi-

mately 280 times less energy than Tiny YOLO when ran on TrueNorth. As mentioned

in the experimental results, the proposed channel-norm converges much faster than

layer-norm; therefore, the energy consumption of Spiking-YOLO with channel-norm

is approximately four times less than that with layer-norm as they have similar power

consumption. Note that contemporary GPUs are far more advanced computing tech-

nology, and the TrueNorth chip was first introduced in 2014. As neuromorphic chips

continue to develop and have better performance, we can expect even higher energy

and computational efficiency.

Table 3.3: Energy comparison of Tiny YOLO (GPUs) and Spiking-YOLO (neuro-
morphic chips)

Tiny YOLO

Power (W) GFLOPS FLOPs Energy (J)

250 14,000 6.97E+09 0.12

Spiking-YOLO

Norm.
methods

GFLOPS
/ W FLOPs Power (W)

Time
steps Energy (J)

Layer 400 5.28E+07 1.320E-04 8,000 1.06E-03
Channel 400 4.90E+07 1.225E-04 3,500 4.29E-04

58

10
-3

10
-2

10
-1

10
0

Ti
ny

 Y
O

LO
 S

pi
ki

ng
-Y

O
LO

(c
ha

nn
el

-n
or

m
)

10
-4

10
-3

10
-2

10
-1

10
0

Normalized energy consumption (log scale)

 (l
ay

er
-n

or
m

)
 S

pi
ki

ng
-Y

O
LO

Ti
ny

 Y
O

LO
 S

pi
ki

ng
-Y

O
LO

(c
ha

nn
el

-n
or

m
)

 (l
ay

er
-n

or
m

)
 S

pi
ki

ng
-Y

O
LO

Normalized energy consumption (log scale)

Fi
gu

re
3.

24
:E

ne
rg

y
co

m
pa

ri
so

n
of

Ti
ny

Y
O

L
O

an
d

Sp
ik

in
g-

Y
O

L
O

fo
rM

A
C

an
d

A
C

op
er

at
io

ns
;3

2-
bi

tF
L

(l
ef

t)
an

d
32

-b
it

IN
T

(r
ig

ht
)

59

Chapter 4

Improving performance and

efficiency of deep SNNs

4.1 Introduction

An object detection model in SNNs, called Spiking-YOLO, has been recently pro-

posed to substantially improve efficiency of object detection [49]. However, one of

its drawbacks is that it requires a significant amount of time steps (latency) and spikes

(synaptic operations) to provide high-numerical precision and high object detection

accuracy, which can directly translate into higher energy and power consumption. For

instance, SNNs executing object detection would require over 2x the latency and 100x

the number of spikes, when compared to image classification [47, 83, 49]. Without

addressing these problems properly, the potential impact of SNNs can be diminished,

particularly in terms of energy efficiency. Consequently, the significant benefits of

SNNs over DNNs may no longer be the same. For instance, in image classification,

SNNs (e.g., VGG and ResNet architecture) yield latency of between 2,000 and 2,500

time steps and generate up to 86.5M spikes on CIFAR-100 [47, 83]. As for a more

60

complex object detection, SNNs (e.g., Tiny YOLO) require up to 5,000 time steps

and produce 38.2B spikes on PASCAL VOC [49]. That is, SNNs executing object

detection would require over 2x the latency and 100x the number of spikes, when

compared to image classification.

In recent years, various approaches have been proposed to improve performance

of SNNs in terms of both accuracy and efficiency, but these have been limited to im-

age classification. These approaches include weight and threshold balancing meth-

ods [19, 73, 83] and neural coding schemes [71, 97, 72]. In most of the existing

approaches, the firing rate of neurons is regulated by a single uniform value in each

channel (e.g., maximum activation value) while having the same threshold voltage.

In neuroscience literature, neurons in different regions of brain represent distinct dy-

namics and process information differently than other regions [10, 87, 100]. The

threshold voltage of neurons is also known to have a broad range rather than a single

value [5]. A few studies have used various threshold voltages, but these values were

determined heuristically, leaving much room for optimization [32, 31].

Inspired from these observations, we propose a threshold voltage balancing method

that improves object detection performance in SNNs in terms of three important as-

pects: accuracy, latency, and number of synaptic operations. The proposed threshold

voltage balancing method can automatically scale the threshold voltages in each hid-

den layer to optimal values by employing Bayesian optimization. We specifically de-

sign Bayesian optimization such that it considers distinctive characteristics of SNNs,

namely, latency and number of synaptic operations. Furthermore, we introduce the

concept of two-phase threshold voltages. The threshold voltages in each phase have

two different objectives; phase-1 for fast object detection and phase-2 for accurate

object detection. By utilizing phase-1 threshold voltages for the early part of time

steps in SNNs, then swapping in phase-2 threshold voltages later, SNNs achieve not

61

only fast convergence speed but also state-of-the-art object detection accuracy with

significantly less number of synaptic operations. The key contributions of this work

can be summarized as follows:

• Threshold voltage balancing through Bayesian optimization We present

a threshold balancing method using Bayesian optimization that finds optimal

threshold voltages to improve performance of SNNs in terms of accuracy, la-

tency and number of synaptic operations.

• Bayesian optimization specifically designed for SNNs We design Bayesian

optimization to consider two important characteristics of SNNs in addition to

object detection accuracy: latency, and number of synaptic operations. More-

over, we employ proxy evaluation of SNNs to reduce large computational over-

head of the optimization process.

• Two-phase threshold voltages for faster and more accurate object detec-

tion in SNNs We introduce the concept of two-phase threshold voltages that

can provide low latency while achieving state-of-the-art object detection ac-

curacy. By substantially reducing latency and number of synaptic operations,

the proposed methods can provide highly energy-efficient object detection in

SNNs.

4.2 Threshold voltage balancing through Bayesian optimiza-

tion

4.2.1 Motivation

The conventional conversion methods can be considered as a conservative approach

and a sub-optimal solution. They strictly regulate firing rate between 0 and 1 by nor-

62

malizing the weights with a single value, and retain a fixed threshold voltage for all

spiking neurons. Moreover, Object detection in SNNs requires a significant amount

of time steps (latency) and spikes (synaptic operations). For instance, in image clas-

sification, SNNs (e.g., VGG and ResNet architecture) yield latency of between 2,000

and 2,500 time steps and generate up to 86.5M spikes on CIFAR-100 [47, 83]. As

for a more complex object detection, SNNs (e.g., Tiny YOLO) require up to 5,000

time steps and produce 38.2B spikes on PASCAL VOC [49]. That is, SNNs executing

object detection would require over 2x the latency and 100x the number of spikes,

when compared to image classification. Without addressing these issues properly,

significant benefits of SNNs over DNNs may no longer be the same and could pose

challenges in wide-spread use of SNNs for variety applications of DNNs, particularly

in object detection.

Despite channel-wise weight normalization [49] is applied to eliminate extremely

small activations, some neurons still remain to have very small activation values,

thereby producing extremely low firing rate. This becomes a more critical issue in

two circumstances; a more challenging task, namely object detection which requires

high-numerical precision, and deeper SNNs which require more time steps for in-

formation to reach the output layer without significant information loss. Most of the

previous works have proposed to improve the efficiency of SNNs in image classifica-

tion, and these can be considered sub-optimal solutions. This is because they strictly

regulate the firing rate of neurons between 0 and 1 by normalizing the weights with

a single value in each channel (e.g., channels in convolutional layer 1 have 173,056

spiking neurons) and retain the same threshold voltage, leaving much room for opti-

mization. Several approaches have explored various threshold voltages to improve the

efficiency, but the threshold voltages were determined in a heuristic manner [32, 31].

The threshold voltages were simply multiplied by a scaling factor of between 0.2 and

63

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Ba
se

lin
e

(1
.0

 V
)

0.
6

V
0.

8
V

1.
2

V
M

ix
ed

1
(0

.8
 V

 &
 1

.0
 V

)
M

ix
ed

2
(1

.0
 V

 &
 0

.8
 V

)

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Ba
se

lin
e

(1
.0

 V
)

R
an

do
m

1
R

an
do

m
2

R
an

do
m

3
R

an
do

m
4

R
an

do
m

5

(a
) M

an
ua

lly
-s

ca
le

d
V

th
 c

on
fig

ur
at

io
ns

(b
) R

an
do

m
ly

-s
el

ec
te

d
V

th
 c

on
fig

ur
at

io
ns

Ti
m

e
st

ep
Ti

m
e

st
ep

mAP

mAP Fi
gu

re
4.

1:
C

om
pa

ri
so

n
of

ob
je

ct
de

te
ct

io
n

ac
cu

ra
cy

(m
A

P
%

)a
s

th
e

tim
e

st
ep

in
cr

ea
se

s
fo

rv
ar

io
us

th
re

sh
ol

d
vo

lta
ge

co
nfi

gu
ra

tio
ns

64

0.8 and checked in terms of which one performs the best accuracy-latency trade-off.

More importantly, they neglected the total number of spikes, which is more likely to

increase with scaled threshold voltages (i.e., scaling factor of less than 1.0).

To validate their claims in object detection, we applied the scaled threshold volt-

ages suggested by [32, 31] and also explored various threshold voltages in each hid-

den layer. Figure 4.1 shows the object detection accuracy of SNNs (consisting of

eight total convolutional layers) as the time step increases on various threshold volt-

ages applied in each hidden layer. The threshold voltages are either manually scaled

(Figure 4.1 (a)) or randomly selected (Figure 4.1 (b)). For instance, Mixed2 (1.0 V

and 0.8 V) in Figure 4.1 (a) indicates that the threshold voltages of the first four layers

and the last four layers in the hidden layers are set to 1.0 V and 0.8 V, respectively.

Note that the baseline threshold voltages are set to 1.0 V.

As shown in Figure 4.1, SNNs show significant performance discrepancy over

various threshold voltage configurations. Several threshold voltage configurations

(0.8 V, Mixed1, Mixed2, Random2 and Random3) achieve better object detection

accuracy at an earlier time step than the baseline. Particularly, Mixed2 shows higher

object detection accuracy than the baseline until approximately 1,000 time steps, then

the object detection accuracy saturates and achieves object detection accuracy below

the baseline at 5,000 time steps. Moreover, the accuracy curve of Random3 is sim-

ilar to that of the baseline, and Random3 actually performs slightly better than the

baseline until 1,000 time steps.

From these observations, the threshold voltage scaling method in previous works

on image classification fails to achieve optimal accuracy-latency trade-off when ap-

plied in object detection. The results shown in Figure 4.1 are encouraging in terms

of convergence speed, but the overall object detection accuracy is not satisfactory.

Consequently, there is a need for a new threshold voltage balancing method that

65

Pr
ed

ic
te

d
ou

tp
ut

s
In

pu
t i

m
ag

es

Th
re

sh
ol

d
vo

lta
ge

 b
al

an
ci

ng
 th

ro
ug

h
Ba

ye
si

an
 o

pt
im

iz
at

io
n

St
ep

 1
. E

va
lu

at
io

n:
 e

xe
cu

te
 S

N
N

s
fo

r T
 ti

m
e

st
ep

s

St
ep

 2
. R

ec
or

d
an

 o
bs

er
va

tio
n

(x
n,

f(x
n))

St
ep

 3
. S

ug
ge

st
io

n:

se
le

ct
 a

 n
ew

co

nf
ig

ur
at

io
n

(x
n+

1)

St
ep

 4
. U

pd
at

e
:

in
iti

al
iz

e
SN

N
s

w
ith

 th
e

ne
w

co

nf
ig

ur
at

io
n

A
ne

w

co
nf

ig
ur

at
io

n

O
bj

ec
t d

et
ec

to
r i

n
SN

N
s

O
pt

im
al

co

nf
ig

ur
at

io
n

*
*

*

Fa
st

 a
nd

 a
cc

ur
at

e
ob

je
ct

 d
et

ec
to

r i
n

SN
N

s

tim
e

*

tim
e*

tim
e

*

In
iti

al
iz

e
SN

N
s

w
ith

 th
e

op
tim

al

co
nf

ig
ur

at
io

n

ac
qu

is
iti

on
fu

nc
tio

n

ac
qu

is
iti

on
m

ax
 v

al
ue

(x
n,

f(x
n))

U

pd
at

e
su

rro
ga

te
m

od
el

xn
xn

+1

ca
r

ob
je

ct
iv

e
fu

nc
tio

n
su

rro
ga

te
m

od
el

tim
e

*

tim
e*

tim
e

*

Fi
gu

re
4.

2:
O

ve
ra

ll
pr

oc
es

s
of

th
re

sh
ol

d
vo

lta
ge

ba
la

nc
in

g
th

ro
ug

h
B

ay
es

ia
n

op
tim

iz
at

io
n

66

can improve object detection accuracy and latency. We therefore introduce a volt-

age threshold balancing method that scales the threshold voltages to optimal values

through Bayesian optimization to improve performance in terms of three important

aspects in SNNs: accuracy, latency (time step), and number of synaptic operations

(spikes).

4.2.2 Overall process and setup

The overall process and setup of the proposed method are explained as follows. First,

we describe several terms used in the proposed threshold voltage balancing through

Bayesian optimization. An input X is a threshold voltage configuration and an ob-

jective function f(X) that we are trying to maximize is the object detection model in

SNNs (Spiking-YOLO [49]) whose output is object detection accuracy (mAP). Note

that the threshold voltage configuration consists of a number of threshold voltages

which is assigned to each hidden layer. In Bayesian optimization, Gaussian process

(GP) with Matern 5/2 kernel is used for a surrogate modelM. As for an acquisition

function A, expected improvement (EI) is used in this work. Both GP and EI are

commonly used in Bayesian optimization and are known to be efficient in finding

optima with a minimum number of evaluations [85].

Other hyper-parameters include a number of initial points (Ninit) and evalua-

tions (Ieval), range of input values ([Vinitmin , Vinitmax]), and xi parameter which controls

exploitation-exploration trade-off. We empirically found hyper-parameters specifi-

cally for the object detection model in SNNs and these hyper-parameters are summa-

rized in Table 4.1. Please note that the overall process is performed on training dataset

based on an assumption that the distributions of the training and test datasets are sim-

ilar. The overall process of the proposed threshold balancing method is presented in

Figure 4.2. The details of each step are explained as follows:

67

Table 4.1: Hyper-parameters in Bayesian optimization

Hyper-parameter Values

Input (X) Threshold voltage configuration

Objective function (f(X)) Object detection model in SNNs

Surrogate model (M)
Gaussian process w/

Matern 5/2 kernel

Acquisition function (A) Expected improvements

Range of input [0.5 V, 1.5 V]

of initial points (Ninit) 20

of evaluations (Ieval) 40

xia 0.1

αb 0.01

a] exploitation-exploration trade-off parameter
b] noise-level parameter in kernel

• Step 0: This is an initialization step that is not illustrated in Figure 4.2. Prior

to the start of Bayesian optimization, Step 0 is processed once to build initial

probabilistic estimation of SNNs according to the number of initial pointsNinit.

• Step 1: The evaluation step begins by setting the threshold voltages in SNNs

with the threshold voltage configuration Xi recommended by the acquisition

function A in previous iteration, where i is the index of iterative evaluation.

Each threshold voltage in the suggested threshold voltage configuration is in

the range of inputs values [Vinitmin , Vinitmax]. SNNs are now executed for T time

steps and produce object detection accuracy (mAP).

• Step 2: An input-output evaluation pair (Xi, f(Xi)) will be fed to the surro-

gate modelM to update probabilistic estimation of SNNs. As the iteration of

68

Bayesian optimization progresses, the obtained input-output evaluation pairs

[(X1, f(X1)), ..., (Xi, f(Xi))] will be recorded separately for collecting his-

tory of the object detection accuracy depending on the threshold voltage con-

figuration. Additional information such as the total number of spikes will be

recorded as well.

• Step 3: Based on the input-output evaluation pair (Xi, f(Xi)), the surrogate

modelM continues to update the probabilistic estimation of SNNs. Then, the

acquisition function A determines the next sample point (a threshold voltage

configuration) Xi+1 which maximizes EI over the current best.

• Step 4: The threshold voltages in SNNs are set to the threshold voltage con-

figuration Xi+1 suggested by the acquisition function A from Step 3. Now, the

next evaluation of SNNs starts again. Step 1 through Step 4 is equivalent to one

iteration in Bayesian optimization and will be repeated for Ieval times.

4.2.3 Design of Bayesian optimization for SNNs

As mentioned in Chapter 2, SNNs operate fundamentally different from DNNs in that

they encode and transmit information via spikes in time domain. When using SNNs as

objective functions in Bayesian optimization, their characteristics need to be carefully

considered. We describe a detailed design of Bayesian optimization proposed in this

work, which reflects important characteristics of SNNs.

Threshold voltage search level

In neuroscience literature, it is well-known that neurons in different brain regions

process information differently depending on their functionalities [64]. In a similar

vein, we applied Bayesian optimization to find different threshold voltages in each

69

= 0.5
= 0.3

time

(baseline)

Output
spikes

Input spikes
= 0.5
= 0.3
= 0.2

timeOutput
spikes

Input spikes

Vth = 1.0

Vth = 0.7

Vm
em

Vm
em

= 0.2

Figure 4.3: Dynamics of IF neuron depending on different threshold voltages

hidden layer, which can be formulated as

max
Vth∈A

f(V 1
th, V

h
th, ..., V

H
th), (4.1)

where V H
th is a threshold voltage for each hidden layer withH being the total number

of hidden layers.

Considering the number of synaptic operations

Figure 4.3 illustrates how the total number of spikes is affected by a different thresh-

old voltage value. Note that the number of spikes is equivalent to the number of

synaptic operations in SNNs. Compared with the baseline threshold voltage set to

1.0 V, a spiking neuron whose threshold voltage is 0.7 V, will be more likely to gen-

erate a spike since a lower amount of integrated membrane potential is required to

reach the threshold voltage of 0.7 V. Contrarily, spiking neurons with a threshold

voltage greater than the baseline will less likely generate a spike since more mem-

brane potential needs to be integrated before generating a spike. The total number of

70

spikes generated has a significant impact on the power consumption of SNNs. Thus,

it is important to reduce the total number of spikes while maintaining object detection

accuracy.

In this study, we implement Bayesian optimization so that the total number of

spikes is also considered along with object detection accuracy when selecting a final

optimal threshold voltage configuration. For instance, in Step 2 of the overall process,

the history of the input-output evaluation pairs [(X1, f(X1)), ..., (Xi, f(Xi))] is

recorded as well as the total number of spikes. When selecting the final threshold

voltage configuration, one may select the threshold voltage configuration with the less

number of spikes if the object detection accuracy among various threshold voltage

configurations is tied or their difference is within an affordable range.

71

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
Ti

m
e

st
ep

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

mAP

Ba
se

lin
e

(1
.0

 V
)

C
on

fig
ur

at
io

n
1

C
on

fig
ur

at
io

n
2

C
on

fig
ur

at
io

n
3

C
on

fig
ur

at
io

n
4

Ta
rg

et
 m

A
P

(5
3.

01
%

)

tp
ro

xy

Fi
gu

re
4.

4:
O

bj
ec

td
et

ec
tio

n
ac

cu
ra

cy
(m

A
P

%
)c

ur
ve

of
ph

as
e-

1
th

re
sh

ol
d

vo
lta

ge
s

(V
fa

st
th

)a
s

tim
e

st
ep

in
cr

ea
se

s

72

Proxy evaluation of objective function

When Bayesian optimization is applied in SNNs, two factors mainly affect compu-

tational overhead of the overall process: (a) the number of iterations in Bayesian

optimization and (b) the number of time steps in SNNs. Particularly for number of

time steps in SNNs, a sufficient amount of time steps T (e.g., 5,000 time steps for

object detection) are required to precisely assess the quality of threshold voltages

suggested during optimization process. This would prohibitively yield large com-

putational overhead which becomes extremely time-consuming and thus difficult to

apply in practice.

In this study, we propose a proxy evaluation of SNNs to reduce computational

overhead and execution time of the optimization process. In the proxy evaluation,

we execute SNNs for only tproxy time steps which are set to 500 (10% of originally

targeted time step T of 5,000). This also improves the convergence speed of SNNs

which will be discussed in the following section. Also note that Bayesian optimiza-

tion is not considered scalable with respect to network size. Thus, Spiking-YOLO

is selected as the object detection model in SNNs, which uses a real-time object de-

tection model called Tiny YOLO. Tiny YOLO is a simpler but efficient version of

YOLO with much less computational overheads.

Since the proxy evaluation only executes for tproxy time steps, the threshold volt-

ages obtained via Bayesian optimization may not perform well in the targeted time

step T , as shown in Figure 4.4. To validate that tproxy time step reflects well on the

targeted time step T , we report a rank correlation coefficient on the object detection

accuracy of 10 threshold voltage configurations obtained via Bayesian optimization

in PASCAL VOC [22] and MS COCO [57]. Two commonly-used rank correlation

coefficients, namely Spearman rho [74] and Kendall tau [46], are reported in this

study. The rank correlation coefficient is in the range of [-1, 1] and a larger value

73

Table 4.2: Rank correlation coefficients of proxy evaluation of SNNs in Bayesian
optimization

PASCAL VOC MS COCO

Spearman rho 0.770 0.855

Kendall tau 0.664 0.689

indicates a stronger correlation. As shown in Table 4.2, the proxy evaluation of 500

time steps shows a fairly high rank correlation coefficient to 5,000 time steps (0.770

and 0.855 for PASCAL VOC and MS COCO, respectively). The results confirm that

using the proxy evaluation (e.g., 500 time steps) are consistent with those via the full

evaluation (e.g., 5,000 time steps).

4.3 Fast and accurate object detection with two-phase thresh-

old voltages

4.3.1 Motivation

Generally, SNNs are executed for T time steps and can produce results on each time

step, where time step can be defined as a unit of time that a single spike can be pro-

cessed. Hence, a trade-off exists between the number of time steps and the accuracy

of the network; the more time steps the model is executed for, the more likely it is

for the model to achieve higher accuracy. The number of time steps (equivalent to

latency), however, has a direct impact on the energy consumption of SNNs. Hence,

reducing the number of time steps while achieving competitive results is an impor-

tant and desirable facet of SNNs, particularly in latency-critical applications such as

autonomous vehicles and data centers.

In this work, we propose the concept of two-phase threshold voltages to provide

74

Ground Truth

Switching time step
Phase-1 ()

0

Phase-2 ()

Prediction

Fast

Prediction

Fast and accurate

Baseline (Vth = 1.0 V)

Prediction Prediction

Time
step

0
Time
step

Ground Truth

Proposed (two-phase threshold voltages)

T

Tphase-1

t’

t’

Figure 4.5: Two-phase threshold voltages for fast and accurate object detection in
SNNs

fast and accurate object detection in SNNs. The threshold voltages in each phase aim

to achieve two distinct goals: phase-1 threshold voltages for fast object detection and

phase-2 threshold voltages for accurate object detection. Phase-1 threshold voltages

primarily focus on transmitting information fast and early, reducing latency. This

may, however, result in rough estimate detection. Phase-2 threshold voltages, on the

other hand, concentrate on achieving accurate object detection. This may result in

high latency. Combining the two, we can achieve faster and more accurate object

detection in SNNs as opposed to conventional methods. The overview of two-phase

threshold voltages is presented in Figure 4.5.

75

4.3.2 Phase-1 threshold voltages: fast object detection

To obtain phase-1 threshold voltages (V fast
th) that can provide fast object detection,

we simply execute SNNs for only tphase-1 time steps (e.g., 500 time steps) during

Bayesian optimization, which is typically less than the targeted time step T (e.g.,

5,000 time steps). Bayesian optimization indeed seeks optimal threshold voltages in

each hidden layer that can maximize the object detection accuracy of SNNs at time

step tphase-1. Phase-1 threshold voltages primarily focus on transmitting information

fast and early. This also has a similar effect to the warm-up phase [29] designed to

improve convergence speed. Furthermore, executing SNNs for tphase-1 time step is

well aligned with the proxy evaluation (i.e., tproxy = tphase-1).

Figure 4.4 presents the object detection accuracy of SNNs as the time step in-

creases with the optimal threshold voltages obtained at 500 time steps. Note that

target mAP indicates object detection accuracy of Tiny YOLO on PASCAL VOC.

SNNs achieve approximately 40% mAP in only 500 time steps while the baseline

requires about 800 time steps to achieve a similar object detection accuracy. That is,

SNNs with phase-1 threshold voltages show faster convergence speed (1.6x) com-

pared with the baseline. The accuracy curve, however, saturates after 500 time steps

and then fails to reach the baseline’s best object detection accuracy of 50.81% at

5,000 time steps. To overcome this issue, we introduce phase-2 threshold voltages

that provide accurate object detection.

4.3.3 Phase-2 threshold voltages: accurate detection

As expected, SNNs using phase-1 threshold voltages show great performance at

tphase-1 time steps, where we specifically design Bayesian optimization to evaluate

SNNs for tphase-1 time steps. Phase-1 threshold voltages might be optimal at tphase-1

time steps, yet in the end, they may not be the optimal threshold voltages to achieve

76

state-of-the-art object detection accuracy at the targeted time step T (e.g., 5,000 time

steps) as highlighted in Figure 4.4. To overcome such limitation, we introduce phase-

2 threshold voltages obtained via Bayesian optimization evaluating SNNs at T time

steps. That is, Bayesian optimization is designed to find threshold voltages that can

maximize object detection accuracy at the targeted time step T . Hence, SNNs using

phase-2 threshold voltages can provide an accurate object detection model.

Furthermore, we propose two-phase threshold voltages, which combine phase-1

and phase-2 threshold voltages. The two-phase threshold voltages can provide a fast

and accurate object detection model in SNNs. For fast object detection, SNNs are first

set to phase-1 threshold voltages until time step tphase-1, then phase-2 threshold volt-

ages are swapped in to provide accurate object detection. As illustrated in Figure 4.5,

the proposed two-phase threshold voltages enable fast object detection at tphase-1 time

steps then achieve accurate object detection in time step t′, which is much smaller

than the targeted time step T . The baseline, on the other hand, starts to draw bound-

ing boxes much later than time step tphase-1 and provides accurate object detection at

time step T .

To validate the performance improvement of the proposed two-phase threshold

voltages in another aspect, we calculate the mean square error (MSE) between the

output values of SNNs and those of DNNs. In the DNN-to-SNN conversion method,

DNNs are converted into SNNs that can be directly mapped to spike-based neuro-

morphic hardware with minimum performance loss [13]. Thus, the original target

output values would be those of DNNs, not ground truth. As compared in Figure 4.6,

the MSE of SNNs with phase-1 threshold voltages rapidly decreases and is smaller

than that of the baseline at 500 time steps. In other words, phase-1 threshold voltages

enable fast and relatively accurate information transmission up to 500 time steps. Af-

ter 500 time steps, however, the MSE starts to level off and actually becomes higher

77

0 1000 2000 3000 4000 5000
Time step

0

1

2

3

4

5

6

7

8

M
in

im
um

 s
qu

ar
e

er
ro

r (
M

SE
)

Baseline (1.0 V)
Phase-1 threshold voltages
Proposed (two-phase threshold voltages)

500

tphase-1

Figure 4.6: MSE comparison of baseline vs. phase-1 voltages vs. proposed (two-
phase threshold voltages) as time step increases

than that of the baseline. When the two-phase threshold voltages are applied, the

MSE continues to decrease after 500 time steps and follows the similar trend as the

baseline. In the end, they achieve a lower MSE than that of the baseline at 5,000

time steps. According to Figure 4.6, the two-phase threshold voltages enable fast and

accurate object detection in SNNs when compared with the baseline.

Finally, optimal threshold voltages obtained in each convolutional layer for phase-

1 and phase-2 voltages are presented in Table 4.3. There is a tendency that certain lay-

ers have a very low threshold voltage value. Particularly, convolutaional layer 2, 5,

and 6 have low threshold voltage values regardless of the phase as shown in Table 4.1,

which will most likely to generate more spikes. Please note that input range is set to

[0.5V, 1.5V]. In fact, in convolutaional layer 5 and 6 have the minimum threshold

voltage of 0.5 V. Moreover, average of all threshold voltages in each convolutional

layer for Phase-1 threshold voltages is smaller that that of Phase-2 threshold voltages

(0.98994 V vs. 1.03458 V). In general, more spikes would indicate more informa-

78

tion being transmitted through deep layers. This leads to faster convergence speed at

earlier time steps.

Table 4.3: Optimal threshold voltages obtained in each convolutional layer for two-
phase voltages

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8

Phase-1 Vth 1.15405 0.76995 1.100709 1.28183 0.5 0.5 1.39703 1.30961

Phase-2 Vth 1.12819 0.88199 0.99469 1.07970 0.83360 0.72381 1.13461 1.5

4.4 Evaluation

4.4.1 Experimental setup

Object detection in SNNs used in this work is based on Spiking-YOLO [49]. In re-

gards to selecting object detection model, the scalability of network size in Bayesian

optimization is considered as well. That is, more complex and deeper network can

lead to large computational overhead and execution time of Bayesian optimization.

Thus we selected Spiking-YOLO which utilizes Tiny YOLO as object detection

model in DNNs, which is a simpler but efficient version of YOLO. The imple-

mentation of Bayesian optimization is based on [68]. Moreover, we used PASCAL

VOC [22] and MS COCO [57] as object detection datasets. Our implementation is

based on TensorFlow Eager, and all experiments are conducted on NVIDIA Tesla

V100 GPUs.

4.4.2 Experimental results

Object detection accuracy

To present the performance improvement of the proposed methods, we first com-

pared the object detection accuracy of the proposed method (threshold voltage bal-

79

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
Ti

m
e

st
ep

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

mAP

Ba
se

lin
e

(1
.0

 V
)

V
thfa

st
 (P

ha
se

-1
)

V
thac

cu
ra

te
 (P

ha
se

-2
)

V
thfa

st
 +

 V
thac

cu
ra

te
 (P

ro
po

se
d)

Ta
rg

et
 m

A
P

(5
3.

01
%

) 44
00

46
00

48
00

50
00

0.
46

0.
480.

5

0.
52

0.
54

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
Ti

m
e

st
ep

0

0.
050.

1

0.
150.

2

0.
250.

3

mAP

Ba
se

lin
e

(1
.0

 V
)

V
thfa

st
 (P

ha
se

-1
)

V
thac

cu
ra

te
 (P

ha
se

-2
)

V
thfa

st
 +

 V
thac

cu
ra

te
 (P

ro
po

se
d)

44
00

46
00

48
00

50
00

0.
22

0.
24

0.
26

0.
28

Ta
rg

et
 m

A
P

(2
6.

24
%

)

(a
) P

AS
C

AL
 V

O
C

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
Ti

m
e

st
ep

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

mAP

Ba
se

lin
e

(1
.0

 V
)

V
thfa

st
 (P

ha
se

-1
)

V
thac

cu
ra

te
 (P

ha
se

-2
)

V
thfa

st
 +

 V
thac

cu
ra

te
 (P

ro
po

se
d)

Ta
rg

et
 m

A
P

(5
3.

01
%

) 44
00

46
00

48
00

50
00

0.
46

0.
480.

5

0.
52

0.
54

(a
) P

AS
C

AL
 V

O
C

(b
) M

S
C

O
C

O

Fi
gu

re
4.

7:
O

bj
ec

td
et

ec
tio

n
ac

cu
ra

cy
(m

A
P

%
)

as
tim

e
st

ep
in

cr
ea

se
s

on
(a

)
PA

SC
A

L
V

O
C

an
d

(b
)

M
S

C
O

C
O

fo
r

va
ri

ou
s

th
re

sh
ol

d
vo

lta
ge

co
nfi

gu
ra

tio
ns

80

ancing through Bayesian optimization + two-phase threshold voltages) and the base-

line (threshold voltage equal to 1.0 V) as the time step increases. The target mAP of

Tiny YOLO is 53.01% (PASCAL VOC) and 26.24% (MS COCO). As demonstrated

in Figure 4.7 (a), in PASCAL VOC, the proposed method achieved an object detec-

tion accuracy of 51.45% at 5,000 time steps. More importantly, to reach 95% of the

DNN’s target accuracy (53.01%), only 1,300 time steps are required compared with

3,400 time steps at the baseline (2.6x faster). Moreover, the proposed method only

took approximately 2,500 time steps to reach the baseline’s highest accuracy at 5,000

times steps (50.81%), which is only half the time steps.

When phase-1 threshold voltages (V fast
th) were applied in SNNs for fast object

detection, SNNs converged quickly and achieved an object detection accuracy of

46.66% at 500 time steps when compared with 30.78% at the baseline. After 500 time

steps, object detection accuracy starts to saturate and achieves only 47.66% at 5,000

time steps. Phase-2 threshold voltages (V accurate
th), on the other hand, achieved the

state-of-the-art object detection accuracy of 51.74% at 5,000 time steps. Convergence

speed was also relatively fast but not as fast as phase-1 threshold voltages. These

results are consistent with the purpose of phase-2 threshold voltages, which is to

provide accurate object detection without considering the convergence speed.

As regards to object detection accuracy in MS COCO, the proposed method

showed a similar trend as illustrated in Figure 4.7 (b). The proposed method achieved

25.78% at 5,000 time steps while taking only 1,900 time steps to reach 95% of the

DNN’s target accuracy of 26.24%. That is 1.8x faster than the baseline at 3,400 time

steps. Moreover, the proposed method reached the baseline’s best object detection

accuracy (25.30%) in only 2,700 time steps. Evidently, the proposed method outper-

forms the baseline in terms of the object detection accuracy and convergence speed

for PASCAL VOC and MS COCO. More detailed results are illustrated in Table 4.4.

81

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
Ti

m
e

st
ep

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

mAP

Ba
se

lin
e

(1
.0

 V
)

V
thfa

st
 (P

ha
se

-1
)

V
thac

cu
ra

te
 (P

ha
se

-2
)

V
thfa

st
 +

 V
thac

cu
ra

te
 (P

ro
po

se
d)

Ta
rg

et
 m

A
P

(5
3.

01
%

) 44
00

46
00

48
00

50
00

0.
46

0.
480.

5

0.
52

0.
54

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
Ti

m
e

st
ep

0

0.
050.

1

0.
150.

2

0.
250.

3

mAP

Ba
se

lin
e

(1
.0

 V
)

V
thfa

st
 (P

ha
se

-1
)

V
thac

cu
ra

te
 (P

ha
se

-2
)

V
thfa

st
 +

 V
thac

cu
ra

te
 (P

ro
po

se
d)

44
00

46
00

48
00

50
00

0.
22

0.
24

0.
26

0.
28

Ta
rg

et
 m

A
P

(2
6.

24
%

)

(a
) P

AS
C

AL
 V

O
C

(b
) M

S
C

O
C

O

Fi
gu

re
4.

8:
O

bj
ec

td
et

ec
tio

n
ac

cu
ra

cy
(m

A
P

%
)

as
a

nu
m

be
r

of
sp

ik
es

in
cr

ea
se

s
on

(a
)

PA
SC

A
L

V
O

C
an

d
(b

)
M

S
C

O
C

O
fo

r
va

ri
ou

s
th

re
sh

ol
d

vo
lta

ge
co

nfi
gu

ra
tio

ns

82

Table 4.4: Comparison of object detection accuracy (mAP %) in SNNs using various
methods

Method
PASCAL VOCa MS COCOb

500 tsc 5,000 ts 500 ts 5,000 ts

Baseline [49] 30.78 50.81 18.23 25.30

Scaled Vth (x0.6) [31] 8.36 7.91 5.25 5.29

Scaled Vth (x0.8) [32] 29.86 30.93 16.97 16.95

V fast
th 46.66 47.66 21.05 21.53

V accurate
th 42.88 51.74 18.04 25.27

V fast
th + V acc.

th (Proposed) 46.66 51.44 21.05 25.78

a] Target mAP - 53.01 (%), b] Target mAP - 26.24 (%), c] time step

Total number of synaptic operations

As mentioned previously, the total number of spikes (synaptic operations) directly af-

fects the power consumption of SNNs. Figure 4.8 presents the total number of spikes

required to achieve a certain object detection accuracy in PASCAL VOC and MS

COCO. As shown in Figure 4.8 (a), in PASCAL VOC, the proposed method gener-

ated up to 3.63× 1010 spikes to achieve the baseline’s best accuracy (50.81%) com-

pared with the baseline’s 9.00×1010 spikes. That is, the proposed method reduced the

total number of spikes by 40.33%. Moreover, at 500 time steps, the proposed method

only generated 7.51×109 spikes to achieve an accuracy of 46.66% while the baseline

generated 8.70× 109 spikes to achieve 30.78%. The proposed method clearly has an

advantage over the baseline in terms of accuracy, latency, and total number of spikes.

Similar results can be observed for MS COCO as depicted in Figure 4.8 (b). The

proposed method generated only 3.56×1010 spikes as opposed to 6.51×1010 spikes

to achieve the best accuracy of the baseline (25.30%). That is, the total number of

83

spikes are reduced by 45.31%. These results confirm that the proposed threshold volt-

age balancing method with two-phase threshold voltages finds the optimal threshold

voltages to achieve fast and accurate object detection with significantly less spikes.

With less number of synaptic operations and lower latency, the proposed method pro-

vides a highly energy- and power-efficient object detection in SNNs.

84

Chapter 5

Conclusion

DNNs have shown promising results in various applications yet, their computational

overhead and energy efficiency have been a major concern in deploying DNNs on

embedded systems such as mobile devices, where available power and computation

resources are limited. More sophisticated and extremely large neural networks are

required as we try to apply DNNs to more advanced problems existed in our daily

lives. The vast amount of training data is also demanded as well for training such net-

works. In order to improve computational overhead and energy efficiency of DNNs,

SNNs have gathered much attention as the third generation of neural networks. SNNs

transmit information via spike trains which is consisted of a series of spikes, and use

spiking neurons as computational units to enable sparse and event-driven compu-

tation. These characteristics lead to extremely high energy efficiency. Nonetheless,

there is a lack of scalable training algorithms for SNNs due to their complex dy-

namics and non-differentialable operations (back-propagation not applicable because

of spike-based operations). Therefore, their application have been mainly limited to

image classification using indirect training method (e.g., DNN-to-SNN conversion

method). In this dissertation, we investigate DNN-to-SNN conversion method in a

85

more challenging task, namely object detection. We introduce a spike-based object

detection model called, Spiking-YOLO, and propose novel methods to improve effi-

ciency of the model while achieving the state-of-the-art detection accuracy. This final

chapter summarizes our contributions and provides future research directions.

5.1 Dissertation summary

In Chapter 3, we present Spiking-YOLO, the first SNN model that successfully per-

forms object detection and achieves comparable results (up to 98%) to those of the

original DNNs on non-trivial datasets, PASCAL VOC and MS COCO. In doing so,

we proposed two novel methods; channel-wise weight normalization and a signed

neuron with imbalanced threshold. In the conventional methods, weights are normal-

ized by maximum activation value in each layer to prevent under- or over-activation

in neurons. This results in sufficient and balanced activation of neurons for image

classification. However, when the conventional method is applied in object detection

task which is known to be more challenging for its bounding box regression, signif-

icant performance degradation occurs due to large deviation among normalized acti-

vations. Note that this went unnoticed in image classification because it only selects

class with the highest probability. But in object detection, high numerical precision

is required in predicting output value of neural network for bounding box regression.

To improve performance of the object detection model in deep SNNs, we intro-

duce channel-wise weight normalization in DNN-to-SNN conversion method. The

channel-wise weight normalization is a more fine-grained normalization technique

that normalizes the weights by the maximum activation in each channel rather than

the layer. It eliminates under-activation in multiple neurons to transmit informa-

tion fast and accurately. Additionally, we propose a signed neuron with imbalanced

86

threshold voltage. This is an efficient implementation method of leaky-ReLU in SNNs

and can be directly mapped in today’s neuromorphic architecture without any addi-

tional hardware overheads. With the propose methods, Spiking-YOLO achieves de-

tection accuracy that are comparable to those of DNNs (up to 98%) on non-trivial

datasets, PASCAL VOC and MS COCO. Furthermore, Spiking-YOLO on a neuro-

morphic chip consumes roughly 280 times less than DNNs and converges 2.3 to 4

times faster than conventional conversion methods. Spiking-YOLO represents the

first step towards solving more advanced machine learning problems in deep SNNs.

Spiking-YOLO achieves comparable results to those of DNNs, yet overall perfor-

mance can be improved further in terms of latency and number of synaptic operations

(spikes). Note that the latency and the number of synaptic operations directly impact

energy and power consumption of the model, respectively. Many have attempted to

improve performance of SNNs in terms of accuracy and efficiency, but their methods

have been primarily limited to image classification. In Chapter 4, we present a new

threshold voltage balancing method for object detection in SNNs to improve perfor-

mance in terms of three important aspects of SNNs: accuracy, latency, and number of

synaptic operations. The proposed methods find an optimal threshold voltage in each

hidden layer via Bayesian optimization. We also design Bayesian optimization to

consider important characteristics of SNNs and introduce proxy evaluation and con-

sideration of total number of spikes when choosing the final optimal threshold volt-

ages. Furthermore, we introduce two-phase threshold voltages that enable faster and

more accurate object detection in SNNs while providing high energy efficiency when

compared to the conventional methods. The proposed methods achieve the state-of-

the-art detection accuracy while converging 2x and 1.85 faster than the conventional

methods on PASCAL VOC and MS COCO, respectively. Total number of synaptic

operations is also reduced by 40.33% and 45.31% on PASCAL VOC and MS COCO,

87

respectively.

In this dissertation, we proposed several methods that are the first step toward

enhancing object detection efficiency, providing fast and accurate object detection in

deep SNNs. We believe that bio-inspired SNNs would be valuable in competing with

the human brain’s learning capability and efficiency in the future.

5.2 Discussion

5.2.1 Overview of the proposed methods and their usages

The overview of this dissertation is shown in Figure 5.1. To enable fast and accurate

information transmission in deep SNNs, we propose various DNN-to-SNN conver-

sion methods which can be divided into four: (a) channel-wise weight normalization,

(b) signed neuron with imbalanced threshold voltage, (c) threshold voltage balancing

through Bayesian optimization, and (d) two-threshold voltages. These methods can

be applied at the same time and eventually are compliment to each other. Signed neu-

ron with imbalanced threshold voltage, which allows negative activation of spiking

neurons and precisely implements slope α, is required to successfully perform object

detection in deep SNNs. As shown in Figure 3.14, Spiking-YOLO fails to detect any

objects when signed neuron with imbalanced threshold voltage is not applied. This is

because all the negative activations are neglected, which is over 40% of activation in

Tiny YOLO. Thus, signed neuron with imbalanced threshold voltage is applied to all

spiking neurons by default as shown in top portion of Figure 5.1.

As was explained in Chapter 2, either weight normalization or threshold volt-

age balancing is applied to provide sufficient activation of neurons in deep SNNs. In

this dissertation, we propose to use both weight normalization and threshold voltage

balancing as presented in bottom portion of Figure 5.1. We first propose channel-

88

Chapter 3.2 Channel-wise weight normalization

Chapter 3.3 Signed neuron with imbalanced threshold

Predicted outputsInput images

Object Detector in Spiking Neural Network

Chapter 4.2 Threshold voltage balancing
through Bayesian optimization

Chapter 4.3 Two-phase threshold voltages

Threshold balancing

Weight normalization

(Applied in all IF neurons)

Figure 5.1: Final overview of all the proposed methods

89

wise weight normalization which enables more fine-grained normalization method to

eliminate under-activation of neurons and improve firing rate. Second, we propose a

new threshold voltage balancing method by using Bayesian optimization which au-

tomatically finds optimal threshold voltages in each hidden layer to maximize object

detection accuracy while reducing latency and synaptic operations.

Furthermore, we propose two-phases threshold voltages to provide faster and

more accurate information transmission in deep SNNs. The two-phase threshold volt-

ages can be considered as an extension from threshold voltage balancing method.

Each threshold voltage in two-phase threshold voltages is obtained from the threshold

voltage balancing through Bayesian optimization by modifying an evaluation time

step T during Bayesian optimization process. As shown in experimental results in 4,

using both weight normalization and threshold voltage balancing methods certainly

improve performance of object detection model in SNNs. However, one may use ei-

ther weight normalization or threshold voltage balancing method alone. Also various

two-phase threshold voltages may be applied by modifying evaluation time step T

depending on application’s needs (e.g., detection accuracy, latency, or a number of

synaptic operations).

5.3 Challenges in SNNs

The most common training algorithm in DNNs, namely error back-propagation algo-

rithm made a huge impact in success of DNNs for various applications. In the similar

vein, the biggest challenge that SNNs community faces is development of scalable

training algorithm specifically for SNNs; error back-propagation algorithm version

of SNNs. As an alternative approach, DNN-to-SNN conversion methods have been

shown promising results in object detection, bridging the performance gap between

90

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time step

0

0.1

0.2

0.3

0.4

0.5

0.6

m
AP

Baseline (1.0 V)
Vth

fast (Phase-1)

Vth
accurate (Phase-2)

Vth
fast + Vth

accurate

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time step

0

0.1

0.2

0.3

0.4

0.5

0.6

m
AP

Baseline (1.0 V)
Vth

fast (Phase-1)

Vth
accurate (Phase-2)

Vth
fast + Vth

accurate

Baseline (1.0 V)
Vth

fast (Phase-1)

Vth
accurate (Phase-2)

Vth
fast + Vth

accurate

Baseline (1.0 V) + noise
Vth

fast (Phase-1) + noise

Vth
accurate (Phase-2) + noise

Vth
fast + V + noiseth

accurate

Figure 5.2: Object detection accuracy (mAP %) as a number of time increases for all
proposed methods with and without noise

DNNs and SNNs. Moreover, converted SNNs only execute accumulation operations

(i.e., simply adding input spikes) while matrix multiplication accounts for most of

the operations in DNNs. As presented in Table 3.2 of Chapter 3, MAC operation

consumes 4.6 pJ while AC operation consumes 0.1 pJ. Thus, DNN-to-SNN conver-

sion methods show greater energy efficiency. Nevertheless, they are indirect training

methods and use hyper-parameters from trained DNNs. SNNs are still in need of

scalable training method that is specifically designed for SNNs or potential of SNNs

such as powerful learning capability and energy efficiency can be diminish.

As mentioned in Chapter 1 in SNNs are the preferred neural networks in neu-

romorphic architectures [63, 75] because they similarly process information (data)

through spikes (signals). The current neuromorphic architectures, however, are typ-

ically based on analog-digital neuromorphic circuits. Particularly in [63], 1 million

digital neurons and 256 million synapses are used in 5 billion transistors chip. Digital

circuits are known to be more latest technology than analog circuits, which known to

work better and are more popular technology in majority of applications. However,

analog circuits have several advantages that can be work better in neural networks:

(a) can store synaptic weights and process signals (i.e., multiplication), and (b) can

91

reduce power consumption and increases circuit density dramatically, both of which

can overcome bottlenecks existed in the current von Neumann architecture.

The proposed methods in this work, however, are simulated on GPUs and the

characteristics of analog circuits have been neglected. In this section, we analyze

performance of Spiking-YOLO and the proposed methods when applied in analog

circuits. Analog circuits are operated based on analog signals which tend to have

lower quality than digital. Consequently, we have added Gaussian noise (mean and

standard deviation are set to 0 and 0.1, respectively) to threshold voltage Vth and input

of jth neuron in the lth layer zlj(t). Figure 5.2 shows the object detection accuracy

curve as the time step increases for the proposed methods with and without noise.

Overall, adding noise to Vth and zlj(t) leads to very small performance degrada-

tion in object detection accuracy at 5,000 time steps. However, Phase-1 and Phase-2

threshold voltages yield higher latency and converges much slower when noises are

added. Two-phase threshold voltages (Phase-1 + Phase-2) have minimum effect when

noise is added in terms of both accuracy and latency. Nevertheless, the noise applied

in this experiment is just one of many variations in analog circuits. The noise level

is also significantly low compared to noise level in actual analog circuits which be-

comes even higher in advanced scaled processes. Despite the proposed DNN-to-SNN

conversion methods have shown promising results, direct training of SNNs is a vital

future research direction for analog-based neuromorphic architectures.

5.4 Future Work

5.4.1 Extension to various applications and DNN models

The proposed methods have shown promising results in object detection task. First,

the channel-wise weight normalization provides a more fine-grained normalization

92

eliminating under-activation in multiple neurons to provide sufficient activation of

neurons for fast and accurate information transmission. Second, the signed neuron

with imbalanced threshold provides efficient implementation of leaky-ReLU in SNNs.

The signed neuron with imbalanced threshold is a more general approach in that

various DNNs these days often use leaky-relu as an activation function [42, 99, 9].

Building on these insights, the proposed methods can be applied in variety of appli-

cation and DNN models. For instance image segmentation outputs a pixel-wise mask

of the image in that each pixel is given a label (e.g., class). Image segmentation can

be considered as more challenging task than object detection. Its applications are au-

tonomous driving and medical imaging. The proposed methods can be extended to

image segmentation and other computer vision task as well for future work.

Furthermore, SNNs transmit information through precise timing of spikes in that

they utilize temporal aspects in information transmission among neurons. Naturally,

SNNs open possibility to exploit time series applications such as automatic speech

recognition [93].

5.4.2 Further improve efficiency of SNNs

As for another field of study in indirect training methods, various neural coding

schemes have been proposed in recent years. The neural coding is a neural repre-

sentation of information in spike trains. In SNNs, neurons transmit information via a

series of spikes, known as a spike train, and neural coding determines how the infor-

mation is encoded in spikes trains and is be decoded when information is received.

One of the most well-known neural coding schemes is rate coding. Nevertheless other

neural coding schemes such as temporal coding and burst coding have been exten-

sively studied in recent years. The rate coding is based on firing rate of neurons and

have advantages in simple implementation and its robustness. However, it suffers

93

from large latency and total number of spikes. Temporal coding utilizes temporal as-

pects where timing of receiving spikes represents the amount of information being

transmitted. Certainly, it has advantages in significantly less number of spikes being

generated but a periodic oscillation function is typically required for global reference.

Note that Spiking-YOLO is based on rate coding, and various neural coding schemes

can be applied in order to improve efficiency of the model. Furthermore, [71] claims

that hybrid neural coding schemes can improve efficiency further, which can be also

considered as a future work.

As was mentioned previously, the channel-wise weight normalization eliminates

under-activation of neurons and provides a more fine-grained normalization. Nev-

ertheless, each channel in Convolutional layer 1 has 173,056 neurons. This indi-

cates that the deviation of normalized activations is still large and there is a room

for improvement. In fact, a more fine-grained normalization method can be studied

extensively. For instance, we can select a certain group of neurons based on their

importance in predicting output of the network (or subsequent layer), and normalize

weights by the maximum activation value in that specific group. The importance of

the neuron can be calculated by the activation value (e.g., maximum or L1-norm).

This will eliminate under-activation in neurons further, and improve firing rate of

those neurons, which lead to faster convergence of object detection in SNNs.

5.4.3 Optimization of deep SNNs

As illustrated in Chapter 4, we used Bayesian optimization as optimization algorithm

when finding optimal values for threshold voltage in each hidden layer. Bayesian

optimization has advantages in simple implementation and also finds optimal val-

ues relatively well when compared to random and grid search. However, there are a

number of hyper-parameters in Bayesian optimization such as kernel, exploitation-

94

exploration factor, and so on. These hyper-parameters need to be fine-tuned in order

to improve the optimization process. Moreover, there are other optimization algo-

rithms such as [23, 45, 84, 53], some of which has shown promising results. These

can be applied and compared in optimization of threshold voltages. Furthermore,

threshold search level can be extended to channel-wise or even further, to provide

more fine-grained threshold voltage balancing.

Furthermore, there are other optimization problems existed in SNNs. In this dis-

sertation, both weight normalization and threshold voltage balancing is used, but only

one of the methods can be applied by using the optimization algorithm. In fact, the

weight normalization can be optimized with the optimization algorithm. In this dis-

sertation, we consider the search of optimal threshold voltage as hyper-parameter

optimization. We can further optimize other parameters in SNNs. In fact, actually

architecture of SNNs can be optimized with AutoML. AutoML is a field of finding

the optimal neural network design automatically, taking the human out of the equa-

tion. Many previous works have successfully found optimal architectures in various

applications that human has not be able to come up with before [58, 76].

95

Bibliography

[1] James and Yoshua Bengio. Random search for hyper-parameter optimization.

J. Mach. learning research, 13(Feb):281–305, 2012.

[2] James S , Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for

hyper-parameter optimization. In Proc. 24th Annu. Conf. Adv. Neural Inf. Pro-

cess. Syst. (NeurIPS), pages 2546–2554, 2011.

[3] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey.

Predicting the sequence specificities of dna-and rna-binding proteins by deep

learning. Nature biotechnology, 33(8):831–838, 2015.

[4] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai,

Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng,

Guoliang Chen, et al. Deep speech 2: End-to-end speech recognition in en-

glish and mandarin. In International conference on machine learning, pages

173–182, 2016.

[5] Rony Azouz and Charles M Gray. Dynamic spike threshold reveals a mech-

anism for synaptic coincidence detection in cortical neurons in vivo. Proc.

National Acad. Sciences, 97(14):8110–8115, 2000.

[6] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and

96

Wolfgang Maass. Long short-term memory and learning-to-learn in networks

of spiking neurons. In NIPS, 2018.

[7] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural

computation, 12(8):1889–1900, 2000.

[8] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.

Yolov4: Optimal speed and accuracy of object detection. arXiv preprint

arXiv:2004.10934, 2020.

[9] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time

instance segmentation. In Proceedings of the IEEE international conference

on computer vision, pages 9157–9166, 2019.

[10] Korbinian Brodmann. Vergleichende Lokalisationslehre der Grosshirnrinde in

ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, 1909.

[11] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, et al. Language models are few-shot learners. arXiv preprint

arXiv:2005.14165, 2020.

[12] Widodo Budiharto, Alexander AS Gunawan, Jarot S Suroso, Andry

Chowanda, Aurello Patrik, and Gaudi Utama. Fast object detection for quad-

copter drone using deep learning. In Proc. 2018 3rd Int. Conf. on Comput. and

Commun. Syst. (ICCCS), pages 192–195. IEEE, 2018.

[13] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional

neural networks for energy-efficient object recognition. International Journal

of Computer Vision, 113(1):54–66, 2015.

97

[14] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and

spell: A neural network for large vocabulary conversational speech recogni-

tion. In 2016 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 4960–4964. IEEE, 2016.

[15] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and

Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a

fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

[16] Nima Dehghani, Adrien Peyrache, Bartosz Telenczuk, Michel Le Van Quyen,

Eric Halgren, Sydney S Cash, Nicholas G Hatsopoulos, and Alain Destexhe.

Dynamic balance of excitation and inhibition in human and monkey neocortex.

Scientific reports, 6:23176, 2016.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

[18] Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Frontiers in computational neuro-

science, 9:99, 2015.

[19] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu,

and Michael Pfeiffer. Fast-classifying, high-accuracy spiking deep networks

through weight and threshold balancing. In IJCNN, 2015.

[20] Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi Wang, and Yun Liang.

Req-yolo: A resource-aware, efficient quantization framework for object de-

tection on fpgas. In Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays

(FPGA), pages 33–42, 2019.

98

[21] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt

Keutzer. Hawq: Hessian aware quantization of neural networks with mixed-

precision. In Proceedings of the IEEE International Conference on Computer

Vision, pages 293–302, 2019.

[22] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. The pascal visual object classes (voc) challenge. Int. J.

Comp. Vis., 88(2):303–338, 2010.

[23] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient

hyperparameter optimization at scale. In Proc. Int. Conf. Mach. Learning

(ICML), 2018.

[24] Hongxiang Fan, Shuanglong Liu, Martin Ferianc, Ho-Cheung Ng, Zhiqiang

Que, Shen Liu, Xinyu Niu, and Wayne Luk. A real-time object detection

accelerator with compressed ssdlite on fpga. In Proc. 2018 Int. Conf. Field-

Program. Tech. (FPT), pages 14–21. IEEE, 2018.

[25] Wei Fang, Lin Wang, and Peiming Ren. Tinier-yolo: A real-time object detec-

tion method for constrained environments. IEEE Access, 8:1935–1944, 2019.

[26] Ross Girshick. Fast r-cnn. In ICCV, 2015.

[27] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In CVPR,

2014.

[28] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing

deep convolutional networks using vector quantization. In CVPR, 2014.

[29] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz

99

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He.

Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017.

[30] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for

efficient dnns. In NIPS, 2016.

[31] Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency

through time based coding. In Proc. IEEE Eur. Conf. Comput. Vis. (ECCV),

2020.

[32] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual

membrane potential neuron for enabling deeper high-accuracy and low-latency

spiking neural network. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), pages 13558–13567, 2020.

[33] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

In ICLR, 2016.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[35] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In ICCV, 2017.

[36] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating

very deep neural networks. In ICCV, 2017.

100

[37] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network. arXiv preprint arXiv:1503.02531, 2015.

[38] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about

it). In 2014 IEEE International Solid-State Circuits Conference Digest of Tech-

nical Papers (ISSCC), pages 10–14. IEEE, 2014.

[39] Rachel Huang, Jonathan Pedoeem, and Cuixian Chen. Yolo-lite: a real-time

object detection algorithm optimized for non-gpu computers. In Proc. 2018

IEEE Int. Conf. Big Data (Big Data), pages 2503–2510. IEEE, 2018.

[40] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks. In NIPS, 2016.

[41] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-

based optimization for general algorithm configuration. In Proc. Int. Conf.

learning Intell. Opt., pages 507–523. Springer, 2011.

[42] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-

image translation with conditional adversarial networks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 1125–

1134, 2017.

[43] Zhaoyin Jia, Ashutosh Saxena, and Tsuhan Chen. Robotic object detection:

Learning to improve the classifiers using sparse graphs for path planning. In

Proc. 22nd Int. Joint Conf. Artif. Intell. (IJCAI), 2011.

[44] Yingyezhe Jin, Wenrui Zhang, and Peng Li. Hybrid macro/micro level back-

propagation for training deep spiking neural networks. In NIPS, 2018.

[45] Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration

101

in multi-armed bandits. In International Conference on Machine Learning,

pages 1238–1246, 2013.

[46] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):

81–93, 1938.

[47] Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep

neural networks with weighted spikes. Neurocomputing, 311:373–386, 2018.

[48] Jinkyu Kim and John Canny. Interpretable learning for self-driving cars by

visualizing causal attention. In Proceedings of the IEEE international confer-

ence on computer vision, pages 2942–2950, 2017.

[49] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-

yolo: Spiking neural network for real-time object detection. In Proc. 34th

AAAI Conf. Artif. Intell. (AAAI), 2020.

[50] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and

Dongjun Shin. Compression of deep convolutional neural networks for fast

and low power mobile applications. In CVPR, 2015.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Communications of the ACM,

60(6):84–90, 2017.

[52] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking

neural networks using backpropagation. Frontiers in neuroscience, 10:508,

2016.

[53] Stefan Lessmann, Robert Stahlbock, and Sven F Crone. Optimizing hyperpa-

102

rameters of support vector machines by genetic algorithms. In IC-AI, pages

74–82, 2005.

[54] Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo r-cnn based 3d object

detection for autonomous driving. In Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), pages 7644–7652, 2019.

[55] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan.

Fully quantized network for object detection. In Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. (CVPR), pages 2810–2819, 2019.

[56] Tianhong Li, Jianguo Li, Zhuang Liu, and Changshui Zhang. Few sample

knowledge distillation for efficient network compression. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

14639–14647, 2020.

[57] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Com-

mon objects in context. In Proc. IEEE Eur. Conf. Comput. Vis. (ECCV), pages

740–755. Springer, 2014.

[58] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia

Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive

neural architecture search. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 19–34, 2018.

[59] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector.

In ECCV, 2016.

103

[60] Wolfgang Maass. Networks of spiking neurons: the third generation of neural

network models. Neural networks, 10(9):1659–1671, 1997.

[61] Zachary F Mainen and Terrence J Sejnowski. Reliability of spike timing in

neocortical neurons. Science, 268(5216):1503–1506, 1995.

[62] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso García, and

Davide Scaramuzza. Event-based vision meets deep learning on steering pre-

diction for self-driving cars. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5419–5427, 2018.

[63] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun

Sawada, Filipp Akopyan, Bryan L Jackson, et al. A million spiking-neuron in-

tegrated circuit with a scalable communication network and interface. Science,

345(6197):668–673, 2014.

[64] Yasuhiro Mochizuki, Tomokatsu Onaga, Hideaki Shimazaki, Takeaki

Shimokawa, Yasuhiro Tsubo, Rie Kimura, Akiko Saiki, Yutaka Sakai,

Yoshikazu Isomura, Shigeyoshi Fujisawa, et al. Similarity in neuronal firing

regimes across mammalian species. Journal of Neuroscience, 36(21):5736–

5747, 2016.

[65] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz.

Importance estimation for neural network pruning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 11264–11272,

2019.

[66] Hesham Mostafa, Bruno U Pedroni, Sadique Sheik, and Gert Cauwenberghs.

Fast classification using sparsely active spiking networks. In 2017 IEEE In-

104

ternational Symposium on Circuits and Systems (ISCAS), pages 1–4. IEEE,

2017.

[67] Jacinto C Nascimento and Jorge S Marques. Performance evaluation of object

detection algorithms for video surveillance. IEEE Trans. Multimedia, 8(4):

761–774, 2006.

[68] Fernando Nogueira. Bayesian Optimization: Open source constrained global

optimization tool for Python, 2014–. URL https://github.com/fmfn/

BayesianOptimization.

[69] Tesla NVIDIA. V100 gpu architecture, 2017.

[70] Seongsik Park, Seijoon Kim, Seil Lee, Ho Bae, and Sungroh Yoon. Quantized

memory-augmented neural networks. In AAAI, 2018.

[71] Seongsik Park, Seijoon Kim, Hyeokjun Choe, and Sungroh Yoon. Fast and

efficient information transmission with burst spikes in deep spiking neural net-

works. In 2019 56th ACM/IEEE Design, Auto. Conf. (DAC), pages 1–6. IEEE,

2019.

[72] Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn:

Deep spiking neural networks with time-to-first-spike coding. In Proc. Design

Auto. Conf. (DAC), 2020.

[73] Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: op-

portunities and challenges. Frontiers in neuroscience, 12, 2018.

[74] W Pirie. Spearman rank correlation coefficient encyclopedia of statistical sci-

ences, 2004.

105

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization

[75] Chi-Sang Poon and Kuan Zhou. Neuromorphic silicon neurons and large-scale

neural networks: challenges and opportunities. Frontiers in neuroscience, 5:

108, 2011.

[76] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized

evolution for image classifier architecture search. In Proceedings of the aaai

conference on artificial intelligence, volume 33, pages 4780–4789, 2019.

[77] Joseph Redmon. Yolo: Real-time object detection. https://pjreddie.com/

darknet/yolov2/, 2016.

[78] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In CVPR,

2017.

[79] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[80] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only

look once: Unified, real-time object detection. In CVPR, 2016.

[81] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. In NIPS,

2015.

[82] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and

Shih-Chii Liu. Conversion of continuous-valued deep networks to efficient

event-driven networks for image classification. Frontiers in neuroscience, 11:

682, 2017.

[83] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy.

106

https://pjreddie.com/darknet/yolov2/
https://pjreddie.com/darknet/yolov2/

Going deeper in spiking neural networks: Vgg and residual architectures.

Frontiers in Neuroscience, 13:95, 2019.

[84] Yuhui Shi and Russell C Eberhart. Parameter selection in particle swarm op-

timization. In International conference on evolutionary programming, pages

591–600. Springer, 1998.

[85] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian op-

timization of machine learning algorithms. In Proc. 25th Annu. Conf. Adv.

Neural Inf. Process. Syst. (NeurIPS), pages 2951–2959, 2012.

[86] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for

convolutional neural networks. In Proc. Int. Conf. Mach. Learning (ICML),

2019.

[87] Arthur W Toga, Paul M Thompson, Susumu Mori, Katrin Amunts, and Karl

Zilles. Towards multimodal atlases of the human brain. Nature Reviews Neu-

roscience, 7(12):952–966, 2006.

[88] Koen EA Van de Sande, Jasper RR Uijlings, Theo Gevers, and Arnold WM

Smeulders. Segmentation as selective search for object recognition. In 2011

International Conference on Computer Vision, pages 1879–1886. IEEE, 2011.

[89] Yi Wei, Xinyu Pan, Hongwei Qin, Wanli Ouyang, and Junjie Yan. Quantiza-

tion mimic: Towards very tiny cnn for object detection. In Proc. IEEE Eur.

Conf. Comput. Vis. (ECCV), pages 267–283, 2018.

[90] Hugh R Wilson and Jack D Cowan. Excitatory and inhibitory interactions

in localized populations of model neurons. Biophysical journal, 12(1):1–24,

1972.

107

[91] Alexander Womg, Mohammad Javad Shafiee, Francis Li, and Brendan Chwyl.

Tiny ssd: A tiny single-shot detection deep convolutional neural network for

real-time embedded object detection. In Proc. 2018 15th Conf. Comp Robot

Vis. (CRV), pages 95–101. IEEE, 2018.

[92] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer. Squeezedet: Uni-

fied, small, low power fully convolutional neural networks for real-time object

detection for autonomous driving. In Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. Workshop (CVPRW), pages 129–137, 2017.

[93] Jibin Wu, Emre Yılmaz, Malu Zhang, Haizhou Li, and Kay Chen Tan. Deep

spiking neural networks for large vocabulary automatic speech recognition.

Frontiers in Neuroscience, 14:199, 2020.

[94] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct

training for spiking neural networks: Faster, larger, better. In AAAI, 2019.

[95] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of

rectified activations in convolutional network. In CVPR, 2015.

[96] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to atten-

tion: Improving the performance of convolutional neural networks via atten-

tion transfer. In ICLR, 2017.

[97] Lei Zhang, Shengyuan Zhou, Tian Zhi, Zidong Du, and Yunji Chen. Tdsnn:

From deep neural networks to deep spike neural networks with temporal-

coding. In Proc. 33rd AAAI Conf. Artif. Intell. (AAAI), volume 33, pages

1319–1326, 2019.

[98] Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropa-

108

gation for deep spiking neural networks. In Proc. 33th Annu. Conf. Adv. Neural

Inf. Process. Syst. (NeurIPS), 2020.

[99] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired

image-to-image translation using cycle-consistent adversarial networks. In

Proceedings of the IEEE international conference on computer vision, pages

2223–2232, 2017.

[100] Karl Zilles and Katrin Amunts. Centenary of brodmann’s map—conception

and fate. Nature Reviews Neuroscience, 11(2):139–145, 2010.

[101] James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali Torka-

mani, and Amalio Telenti. A primer on deep learning in genomics. Nature

genetics, 51(1):12–18, 2019.

109

초록

오늘날딥러닝의큰성공은고성능병렬컴퓨팅시스템의발전과복잡한모델

을학습하기위해필요한많은양의데이터가수집되어접근이가능해진점이라고

할 수 있다. 하지만 실제 세상에 존재하는 더 어려운 문제들을 풀고자할 때는 더

욱더섬세하고복잡한모델과이모델을성공적으로학습할수있는방대한양의

데이터를필요한다.하지만이러한점들은모델수행시연산오버헤드와전력소

모를급격하게증가시킬수밖에없다.이러한문제점들을극복하는여러방법들중

하나로스파이킹뉴럴네트워크가최근많은주목을받고있다.스파이킹뉴럴네

트워크는 제 3세대 인공 신경망으로 불리며 이벤트 중심의 동작을 기반으로 하여

저전력이가장큰장점이다.스파이킹뉴럴네트워크는실제인간의뇌에서뉴런들

간정보를전달하는방식을모방하며스파이킹뉴런을연산단위로사용하고있다.

스파이킹뉴럴네트워크는생물학적신경계와동일하게시간적정보를활용할수

있기때문에매우뛰어난연산능력을가지고있다.

하지만 스파이킹 뉴럴 네트워크는 이미지 분류와 같은 비교적 쉬운 응용에만

주로사용되고있으며얕은인공신경망과간단한데이터셋에서만주로수행되고

있다.이러한제약이존재하는가장큰요인중하나는스파이크뉴럴네트워크에

적합한학습알고리즘이아직존재하지않기때문이다.스파이크로정보를전달하

고연산을수행하기때문에미분이불가능하다.따라서딥뉴럴네트워크에서주로

사용되는역전파알고리즘의사용이불가능하다.본논문에서딥스파이킹뉴럴네

트워크를이미지분류보다더어려운회귀문제 (객체인식)에적용해보고,딥뉴럴

네트워크의성능에버금가는객체인식모델을스파이킹뉴럴네트워에서처음으

로제안한다.더나아가,객체인식모델의성능과지연시간,에너지효율성을향상

시킬수있는여러방법들을제안한다.본논문은크게두가지주제로나누어설명

한다: (a) 딥 스파이킹 뉴럴 네트워크에서의 객체 인식 모델, (b) 딥 스파이킹 뉴럴

110

네트워크에서의 객체 인식 모델의 성능 및 효율성 향상. 제안하는 방법들을 통해

빠르고정확한객체인식모델을딥스파이킹뉴럴네트워크에서수행할수있다.

첫 번째 방법은 딥 스파이킹 뉴럴 네트워크에서의 객체 인식 모델이다. 객체

인식모델은 Spiking-YOLO로부르고,저자들이아는바에의하면 PASCAL VOC,

MS COCO와 같은 데이터 셋에서 딥 뉴럴 네트워크의 성능에 버금가는 결과를

보여준 첫 번째 스파이킹 뉴럴 네트워크를 기반으로 하는 객체 인식 모델이다.

Spiking-YOLO에서는크게두가지방법을제안한다.첫번째는채널별가중치정

규화이고 두번째는 불균형 한계 전압을 가지는 양음수 뉴런이다. 두 가지 방법을

통해 빠르고 정확한 정보를 딥 스파이킹 뉴럴 네트워크에서 전달 가능하게 한다.

실험 결과, Spiking-YOLO는 PASCAL VOC와 MS COCO 데이터셋에서 딥 뉴럴

네트워크의 객체 인식률의 98%에 뛰어난 성능을 보였다. 또한 Spiking-YOLO가

뉴로모픽칩에구현되었음가정하였을때, Tiny YOLO보다약 280의에너지를적

게 소모하였고 기존의 DNN-to-SNN 전환 방법들 보다 2.3배에서 4배 더 빠르게

수렴하는것을확인할수있었다.

두번째방법은스파이킹뉴럴네트워크에조금더효율적인연산능력을부여

하는데중점을주고있다.비록스파이킹뉴럴네트워크가희박한양의스파이크로

정보를효율적으로전달하며연산오버헤드와에너지소모가적지만,두가지매우

중요한문제들이존재한다: (a)지연속도:좋은성능을내기위해필요한타임스탭,

(b) 시냅틱 연산수: 추론 시 생성된 총 스파이크의 수. 이러한 문제들을 적절히 해

결하지 못한다면 스파이킹 뉴럴 네트워크의 큰 장점이라고 할 수 있는 에너지와

전력 효율성이 크게 저하될 수 있다. 이를 해결하기 위해 본 논문에서는 한계 전

압균형방법론을새로제안한다.제안하는방법론은베이시안최적화알고리즘을

사용하여 가장 최적의 한계전압 값을 찾는다. 또한 베이시안 최적화 알고리즘을

지연속도나 시냅틱 연산수 등의 스파이킹 뉴럴 네트워크의 특성을 고려할 수 있

게 디자인한다. 더 나아가, 두 단계의 한계 전압을 제안하여 높은 에너지 효율을

가지며더빠르고더정확한객체인식모델을가능하게한다.실험결과에따르면

111

제안하는방법들을통해 state-of-the-art객체인식률을달성하였고기존의방법들

보다 PASCAL VOC에서는 2배, MS COCO에서는 1.85배 빠르게 수렴하는 것을

확인하였다.또한시냅틱연산수도 PASCAL VOC에서는 40.33%, MS COCO에서

는 45.31%를줄일수있었다.

주요어:인공신경망,딥러닝,스파이킹신경망,에너지효율,객체인식,베이시안

최적화

학번: 2013-23104

112

	1 Introduction
	2 Background
	2.1 Object detection
	2.2 Spiking Neural Networks
	2.3 DNN-to-SNN conversion
	2.4 Hyper-parameter optimization

	3 Object detection model in deep SNNs
	3.1 Introduction
	3.2 Channel-wise weight normalization
	3.2.1 Conventional weight normalization methods
	3.2.2 Analysis of limitations in layer-wise weight normalization
	3.2.3 Proposed weight normalization method
	3.2.4 Analysis of the improved firing rate

	3.3 Signed neuron with imbalanced threshold
	3.3.1 Limitation of leaky-ReLU implementation in SNNs
	3.3.2 The notion of imbalanced threshold

	3.4 Evaluation
	3.4.1 Spiking-YOLO detection results
	3.4.2 Spiking-YOLO energy efficiency

	4 Improving performance and efficiency of deep SNNs
	4.1 Introduction
	4.2 Threshold voltage balancing through Bayesian optimization
	4.2.1 Motivation
	4.2.2 Overall process and setup
	4.2.3 Design of Bayesian optimization for SNNs

	4.3 Fast and accurate object detection with two-phase threshold voltages
	4.3.1 Motivation
	4.3.2 Phase-1 threshold voltages: fast object detection
	4.3.3 Phase-2 threshold voltages: accurate detection

	4.4 Evaluation
	4.4.1 Experimental setup
	4.4.2 Experimental results

	5 Conclusion
	5.1 Dissertation summary
	5.2 Discussion
	5.2.1 Overview of the proposed methods and their usages

	5.3 Challenges in SNNs
	5.4 Future Work
	5.4.1 Extension to various applications and DNN models
	5.4.2 Further improve efficiency of SNNs
	5.4.3 Optimization of deep SNNs

	Bibliography
	Abstract (In Korean)

<startpage>14
1 Introduction 1
2 Background 10
 2.1 Object detection 10
 2.2 Spiking Neural Networks 16
 2.3 DNN-to-SNN conversion 18
 2.4 Hyper-parameter optimization 21
3 Object detection model in deep SNNs 25
 3.1 Introduction 25
 3.2 Channel-wise weight normalization 27
 3.2.1 Conventional weight normalization methods 27
 3.2.2 Analysis of limitations in layer-wise weight normalization 29
 3.2.3 Proposed weight normalization method 30
 3.2.4 Analysis of the improved firing rate 38
 3.3 Signed neuron with imbalanced threshold 39
 3.3.1 Limitation of leaky-ReLU implementation in SNNs 39
 3.3.2 The notion of imbalanced threshold 41
 3.4 Evaluation 43
 3.4.1 Spiking-YOLO detection results 43
 3.4.2 Spiking-YOLO energy efficiency 57
4 Improving performance and efficiency of deep SNNs 60
 4.1 Introduction 60
 4.2 Threshold voltage balancing through Bayesian optimization 62
 4.2.1 Motivation 62
 4.2.2 Overall process and setup 67
 4.2.3 Design of Bayesian optimization for SNNs 69
 4.3 Fast and accurate object detection with two-phase threshold voltages 74
 4.3.1 Motivation 74
 4.3.2 Phase-1 threshold voltages: fast object detection 76
 4.3.3 Phase-2 threshold voltages: accurate detection 76
 4.4 Evaluation 79
 4.4.1 Experimental setup 79
 4.4.2 Experimental results 79
5 Conclusion 85
 5.1 Dissertation summary 86
 5.2 Discussion 88
 5.2.1 Overview of the proposed methods and their usages 88
 5.3 Challenges in SNNs 90
 5.4 Future Work 92
 5.4.1 Extension to various applications and DNN models 92
 5.4.2 Further improve efficiency of SNNs 93
 5.4.3 Optimization of deep SNNs 94
Bibliography 95
Abstract (In Korean) 110
</body>

