

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Fast and Reliable Inference Algorithms in
Crowdsourcing Systems

크라우드소싱시스템에서의빠르고신뢰성높은추론
알고리즘

BY

DONGHYEON LEE

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Fast and Reliable Inference Algorithms in
Crowdsourcing Systems

크라우드소싱시스템에서의빠르고신뢰성높은추론
알고리즘

BY

DONGHYEON LEE

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Abstract

As the need for large scale labeled data grows in various fields, the appearance of

web-based crowdsourcing systems gives a promising solution to exploiting the wis-

dom of crowds efficiently in a short time with a relatively low budget. Despite their

efficiency, crowdsourcing systems have an inherent problem in that responses from

workers can be unreliable since workers are low-paid and have low responsibility.

Although simple majority voting can be a natural solution, various research studies

have sought to aggregate noisy responses to obtain greater reliability in results. In this

dissertation, we propose novel iterative massage-passing style algorithms to infer the

groundtruths from noisy answers, which can be directly applied to real crowdsourcing

systems. While EM-based algorithms get the limelight in crowdsourcing systems due

to their useful inference techniques, our proposed algorithms draw faster and more

reliable answers through an iterative scheme based on the idea of low-rank matrix

approximations. We show that the performance of our proposed iterative algorithms

are order-optimal, which outperforms majority voting and EM-based algorithms. Un-

like other researches solving simple binary-choice questions (yes & no), our studies

cover more complex task types which contain multiple-choice questions, short-answer

questions, K-approval voting, and real-valued vector regression.

keywords: Crowdsourcing, Message-passing style algorithm, Approximate inference

student number: 2013-23125

i

Contents

Abstract i

Contents ii

List of Tables v

List of Figures vi

1 Introduction 1

2 Background 9

2.1 Crowdsourcing Systems for Binary-choice Questions 9

2.1.1 Majority Voting . 10

2.1.2 Expectation Maximization 11

2.1.3 Message Passing . 11

3 Crowdsourcing Systems for Multiple-choice Questions 12

3.1 Related Work . 13

3.2 Problem Setup . 16

3.3 Inference Algorithm . 17

3.3.1 Task Allocation . 17

3.3.2 Multiple Iterative Algorithm 18

3.3.3 Task Allocation for General Setting 20

ii

3.4 Applications . 23

3.5 Analysis of Algorithms . 25

3.5.1 Quality of Workers . 25

3.5.2 Bound on the Average Error Probability 27

3.5.3 Proof of the Error Bounds 29

3.5.4 Proof of Sub-Gaussianity . 32

3.6 Experimental Results . 36

3.6.1 Comparison with Other Algorithms 37

3.6.2 Adaptive Scenario . 38

3.6.3 Simulations on a Set of Various D Values. 41

3.7 Conclusion . 43

4 Crowdsourcing Systems for Multiple-choice Questions with K-Approval

Voting 45

4.1 Related Work . 47

4.2 Problem Setup . 49

4.2.1 Problem Definition . 49

4.2.2 Worker Model for Various (D,K) 50

4.3 Inference Algorithm . 51

4.4 Analysis of Algorithms . 53

4.4.1 Worker Model . 55

4.4.2 Quality of Workers . 56

4.4.3 Bound on the Average Error Probability 58

4.4.4 Proof of the Error Bounds 59

4.4.5 Proof of Sub-Gaussianity . 62

4.4.6 Phase Transition . 67

4.5 Experimental Results . 68

4.5.1 Performance on the Average Error with q and l 68

4.5.2 Relationship between Reliability and y-message. 69

iii

4.5.3 Performance on the Average Error with Various (D,K) Pairs. 69

4.6 Conclusion . 72

5 Crowdsourcing Systems for Real-valued Vector Regression 73

5.1 Related Work . 75

5.2 Problem Setup . 77

5.3 Inference Algorithm . 78

5.3.1 Task Message . 79

5.3.2 Worker Message . 80

5.4 Analysis of Algorithms . 81

5.4.1 Worker Model . 81

5.4.2 Oracle Estimator . 84

5.4.3 Bound on the Average Error Probability 86

5.5 Experimental Results . 91

5.5.1 Real Crowdsourcing Data 91

5.5.2 Verification of the Error Bounds with Synthetic data 96

5.6 Conclusion . 98

6 Conclusions 99

Abstract (In Korean) 109

Acknowlegement 110

iv

List of Tables

5.1 Comparisons of the types of tasks covered by well-known crowdsourc-

ing algorithms . 75

5.2 An error table of experimental results on real crowdsourced data where

the tasks are (1st column) an object detection on MSCOCO dataset,

(2nd column) same task with Intersection of Union measure (3rd col-

umn) a human joints estimation and (4th column) an angle segmenta-

tion by neck and adjacent human joints on LSPET dataset. For Top-K

selection, we choose K as a half of the task degree l. 93

v

List of Figures

1.1 Real crowdsourcing projects successfully labeled by web-based crowd-

sourcing services. (a) GalaxyZoo [1], (b) reCAPTCHA [2], (c) Wis-

consin Wildlife, (d) ManateeChat . 2

1.2 Various types of tasks in real crowdsourcing systems. 4

1.3 Car number plates captured by a traffic camera. These data can be

easily labeled by web-based crowdsourcing services. 6

1.4 Various car number plates in USA. Labeling a car number plate can

be split into several real-valued regression tasks for bounding boxes,

and several multiple-choice questions for the number of car number

plates, the issuing state of the car number plates, the length of the car

numbers and each character of the car numbers. 7

3.1 Description of a task message ~x(k)i′→j and a response vector ~Ai
′j , in the

message vector space when ~Ai
′j = (1, 0, 0) and Di′ = 3. 19

3.2 Examples of various crowdsourcing tasks. 22

3.3 Comparison of the quality between negative entropy with offset and

second-order polynomial approximation. 27

3.4 Comparisons of probabilities of error between different algorithms

varying l values (m = n = 2000, l = r). 38

3.5 Comparisons of probabilities of error between different algorithms

varying q values (m = n = 2000, l = r = 25). 39

vi

3.6 Relationship between yj and p̂j (m = n = 2000, k = 10). 40

3.7 Adaptive Scenario (m = n = 2000, l = 25). 42

3.8 Simulations on a set of various D values (m = n = 2000, where

D = 2 : 666 /D = 3 : 667 /D = 4 : 668). 43

4.1 A task in the Amazon Mechanical Turk, whose goal is to categorize

the item in the picture. The worker is allowed to choose two candidates. 46

4.2 A task being distributed on Zooniverse to correctly figure out what

animals are pictured at Wisconsin wildlife. The worker is allowed to

choose multiple candidates. 47

4.3 System model for task-worker assignments. 49

4.4 Description of a task message ~x(k)i′→j and a response vector ~Ai′j , in the

message vector space when ~Ai′j = (1, 1, 0) and D = 3, K = 2. . . . 52

4.5 Comparison of the quality between negative entropy with offset and

4th-order polynomial approximation. 58

4.6 Comparisons of probabilities of error between different algorithms

varying l (first row) and q (second row) values (m = n = 2000, l =

r = 25). 63

4.7 Relationship between yj and p̂j (m = n = 2000, k = 10). 70

4.8 Simulations on a set of various (D,K) pairs (m = n = 2000, mixed

task types : (D,K) = (3, 1), (4, 1), (5, 2), (6, 2)) in an equal ratio. . . 71

5.1 Applications of the regression tasks in crowdsourcing. (a) movie rating

: to score movies from 0 to 100. (b) image object localization: to draw

a tight bounding box capturing the target object. (c) pose estimation:

to find the proper positions of the skeleton’s joints. 74

5.2 System model for task-worker assignments. 78

5.3 Distance between answer Aij and x message xi→j in the standard 2-

dimensional simplex space when Di = 2. 78

vii

5.4 Three types of crowds in the standard 2-dimensional simplex space. . 82

5.5 Drawing a bounding box task on the ‘bat’. (a) the ground truth (b)

bounding boxes drawn by 25 workers. (c) estimated answer of majority

voting. (d) estimated answer of our algorithm. 92

5.6 Comparisons of error and IoU between different algorithms with vary-

ing task degree l. 94

5.7 Error bar plots of our algorithm for the initialization issue on 2k-edge

bounding box task. 95

5.8 The influence of ε on error and IoU when computing y-messages with

varying task degree l. 95

5.9 Comparison of average errors between different algorithms with D =

(2, 5): (top) varying γ (ws = 0.5, wh = 5), (bottom) varying q. 97

viii

Chapter 1

Introduction

Crowdsourcing has become one of the cornerstones of research in the development of

human computation based intelligence systems [3, 4, 5] since some of modern ma-

chine learning-based approaches are impractical in reality due to several problems.

One problem is that they need a lot of labeled data in the training phase. As the big

data era begins, we are able to access enormous amount of data, but most of them

are not labeled. Through the conventional approach in which a taskmaster distributes

tasks to few expert labelers, the labeling task becomes a bottleneck since it is generally

too expensive and tardy. Another problem is that there are still a lot of tasks machines

cannot do well in compared with humans despite of rapid development of machine

learning techniques. To overcome those problems, new web-based services like Ama-

zon Mechanical Turk [6] have arisen and become popular as a consequence [3]. Since

crowdsourcing systems are well-combined with the characteristics of Internet such as

accessibility, spontaneity, and vastness, those web tools are able to provide ideal solu-

tions for gathering enormous responses from widespread crowds in a short time with

a relatively low budget. Some of real crowdsourcing projects successfully labeled by

web-based crowdsourcing services are shown in Figure 1.1.

One of the most active field to gather labeled data by web-based crowdsourcing

is the computer vision. Developing computer vision algorithms that are able to au-

1

(a) GalaxyZoo [1]: Classifying galaxies accord-

ing to their shapes.

(b) reCAPTCHA [2]: Typing words for spam protec-

tion and a book digitization project.

(c) Wisconsin Wildlife: Classify animals pictured at Wisconsin.

(d) Manatee Chat: Identifying and classifying of manatee calls.

Figure 1.1: Real crowdsourcing projects successfully labeled by web-based crowd-

sourcing services. (a) GalaxyZoo [1], (b) reCAPTCHA [2], (c) Wisconsin Wildlife,

(d) ManateeChat

2

tomatically distinguish objects or backgrounds requires manually annotating a large

collection of images. To properly annotate challenging visual concepts, web-based

crowdsourcing platforms offer an inexpensive method to capture human knowledge

and understanding. As a consequence, most well-known dataset for computer vision

is successfully annotated by web-based crowdsourcing platforms. For examples, well-

known crowdsourced datasets are listed as follows: ImageNet [3] for object classifica-

tion, PASCAL VOC [7] and ILSVRC [8] for object detection, LabelMe [9], and MS-

COCO [10] for pixel-level image segmentation, MPII [11], LSP [12], and FLIC [13]

for human pose estimations, TUHOI [14], UT Interactee [15], HICO [16] for actions

and interactions in images, VATIC [17], YouTube-Objects [18], SegTrack [19], Event-

Net [20], Sports-1M [21], THUMOS [22], MultiTHUMos [23], ActivityNet [24], and

Hollywood in Homes [25] for detailed video annotation, and INTERACT [26] for ab-

straction and cartoons.

Despite the innovative framework of crowdsourcing systems, responses from work-

ers can be unreliable [27, 28, 29, 4], since workers hired by crowdsourcing systems

are low-paid and have low responsibility. Therefore, extensive works have been pro-

ceeded to find reliable solutions that infer the true answers from noisy responses. One

natural method for aggregating responses is majority voting. But due to its simplicity,

Expectation-Maximization (EM)-based algorithms have become popular. Since EM-

based algorithms can deal with inference problems with latent variables and unknown

model parameters, researchers applied the EM algorithm to proper graphical models

for crowdsourcing systems, and showed that their results generally outperform those of

majority voting [30, 31, 32]. Recently, Karger et al. [33, 34] made a significant break-

through by proposing a novel iterative algorithm based on the idea of low-rank matrix

approximations and the message passing technique. They showed that the performance

of their iterative algorithm is order-optimal, which outperforms majority voting and

EM-based algorithms.

Our algorithm iteratively computes relative reliability of each worker in a novel

3

Fi
gu

re
1.

2:
V

ar
io

us
ty

pe
s

of
ta

sk
s

in
re

al
cr

ow
ds

ou
rc

in
g

sy
st

em
s.

4

way, where relative reliability is exploited as a weight of the worker’s responses. Our

algorithm also gets reliable results rapidly with small error compared to majority vot-

ing or EM-based algorithms. One of our main contributions is the performance guar-

antee of our algorithm by proving that the error bound of our algorithm. An interesting

aspect of the error bound is its dependency on the negative entropy of workers in a

perspective on information theory. Naturally, it is reasonable to assume that the true

answers can be revealed by how much information there is in the workers’ responses.

We verify the performance of our algorithm through numerical experiments on various

cases, which is close to that of oracle estimator. We also verify that our algorithm can

infer relative reliability of workers almost correctly by experiments.

The motivation of this research is to develop crowdsourcing applications which can

be operated in real crowdsourcing systems. In fact, most of major research studies in

this field have concentrated on cases with binary answers, yes (+1) or no (-1) [34, 32].

However, in reality, crowdsourcers have been requested various types of tasks in real

crowdsourcing as shown in Figure 1.2. Real crowdsourced data posted on Amazon

Mechanical Turk usually consists of multiple-choice questions, short-answer ques-

tions, K-approval voting, real-valued vector regression, and short-answer questions,

so more general inference techniques should be employed.

In this dissertation, we focus on a more general structure for crowdsourcing sys-

tems that can be applied to multiple-choice questions, short-answer questions, K-

approval voting, and real-valued vector regression. These tasks are fundamental com-

ponents composing crowdsourcing tasks, but have been not of interest to academic

studies in general. Of course, even more complex tasks have been requested in real

crowdsourcing systems, but many of complex tasks can be considered as a combina-

tion of those fundamental tasks which are stated above. For example, let us consider

an Optical Character Reader (OCR)-like task that asks to find a car number plate and

extract the car number from an image, shown in Figure 1.3 and 1.4. The correspond-

ing response would be the positions of the car number plate represented as bounding

5

Figure 1.3: Car number plates captured by a traffic camera. These data can be easily

labeled by web-based crowdsourcing services.

boxes, and the car number written in some numbers and characters. Then the response

can be split into real-valued regression tasks (the position of boxes) and multiple-

choice questions (the number of car number plates, the issuing state of the car number

plates, the length of the car numbers and each character of the car numbers). We claim

that this dissertation should be evaluated as not only research studies but also practical

applications since we propose several corresponding inference algorithms for those

fundamental tasks that can be directly applied to crowdsourcing systems.

This dissertation is based on our several previous papers for crowdsourcing sys-

tems:

• Reliable Multiple-choice Iterative Algorithm for Crowdsourcing Systems. In

Proceedings of the 2015 ACM SIGMETRICS International Conference on Mea-

surement and Modeling of Computer Systems, pages 205–216. ACM, 2015.

• Iterative Learning for K-approval Votes in Crowdsourcing Systems. MDPI Ap-

plied Sciences, 2021.

6

Fi
gu

re
1.

4:
V

ar
io

us
ca

r
nu

m
be

r
pl

at
es

in
U

SA
.L

ab
el

in
g

a
ca

r
nu

m
be

r
pl

at
e

ca
n

be
sp

lit
in

to
se

ve
ra

lr
ea

l-
va

lu
ed

re
gr

es
si

on
ta

sk
s

fo
rb

ou
nd

in
g

bo
xe

s,
an

d
se

ve
ra

lm
ul

tip
le

-c
ho

ic
e

qu
es

tio
ns

fo
rt

he
nu

m
be

ro
fc

ar
nu

m
be

rp
la

te
s,

th
e

is
su

in
g

st
at

e
of

th
e

ca
rn

um
be

r

pl
at

es
,t

he
le

ng
th

of
th

e
ca

rn
um

be
rs

an
d

ea
ch

ch
ar

ac
te

ro
ft

he
ca

rn
um

be
rs

.

7

• Reliable Aggregation Method for Vector Regression Tasks in Crowdsourcing.

In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages

261–273. Springer, 2020.

This dissertation is organized as follows: In Chapter 2, we define an inference

problem for crowdsourcing systems and introduce several methodologies that can deal

with binary-choice questions. We study crowdsourcing systems requesting discrete

answers for multiple-choice questions and short-answer questions in Chapter 3, and

for multiple-choice questions with K-approval voting in Chapter 4. We further study

crowdsourcing systems requesting continuous answers for real-valued vector regres-

sions in Chapter 5. Each chapter proposes own algorithm for the corresponding crowd-

sourcing task, and provide rigorous performance guarantees for each proposed algo-

rithm. Then we present comparative results through numerical experiments. Lastly, we

draw conclusions in Chapter 6.

8

Chapter 2

Background

In this chapter, we introduce crowdsourcing systems with mathematical representa-

tions where all tasks are comprised of binary-choice questions. This kind of tasks is

well studied in various research studies that provide mathematical problem setups and

technical solutions to design inference algorithms. Note that mathematical notations

introduced in this chapter follow the previous works [34, 35, 36], and can be appropri-

ately changed in other chapters that solves other task types.

2.1 Crowdsourcing Systems for Binary-choice Questions

Assume there are M workers and N tasks with binary labels {±1}. Denote by zi ∈

{±1}, i ∈ [N] the true label of task i, where [N] represents the set of first N inte-

gers; Nj is the set of tasks labeled by worker j, andMi the workers labeling task i.

The task assignment scheme can be represented by a bipartite graph where an edge

(i, j) denotes that the task i is labeled by the worker j. The labeling results form a

matrix L ∈ {0,±1}N×M , where Lij ∈ {±1} denotes the answer if worker j la-

bels task i, and Lij = 0 if otherwise. The goal is to find an optimal estimator ẑ of

the true labels z given the observation L, minimizing the average bit-wise error rate
1
N

∑
i∈[N] prob[ẑi 6= zi].

9

We assume that all the tasks have the same level of difficulty, but that workers may

have different predictive abilities. Following Karger et al. [34], we initially assume

that the ability of worker j is measured by a single parameter qj , which corresponds

to their probability of correctness: qj = prob[Lij = zi]. More generally, the workers’

abilities can be measured by a confusion matrix, to which our method can be easily

extended.

The values of qj reflect the abilities of the workers: qj ≈ 1 correspond to experts

that provide reliable answers; qj ≈ 1/2 denote spammers that give random labels in-

dependent of the questions; and qj < 1/2 denote adversaries that tend to provide op-

posite answers. Conceptually, the spammers and adversaries should be treated differ-

ently, the spammers provide no useful information and only degrade the results, while

the adversaries actually carry useful information, and can be exploited to improve the

results if the algorithm can identify them and flip their labels. We assume the qj of

all workers are drawn independently from a common prior p(qj |θ), where θ are the

hyper-parameters. To avoid the cases when adversaries and/or spammers overwhelm

the system, it is reasonable to require that E[qj |θ] > 1/2. Typical priors include the

Beta prior p(qj |θ) ∝ qα−1j (1− qj)β−1 and discrete priors, e.g., the spammer-hammer

model, where qj ≈ 0.5 or qj ≈ 1 with equal probability.

2.1.1 Majority Voting

The majority voting (MV) method aggregates the workers’ labels by

ẑ
majority
i = sign[

∑
j∈Mi

Lij]. (2.1)

The limitation of MV is that it weights all the workers equally, and performs poorly

when the qualities of the workers are diverse, especially when adversarial workers

exist.

10

2.1.2 Expectation Maximization

Weighting the workers properly requires estimating their abilities qj , usually via a

maximum a posteriori estimator, q̂ = argmaxlogp(q|L, θ) = log
∑

z p(q, z|L, θ).

This is commonly solved using an EM algorithm treating the z as hidden variables.

Assuming a Beta(α, β) prior on qj , EM is formulated as

E-step : µi(zi) ∝
∏
j∈Mi

q̂
δij
j (1− q̂j)1−δij , (2.2)

M-step : q̂j =

∑
i∈Nj µi(Lij) + α− 1

|Nj |+ α+ β − 2
, (2.3)

where δij = I[Lij = zi]; the ẑi is then estimated via ẑi = argmaxziµi(zi). Many ap-

proaches have been proposed to improve this simple EM approach, mainly by building

more complicated models.

2.1.3 Message Passing

A rather different algorithm in a message-passing style is proposed by Karger, Oh

and Shah [34] (referred to as KOS in the sequel). Let xi→j and yj→i be real-valued

messages from tasks to workers and from workers to tasks, respectively. Initializing

y0j→i randomly from Normal(1, 1) or deterministically by y0j→i = 1, KOS updates the

messages at t-th iteration via

xt+1
i→j =

∑
j′∈Mij

Lij′y
t
j′→i, (2.4)

yt+1
j→i =

∑
i′∈Nji

Li′jx
t+1
i′→j , (2.5)

and the labels are estimated via ŝti = sign[x̂ti], where x̂ti =
∑

j∈Mi
Lijy

t
j→i.

11

Chapter 3

Crowdsourcing Systems for Multiple-choice Questions

In this study, we focus on multiple-choice questions. Note that we consider multiple-

choice questions in which all choices are independent from each other. Independent

multiple choices differ from linearly ordered choices as considered in [37] which are

commonly used in rating systems. For example, classifying types of cancers in patients

is appropriate for an independent multiple-choice case, whereas determining the stage

of a specific cancer of a patient is adequate for a linearly ordered choices case. We

are currently focusing on the former case, which has greater applicability in D-ary

classification problems. Moreover, we do not make a restriction on variation in the

number of choices for each multiple-choice question. In addition, we suggest a method

to transform short-answer questions into several multiple-choice questions so that our

algorithm can be applied.

Our algorithm iteratively computes relative reliability of each worker in a novel

way, where relative reliability is exploited as a weight of the worker’s responses. Our

algorithm also gets reliable results rapidly with small error compared to majority vot-

ing or EM-based algorithms. One of our main contributions is the performance guar-

antee of our algorithm by proving that the error bound of our algorithm decays expo-

nentially. An interesting aspect of the error bound is its dependency on the negative

entropy of workers in a perspective on information theory. Naturally, it is reasonable

12

to assume that the true answers can be revealed by how much information there is in

the workers’ responses. We verify the performance of our algorithm through numer-

ical experiments on various cases, which is close to that of oracle estimator. We also

verify that our algorithm can infer relative reliability of workers almost correctly by

experiments.

Moreover, we addressed a strategy to gain responses with greater reliability from

diligent workers in an adaptive manner. In this strategy, some pilot tasks chosen from

whole tasks can be exploited to assess the expertise of the crowds. Note that we con-

sider pilot tasks that differ from golden standard units. The relative reliability of work-

ers can be estimated through given pilot tasks by applying our algorithm. In other

words, we can initially assess workers’ reliability with a small number of tasks, even

if their true answers are unknown. Since the relative reliability of workers are esti-

mated by managing the number of tasks each worker is given, we can expect to get

responses with greater reliability for the same budget in an efficient way. Since our

algorithm generally converges rapidly, our work can be combined to the context of

online learning, which is more realistic setting for crowdsourcing systems.

This chapter is organized as follows: We discuss related work in Section 3.1. In

Section 3.2, we make a setup, and we describe our algorithm to infer the true answers

for multiple-choice questions in Section 3.3. Then, we look into some applications in

Section 3.4 and provide performance guarantees for our algorithm in Section 3.5. In

Section 3.6, we present comparative results through numerical experiments, and we

draw conclusions in Section 3.7.

3.1 Related Work

A common, intuitive strategy for aggregating responses is majority voting, which is

widely used in real life due to its simplicity. However, in crowdsourcing systems, this

simple inference technique has several limitations, since it assumes all workers have an

13

equal level of expertise, and it gives the same weight to all responses. In general, there

are unreliable workers such as novices or free money collectors, and even adversarial

workers can be shown, so majority voting has obvious weak points when workers are

unreliable [29].

There have been various approaches to trying to improve the reliability of results

from unreliable responses. Two key ideas are introducing latent variables and estimat-

ing results by an iterative algorithm known as the EM algorithm. Dawid and Skene [38]

exploited these ideas when they developed a simple probabilistic model using confu-

sion matrices for each labeler as latent variables. They proposed an iterative algorithm

based on EM to infer ground truth from unreliable responses.

Since the EM algorithm has an effective procedure to evaluate missing or hidden

data and performs quite well, this model has been generalized and extended by several

researchers. The GLAD model [32] combines the implicit characteristics of tasks and

workers. Responses from workers are determined by several factors, such as the diffi-

culty of the task, the expertise of the labeler, and the true label. The EM-based model

can operate flexibly on various cases by introducing extra latent variables, which can

be represented as the natural properties of tasks and workers [31]. Another variant pro-

posed by Raykar et al. [30] considers a proper classifier for crowdsourcing systems,

and aims to learn the classifier and the ground truth together.

Despite its popularity, there are some arguments in existing EM algorithms. The

main thing is lack of intensive analysis about performance guarantees since their per-

formance is only empirically evaluated in most cases. Another point is that inference

techniques based on EM algorithms are not scalable. If the data size increases, EM-

based algorithms become inefficient and degenerate, because their time and space re-

quirements grow exponentially. Moreover, designing model-based EM algorithms with

greater complexity leads to the introduction of an increased number of latent variables

and model parameters. Apart from the computational complexity problem, the per-

formance of EM-based algorithms could degenerate due to the initialization problem,

14

even though it is designed to be a more complex model.

Alternative approaches have been suggested by Karger et al. [33] in the context of spec-

tral methods that use low-rank matrix approximations. They treated the data matrix A

which involves workers’ responses perturbed by a random noise. The true answers can

be approximated by a rank-1 matrix, of which the singular vector reflects the correct

answer of the tasks. When the spectral radius of the signal matrix outweighs the spec-

tral radius of the random noise matrix, the correct answers can be extracted by the

singular vector of the data matrix A. Using the power iteration method, the top singu-

lar vector can be obtained more efficiently compared to the computation complexity

of EM-based algorithms.

They also proposed a novel iterative learning algorithm [34] that learns the likeli-

hood of candidate answers and the reliability of workers. It is inspired by the standard

Belief Propagation (BP) algorithm, which approximates the maximal marginal distri-

bution of variables. This message passing algorithm achieves almost the same results

as the previous spectral method, but they provide novel analysis techniques such as

Density Evolution in coding theory to improve the error bound more tightly, which

decays exponentially. Although they did not assume any prior knowledge, Liu et al.

[36] shows that choosing a suitable prior can improve the performance via a Bayesian

approach.

Recently, Karger et al. [37] focused on multi-class labeling based on their existing

novel algorithms, but their strategy for multi-class labeling is well suited to the lin-

early ordered choices, not independent multiple choices. By converting each multiple-

choice question into a bunch of binary-choice questions, they could exploit the ex-

isting algorithms to determine true answers of multiple-choice questions. Although

this strategy can be extended to independent multiple choices, it overexploits redun-

dancy since each task should be split and queried in multiple times to obtain reliable

results. Furthermore, in real crowdsourcing systems, it is natural that workers solve

intact multiple-choice questions rather than split binary-choice questions. Therefore it

15

has difficulty in combining into real crowdsourcing systems.

On top of the problem inferring the true answers, proper adaptive strategies are

developed to utilize reliable workers when they are reusable. [39, 40, 41, 42] showed

that the performance can be significantly improved through exploration/exploitation

approaches.

3.2 Problem Setup

In this section, we define some variables and notations for problem formulation. Con-

sider a set of m tasks, each of which can be a multiple-choice question that only has

one correct answer. The number of choices for task i is denoted Di. All tasks are

distributed to several workers through a proper task allocation strategy.

Suppose that nworkers participate to performm tasks. We consider a probabilistic

model to generate responses when workers face tasks. We assume that a worker j is

parameterized by a latent variable pj ∈ [0, 1], which represents the probability of

getting a correct answer. In other words, each worker gives the correct answer with a

probability pj and the wrong answer with probability 1 − pj in the decision-making

process. When a worker gives a wrong answer, we can assume that the worker has

chosen one of distractors uniformly at random, so the probability of each wrong choice

is
1− pj
Di − 1

. It is reasonable that this latent variable pj refers to the reliability of the

worker, since it captures the ability or diligence of the worker.

In the response process, when a worker j solves an assigned task i, we define

the submitted response ~Aij in vector form. The response is represented as a Di-

dimensional binary unit vector ~Aij , having 1-of-Di representation in which the ele-

ment indicating the chosen answer is equal to 1 and all other elements are equal to 0.

The values of Aijd therefore satisfy Aijd ∈ {0, 1} and
∑

dA
ij
d = 1 where Aijd is the

dth component of the response ~Aij . For example, when there are three choices, the

possible answer forms are (1, 0, 0), (0, 1, 0), and (0, 0, 1). Our goal is to determine the

16

correct answer for each task by querying and aggregating all the responses from the

workers.

3.3 Inference Algorithm

In this section, we propose our multiple-iterative algorithm with a minimum number

of assignments. In advance, using random regular bipartite graph-generating model,

we emulate a real crowdsourcing system scenario. Then, the message update rules of

our iterative algorithm are explained. In addition, we propose the generalized iterative

algorithm for general setting such as a adaptive strategy.

3.3.1 Task Allocation

To design a graph model for a crowdsourcing system, we use a bipartite graph which

consists of two types of node sets. m tasks are defined as the set of nodes [m] at the

left side of the graph, and n workers are defined as the set of nodes [n] at the right

side respectively. Each edge represents an assignment between a task and a worker

and this is determined according to the task assignment method. For simplicity, the ith

task and the jth worker are denoted as i and j respectively. Given a bipartite graph

G = {[m] ∪ [n], E} representing the allocation graph between tasks and workers, we

connect the edge (i, j) if task i is assigned to worker j. We decide the task node degree

l in proportion to the resources we can spend. In addition, the worker node degree r

is determined by the work capacity that an individual worker can manage. Since we

recruit workers through open-call, the (l, r) regular bipartite graph is adequate for our

setting. To generate a (l, r) random regular bipartite graph such that ml = nr, we

bring a simple random construction model known as the pairing model(This is also

called a configuration model in [34]). In fact, any arbitrary bipartite graph instance can

be used for task allocation. However, we will use the pairing model which generates

a random bipartite graph with a local tree-like property. Using this property, we prove

17

the tight error bounds of our algorithm in Section 3.5.3.

3.3.2 Multiple Iterative Algorithm

In this section, we describe the basic operations of our algorithm and the process of

inferring true answers. For each edge (i, j), the response is denoted as ~Aij ∈ U =

{~eu|u ∈ [1 : Di]} which consists of D dimensional binary unit vectors all of whose

components are 0 or 1. To extract the true answers from the unreliable responses of

workers, we propose an iterative algorithm for multiple-choice questions.

Our algorithm generates two types of messages between task nodes and worker

nodes. The first type is the task message ~xi→j , which is denoted as a Di dimensional

vector. Each component of this vector corresponds to the likelihood meaning the pos-

sibility being a true answer. The second type is a worker message yj→i which specifies

the reliable worker j. Since these worker messages are strongly correlated with the

reliability pj , our algorithm can assess relative reliability. Hence, we will empirically

verify the correlation between {yj→i} and {pj} in Section 3.6. The initial messages of

our iterative algorithm are sampled independently from the Gaussian distribution with

unit mean and variance, i.e., y(0)j→i ∼ N (1, 1). Unlike EM-based algorithms [38, 32],

our approach is not sensitive to initial conditions as long as the consensus of the group

of workers is positively biased. Now, we define the adjacent set of task i as ∂i and

similarly the adjacent set of worker j is defined as ∂j. Then, at the kth iteration, both

messages are updated using the following rules:

~x
(k)
i→j =

∑
j′∈∂i\j

~Aij
′
y
(k−1)
j′→i , ∀(i, j) ∈ E (3.1)

y
(k)
j→i =

∑
i′∈∂j\i

(
~Ai
′j −

~1

D

)
· ~x(k−1)i′→j , ∀(i, j) ∈ E (3.2)

At the task message update process shown in (3.1), our algorithm gives weight

to the answer according to the reliability of a worker. At the worker message update

18

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

y

x

z

~1
D

~x
(k)
i′→j

~x
(k)
i′→j

(
~Ai
′j − ~1

D

)
Figure 3.1: Description of a task message ~x(k)i′→j and a response vector ~Ai

′j , in the

message vector space when ~Ai
′j = (1, 0, 0) and Di′ = 3.

process shown in (3.2), it gives greater reliability to a worker who strongly follows

consensus of other workers.

Figure 3.1 describes two vectors in the message vector space. As shown above,

(~Ai
′j − ~1

D) represents the difference between response of worker j for task i′ and

the random answer ~1
D . Also, ~x(k−1)i′→j means the weighted sum of responses of other

workers who have solved the task i′. Thus, the inner product of these two vectors in

(3.2) can assess the similarity between the response of worker j for the task i′ and sum

of those of other workers who have solved the task i′. A larger positive similarity value

of the two vectors means that worker j is more reliable. Meanwhile, the negative value

specifies that the worker j does not follow the consensus of other workers and our

algorithm regards the worker j as unreliable. Specially, when ~x(k−1)i′→j and (~Ai
′j − ~1

D)

are orthogonal for fixed task i′, the inner product of two vector is close to zero. This

means that ~x(k−1)i′→j does not contribute to the message of the worker j. Then, y(k)j→i is

defined as the sum of the inner product from each task message except for that of

task i, representing the relative reliability of the worker j. Returning to (3.1), ~x(k)i→j is

determined by the weighted voting of workers who have solved task i, except for the

message from the worker j. The worker j′ contributes to the response ~Aij
′

as much

as the weight value y(k−1)j′→i . Thus, ~x(k)i→j is defined as the sum of ~Aij
′
y
(k−1)
j′→i which

19

represents the estimated true answer for the task i. The following describes the pseudo

code of our algorithm.

Algorithm 3.1 Multiple Iterative Algorithm

1: Input: E, { ~Aij}(i,j)∈E , kmax

2: Output: Estimation ∀i ∈ [m] , t̂i ∈ {~eui |ui ∈ [1 : D]}

3: For ∀(i, j) ∈ E do

4: Initialize y(0)j→i with random Zij ∼ N(1, 1);

5: For k = 1, 2 . . . , kmax do

6: For ∀(i, j) ∈ E do ~x(k)i→j ←
∑

j′∈∂i\j
~Aij
′
y
(k−1)
j′→i ;

7: For ∀(i, j) ∈ E do y(k)j→i ←
∑

i′∈∂j\i(
~Ai
′j − ~1

D) · ~x(k−1)i′→j ;

8: For ∀j ∈ [n] do yj ←
∑

i∈∂j(
~Aij − ~1

D) · ~x(kmax−1)i→j ;

9: For ∀i ∈ [m] do ~xi ←
∑

j∈∂i
~Aijy

(kmax−1)
j→i ;

10: Estimate vector t̂i = ~eui where ui = arg max
d

(~xi)

The maximum number of iterations kmax is analyzed in Section 3.5.2. In practice,

a dozen of iterations is sufficient for the convergence of our algorithm. After kmax

iterations, our algorithm makes the final estimate vector ~xi of a task i, and each com-

ponent of the vector represents the possibility of being the true answer. Our algorithm

infers the true answer by choosing ui that has the maximum component among final

likelihoods of ~xi. Then, our algorithm outputs the estimate of the true answer denoted

as a unit vector, ~eui .

3.3.3 Task Allocation for General Setting

In the previous section, we proposed our iterative algorithm for a bipartite graph ac-

cording to the pairing model. However, the number of workers allocated to each task

can differ in cases that are more general. That must bring about the variation of the

number of tasks that each worker solves. Hence, we consider a general bipartite graph

with various node degrees. To apply our algorithm in this scenario, the update rules

20

of both messages should be slightly changed in terms of the task node degree li and

the worker node degree rj . For a task message ~x(k)i→j , we divide each message value

by the task node degree (li− 1) so that tasks with different degrees receive the similar

effect from worker nodes. In other words, dividing by (li − 1) equalizes the task mes-

sage values. Likewise, a worker message y(k)j→i is divided by the worker node degree

(rj − 1) for general setting.

In addition to the generalization of the degree profile, we consider the various

number of choices for each task (For example ∀i ∈ [m], Di ∈ {2, 3, 4}). In practice,

the number of choice for each task can differ from one another and our Algorithm 2 can

cope with this variation. The following describes the pseudo code of our generalized

algorithm.

Algorithm 3.2 Generalized Multiple Iterative Algorithm

1: Input: E, { ~Aij}(i,j)∈E , kmax

2: Output: Estimation ∀i ∈ [m] , t̂i ∈ {~eui |ui ∈ [1 : Di]}

3: For ∀(i, j) ∈ E do

4: Initialize y(0)j→i with random Zij ∼ N(1, 1);

5: For k = 1, 2 . . . , kmax do

6: For ∀(i, j) ∈ E do ~x(k)i→j ←
∑

j′∈∂i\j
(

1
li−1

)
~Aij
′
y
(k−1)
j′→i ;

7: For ∀(i, j) ∈ E do

8: y
(k)
j→i ←

∑
i′∈∂j\i

(
1

rj−1
)
(~Ai

′j − ~1
Di′

) · ~x(k−1)i′→j ;

9: For ∀j ∈ [n] do

10: yj ←
∑

i∈∂j
(

1
rj−1

)
(~Aij − ~1

Di
) · ~x(kmax−1)i→j ;

11: For ∀i ∈ [m] do ~xi ←
∑

j∈∂i
(

1
li−1

)
~Aijy

(kmax−1)
j→i ;

12: Estimate vector t̂i = ~eui where ui = arg max
d

(~xi)

Adaptive task allocation method. One of significant points of our algorithm is

that worker’s relative reliability can be assessed in the course of its iterations. If we

use this property, the performance of inferring the true answer can be improved further.

21

(a) An independent multiple-choice question:

Determining the breed of a dog.

(b) A real task in Amazon Mechanical Turk:

Filling up address information of a given com-

pany.

(c) GalaxyZoo project: classifying galaxies ac-

cording to their shapes.

(d) reCAPTCHA: Typing words for spam pro-

tection and a book digitization project.

Figure 3.2: Examples of various crowdsourcing tasks.

Consider the adaptive strategy as an improvement method using the above property.

First, a small portion of the tasks is used to infer the reliability of each worker using

the iterative algorithm. Then, we select partial workers who have higher worker values

to message and let them solve all of the remaining tasks. Although this method gives

a larger burden to workers who are more reliable, the total number of edges is main-

tained. In Section 3.6, the adaptive task allocation method will be explained in detail

and we will verify some of the gains of this method through several experiments.

22

3.4 Applications

We described an algorithmic solution to crowdsourcing systems for multiple-choice

questions in the previous section, and we now look into some applications that our

algorithm can treat. As we can see in crowdsourcing systems like Amazon Mechan-

ical Turk, tasks are distributed in the form of multiple-choice questions and short-

answer questions like entering zip-code. Although previous algorithms like [34, 32]

have shown remarkable results in binary cases, a merit of our algorithm is that out-

standing results can even be achieved on multiple-choice and short-answer questions

that real tasks usually contain. Furthermore, a remarkable characteristic of our model

is that the number of choices can vary for each question. This flexibility makes our

model more applicable for real crowdsourced data. In this section, we describe some

applications in detail that can apply our algorithm.

Labeling or tagging images is a common usage of exploiting crowdsourcing sys-

tems, and shows successful results in practice [3]. One of such example is classifying

species or breeds of dogs in the images illustrated in Figure 3.2(a). Such tasks are very

tough for machines, and even humans who have no background knowledge of dogs.

These tasks are suitable for crowdsourcing materials and have multiple choices that

are directly applicable to our algorithm.

Another application of labeling tasks is Galaxy Zoo, one of the well known projects

using the wisdom of crowds (cf. Figure 3.2(c)). Galaxy Zoo has distributed over 300,000

images of galaxies to crowds for classification by their shape. Any volunteer with no

prior knowledge can visit the website, where they are presented with an image of a

galaxy and instructions of labeling manner. Then they answer a series of questions

about the visual form of the galaxy, like whether it has arms or a bulge. Each step con-

sists of multiple-choice questions, and the number of choices varies for each question.

Since our algorithm is flexible for the number of choices, the responses of Galaxy Zoo

can be easily aggregated using our algorithm.

For short-answer questions, it is hard to aggregate workers’ responses in general,

23

because their responses can vary. Our algorithm can settle this problem with the idea

of transforming short-answer questions into several multiple-choice questions. When

the length of the response to a short-answer question is fixed, short-answer questions

can be split into several smaller tasks by considering each character of a response. In

other words, each character is treated as one microtask in short-answer questions. For

example, consider the task of entering a fixed-length answer such as a zip code like

97232. It can be treated as five microtasks, and each of the characters has 10 possible

answers, from 0 to 9. Note that in each microtask, we only consider the number of

choices as much as the number of candidate answers. For example, if candidate an-

swers for a microtask are “4”, “7”, and “9”, then we set the number of choices to three

for this microtask. In addition, we can decide a set of candidate answers as all gathered

responses simply, or only responses of top-K likelihood effectively.

Next, we consider when the length of the response varies. We can make another

small task that determines the true length of the response and then we can discard the

answers whose length is determined as a minor option. In summary, every short-answer

question can be decomposed to several microtasks by considering each character of the

answer and its length. Characters of the response and its length are transformed into

small microtasks, and each microtask is considered a multiple-choice question. Thus,

by applying our algorithm, responses to these short-answer questions can be easily

aggregated. For a real task in Amazon Mechanical Turk, as illustrated in Figure 3.2(b),

entering zip codes or phone numbers is an example of short-answer questions.

Another popular crowdsourcing application for short-answer questions is reCAPTCHA

[43] illustrated in Figure 3.2(d). In its original version, CAPTCHA was first introduced

to distinguish automatic bots by typing some characters correctly in a given image. It

was extended to reCAPTCHA which digitalizes some hard phrases that Optical Char-

acter Recognition (OCR) techniques cannot recognize. In this case, the length of re-

sponses can vary, so a small task determining the length of response is necessary, as

we mentioned. Although discarding the rest of the responses can be viewed as a waste,

24

it is a tolerable loss, since the length of the responses is generally consistent. In addi-

tion, we need discuss the number of tasks r, each worker is given. In reCAPTCHA,

we can only assign one entering task to each worker, while our algorithm needs suffi-

cient number of tasks for each worker to ensure reliable inference. However, since we

split each worker’s response into several microtasks, the task size problem is naturally

solved.

Another special application of our algorithm is as an adaptive task allocation strat-

egy, since it explicitly computes the relative reliability of the workers, even with no

prior knowledge of the worker distribution. If we design a proper adaptive strategy for

crowdsourcing systems, we can boost its performance from the perspective of quality

control of workers. The best workers can be recruited and exploited to resolve more

questions. It can be viewed as a method for finding experts from crowds or filtering

out workers who just spam for rewards; therefore, we can exploit reliable workers ef-

ficiently under the same budget through an adaptive task allocation strategy. We will

examine such an adaptive strategy in the experiment section.

3.5 Analysis of Algorithms

In this section, we provide proof for the performance guarantee of Algorithm 1. In

Theorem 3.1, we show that the error bound depends on task degree l and the quality of

the workers. More precisely, we show that an upper bound on the probability of error

decays exponentially. From this section, we assume that Di = D for all i ∈ [n].

3.5.1 Quality of Workers

Let ~vj denote the confusion vector of each worker j. Each component of the vector

means the probability that a worker chooses the corresponding choice for a response.

For a fixed task i with true answer t̂ui ∈ U , the confusion vector ~vj of worker j is

25

defined as follows:

vjd =

pj if t̂ui = ~ed

1−pj
D−1 otherwise

From an information theoretical perspective, the quality of workers can be defined

as negative entropy with an offset and using the above confusion vector, we can define

the quality of workers as

q = E
[
H(p)− p̄ log(D̂) + log(D)

]
, (3.3)

where H(p) = p log p+ p̄ log p̄, p̄ = 1− p, D̂ = D − 1.

According to the quality of each worker, we can divide the workers into three types.

At the extreme, workers with a quality close to zero make arbitrary responses. Since,

we cannot obtain any information from them, let us define them as “Non-informative

workers.” At the other extreme, workers with the a quality close to one make almost

true answers and we call them “Reliable workers.” Lastly, there are workers who make

wrong answers on purpose and affect the crowdsourcing system badly; they can be

regarded as “Malicious workers.” In our algorithm, since the worker message value yj

is related to the quality, workers with negative yj , positive yj and yj close to zero cor-

respond to “Reliable workers,” “Malicious workers,” and “Non-informative workers,”

respectively.

Although the quality of workers theoretically follows negative entropy, we found

that a second-order polynomial approximation is sufficient for our analysis as de-

scribed in Figure 3.3. As the dimension of the tasks increase, the approximation de-

viates from the real quality. Nevertheless, second-order approximation fits well to the

real quality in the acceptable dimension case that our algorithm targets.

q ' q̃1 = E
[(D

D − 1

)2(
pj −

1

D

)2]
(3.4)

For simplicity, we will use this approximated quality in the following sections.

There is one more necessary assumption about worker distribution that workers give

26

Malicious

Non-informative

Reliable

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

reliability p

Q
ua

lit
y

of
w

or
ke

r

D = 3

Negetive Entropy with offset
Second-order approximation

Figure 3.3: Comparison of the quality between negative entropy with offset and

second-order polynomial approximation.

the correct answers on average rather than random or adversarial answers, so that

E [pj] >
1

D
. Given only workers’ responses, any inference algorithms analogize the

true answers from the general or popular choices of crowds. Consider an extreme case

in which everyone gives adversarial answers in a binary classification task; no algo-

rithm can correctly infer the reliability of the crowd. Hence, the assumption E [pj] >
1

D
is inevitably necessary.

3.5.2 Bound on the Average Error Probability

From now on, let l̂ ≡ l− 1, r̂ ≡ r− 1, and the average quality of workers is defined as

q = E[(D
D−1)2(pj − 1

D)2]. Also, σ2k denotes the effective variance in the sub-Gaussian

tail of the task message distribution after k iterations.

σ2k ≡
2q

µ2T k−1
+

(
D

D − 1

)2(
3 +

1

8qr̂

)[
1− 1/T k−1

1− 1/T

]
, (3.5)

where T =
(D − 1)2

(D2 −D − 1)
q2 l̂r̂.

27

Theorem 3.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n

workers according to a random (l, r)-regular bipartite graph according to the pairing

model. If the distribution of the reliability satisfies µ ≡ E[D
D−1(pj − 1

D)] > 0 and

T > 1, then for any t ∈ {ei}m, the estimate after k iterations of the iterative algorithm

achieves
1

m

m∑
i=1

P(ti 6= t̂
(k)
i) 6 (D − 1)e−lq/(2σ

2
k) +

3lr

m
(l̂r̂)2k−2. (3.6)

The second term of the equation is the upper bound of probability that the graph

dose not have a local tree-like structure and it can be quite small as long as we treat

a large number of tasks. Therefore, the dominant factor of the upper bound is the first

exponential term. As shown in (3.5), T = 1 is the crucial condition and we can satisfy

T > 1 by using a sufficiently larger l or r. Then, with T > 1, σ2k converges to a finite

limit σ2∞, and we have

σ2∞ =

(
3 +

1

8qr̂

)(
T

T − 1

)
. (3.7)

Thus, the bounds of the first term of (3.6) does not depend on the number of tasks

m or the number of iterations k. The following Corollary 3.1.1 describes an upper

bound that only depends on l, q, σ2∞, and D.

Corollary 3.1.1. Under the hypotheses of Theorem 3.1, there existsm0 = 3lrelq/4σ
2
∞(l̂r̂)2(k−1)

and k0 = 1 + (log (q/µ2)/ log T) such that

1

m

m∑
i=1

P(ti 6= t̂
(k)
i) 6 De−lq/(4σ

2
∞), (3.8)

for all k > k0 and for all m > m0.

Proof. First, we will show that σ2k 6 2σ2∞ for k > 1 + (log (q/µ2)/ log T). Since

T > 1, as per our assumption, σ2k = (2q/µ2T k−1) + (D
D−1)2(3 + 1/8qr̂)1−1/T

k−1

T−1 6

2 + σ2∞ 6 σ2∞ + σ2∞ 6 2σ2∞. Therefore, the first term of (3.6) is bounded like (D −

1)e−lq/2σ
2
k 6 (D − 1)e−lq/4σ

2
∞ . Next, it is sufficient to set m > 3lrelq/4σ

2
∞(l̂r̂)2(k−1)

to ensure 3lr
m (l̂r̂)2k−2 6 e−lq/(4σ

2
∞).

28

From Corollary 3.1.1, we obtained that the required number of iterations k0, is

small in that it is the only logarithmic in l,r,q,µ andD. On the other hand, although the

required number of entire tasks m0, is very large in Corollary 3.1.1, the experimental

result in Section 3.6 shows that the performance of error exhibits exponential decay

as stated in (3.8).

Now, if we assume that there are no limitation on worker degree r and T > 2, we

can find σ2∞ 6 2(3 + 1/8qr̂). Then, for all r > 1 + 1/8q, as similar with the [35], we

get the following bound:

1

m

m∑
i=1

P(ti 6= t̂
(k)
i) 6 De−lq/32. (3.9)

Also, we can check the following corollary in terms of the number of queries per task

l to achieve a target accuracy. Hence, we get the following Corollary 3.1.2.

Corollary 3.1.2. Using the task assignment scheme according to pairing model with

r > 1 + 1/8q and the iterative algorithm, it is sufficient to query (32/q)log(D/ε)

times per task to guarantee that the error bound is at most ε for any ε 6 1/2 and for

all m > m0.

3.5.3 Proof of the Error Bounds

The proof is roughly composed of three parts. First, the second term at the right-hand

side of (3.6) is proved using its local tree-like property. Second, the remaining term

of the right-hand side of (3.6) is verified using Chernoff bound in the assumption that

the estimates of the task message follow sub-Gaussian distribution. Lastly, we prove

that the assumption of the second part is true within certain parameters. To apply den-

sity evolution with multi-dimensional vector form is difficult in that the cross term of

each components are generated. Therefore our proof can be differentiated from binary

setting in [35].

Without a loss of generality, it is possible to assume that the true answer of each

task, for any i ∈ [m], ti = ~e1. Let t̂(k)i denote the estimated answer of task i defined in

29

Section 3.5.2. If we draw a task III, uniformly at random from the task set, the average

probability of error can be denoted as

1

m

∑
i∈[m]

P(ti 6= t̂
(k)
i) = P(tIII 6= t̂

(k)
III), (3.10)

Let GIII,k denote a subgraph of G that consists of all the nodes whose distance from

the node ‘III’ is at most k. After k iterations, the local graph with root ‘III’ is GIII,2k−1,

since the update process operates twice for each iteration. To take advantage of density

evolution, the full independence of each branch is needed. Thus, we bound the proba-

bility of error with two terms, one that represents the probability that subgraph GIII,2k−1

is not a tree and the other, which represents the probability that GIII,2k−1 is a tree with

a wrong answer.

P(tIII 6= t̂
(k)
III) 6 P(GIII,2k−1 is not a tree)

+ P(GIII,2k−1 is a tree and tIII 6= t̂
(k)
III). (3.11)

The following Lemma 3.2 bounds the first term and proves that the probability that

a local subgraph is not a tree vanishes as m grows. A proof of Lemma 3.2 is provided

[35] (cf. Karger, Oh and Shah 2014, Section 3.2).

Lemma 3.2. From a random (l,r)-regular bipartite graph generated according to the

pairing model,

P(GIII,2k−1 is not a tree) 6
(
l̂r̂
)(2k−2) 3lr

m
.

From the result of Lemma 3.2, we can concentrate directly on the second term of

(3.11) and define the pairwise difference of task messages as x̃xx
(k)
d = xxx

(k)
1 − xxx

(k)
d for

∀d ∈ [2 : D].

P(tIII 6= t̂
(k)
III |GIII,k is a tree) 6 P(∪Dd=2{x̃

(k)
III 6 0}|GIII,k is a tree)

6 P(∪Dd=2{x̃III 6 0}).

To obtain a tight upper bound on P(∪Dd=2{x̂xx
(k)
d 6 0}) of our iterative algorithm,

we assume that x̃xx
(k)
d follow sub-Gaussian distribution for any d ∈ [2 : D] and prove

30

these in Section 3.5.4. Then, Chernoff bound is applied to the independent message

branches and this brings us the tight bound of our algorithm. A random variable zzz with

mean m is said to be sub-Gaussian with parameter σ̃ if for any λ ∈ R the following

inequality holds:

E[eλzzz] 6 emλ+(1/2)σ̃2λ2 . (3.12)

We will first show that for ∀d ∈ [2 : D], x̃xx
(k)
d is sub-Gaussian with mean mk and

parameter σ̃2k for specific region of λ, precisely for |λ| 6 1/(2mk−1r̂). Now we define

mk ≡ µl̂Uk−1, ∀k ∈ N

σ̃2k ≡ 2l̂Sk−1 + [µ2 l̂2r̂(3q2 l̂r̂ + l̂/8)]U2k−4
[

1− (1/T)k−1

1− (1/T)

]
,

where U =
D − 1

D
ql̂r̂, S =

D2 −D − 1

D2
l̂r̂

T =
U2

S
=

(D − 1)2

D2 −D − 1
q2 l̂r̂

then

E[eλx̃xx
(k)
d] 6 emkλ+(1/2)σ̃2

kλ
2
. (3.13)

The locally tree-like property of a sparse random graph provides the distributional

independence among incoming messages, that is E[eλx̂xx
(k)
d] = E[eλx̃xx

(k)
d](l/l̂). Thus, x̂xx

(k)
d

satisfies E[eλx̂xx
(k)
d] 6 e(l/l̂)mkλ+((l/2l̂))σ̃2

kλ
2

for all d ∈ [2 : D]. Because of full indepen-

dence of each branch, we can apply Chernoff bound with λ = −mk/(σ̃
2
k), and then

we obtain

P(x̂xx
(k)
d 6 0) 6 E[eλx̂xx

(k)
d] 6 e−lm

2
k/(2l̂σ̃

2
k). (3.14)

P(∪Dd=2{x̂xx
(k)
d 6 0}) 6

D∑
d=2

P(x̂xx
(k)
d 6 0)

6 (D − 1)e−lm
2
k/(2l̂σ̃

2
k). (3.15)

Sincemkmk−1/(σ̃
2
k) 6 1/(3r̂), we can easily check |λ| 6 1/(2mk−1r̂). This finalizes

the Proof of the Theorem 3.1.

31

3.5.4 Proof of Sub-Gaussianity

Now we prove that for all d ∈ [2 : D], x̃xx
(k)
d is sub-Gaussian with some mk and σ̃2k.

Recurrence relation of the evolution of the MGFs(moment generating functions) on x̃xxd

and ypypyp are stated as

E[eλx̃xx
(k)
d] =

(
Eppp

[
pppE
[
eλyyy

(k−1)
p |ppp

]
+

p̄̄p̄p

D − 1
E
[
e−λyyy

(k−1)
p |ppp

]
+

p̄̄p̄p

D − 1
(D − 2)

])l̂
, (3.16)

E[eλyyy
(k)
p] =

(
pE
[
eλ(

1
D

∑D
d=2 x̃xx

(k)
d)

]
+

p̄

D − 1

D∑
j=2

E
[
eλ(−x̃xx

(k)
j + 1

D

∑D
d=2 x̃xx

(k)
d)

])r̂
, (3.17)

where p̄ = 1− p and p̄̄p̄p = 1− ppp.

Using above MGFs and mathematical induction, we can prove that x̃xx
(k)
d are sub-

Gaussian, for all d ∈ [2 : D].

First, for k = 1, we prove that all of x̃xx
(1)
d are sub-Gaussian random variables

with mean m1 = µl̃ and variance σ̃21 = 2l̃, where µ ≡ E[D
D−1(pj − 1

D)]. Using

Gaussian initialization of yyyp ∼ N (1, 1), we obtain E[eλyyy
(0)
p] = eλ+(1/2)λ2 regardless

of p. Substituting this into equation (13), we have

E[eλx̃xx
(1)
d] =

(
Eppp

[
pppeλ+(1/2)λ2 +

(1− ppp

D − 1

)
e−λ+(1/2)λ2

+
(1− ppp

D − 1

)
(D − 2)

])l̂
6

(
E[a]eλ +

(
E[ā]e−λ

)l̂
e(1/2)l̂λ

2

6 e(µλ+λ
2)l̂, (3.18)

where a =
Dp+D − 2

2(D − 1)
, ā = 1− a =

D(1− p)
2(D − 1)

32

where the first inequality follows from the fact that 2 6 eλ + e−λ for any λ ∈ R, and

the second inequality follows from that

bez + (1− b)e−z 6 e(2b−1)z+(1/2)z2 , (3.19)

for any z ∈ R and b ∈ [0, 1] (cf. Alon and Spencer 2008, Lemma A.1.5) [44].

From kth inductive hypothesis, we have E[eλx̃xx
(k)
d] 6 emkλ+(1/2)σ̃2

kλ
2

for |λ| 6

1/(2mk−1r̂). Now, we will show E[eλx̃xx
(k+1)
d] 6 emk+1λ+(1/2)σ̃2

k+1λ
2

for |λ| 6 1/(2mkr̂).

In advance, substituting (3.19) into (3.17), we have

Lemma 3.3. For any |λ| 6 1/(2mkr̂) and p ∈ [0, 1], we get

E[eλyyy
(k)
p] 6

[(
pe(1/2)mkλ + p̄e−(1/2)mkλ

)]r̂
·e(

D−2
2D

)r̂mkλ+(D
2−D−1

D2)r̂σ̃2
kλ

2

.

Similar to (3.18)’s process, from (3.16), we get

E[eλx̃xx
(k+1)
d] 6 Eppp

(
aE
[
eλyyy

(k)
p

]
+ āE

[
e−λyyy

(k)
p

])l̂
.

with 2 6 eλ + e−λ for any λ ∈ R.

Substituting the result of Lemma 3.3 into the above inequality provides

E[eλx̃xx
(k+1)
d] 6 Eppp

[
a
(
pppe(1/2)mkλ + p̄ppe−(1/2)mkλ

)r̂
+ā
(
pppe(1/2)mkλ + p̄ppe−(1/2)mkλ

)r̂]l̂
·e(

D−2
2D

)l̂r̂mkλ+(D
2−D−1

D2)l̂r̂σ̃2
kλ

2

. (3.20)

Now we are left to bound (3.20) using following Lemma 3.4.

Lemma 3.4. For any |z| 6 1/(2r̂) and p ∈ [0, 1], we get

Eppp

[
a
(
pppe

D−1
D

z + p̄̄p̄pe−
1
D
z
)

+ ā
(
pppe−

D−1
D

z + p̄̄p̄pe
1
D
z
)]r̂

6 e
D−1
D

qr̂z+
(

3
2
qr̂+ 1

8

)
r̂z2 .

33

Applying this to (3.20) gives

E[eλx̃xx
(k+1)
d] 6 e

D−1
D

ql̂r̂mkλ+
[(

3
2
qr̂+ 1

8

)
m2
k+
(
D2−D−1

D2

)
σ̃2
k

]
l̂r̂,

for |λ| 6 1/(2mkr̂).

From the result of mathematical induction, we can obtain the recurrence relations

of two parameters of the sub-Gaussians

mk+1 =
[D − 1

D
ql̂r̂
]
mk,

σ̃2k+1 =
[(3

2
qr̂ +

1

8

)
m2
k +

(D2 −D − 1

D2

)
σ̃2k

]
l̂r̂,

with D−1
D ql̂r̂ > 1, wheremk is increasing geometric series. Thus, the above recursions

hold for |λ| 6 1/(2mkr̂) and we get

mk = µl̂
[D − 1

D
ql̂r̂
]k−1

,

for all k ∈ N. Substituting mk into σ̃2k, we obtain

σ̃2k = aσ̃2k−1 + bck−2, (3.21)

where

a =
D2 −D − 1

D2
l̂r̂, b = µ2 l̂3r̂

(3

2
qr̂ +

1

8

)
c =

[D − 1

D
ql̂r̂
]2

For T 6= 1, This type of recurrence relation can be represented as the following closed

formula.

σ̃2k = σ̃21a
k−1 + bck−2

[1− (a/c)k−1

1− (a/c)

]
. (3.22)

This finishes the proof of (3.13).

Proof of Lemma 3.3 In the k + 1th inductive step of mathematical induction, we as-

sume that E[eλx̃xx
(k)
d] 6 emkλ+(1/2)σ̃2

kλ
2

for any d ∈ [2 : D] with |λ| 6 1/(2mk−1r̂). In

other words, all of x̃xx
(k)
d follow sub-Gaussian distribution with parameters mk and σ̃2k.

From (3.17), each component at the right-hand side can be represented as the product

34

of several combinations of [eλx̃xx
(k)
d] and the product of variables means a linear com-

bination in the exponential field. Using hölder’s inequality, we prove that the linear

transformation of sub-Gaussian random variables follows also sub-Gaussian distribu-

tion with some parameters. Moreover, these parameters are determined byD, meanmk

and variance σ̃2k of each sub-Gaussian x̃xx
(k)
d . Applying h”older’s inequality to (3.17),

the first term at the right-hand side of (3.17) gives

E
[
eλ(

1
D

∑D
d=2 x̃xx

(k)
d)

]
6

D∏
d=2

[
E
(
eλ(1/D)x̃xx

(k)
d)
)D−1] 1

D−1

6 e(
D−1
D

)mkλ+(D−1

2D2)σ̃2
kλ

2

.

For the second term at the right-hand side of (3.17), we have

E
[
eλ(−x̃xx

(k)
j + 1

D

∑D
d=2 x̃xx

(k)
d)

]
6 E

[
e−λ(

D−1
D

)x̃xx
(k)
j

]

·
D∏

d=2,d6=j

[
E
(
eλ(1/D)x̃xx

(k)
d)
)D−1] 1

D−1

6 e(−
1
D
)mkλ+(D

2−D−1

2D2)σ̃2
kλ

2

.

Getting these two results together finishes the proof of Lemma 3.3.

Proof of Lemma 3.4 From (3.19), we get(
pppe

D−1
D

z + p̄̄p̄pe−
1
D
z
)
6 e(ppp−

1
D
)z+ 1

8
z2 .

Applying this result to the original formula, we have

Eppp

[
a
(
pppe

D−1
D

z + p̄̄p̄pe−
1
D
z
)

+ ā
(
pppe−

D−1
D

z + p̄̄p̄pe
1
D
z
)]r̂

6 E
[
e

D
D−1

(ppp− 1
D
)r̂z+ 1

2
(ppp− 1

D
)2r̂2z2

]
· e

1
8
r̂z2 .

In this point, we bring the fact that ea 6 1 + a+ 0.63a2 for |a| 6 5/8

E
[
e

D
D−1

(ppp− 1
D
)r̂z+ 1

2
(ppp− 1

D
)2r̂2z2

]

35

6 E
[
1 +

(D − 1

D

)
qr̂z +

1

2

(D − 1

D

)2
qr̂2z2

+0.63
{(D − 1

D

)
qr̂z +

1

2

(D − 1

D

)2
qr̂2z2

}2
]

6 1 +
(D − 1

D

)
qr̂z +

3

2

(D − 1

D

)2
qr̂2z2

6 e
(
D−1
D

)
qr̂z+ 3

2
qr̂2z2 ,

for |z| 6 1/(2r̂) and D 6 2.

Phase Transition. As shown in (3.22), the performance of our algorithm is only

bounded when the condition T > 1 is satisfied. Meanwhile, with T < 1, σ̃2k which

means the variance of the x̃xx
(k)
d diverges as the number of iteration k increases. In

this case, our performance guarantee is no longer valid and the performance becomes

worse compared to other algorithms such as EM and majority voting. Note that except

for extreme case such as when using very low quality workers and the deficient assign-

ments, T > 1 is easily satisfied and our performance guarantee is valid. In Section 3.6,

we will verify the existence of this critical point at T = 1 through several experiments

with different conditions.

a

c
=

(D − 1)2

(D2 −D − 1)
q2 l̂r̂ = T.

3.6 Experimental Results

In this section, we verify the performance of the multiple iterative algorithm dis-

cussed in the previous sections with different sets of simulations. First, we check that

the error of the iterative algorithm exhibits exponential decay as l increases or q in-

creases. In addition, we show that our algorithm achieves a better performance than

that of the majority voting and EM approach above a phase transition of T = 1.

Next simulation investigates the linear relationship between yj value and the ratio of

36

the number of correct answers to rj for each worker. Then, we do experiments on

the adaptive scenario by varying the proportion of pilot tasks and selected reliable

workers. Finally, we do simulations on the experiments introduced above with a task

set consisting of various D values.

3.6.1 Comparison with Other Algorithms

To show the competitiveness of our algorithm, we ran our multiple iterative algorithm,

majority voting, and the EM approach for 2,000 tasks and 2,000 workers with fixed D

= 2, 3, 4, and 5 (Figure 3.4 and Figure 3.5). The performance of the oracle estimator

is also presented as a lower bound and the EM algorithm is implemented with Dawid

and Skene’s method [38]. In Figure 3.4, we can check that the probability of error

decays exponentially as l increases, and is lower than that of the majority voting and

EM approach above the phase transition T = 1. In addition, in Figure 3.5, we find the

probabilities of error decays as q increases.

We expect a phase transition at T = (D−1)2
(D2−D−1)q

2 l̂r̂ = 1 or l = 1 +
√

(D2−D−1)
(D−1)2

1
q

when l = r according to our theorem. With this, we can expect transitions to happen

around l = 4.33 for D = 2(q = 0.3), l = 6.59 for D = 3(q = 0.2), l = 8.37 for

D = 4(q = 0.15), and l = 11.89 for D = 5(q = 0.1). From the experiments in

Figure 3.4, we see that iterative algorithm starts to perform better than majority voting

around l = 5, 6, 10, 18 for each D. Note that these values are very similar with the

theoretical values. It follows from the fact the error of our method increases with k

when T < 1 as stated in Section 3.5. As can clearly be seen from the simulation

results, we can check that the l values required for achieving T > 1 are not large. For

example, if we consider dealing with short-answer questions like reCAPTCHA which

is introduced in Section 3.4, carrying off the required r(= l) is accomplished easily

since each alphabet is considered as a separate question.

37

0 5 10 15 20 25 30

10−3

10−2

10−1

100

l

pr
ob

ab
ili

ty
of

er
ro

r
D = 2 (q = 0.3)

0 5 10 15 20 25 30

10−2

10−1

100

l

pr
ob

ab
ili

ty
of

er
ro

r

D = 3 (q = 0.2)

0 5 10 15 20 25 30

10−2

10−1

100

l

pr
ob

ab
ili

ty
of

er
ro

r

D = 4 (q = 0.15)

Iterative Algorithm
Majority Voting
EM Algorithm

Oracle

0 5 10 15 20 25 30

10−1

100

l

pr
ob

ab
ili

ty
of

er
ro

r
D = 5 (q = 0.1)

Figure 3.4: Comparisons of probabilities of error between different algorithms varying

l values (m = n = 2000, l = r).

3.6.2 Adaptive Scenario

The inference of workers’ relative reliability in the course of iterations is one of the

algorithm’s most important aspects. Now, we define p̂j for each worker j as following:

p̂j =
the number of correct answers

rj
.

After kmax iterations, we can find reliable workers by the value of worker message

yj since this value is proportional to p̂j , which is influenced by pj . Relative reliability

38

0 0.1 0.2 0.3 0.4

10−4

10−3

10−2

10−1

100

q

pr
ob

ab
ili

ty
of

er
ro

r
D = 2

0 5 · 10−20.1 0.15 0.2 0.25 0.3

10−3

10−2

10−1

100

q

pr
ob

ab
ili

ty
of

er
ro

r

D = 3

0 5 · 10−2 0.1 0.15 0.2

10−2

10−1

100

q

pr
ob

ab
ili

ty
of

er
ro

r

D = 4

Iterative Algorithm
Majority Voting
EM Algorithm

Oracle

0 5 · 10−2 0.1 0.15

10−2

10−1

100

q

pr
ob

ab
ili

ty
of

er
ro

r
D = 5

Figure 3.5: Comparisons of probabilities of error between different algorithms varying

q values (m = n = 2000, l = r = 25).

yj is calculated by the following equation in Algorithm 3.1.

yj ←
∑
i∈∂j

(
~Aij −

~1

D

)
· ~x(kmax−1)i→j

Figure 3.6 shows that there are strong correlations between yj and p̂j . In one sim-

ulation, the correlation coefficients1 between yj and p̂j are measured as 0.993, 0.989,

0.968, 0.938 for each D = 2, 3, 4, and 5, which are significantly large values. We can

also check that the line passes approximately the point of (1
D , 0), which represents a

1Pearson product-moment correlation coefficient(PPMCC) is used for evaluation.

39

0 0.2 0.4 0.6 0.8 1

−5

0

5

·1018

p̂j

y j
D = 2 (q = 0.3)

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

·1019

p̂j

y j

D = 3 (q = 0.2)

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

·1018

p̂j

y j

D = 4 (q = 0.15)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

·1017

p̂j

y j
D = 5 (q = 0.1)

Figure 3.6: Relationship between yj and p̂j (m = n = 2000, k = 10).

non-informative worker’s reliability, as expected in Section 3.5.

One of the utilizations of this correlation property is the adaptive scenario, which

extracts more reliable workers from the crowds after the inference of pilot tasks, and

lets them solve the remaining tasks. We can improve the performance of our algo-

rithm further with the scenario. The strategy consists of two steps in detail. In the first

step, we use m′ = αm pilot tasks to infer the relative reliability of workers using the

40

iterative algorithm.

m′ = αm,n′ = n

l′ = l, r′ = αr

In the second step, we select βn workers who have higher |yj | values after the first

step, and each worker solves m−m′
βm r tasks out of the remaining m−m′ tasks. We sort

them out with higher |yj | values since we can gain less information from workers who

have lower |yj | values, which means that their reliability is closer to 1/D than those

of the others (Figure 3.6 and Figure 3.3).

m′′ = m−m′, n′′ = βn

l′′ = l, r′′ =
m−m′

βm
r

To show the performance improvements when using the adaptive scenario, we per-

form experiments with several (m′, β) sets. Figure 3.7 shows that the probability of

error is smaller than for the non-adaptive scenario when proper m′ and β are used.

Specifically, as β decreases, the error tends to decrease since fewer, but more reli-

able, workers then solve the rest of the questions. However, we have to consider each

worker’s inherent capacity2 when choosing an appropriate β. With limited capacity, we

cannot use an unreasonably low β, since it places too high a burden on each worker.

In addition, we have to take enough m′ pilot tasks to guarantee the accuracy of the

relative reliability, which are inferred in the first step.

3.6.3 Simulations on a Set of Various D Values.

To show the performance of the generalized multiple iterative algorithm, we do simu-

lations on a task set consisting of various D values with Algorithm 3.2. In detail, we

repeat the same experiments with a question set composed in 1 : 1 : 1 ratios of tasks
2The number of possible questions that each worker can manage to solve in one transaction.

41

0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

·10−2

β

pr
ob

ab
ili

ty
of

er
ro

r
D = 2 (q = 0.3)

m′ = 400
m′ = 800
m′ = 1200

Nonadaptive

0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2
·10−2

β

pr
ob

ab
ili

ty
of

er
ro

r

D = 3 (q = 0.2)

0.2 0.4 0.6 0.8 1

2

2.5

3

3.5

·10−2

β

pr
ob

ab
ili

ty
of

er
ro

r

D = 4 (q = 0.15)

0.2 0.4 0.6 0.8 1
6

7

8

9

10

·10−2

β

pr
ob

ab
ili

ty
of

er
ro

r
D = 5 (q = 0.1)

Figure 3.7: Adaptive Scenario (m = n = 2000, l = 25).

which D are 2, 3, 4 respectively. Then, we have to investigate for the general case that

q is calculated with the following equation.

q = E[qj] = E
[(Di

Di − 1

)2(
pij −

1

Di

)2]
We define qj as an individual quality of the worker j. To perform simulations and

to analyze the results, we have to make an assumption that a worker with individual

quality qj solves question with a reliability pij for eachDi. We can check that the same

tendencies found in previous simulations also appear in Figure 3.8. There is also the

42

0 5 10 15 20 25 30

10−2

10−1

100

l

pr
ob

ab
ili

ty
of

er
ro

r
D = 2, 3, 4 (q = 0.2)

Iterative Algorithm
Majority Voting

Oracle

0 5 · 10−2 0.1 0.15 0.2 0.25

10−2

10−1

100

q

pr
ob

ab
ili

ty
of

er
ro

r

D = 2, 3, 4 (l = 25)

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

·1019

p̂j

y j

D = 2, 3, 4 (q = 0.2)

0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

·10−2

β

pr
ob

ab
ili

ty
of

er
ro

r
D = 2, 3, 4 (q = 0.2)

m′ = 400
m′ = 800
m′ = 1200

Nonadaptive

Figure 3.8: Simulations on a set of various D values (m = n = 2000, where D = 2 :

666 /D = 3 : 667 /D = 4 : 668).

strong correlation between yj and p̂j as 0.960. This result is notable in that in the real

world, there are many more cases where questions have varying number of choices

than fixed ones.

3.7 Conclusion

We have proposed an iterative algorithm that can handle multiple-choice and short-

answer questions which are general types of questions in real crowdsourcing systems.

43

Especially for short-answer questions, we provide a method of transforming original

tasks into several microtasks. Therefore, we give a general solution for real crowd-

sourcing systems to infer the correct answers from unreliable responses. From the

performance analysis of our algorithm, we have proved that an upper bound on the

probability of error decays exponentially and we have verified that our algorithm out-

performs majority voting and EM-based algorithm through numerical experiments.

44

Chapter 4

Crowdsourcing Systems for Multiple-choice Questions

with K-Approval Voting

In eliciting the wisdom of crowds, many crowdsourcing platforms have encourage

workers to select top-K alternatives they believe as correct candidates. This voting

rule is called “K-approval voting” and its interface provides workers more flexibility

to response and takes advantage of even their partial expertise [45, 46]. Due to the

above merits, many crowdsourcers have adopt the K-approval voting setup to collect

large amount of responses. For real crowdsourcing examples, two tasks described in

Figure 4.1, 4.2 are real world crowdsourcing examples of K-approval voting. Fig-

ure 4.1 shows a task being distributed on Amazon Mechanical Turk, and the task was

requested by one of well-known online shopping mall, Amazon. The goal of the task

is to classify the best category of the item in the picture from given alternatives. Fig-

ure 4.2 shows another real task named ‘Wisconsin Wildlife Watch’ on Zooniverse

which is another popular crowdsourcing system. The goal of this task is to correctly

figure out what animals were pictured at the Wisconsin wildlife.

Although the demand on K-approval voting increases, there is not much work on

inferring the correct answer from the collected data via a K-approval voting. One nat-

ural method to aggregate responses is the majority voting. However, it is insufficient to

45

Figure 4.1: A task in the Amazon Mechanical Turk, whose goal is to categorize the

item in the picture. The worker is allowed to choose two candidates.

exploit the wisdom of crowds appropriately since it assumes that the level of reliability

of the responses of all the workers are the same. In fact it is recently proved that [46]

the majority voting is sub-optimal for any K-approval voting systems.

In this study, we design a novel algorithm for K-approval-voting systems which

evaluates workers’ reliability to infer the correct answers of the tasks more precisely.

This work can be generally applicable on real crowdsourcing platforms in practice

where tasks are D many multiple-choice questions allowing workers to select top-K

alternatives. Moreover, our algorithm can be applied to the case that each problem have

different (D,K) value.

To the best of our knowledge, this study is the first work which propose an infer-

ence algorithm for K-approval votes. One of main contributions in this study is the

performance guarantee of our algorithm. We rigorously prove that the error bound of

our algorithm decays exponentially. An interesting aspect of the error bound is its de-

pendency on the negative entropy of workers in a perspective on information theory.

Also, we verify the performance of our algorithm through numerical experiments on

46

Figure 4.2: A task being distributed on Zooniverse to correctly figure out what an-

imals are pictured at Wisconsin wildlife. The worker is allowed to choose multiple

candidates.

various cases including a realistic case containing mixed tasks with various number

D of alternatives and K selections. Moreover, through experiments, we show that our

algorithm estimates the relative reliabilities of the workers properly.

This chapter is organized as follows: In Section 4.2, we make a setup, and in Sec-

tion 4.3, we describe our algorithm to infer the correct answers for K-approval votes.

Then, we provide performance guarantees for our algorithm in Section 4.4. In Sec-

tion 4.5, we present comparative results through numerical experiments, and we draw

conclusions in Section 4.6.

4.1 Related Work

Recently, there has been a few researches about K-approval votes in crowdsourc-

ing field. These works aim to elicit the mode of worker’s belief and propose a new

paradigm of amassing high quality responses. Specially, In [45], they endeavor to ob-

tain higher-quality labels with a new incentive mechanism which encourages the good

47

workers with additional payments. In addition, [46] prove that simple majority vot-

ing is sub-optimal and they bring up a conversation topic of necessity of probabilistic

inference algorithm which can be applied to K-approval voting.

In single choice voting, there have been various approaches to get reliable re-

sults from unreliable responses. The simplest one is majority voting. However, it is

insufficient to get reliable results since it regards the expertise of each worker as

equal and gives the same weight to every worker. Typically, the level of expertise

are very different from experts to novices. free money collectors, and even adver-

sarial workers [29]. In order to exploit difference of expertise among workers, EM-

based algorithms are suggested with latent variables and unknown model parameters

[38, 32, 31, 30, 47, 48, 49].

Alternative approaches for the single voting for the binary questions have been

suggested in [33] in the context of spectral methods that use low-rank matrix approxi-

mations. Also, they proposed a novel iterative learning algorithm [34, 33, 37] inspired

by the standard Belief Propagation (BP) algorithm. Although they did not assume any

prior knowledge, Liu et al. [36] shows that choosing a suitable prior can improve the

performance via a Bayesian approach. Lately, [50, 51] proposed an iterative learning

algorithm for single voting on multiple-choice questions and real-valued vector re-

gressions respectively. However, their algorithm cannot be applied to the K-approval

voting.

In recent years, there have been some researches that build models jointly com-

bined with human and computer vision model. [52] propose online collaboration crowd-

sourcing system between crowdsourcing platform and computer vision machines with

Bayesian predictive model. [53, 54] develops the combining system using confidence

modeling and applied these systems to various applications in binary and multiclass

setting.

48

Figure 4.3: System model for task-worker assignments.

4.2 Problem Setup

4.2.1 Problem Definition

In this section, we define the setup of the problem. Suppose a crowdsourcing system

where there are m tasks to be solved and n workers to participate in. For convenience,

tasks and workers are indexed by i ∈ [m] and j ∈ [n] respectively where [m] means a

set of integers from 1 to m such that {1, ...,m}.

Each task is a multiple-choice question and consists of Di alternatives (or options)

with only one correct answer (correct alternative). Each task is duplicated l times to

make a redundancy for boosting performance, which is a common strategy in crowd-

sourcing systems. Therefore, in total, ml tasks are to be distributed. Since we use a

random and equal assignment strategy to distribute tasks, each worker gets to solve r

tasks such that ml = nr. If we draw this scheme as a graph, a random (l, r)-regular

bipartite graph can be made by the pairing model with m task nodes, n worker nodes,

and ml(= nr) edges representing tasks assigned to workers.

Each task allowsKi-approval votes when workers make their own responses. Here,

we need to consider a worker model how workers make their responses when solving

tasks. For a simple probabilistic approach, we assume that worker j solves task i, and

gives a response including the correct answer with a probability pij ∈ [0, 1]. This prob-

49

ability should be considered as a value which depends on the type of given task such

as Di and Ki, and how reliable the worker is. We will discuss its dependency on the

task and worker in Section 4.2.2. We also assume that distractors (a set of alternatives

except the correct answer) are independent from each other, and their levels of diffi-

culty are same. Thus, in the K-approval voting system, a response include the correct

answer with probability of pij , and the rest alternatives in the response are randomly

selected from the distractors.

The goal of the problem is to infer the correct answer of tasks when workers’

responses are given. The error performance can be easily measured by the ratio of the

tasks incorrectly inferred such that 1
m

∑
i∈[m] I(ti 6= t̂i) where ti and t̂i are the correct

and inferred answer of task i respectively, and I is an indicator function.

4.2.2 Worker Model for Various (D,K)

In our model, responses are generated by a simple probabilistic approach, so reliabil-

ity should be calculated for every task and worker. To verify this, we can consider two

easy examples. Suppose that there is an worker who only gives a random response,

and two tasks are given to the worker where both (D,K)-pairs of the tasks are (2, 1),

(3, 1) respectively. Then we can easily calculate the probability of getting a response

including the correct answer from the worker. Since the worker picks a random choice,

reliabilities for two tasks should be set to 0.5 and 0.33 respectively. For another ex-

ample, suppose that the same worker solves other two tasks whose (D,K)-pairs are

(3, 1), (3, 2) respectively. Then, reliabilities for two tasks should be set to 0.33 and

0.67 respectively. Therefore we conclude that reliability should be dependent on Di

and Ki.

Here we assume that each worker has an intrinsic value qj called quality of the

worker, which represents inherent diligence or expertise of the worker. This means

that the quality of the worker should be fixed whatever types of tasks are given. From

an information theoretical perspective, the quality of a worker can be defined as nega-

50

tive entropy with an offset which makes the amount set to zero when the worker gives

random responses. This is reasonable since no information can be obtained from ran-

dom responses. We define quality of workers more precisely and relationship between

pij and qj in Chapter 4.4.2 and skip mathematical analysis here to take a look at our

algorithm first.

4.3 Inference Algorithm

In this section, we explain the design of our algorithm and the process to estimate the

correct answers. To avoid confusion in notation, we use the upper case K to represent

the number of selections and the lower case k to represent the iteration number of our

algorithm. In our setting, workers whom task i is assigned to are allowed to vote Ki

alternatives.

For each edge (i, j), a response is denoted as

~Aij ∈ A =

{
Ki∑
s=1

~es

∣∣∣~es ∈ UDi
}

where UDi = {~eu|u ∈ [1 : Di]} comprising Di dimensional unit vectors. To ex-

tract the correct answers from unreliable responses of workers, we propose an iterative

algorithm for K-approval voting systems. Our algorithm takes an advantage of two

types of messages between a task node and a worker node. A task message is denoted

as a Di dimensional vector, ~xi→j . Each component of this vector corresponds to the

likelihood meaning the possibility being the correct answer of task i. A worker mes-

sage, yj→i, represents how reliable the worker j is. Since these worker messages are

strongly correlated with the reliability pij , our algorithm can assess relative reliability.

We will empirically verify the correlation between {yj→i} and {pij} in Section 4.5.

The initial messages of our iterative algorithm are sampled independently from

the Gaussian distribution with unit mean and variance, i.e., y(0)j→i ∼ N (1, 1). Unlike

EM-based algorithms [38, 32], our approach is not sensitive to initial conditions as

51

y

x

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)
~Ki
Di

~1
Di

~x
(k)
i′→j

~x
(k)
i′→j

~1
Ki

(
~Ai′j −

~1
D

)

z

Figure 4.4: Description of a task message ~x(k)i′→j and a response vector ~Ai′j , in the

message vector space when ~Ai′j = (1, 1, 0) and D = 3, K = 2.

long as the consensus of the group of workers is positively biased. Now, we define the

adjacent set of task i as ∂i and similarly the adjacent set of worker j is defined as ∂j.

Then, at the kth iteration, both messages are updated using the following rules: For

∀(i, j) ∈ E,

~x
(k)
i→j =

∑
j′∈∂i\j

1

Ki

(
~Aij′y

(k−1)
j′→i

)
, (4.1)

y
(k)
j→i =

∑
i′∈∂j\i

1

Ki′

(
~Ai′j −

(Ki′

Di′

)
~1

)
·~x(k−1)i′→j . (4.2)

At the task message update process shown in (4.1), our algorithm gives a weight

to the response according to the relative reliability of a worker. At the worker message

update process shown in (4.2), it gives greater relative reliability to a worker who

strongly follows the consensus of other workers.

Figure 4.4 describes two vectors in the message vector space. As shown above,
1
Ki′

(
~Ai′j−(

Ki′
Di′

)~1
)

represents the difference between the response of worker j solving

task i′ and the expectation of a random response
(Ki′
Di′

)
~1 with normalizing factor 1

Ki′
.

Also, ~x(k−1)i′→j means weighted sum of responses of other workers who have solved the

task i′. Thus, the inner product of these two vectors in (4.2) can assess the similarity

52

between the response of worker j for the task i′ and sum of those of other workers

who have solved the task i′. A larger positive similarity value of the two vectors means

that worker j is more reliable. Meanwhile, the negative value means that the worker j

does not follow the consensus of other workers, and our algorithm regards the worker

j unreliable. Specially, when ~x(k−1)i′→j and 1
Ki′

(
~Ai′j − (

Ki′
Di′

)~1
)

are orthogonal for fixed

task i′, the inner product of two vector is close to zero. This means that ~x(k−1)i′→j does

not contribute to the message of the worker j.

Then, y(k)j→i is defined as the sum of inner products from each task message except

for that of task i, representing the relative reliability of the worker j. Returning to (4.1),

~x
(k)
i→j is determined by the weighted voting of workers who have solved task i, except

for the message from the worker j. The worker j′ contributes to the response ~Aij′ as

much as the weight value of y(k−1)j′→i . Thus, ~x(k)i→j is defined as the sum of ~Aij′y
(k−1)
j′→i

which represents the estimated likelihood on the correct answer for the task i.

The following describes the pseudo code of our algorithm.

In practice, a dozen of iterations are sufficient for the convergence of our algorithm.

After kmax iterations, our algorithm makes the final estimate vector ~xi of the task i,

and each component of the vector represents the possibility of being the correct answer.

Our algorithm infers the correct answer by choosing ui that has the maximum value

among final likelihoods of ~xi. Then, our algorithm outputs the estimate of the correct

answer denoted as a unit vector, ~eui .

4.4 Analysis of Algorithms

In this section, we verify the performance on the average error of Algorithm 4.1. In

Theorem 4.1, we show that the error bound depends on the task degree l and the quality

of workers q. Furthermore, we provide that an upper bound on the probability of error

decays exponentially as the quality of workers increases. Here, we assume that Di =

D and Ki = K for all task i ∈ [n] and accordingly pij = pj . However, we will show

53

Algorithm 4.1 K-approval Iterative Algorithm

1: Input: E, { ~Aij}(i,j)∈E , kmax

2: Output: Estimation ∀i ∈ [m] , t̂i ∈ {~eui |ui ∈ [1 : D]}

3: for ∀(i, j) ∈ E do

4: Initialize y(0)j→i with random Zij ∼ N(1, 1);

5: end for

6: repeat

7: for ∀(i, j) ∈ E do

8: ~x
(k)
i→j ←

∑
j′∈∂i\j

1
Ki
~Aij′y

(k−1)
j′→i ;

9: y
(k)
j→i ←

∑
i′∈∂j\i

1
Ki

(~Ai′j − (KiDi)
~1) · ~x(k−1)i′→j ;

10: end for

11: until k ≤ kmax

12: Final Estimation

13: for ∀i ∈ [m] do

14: ~xi ←
∑

j∈∂i
1
Ki
~Aijy

(kmax−1)
j→i ;

15: end for

16: for ∀j ∈ [n] do

17: yj ←
∑

i∈∂j
1
Ki

(~Aij − (KiDi)
~1) · ~x(kmax−1)i→j ;

18: end for

19: Estimated answer: t̂i = ~eui where ui = arg max
d

(~xi)

54

the performance of our algorithm with general scenarios in Section 4.5.

4.4.1 Worker Model

We can assume several worker models which reflect how workers behave when they

get tasks to solve. Common methods to generate their responses are simple probabilis-

tic approaches. Basic assumption is that a worker has latent variables which influences

on generating worker’s responses. Latent variables usually represent diligence or ex-

pertise of workers, or level of difficulty of given tasks. Recent model [46] uses a noise

model which assumes that worker’s responses are considered corrupted by a noise

from true answer.

Since our interest is on approval voting, we use a simple probabilistic approach

to generate workers’ responses. If alternatives are independent from each other, and

each distractor has same difficulty level to distinguish the correct answer, then it is

reasonable to assume that there are only two probabilities to be determined. One is

the probability when the correct answer exists in the worker’s response, and another is

the probability when worker cannot find the correct answer. Since probabilities should

be sum to one in an event, just one probability is left to be determined. Although this

assumption is too simple, it would be good enough to represent worker’s behavior

in that we should reduce parameters because we cannot gather much responses from

workers. It is hard to learn all features each alternative have as we don’t have much

money to get enough information.

Additionally, for the same reason, we assume that all given tasks have same level of

difficulty when the number of alternatives are same. On the other hand, if the number

of alternatives varies from each task, it is reasonable to assume that the level of diffi-

culty is not same. Suppose that there is an worker who only picks a random choice,

and two tasks are given where one task has two alternatives and another has three al-

ternatives. We can easily calculate the expectation of getting a response including the

correct answer from the worker. The former task gives expectation of 0.5 and the latter

55

task gives expectation of 0.33. This means that a task with higher number of alter-

natives are hard to solve than one with lower number of alternatives. Thus we have

to determine the proper probabilities when workers give the correct answer in their

responses according to tasks given to them.

Furthermore, the number allowed on approval votes also influences on the expec-

tation of getting a response including the correct answer. Suppose that there are two

tasks having three alternatives where they permits 1 and 2-approval votes respectively,

and the tasks are given to the same worker who only picks a random choice. Calcu-

lating the expectation same as we did above, the former task gives 0.33, and the latter

task gives 0.67. Therefore we also need to consider the effects of the number allowed

on approval votes.

4.4.2 Quality of Workers

We can assume several worker models which reflect how workers behave when they

get tasks to solve. Common methods to generate their responses are simple probabilis-

tic approaches. Basic assumption is that a worker has latent variables which influences

on generating worker’s responses. Latent variables usually represent diligence or ex-

pertise of workers, or level of difficulty of given tasks. Recent model [46] uses a noise

model which assumes that worker’s responses are considered corrupted by a noise

from true answer.

Here and after, we use UD to denote a set of standard D-dimensional unit vectors.

For a fixed (D,K), we model a task i associated with an unobserved ”correct” solution

si ∈ UD. ~Aij denotes the response vector of each worker j and can be represented by

sum of K number of vectors in UD (K-approval setting). Each component of the re-

sponse vector ~Aij is binary (1 or 0). The worker j with reliability pj has DCK choices

for a response, and those choices are divided to only two types as follows:

~Aij(d) : dth component of ~Aij , ∀d ∈ [1 : D]

56

~Aij · si =

1 with probability

(pj
D−1CK−1

)
0 with probability

(1−pj
D−1CK

)
From an information theoretical perspective, the quality of workers can be defined

as negative entropy with an offset. This offset makes the quality of worker with random

response to set to zero. Using the probabilities above, we can express negative entropy

and define the quality of worker j with reliability pj as

qj(pj) = Q(pj)−Q
(K
D

)
, (4.3)

whereQ(p) = p log
[p

D−1CK−1

]
+ (1− p) log

[1− p
D−1CK

]
.

According to the quality of each worker, we can divide the workers into three

types. “Reliable workers” are workers with the a quality close to one make almost

correct answers. At the extreme, workers with a quality close to zero make arbitrary

responses and we define them as “Non-informative workers”. At the other extreme,

there are workers who make wrong answers on purpose and affect the crowdsourcing

system badly; they can be regarded as “Malicious workers”. In our algorithm, since the

worker message value yj is related to the quality, workers with positive yj , negative

yj and yj close to zero correspond to “Reliable workers”, “Malicious workers”, and

“Non-informative workers” respectively.

Although the quality of workers theoretically follows negative entropy, we found

that a fourth order polynomial approximation is sufficient for our analysis as described

in Figure 4.5. As the number of alternatives D increases, the approximation deviates

from the real quality. Nevertheless, fourth order approximation fits well to the real

quality in the acceptable D case in which our algorithm targets in general.

q ' q̃ = E
[
f(pj) + f(pj)

2

]
, (4.4)

where f(p) =

[(D

D − 1

)2(
p− K

D

)2]
.

57

Malicious

Non-informative

Reliable

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

reliability p

Q
ua

lit
y

of
w

or
ke

r

D = 4, K = 2

Negative Entropy with offset
4th-order approximation

Figure 4.5: Comparison of the quality between negative entropy with offset and 4th-

order polynomial approximation.

For simplicity, we will use this approximated quality in the following sections.

There is one more necessary assumption about worker distribution that workers give

the correct answers on average rather than random or adversarial answers, so that

E [pj] >
K

D
. Given only workers’ responses, any inference algorithms analogize

the correct answers from the general or popular choices of crowds. Consider an ex-

treme case in which everyone gives adversarial answers in a binary classification

task; no algorithm can correctly infer reliability of the crowds. Hence, the assump-

tion E [pj] >
K

D
is inevitably necessary.

4.4.3 Bound on the Average Error Probability

In this section, we show the error bound of our algorithm. Theorem 4.1 claims that the

probability of error decays exponentially as the quality of workers q or the degree of

worker nodes l increases.

From now on, let l̂ ≡ l− 1, r̂ ≡ r− 1, and we use the quality q as defined in (4.4).

58

Also, σ2k denotes an effective variance in the sub-Gaussian tail of the task message

distribution after k iterations.

σ2k ≡
2q

µ2T k−1
+

5

8

(
1 +

5

16

(
D

D − 1

)2 1

qr̂

)[
1− 1/T k−1

1− 1/T

]
, (4.5)

where T =
32

25

(D − 1

D −K

)2
q2 l̂r̂.

Theorem 4.1. For fixed l > 1 and r > 1, assume that m tasks are assigned to n

workers according to a random (l, r)-regular bipartite graph generated according to

the pairing model. If the distribution of the reliability satisfies µ ≡ E[D
D−1(pj− K

D)] >

0 and T > 1, then for any t ∈ {ei}m, the estimate after k iterations of the iterative

algorithm achieves

1

m

m∑
i=1

P(ti 6= t̂
(k)
i) 6 (D − 1)e−lq/(2σ

2
k) +

3lr

m
(l̂r̂)2k−2. (4.6)

The second term of the equation is the upper bound of probability that the graph

dose not have a locally tree-like structure and it can be quite small as long as we treat

a large number of tasks. Therefore, the dominant factor of the upper bound is the first

exponential term. As shown in (4.5), T = 1 is the crucial condition and we can satisfy

T > 1 by using a sufficiently large l or r. Then, with T > 1, σ2k converges to a finite

limit σ2∞, and we have

σ2∞ =
5

8

(
1 +

5

16

(
D

D − 1

)2 1

qr̂

)[
T

T − 1

]
. (4.7)

Thus, the bounds of the first term of (4.6) does not depend on the number of tasks

m or the number of iterations k.

4.4.4 Proof of the Error Bounds

The proof is roughly composed of three parts. First, the second term at the right-hand

side of (4.6) is proved using its locally tree-like property. Second, the remaining term

of the right-hand side of (4.6) is verified using Chernoff bound in the assumption that

59

the estimates of the task message follow sub-Gaussian distribution. Lastly, we prove

that the assumption of the second part is true within certain parameters.

Without a loss of generality, it is possible to assume that the correct answer of each

task, for any i ∈ [m], ti = ~e1. Let t̂(k)i denote the estimated answer of task i defined in

Section 4.4.3. If we draw a task III, uniformly at random from the task set, the average

probability of error can be denoted as

1

m

∑
i∈[m]

P(ti 6= t̂
(k)
i) = P(tIII 6= t̂

(k)
III). (4.8)

Let GIII,k denote a subgraph of the random (l, r)-regular bipartite graph that consists

of all the nodes whose distance from the node ‘III’ is at most k. After k iterations, the

local graph with root ‘III’ is GIII,2k−1, since the update process operates twice for each

iteration. To take advantage of density evolution, the full independence of each branch

is needed. Thus, we bound the probability of error with two terms, one that represents

the probability that subgraph GIII,2k−1 is not a tree, and the other which represents the

probability that GIII,2k−1 is a tree with a wrong answer.

P(tIII 6= t̂
(k)
III) 6 P(GIII,2k−1 is not a tree)

+ P(GIII,2k−1 is a tree & tIII 6= t̂
(k)
III). (4.9)

The following lemma bounds the first term and proves that the probability that a

local subgraph is not a tree vanishes as m grows. A proof of Lemma 4.2 is provided

in [35] (cf. Karger, Oh and Shah 2011, Section 3.2).

Lemma 4.2. From a random (l,r)-regular bipartite graph generated according to the

pairing model,

P(GIII,2k−1 is not a tree) 6
(
l̂r̂
)(2k−2) 3lr

m
.

From the result of Lemma 4.2, we can concentrate on the second term of (4.9) and

define the pairwise difference of task messages as x̃xx
(k)
d = xxx

(k)
1 − xxx

(k)
d for ∀d ∈ [2 : D].

P(tIII 6= t̂
(k)
III |GIII,k is a tree) 6 P(∪Dd=2{x̃

(k)
III 6 0}|GIII,k is a tree)

6 P(∪Dd=2{x̃III 6 0}).

60

To obtain a tight upper bound on P(∪Dd=2{x̂xx
(k)
d 6 0}) of our iterative algorithm,

we assume that x̃xx
(k)
d follows sub-Gaussian distribution for any d ∈ [2 : D]. Then,

Chernoff bound is applied to the independent message branches and this brings us the

tight bound of our algorithm. A random variable zzz with mean m is said to be sub-

Gaussian with parameter σ̃ if for any λ ∈ R the following inequality holds:

E[eλzzz] 6 emλ+(1/2)σ̃2λ2 . (4.10)

We show that for ∀d ∈ [2 : D], x̃xx
(k)
d is sub-Gaussian with mean mk and parameter

σ̃2k for a specific region of λ, precisely for |λ| 6 1/(2mk−1r̂). Its proof is in the

Supplementary material. Now we define

mk ≡ µl̂Uk−1, ∀k ∈ N

σ̃2k ≡ 2l̂Sk−1 + µ2 l̂3r̂

[
2

5

(D − 1

D

)2
qr̂ +

1

8

]
·U2k−4

[
1− (1/T)k−1

1− (1/T)

]
,

where U =
4

5

(D − 1

D

)
ql̂r̂, S =

1

2

(D −K
D

)2
l̂r̂

T =
U2

S
=

32

25

(D − 1

D −K

)2
q2 l̂r̂

then

E[eλx̃xx
(k)
d] 6 emkλ+(1/2)σ̃2

kλ
2
. (4.11)

The locally tree-like property of a sparse random graph provides the distributional

independence among incoming messages, that is E[eλx̂xx
(k)
d] = E[eλx̃xx

(k)
d](l/l̂). Thus, x̂xx

(k)
d

satisfies E[eλx̂xx
(k)
d] 6 e(l/l̂)mkλ+((l/2l̂))σ̃2

kλ
2

for all d ∈ [2 : D]. Because of full indepen-

dence of each branch, we can apply Chernoff bound with λ = −mk/(σ̃
2
k), and then

we obtain

P(x̂xx
(k)
d 6 0) 6 E[eλx̂xx

(k)
d] 6 e−lm

2
k/(2l̂σ̃

2
k). (4.12)

61

P(∪Dd=2{x̂xx
(k)
d 6 0}) 6

D∑
d=2

P(x̂xx
(k)
d 6 0)

6 (D − 1)e−lm
2
k/(2l̂σ̃

2
k). (4.13)

Since mkmk−1/(σ̃
2
k) 6 1/(3r̂), we can check |λ| 6 1/(2mk−1r̂). This finalizes the

Proof of the Theorem 4.1.

4.4.5 Proof of Sub-Gaussianity

Now we prove that for all d ∈ [2 : D], x̃xx
(k)
d is sub-Gaussian with some mk and σ̃2k.

Recurrence relation of the evolution of the MGFs(moment generating functions) on x̃xxd

and ypypyp are stated as

E[eλx̃xx
(k)
d] =

(
Eppp

[
p+p+p+E

[
eλyyy

(k−1)
p |ppp

]
+ p−p−p−E

[
e−λyyy

(k−1)
p |ppp

]
+(1− p+p+p+ − p−p−p−)

])l̂
, (4.14)

E[eλyyy
(k)
p] =

(
p · E

[
eλ(

D−K
D

)x̃xx
(k)
d

]
+(1− p) · E

[
e−λ(

K
D
)x̃xx

(k)
d

])r̂
, (4.15)

where p+p+p+ = p · D −K
D − 1

and p−p−p− = (1− p) · K

D − 1
.

Using above MGFs and mathematical induction, we can prove that x̃xx
(k)
d are sub-

Gaussian, for all d ∈ [2 : D].

First, for k = 1, we prove that all of x̃xx
(1)
d are sub-Gaussian random variables

with mean m1 = µl̃ and variance σ̃21 = 2l̃, where µ ≡ E[D
D−1(pj − 1

D)]. Using

Gaussian initialization of yyyp ∼ N (1, 1), we obtain E[eλyyy
(0)
p] = eλ+(1/2)λ2 regardless

62

0
5

10
15

20
25

30

10
−
3

10
−
2

10
−
1

10
0

l

probabilityoferror

(D
,K

)
=

(3
,1
),
q
=

0.
25

0
5

10
15

20
25

30

10
−
2

10
−
1

10
0

l

probabilityoferror

(D
,K

)
=

(4
,1
),
q
=

0.
25

0
5

10
15

20
25

30

10
−
4

10
−
3

10
−
2

10
−
1

10
0

l

probabilityoferror

(D
,K

)
=

(5
,2
),
q
=

0.
50

It
er

at
iv

e
A

lg
or

ith
m

M
aj

or
ity

Vo
tin

g
O

ra
cl

e
E

st
im

at
or

0
5

10
15

20
25

30

10
−
4

10
−
3

10
−
2

10
−
1

10
0

l

probabilityoferror

(D
,K

)
=

(6
,2
),
q
=

0.
50

0
0.
1

0.
2

0.
3

0.
4

10
−
4

10
−
3

10
−
2

10
−
1

10
0

q

probabilityoferror

(D
,K

)
=

(3
,1
)

0
5
·1
0−

2
0.
1

0.
15

0.
2

0.
25

0.
3

10
−
2

10
−
1

10
0

q

probabilityoferror
(D
,K

)
=

(4
,1
)

0
0.
2

0.
4

0.
6

0.
8

10
−
4

10
−
3

10
−
2

10
−
1

10
0

q

probabilityoferror

(D
,K

)
=

(5
,2
)

It
er

at
iv

e
A

lg
or

ith
m

M
aj

or
ity

Vo
tin

g
O

ra
cl

e
E

st
im

at
or

0
0.
2

0.
4

0.
6

0.
8

10
−
4

10
−
3

10
−
2

10
−
1

10
0

q

probabilityoferror

(D
,K

)
=

(6
,2
)

Fi
gu

re
4.

6:
C

om
pa

ri
so

ns
of

pr
ob

ab
ili

tie
s

of
er

ro
r

be
tw

ee
n

di
ff

er
en

t
al

go
ri

th
m

s
va

ry
in

g
l

(fi
rs

t
ro

w
)

an
d
q

(s
ec

on
d

ro
w

)
va

lu
es

(m
=
n

=
2
0
00
,
l

=
r

=
25

).

63

of p. Substituting this into (4.13), we have

E[eλx̃xx
(1)
d] =

(
Eppp

[
p+p+p+eλ+(1/2)λ2 + p−p−p−e−λ+(1/2)λ2

+(1− p+p+p+ − p−p−p−)

])l̂
6

(
E[a]eλ +

(
E[ā]e−λ

)l̂
e(1/2)l̂λ

2

6 e(µλ+λ
2)l̂, (4.16)

where a =
1 + p+p+p+ − p−p−p−

2
, ā = 1− a =

1− p+p+p+ + p−p−p−

2
.

The first inequality follows from the fact that 2 6 eλ + e−λ for any λ ∈ R, and the

second inequality follows from that

bez + (1− b)e−z 6 e(2b−1)z+(1/2)z2 , (4.17)

for any z ∈ R and b ∈ [0, 1] (cf. Alon and Spencer 2008, Lemma A.1.5) [44].

From kth inductive hypothesis, we can assume that E[eλx̃xx
(k)
d] 6 emkλ+(1/2)σ̃2

kλ
2

for |λ| 6 1/(2mk−1r̂). Now, we will show E[eλx̃xx
(k+1)
d] 6 emk+1λ+(1/2)σ̃2

k+1λ
2

for

|λ| 6 1/(2mkr̂).

Lemma 4.3. For any |λ| 6 1/(2mkr̂) and p ∈ [0, 1], we get

E[eλyyy
(k)
p] 6

[(
pe(1/2)mkλ + p̄e−(1/2)mkλ

)]r̂
·e(

D−2K
2D

)r̂mkλ+
1
2
(D−K

D
)2σ̃2

kλ
2
.

Similar to (4.16)’s process, from (4.14), we get

E[eλx̃xx
(k+1)
d] 6 Eppp

(
aE
[
eλyyy

(k)
p

]
+ āE

[
e−λyyy

(k)
p

])l̂
.

with 2 6 eλ + e−λ for any λ ∈ R.

64

Substituting the result of Lemma 4.3 into the above inequality provides

E[eλx̃xx
(k+1)
d] 6 Eppp

[
a
(
pppe(1/2)mkλ + p̄ppe−(1/2)mkλ

)r̂
+ā
(
pppe(1/2)mkλ + p̄ppe−(1/2)mkλ

)r̂]l̂
· e(

D−2K
2D

)l̂r̂mkλ+
1
2
(D−K

D
)2 l̂r̂σ̃2

kλ
2
. (4.18)

Now we are left to bound (4.18) using following Lemma 4.4.

Lemma 4.4. For any |z| 6 1/(2r̂) and p ∈ [0, 1], we get

Eppp

[
a
(
pppe

1
2
z + p̄̄p̄pe−

1
2
z
)r̂

+ ā
(
pppe−

1
2
z + p̄̄p̄pe

1
2
z
)r̂]l̂

· e(
D−2K

2D
)l̂r̂z

6 e
4
5
(D−1
D

)ql̂r̂z+
[
2
5
(D−1
D

)2qr̂+ 1
8

]
l̂r̂z2 .

Applying this to (4.18) gives

E[eλx̃xx
(k+1)
d] 6 e(

D−1
D

)ql̂r̂mkλ+
1
2

[(
(D−1
D

)2qr̂+ 1
4

)
m2
k+(D−K

D
)2σ̃2

k

]
l̂r̂λ2 ,

for |λ| 6 1/(2mkr̂).

From the result of mathematical induction, we can obtain the recurrence relations

of two parameters of the sub-Gaussians

mk+1 =
[4

5

(D − 1

D

)
ql̂r̂
]
mk,

σ̃2k+1 =

[{2

5

(D − 1

D

)2
qr̂ +

1

8

}
m2
k +

1

2

(D −K
D

)2
σ̃2k

]
l̂r̂

with (D−1D)ql̂r̂ > 1, where mk is increasing geometric series. Thus, the above recur-

sions hold for |λ| 6 1/(2mkr̂) and we get

mk = µl̂
[4

5

(D − 1

D

)
ql̂r̂
]k−1

, ∀k ∈ N

Substituting mk into σ̃2k, we obtain

σ̃2k = Aσ̃2k−1 +B · Ck−2, (4.19)

65

where

A =
1

2

(D −K
D

)2
l̂r̂, B = µ2 l̂3r̂

[
2

5

(D − 1

D

)2
qr̂ +

1

8

]
,

C =
[4

5

(D − 1

D

)
ql̂r̂
]2
.

For T 6= 1, This type of recurrence relation can be represented as the following closed

formula.

σ̃2k = σ̃21A
k−1 +BCk−2

[1− (A/C)k−1

1− (A/C)

]
. (4.20)

This finishes the proof of (4.11).

Proof of Lemma 4.3. In the k + 1th step of mathematical induction, we assume

that for any d ∈ [2 : D] with |λ| 6 1/(2mk−1r̂).

E[eλx̃xx
(k)
d] 6 emkλ+(1/2)σ̃2

kλ
2
.

In other words, all of x̃xx
(k)
d follow sub-Gaussian distribution with parameters mk and

σ̃2k. From (4.15), each component at the right-hand side can be represented as the

product of several combinations of [eλx̃xx
(k)
d] and the product of variables means a lin-

ear combination in the exponential field. We verify that the linear transformation of

sub-Gaussian random variables follows also sub-Gaussian distribution with some pa-

rameters. Moreover, these parameters are determined by D, K, mean mk and variance

σ̃2k of each sub-Gaussian x̃xx
(k)
d . In (4.15), the first term is bounded as

E
[
eλ(

D−K
D

)x̃xx
(k)
d

]
6

(
e

1
2
mkλ

)
· e

D−2K
2D

mkλ+
1
2
(D−K

D
)2σ̃2

kλ
2
,

and the second term is bounded as

E
[
eλ(−

K
D
)x̃xx

(k)
d

]
6

(
e−

1
2
mkλ

)
· e

D−2K
2D

mkλ+
1
2
(−K

D
)2σ̃2

kλ
2

6

(
e−

1
2
mkλ

)
· e

D−2K
2D

mkλ+
1
2
(D−K

D
)2σ̃2

kλ
2
.

The second inequality holds since the case D > 2K is natural for K-approval setting,

otherwise the quality of response is too worthless to inference the ground truth accu-

rately. Getting these two results together finishes the proof of Lemma 4.3.

66

Proof of Lemma 4.4. From (4.17), we get

e(
D−2K

2D
)z ·
(
pppe

1
2
z + p̄̄p̄pe−

1
2
z
)
6 e(ppp−

1
D
)z+ 1

8
z2 .

Applying this result to the original formula and we have

Eppp

[
a
(
pppe

1
2
z + p̄̄p̄pe−

1
2
z
)r̂

+ ā
(
pppe−

1
2
z + p̄̄p̄pe

1
2
z
)r̂]l̂

· e(
D−2K

2D
)l̂r̂z

6 E
[
e(

D
D−1

)(ppp−K
D
)2r̂z+ 1

2
(ppp−K

D
)2r̂2z2

]
· e

1
8
r̂z2 .

In this point, we bring (4.4), the definition of worker quality and the fact that eb 6

1 + 0.764 ∗ b+ b2 for |b| 6 5/8. We get

E
[
e(

D
D−1

)(ppp−K
D
)2r̂z+ 1

2
(ppp−K

D
)2r̂2z2

]
6 E

[
1 + 0.764

{(D − 1

D

)
r̂z +

1

2

(D − 1

D

)2
r̂2z2

}
f(ppp)

+
{(D − 1

D

)
r̂z +

1

2

(D − 1

D

)2
r̂2z2

}2
f(ppp)2

]

6 1 +
4

5

[(D − 1

D

)
qr̂z +

1

2

(D − 1

D

)2
qr̂2z2

]

6 e
4
5

[(
D−1
D

)
qr̂z+ 1

2

(
D−1
D

)2
qr̂2z2

]
,

for |z| 6 1/(2r̂) and D > 2.

4.4.6 Phase Transition

As shown in (4.5), the performance of our algorithm is only bounded when the con-

dition T > 1 is satisfied. Meanwhile, with T < 1, σ̃2k which means the variance of

the x̃xx
(k)
d diverges as the number of iteration k increases. In this case, our performance

guarantee is no longer valid and the performance becomes worse compared to major-

ity voting. Note that except for the extreme case such as when using very low quality

workers and the deficient assignments, T > 1 is easily satisfied and our performance

67

guarantee becomes valid. In Section 4.5, we will verify the existence of this critical

point at T = 1 through several experiments with different conditions.

T ≡ C

A
=

32

25

(D − 1

D −K

)2
q2 l̂r̂.

4.5 Experimental Results

This section verify the performance of the K-approval iterative algorithm discussed

in the previous Section 4.3 with different sets of simulations. First, we check the per-

formance on the average error of our algorithm exhibits exponential decay as degree

of worker node l or quality of workers q increases. In addition, we show that our al-

gorithm achieves a better performance than that of the majority voting above a phase

transition of T = 1. Next simulation investigates the linear relationship between yj

value and the ratio of the number of responses including the correct answer to rj for

each worker. Then, we consult experiments with a task set consisting of various (D,K)

pairs which mean the number of alternatives D and selection K.

4.5.1 Performance on the Average Error with q and l

To show the competitiveness of our algorithm, we ran our K-approval iterative algo-

rithm, majority voting, and the oracle estimator for 2000 tasks and 2000 workers with

a fixed (D,K) pair in Figure 4.6. Here, the oracle estimator can give each worker ap-

propriate weight since we assume the oracle estimator knows quality of every worker.

The performance on the average error of the oracle estimator is presented as a lower

bound. In Figure 4.6 (top), we can check that the probability of error decays expo-

nentially as l increases, and is lower than that of the majority voting above the phase

transition point T = 1. In addition, Figure 4.6 (bottom) presents the probabilities of

error decays as q increases.

In Section 4.4, we expect a phase transition at T = 32
25

(
D−1
D−K

)2
q2 l̂r̂ = 1 or l =

4
√
2

5
(D−K)
(D−1) ·

1
q . If we follow the result, we can expect transitions to happen around

68

l = 4.52 for (3, 1), (4, 1), l = 3.39 for (5, 2) and l = 3.62 for (6, 2). From the

experiments in Figure 4.6 (top), we find that iterative algorithm starts to perform better

than majority voting around l = 5, 6, 3, 4 for each (D,K) pair. Note that these values

are very similar with the above theoretical values. It follows from the fact the error of

our method increases with k when T < 1 as stated in Section 4.4. As can clearly be

seen from the simulation results, we can be sure that the l values required for achieving

T > 1 are not large.

4.5.2 Relationship between Reliability and y-message.

The inference of workers’ relative reliability in the course of iterations is the most

important aspect of our algorithm. Now, we define p̂j for each worker j as following:

p̂j =
of responses including correct answer

rj
.

After kmax iterations, we can find reliable workers by the value of worker message

yj since this value is proportional to p̂j , which is influenced by pj . Relative reliability

yj is calculated by the following equation in Algorithm 4.1.

yj ←
∑
i∈∂j

1

Ki

(
~Aij −

(Ki

Di

)
~1
)
· ~x(kmax−1)i→j

Figure 4.7 shows that there are strong correlations between yj and p̂j . In one sim-

ulation, the correlation coefficients1 between yj and p̂j are measured as 0.991, 0.992,

0.904, 0.954 for each (D,K) = (3, 1), (4, 1), (5, 2), and (6, 2), We can also check

that the line passes approximately the point of (KD , 0), where pj = K
D is close to the

reliability of non-informative worker who gives random responses, as expected in Sec-

tion 4.4.

4.5.3 Performance on the Average Error with Various (D,K) Pairs.

To show the performance of the K-approval iterative algorithm, we do simulations on

a task set consisting of various (D,K) pairs with Algorithm 4.1. In detail, we repeat
1Pearson product-moment correlation coefficient(PPMCC) is used for evaluation.

69

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

·1019

p̂j

y j
(D,K) = (3, 1)

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

·1020

p̂j

y j

(D,K) = (4, 1)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

·1021

p̂j

y j

(D,K) = (5, 2)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

·1023

p̂j

y j
(D,K) = (6, 2)

Figure 4.7: Relationship between yj and p̂j (m = n = 2000, k = 10).

the same experiments with a question set composed in equal ratio of each task type

whose (D,K) are (3, 1), (4, 1), (5, 2) and (6, 2) respectively. Then, we have to inves-

tigate for the general case that qj is calculated with general version of equation (4.4)

in Section 4.4.2 as follows:

qj(pj) = Q(pj)−Q
(Ki

Di

)
, (4.21)

whereQ(p) = p log
[p

Di−1CKi−1

]
+ (1− p) log

[1− p
Di−1CKi

]
.

We define qj as an individual inherent quality of the worker j. To perform simula-

tions and to analyze the results, we have to make an assumption that a worker with an

70

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

l

pr
ob

ab
ili

ty
of

er
ro

r
Iterative Algorithm

Majority Voting
Oracle Estimator

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

q

pr
ob

ab
ili

ty
of

er
ro

r

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

·1021

p̂j

y j

Figure 4.8: Simulations on a set of various (D,K) pairs (m = n = 2000, mixed task

types : (D,K) = (3, 1), (4, 1), (5, 2), (6, 2)) in an equal ratio.

individual quality qj solves question with a reliability pij for each (Di,Ki). Thus for

each (Di,Ki)-task, the corresponding reliability pij is determined by applying New-

ton’s method on a graph of the quality function.

We can check that the same tendencies found in previous simulations also appear

in Figure 4.8. There is also the strong correlation between yj and p̂j as 0.929. This

result is notable in that in the real world, there are many more cases where questions

have various (D,K) pairs than fixed ones.

71

4.6 Conclusion

We have proposed an iterative algorithm that can handle top-K selection questions

which are general types of questions in real crowdsourcing systems. Moreover, our

scheme covers the case with a task set consisting of various (D,K) pairs. From the

performance analysis of our algorithm, we rigorously proved that an upper bound on

the probability of error decays exponentially. Through numerical experiments, we have

verified that our algorithm outperforms majority voting and come close to an oracle

estimator who knows quality of every worker.

72

Chapter 5

Crowdsourcing Systems for Real-valued Vector Regres-

sion

Over the years, several papers have proposed aggregation methods and verified theo-

retical bounds for binary-choice tasks [34, 36, 55] and discrete multiple-choice tasks

[38, 32, 50]. However, most of recent crowdsourcing tasks ask workers to solve a prob-

lem with vectors. Actually, in web-based crowdsourcing platforms such as Amazon

Mechanical Turk and CrowdFlower, a considerable number of requesters ask work-

ers to solve vector regression tasks. (ex Monthly statistics for June 2019, about 22%)

As described in Figure 5.1, the examples of vector regression tasks are as follow: (1)

Rating movies or items, (2) Finding the location of an object in an image, and (3)

Estimating a human posture in an image.

There have been studies to devise an inference algorithm for regression tasks. [30]

extended their binary classification model to learn a simple linear regressor. As for Ex-

pectation Maximization (EM) methods, [56] and [48] proposed a probabilistic graph-

ical model for image object localization. However, those models have a difficulty in

learning parameters with relatively small number of responses.

In this paper, we propose an iterative algorithm for inferring true answers from

noisy responses in vector regression tasks. As in many previous works[56, 32, 48, 34],

73

(a) Movie rating (b) Object localization (c) Pose estimation

Figure 5.1: Applications of the regression tasks in crowdsourcing. (a) movie rating :

to score movies from 0 to 100. (b) image object localization: to draw a tight bounding

box capturing the target object. (c) pose estimation: to find the proper positions of the

skeleton’s joints.

we also consider the ”reliability” of a worker represented by a parameter indicating the

worker’s expertise level and ability. Our algorithm computes two types of messages

alternately. First, the worker message estimates the reliability of each worker, and the

task message computes the weighted averages of their responses using those reliabili-

ties as weights. These processes contribute to infer more accurate answers by sorting

the order of responses by importance. Then we prove the error bound of our algo-

rithm’s average performance based on a probabilistic crowd model. This result shows

our algorithm achieves better performance than other existing algorithms with a small

number of queries and comparatively low average quality of the crowd. Furthermore,

we provide that under a certain condition, the `2 error performance of ours is close

to that of an oracle estimator which knows the reliability of every worker. Through

extensive experiments, we empirically verify that our algorithm outperforms other ex-

isting algorithms for both real world datasets crowd-sourced from CrowdFlower, and

synthetic datasets.

74

Source Binary Multi-class Regression

Dawid and Skene[38] 3 3

Whitehill et al. [32] 3

Welinder et al. [56] 3 3

Raykar et al. [30] 3 3 3

Karger et al. [34] 3

Liu et al. [36] 3

Dalvi et al. [55] 3

Salek et al. [48] 3

Karger et al. [37] 3 3

Zhang et al. [47] 3 3

Lee et al. [50] 3 3

Table 5.1: Comparisons of the types of tasks covered by well-known crowdsourcing

algorithms

5.1 Related Work

For aggregation methods, majority voting is a widely used for its simplicity and intu-

itiveness. [57] shows majority voting can effectively reduce the error in the attribute-

based setting. However, it regards every worker as equally reliable and gives an identi-

cal weight to all responses. Therefore, the performance of majority voting suffers even

with a small number of erroneous responses [29]. To overcome this limitation, there

have been several approaches for improving the inference performance from unreli-

able responses. [38, 56, 32] adopt Expectation and Maximization (EM) to evaluate the

implicit characteristics of tasks and workers. Also, [47] improves this EM approach

using a spectral method with performance guarantees. However, in practice, there is a

difficulty in parameter estimation since these EM approaches are aimed at estimating

a huge confusion matrix from relatively few responses.

75

[34, 36] proposed Belief Propagation(BP)-based iterative algorithms and proved

that their error performances are bounded by worker quality and the number of queries

in binary-choice tasks. Furthermore, there are several researches for crowdsourcing

systems with multiple-choice tasks. [37] focused on multi-class labeling using a spec-

tral method with low rank approximation, [49] proposed an aggregating method with

minimax conditional entropy and [58] suggested an aggregation method using a decod-

ing algorithm of coding theory. In addition, [50] exploits a inner product method(IP)

for evaluating similarity measures between an answer from a worker and the group

consensus.

There have been studies to target vector regression tasks: [59] and the DALE model

in [48], which focus on finding the location of a bounding box in an image. The former

suggests a simple serial task assignment method for a quality-controlled crowdsourc-

ing system with no theoretical guarantee. The latter proposes a probabilistic graphical

model for image object localization and inference method with expectation propaga-

tion. However, the worker model assumption in these papers has two limitations; it

strictly divides the workers’ expertise level and ignores the order of selection when a

crowd divides a length into multiple segments. Also, the latter graphical model has too

many parameters to learn from relatively small number of responses.

On the other hand, there are outlier rejection methods that can be used to filter un-

reliable responses without a graphical model. For non-parametric setting, mean shift

and top-k selection are typically used as classical methods. mean shift is the technique

for locating the maxima of a density function and top-k selection picks k most reliable

responses based on distances between the mean vector and each response itself. For

parametric setting, RANSAC(random sample consensus) is widely used. it is an itera-

tive method to estimate parameters of a mathematical model from a set of responses

that contains outliers, when they are to be accorded no influence on the values of the

estimates.

While most of the papers mentioned above assume random regular task assign-

76

ments, [55, 60] proposed inference methods in irregular task assignments. Also, [37,

50, 61] suggested the adaptive task assignment which gives more tasks to more reliable

workers in order to infer more accurate answers given a limited budget.

5.2 Problem Setup

In this section, we describe a problem setup with variables and notations. First, we

assume that there are m tasks in total and each task i is assigned to distinct li workers.

Similarly, there are n workers in total and each worker j solves different rj tasks.

Here and after, we use [N] to denote the set of first N integers. If we regard tasks and

workers as set of vertices and connect the edge (i, j) ∈ E when the task i is assigned

to the worker j, our system can be described as a bipartite graph G = {[m], [n], E} in

Figure 5.2.

Our crowdsourcing system considers a specific type of task whose answer space

spans a finite continuous domain. If a task asks D number of real values, a response

Ã is a D-dimensional vector. On one task node i, given all of responses
{
Ãij |(i, j) ∈

E
}

, we transform them to A subject to ‖Aij‖1 = 1 by the min-max normalization

since each task can have a different domain length.

For a simple example, in an image object localization regression task, a response

is a bounding box to capture the target object. Considering the x axis only for brevity,

the box coordinate is Ã = [xtl, xbr], where xtl and xbr stand for the top-left and

bottom-right coordinates. Then it can be transformed as

A =
(
xtl, xbr − xtl, xmax − xbr

)
/xmax,

where xmax represents the width of the image. Since images have different size of

width and height, all responses are transformed to have the same domain length.

In summary, when the worker j solves the task i, the response is denoted as

Ãij ∈ RD and transformed to Aij ∈ RD+1 with respect to ‖Aij‖1 = 1. For con-

venience, δi and δj denotes the group of workers who give responses to the task i and

77

1

j

n

1

i

m

~Aij

TASK WORKER

r

l

··
·

··
·

··
·

··
·

δj

δi

Figure 5.2: System model for task-worker

assignments.

wwAij − x(k)
i→j
ww

2

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

y

x

z

Aij

x
(k)
i→j

Figure 5.3: Distance between answerAij

and x message xi→j in the standard 2-

dimensional simplex space whenDi = 2.

the group of tasks which are assigned to worker j respectively.

Majority Voting (MV). The simplest method in response aggregation is majority

voting, well-known sub-optimal estimator, which computes the centroid of responses.

However, its performance can be easily degraded whether there exist a few adversar-

ial workers or spammers who give wrong answers intentionally or random answers

respectively.

Majority voting method gives the identical weight to every worker who annotates

the task for fixed task i.

t̂
(MV)
i =

∑
j∈δi

1

li
Aij . (5.1)

5.3 Inference Algorithm

In this section, we propose a message-passing algorithm for vector regression tasks.

Our iterative algorithm alternatively estimates two types of messages: (1) task mes-

sages xi→j , and worker messages yj→i. This updating process estimates the ground

truth of each task and the reliability of each worker respectively. From now on, l̂i and

78

r̂j denote (li − 1) and (rj − 1) respectively for brevity.

5.3.1 Task Message

We first describe a task message that estimates the current candidate of a ground truth.

It simply computes the centroid of weighted responses from the workers assigned to

the task. Thus, it can be viewed as a simple estimator of weighted voting in that those

weights are computed according to how workers are reliable. Note that a task message

xi→j averages weighted responses from workers assigned to a task i except for the

response from worker j. This helps to block any correlation between the task message

and the responses from worker j.

x
(k)
i→j =

∑
j′∈δi\j

(
y
(k−1)
j′→i

y
(k−1)
δi\j

)
Aij′ , (5.2)

where y(k−1)δi\j =
∑

j′∈δi\j y
(k−1)
j′→i .

79

Algorithm 5.1 Inference Algorithm
Input: G = {[m], [n], E}, {Aij}(i,j)∈E , kmax

Output: Estimated truths t̂i, ∀i ∈ [m]

1: Initialization

2: for ∀(i, j) ∈ E do

3: y
(0)
j→i ← N (0, 1)

4: end for

5: Iteration Step

6: for k = 1 to kmax do

7: for ∀(i, j) ∈ E do

8: Update task message, x(k)
i→j using Eq. 5.2

9: end for

10: for ∀(i, j) ∈ E do

11: Update worker message, y(k)j→i using Eq. 5.3

12: end for

13: end for

14: Final Estimation

15: for ∀j ∈ [n] do

16: yj ←
(

1
r̂j

∑
i∈δj (‖Aij − x(kmax)

i→j ‖2)2
)−1

17: end for

18: for ∀i ∈ [m] do

19: xi ←
∑

j∈δi

(
yj
yδi

)
Aij

20: end for

21: return t̂(ALG)i ← xi,
∀i ∈ [m]

5.3.2 Worker Message

The next step is to compute worker messages yj→i which represents the importance of

responseAij . These worker messages are used as weights in the weighted voting pro-

80

cess in task messages update. Since it is desirable to give a higher weight to more re-

liable workers, each worker’s reliability should be evaluated as the similarity between

his response and the task message which indicates the consensus of other workers’

responses. In our algorithms, it takes advantage of the reciprocal of the summation

of the euclidean distance between the response and the task message as a similarity

measure. In analysis section, our analysis verify that this measure is proper to estimate

weights of workers’ responses. Note that a worker message yj→i represents the av-

erage of similarities between worker j’s responses and the average response of other

workers’ responses in the same task.

y
(k)
j→i =

(
1

r̂j

∑
i′∈δj\i

(
‖Ai′j − x

(k)
i′→j‖2)

2
))−1

. (5.3)

In the worker message update (5.3), we adopt the reciprocal of `2 norm in the

vector space as a similarity measure. However, our algorithm can be generalized with

any metric induced by other norm and similarity function which is continuous and

monotonically decreasing.

5.4 Analysis of Algorithms

In this section, We first propose a general worker model for real-valued segmenta-

tion tasks. Our model follows the Dirichlet distribution to describe how reliable each

worker is. Under this model, we proceed with theoretical analysis on the performance

of our algorithm. As a main result, in Theorem 5.2, we will prove a tight error bound

which depends on task degree l and average quality q of workers. Then, we compare

`2 error performance of our algorithm with those of the baseline algorithms.

5.4.1 Worker Model

Here we propose a worker model that is well-suited for our crowdsourcing system. We

adopt Dirichlet distribution rather than multivariate Gaussian one. The former is more

81

appropriate to capture worker’s behaviors in a restricted simplex domain, while the

latter cannot represent Spammer’s behavior since the latter spans infinite continuous

domain. We first review the Dirichlet distribution and its parameters, and then propose

a probabilistic worker model.

Dirichlet distribution The Dirichlet distribution is a well-known multivariate gener-

alization of beta distribution and is often used as a conjugate prior to the multino-

mial distribution. A Dirichlet distribution on the standard D-dimensional simplex is

parametrized by a (D + 1)-dimensional positive real valued vector α. Its probability

density function is given by

f(x1, ..., xD+1;α1, ..., αD+1) =
1

B(α)

D+1∏
d=1

xd
(αd−1), (5.4)

on the standard D-dimensional simplex which is defined by x ∈ R(D+1), where xd >

0 for ∀d and ‖x‖1 = 1. The parameter vector α can be decomposed into the mean

vector swith a scalar α0 called a precision (or concentration parameter), i.e.α = α0s,

where α0 =
∑
αd. The precision parameter generally controls the sparsity of samples

from the Dirichlet distribution and it is inversely proportional to its variance.

(a) Adversarial (b) Spammer (c) Hammer

Figure 5.4: Three types of crowds in the standard 2-dimensional simplex space.

Note that when every αi > 1, the probability density function of a Dirichlet distri-

bution attains unimodality and it has a bell shape around its mean. In other condition

82

when any αi < 1, it has no mode and most of its density is concentrated on a region

outward from its mean.

Dirichlet crowd model For given ground truths on the standard D-dimensional sim-

plex, we can consider each response as a sample from a Dirichlet distribution governed

by corresponding task and worker. Since responses are commonly drawn around the

ground truth, we can model the mean of this Dirichlet distribution as the task’s ground

truth ti. The expected error between the ground truth and the response then comes

from the variance, which is determined by the location of ground truth ti and the

worker’s reliability wj . (α = wjti) The expected error in responses is determined

by the worker reliability which measures the ability, diligence, and precision of the

worker. We parametrize this as a positive continuous value wj ∈ [0,∞] where a higher

wj means that worker j gives a closer answer to ground truth. As Figure 5.4 illustrates,

three types of worker which are adversarial worker, Spammer and Hammer [62] can

be well-described according to precision w.

Here we assume that workers follow the Dirichlet crowd model. In addition, the

task assignment is denoted as a random (l, r)-regular bipartite graph G([m], [n],A).

Then we define expected error from the individual worker j’s response in task i by the

distance between the answer Aij and the ground truth ti. If we use the square of `2

norm as an error measure, then the individual error is represented as

eij = (‖Aij − ti‖2)2. (5.5)

Due to each answer Aij follows Dirichlet crowd model, the expected error is repre-

sented as follows

E
[
eij
]

=
(1

wj + 1

)
· Ti, Ti = ti · (1− ti). (5.6)

The error depend on (wj + 1)−1 and Ti which represent worker j’s precision and the

83

effect of ground truth respectively. Now we define the average quality of workers as

q−1 = EW

[1

w + 1

]
. (5.7)

A higher value of q indicates that workers are more reliable, whereas a value q close

to one means many workers behave maliciously. We will show that the error bound

of our algorithm depends on this parameter q. The expected error of our algorithm is

defined as

EALG := lim
kmax→∞

1

m

∑
i∈[m]

E
[(
‖ti − t̂i

(
{Aij}(i,j)∈E

)
‖2
)2]

. (5.8)

5.4.2 Oracle Estimator

Under a probabilistic worker model, we can construct the best inference algorithm

as obtained by an oracle who knows every worker’s reliability. Given every worker’s

reliability, the oracle can estimate the ground truth by minimizing the expected error

between the ground truth and an estimated location. Therefore its performance can be

considered as a lower bound of the expected error rate.

t̂
(OC)
i =

∑
j∈δi

{
wj + 1∑

j∈δi(wj + 1)

}
Aij . (5.9)

Secondly, we prove the performance of an oracle estimator which gives the theoretical

lower error bound. As described in Section 5.4.2, the oracle estimator knows every

worker’s reliability. Thus, it gives the optimal weight to each worker as (5.9) and the

expected error of oracle estimator can be described as

EOC =

(
1

EW
[
w + 1

]) · 1

lm

∑
i∈[m]

Ti. (5.10)

Then, we look into the expected errors of baseline algorithms. As mentioned above,

majority voting gives the same weight for each worker. The expected error of majority

voting is simply represented as

EMV =
(1

qlm

) ∑
i∈[m]

Ti. (5.11)

84

From above results, we always have

EOC 6 EMV (∵ Jensen’s inequality), (5.12)

and the equality holds when the distribution of worker reliability W follows a degen-

erate distribution.

Optimality of Oracle Estimator. In this part, we prove why the oracle estimator is

optimal and it gives worker j the weight in proportion to (wj + 1). The result of (6)

implies that the expected error of oracle estimator is weighted average of (wj + 1)−1

excluding the effect of the ground truth. For fixed task i and given l number of worker

batch δi, the problem of finding the oracle estimator’s optimal weights is formulated as

the following convex optimization problem. The object function G(v) represents the

sum of expected errors from workers in the batch δi.

minimize
v

G(v) =
l∑

j=1

v2j
wj + 1

subject to
l∑

j=1

vj = vT1 = 1. vj > 0∀j

This problem is equivalent to minimize a l-dimensional ellipsoid’s radius with a con-

straint on the subspace vT1 = 1. The optimal point v∗ is on the point of contact be-

tween the l-dimensional ellipsoid and the subspace. Thus, we can obtain∇G(v∗) = b1

for some constant b and (v∗)T1 = 1. In addition, the problem is also convex problem

with strong duality (zero dual gap). Therefore, points are optimal if and only if they

satisfy the KKT condition:

v∗j > 0, ∀j, vT1 = 1,

ψj > 0, ψjvj = 0 ∀j,

∇H(v) = 0.

85

Once you solve the above equations, we obtain the optimal weight which the oracle

estimator gives to worker j. In fact, the optimal weight of the worker j is in proportion

to (wj + 1).

v∗j =
(wj + 1)∑l
j=1(wj + 1)

. �

5.4.3 Bound on the Average Error Probability

Here we state the main analytic result of our algorithm: for a random (l, r)-regular

bipartite graph from configuration model, we prove that the average error performance

is bounded by the formula which depends on the average quality q, the number of

queries l and some constant related to the distribution of ground truth.

Although our algorithm works in a general bipartite graph, here we assume a reg-

ular bipartite graph (i.e. ∀i, j, li = l and rj = r solely for a mathematical proof which

were commonly used in previous works [34, 50]. This is an ordinary setting when we

intend to assign our budget to each task equally. If the crowdsourcing system creates

every batch arbitrarily, our setting can be represented as a random (l, r)-regular bipar-

tite graph. To generate a random regular bipartite graph, we bring a simple construction

model known as the configuration model [63, 64].

Our strategy to provide the upper bound is to find the E
[
y
(∞)
j→i
]

which means the

value of worker message as kmax → ∞. In task message update step, our algorithm

normalizes the worker message values in order to make each task message on the sim-

plex. Since we assume the sparse bipartite graph, the task-worker graph G is locally

tree-like. Therefore, the messages and responses are uncorrelated with high probabil-

ity.

Lemma 5.1. For each task i, worker j, If the average quality satisfies q > (1 + (D +

1)/l̂r̂), then when k → ∞ the expected worker message of our algorithm converges

such that

E
[
y
(∞)
j→i

]
∼=

1
1

(wj+1) + 1
l̂r̂q

· Ti. (5.13)

86

This result implies our algorithm gradually gives worker j a weight proportional

to (wj + 1) like the oracle estimator as degree l or the worker quality q grows. In the

other extreme case, the our algorithm gives the constant weight to each worker like

the majority voting (i.e., (wj + 1) � lq). In the next part, we will prove that the ora-

cle estimator assigns a worker j the optimal weight in proportion to (wj + 1). Thus,

the average error increases as the KL divergence between the vector of weights and

that of oracle estimator’s weight increases. Since the weights of workers who annotate

the task i are normalized by their sum, we can determine those weights precisely in

terms of their ratios mentioned in Lemma 5.1. Then, we can verify that Algorithm 1

is gradually getting closer to oracle estimator as k → ∞ . In initialization, since Al-

gorithm 1 gives same weight to each worker, it behaves as the majority voting. After

a few iterations, each weight vector follows (5.13) similar to oracle estimator which is

the theoretical lower bound in `2 norm.

Proof of Lemma 5.1 The average value of worker message converges proportionally

to
(
(wj + 1)−1 + (lq)−1

)−1 as k → ∞ in Lemma 5.1. For the proof, we describe a

distance of responses in advance. Since we adopt the euclidean distance as a metric in

Section 2, the distance between the single response Aij and the task message x(k)
i→j is

denoted as

d
(k)
j→i = (‖Aij − x(k)

i→j‖2)
2.

Then, the expected distance is represented as

E
[
d
(k)
j→i
]

=

(
1

(wj + 1)
+
∑

j′∈δi\j

E
[(y(k−1)j′→i

y
(k−1)
δi\j′

)2] 1

(wj′ + 1)︸ ︷︷ ︸
pkij

)
Ti.

Since our algorithm initializes each worker message value equally and we assume

average quality satisfies the condition, q > (1+D/l̂r̂), pkij value decreases as k →∞.

87

In particular,

E
[

1

r̂

∑
i′∈δj\i

pkij

]
6

1

l̂r̂q

On the other hand, the estimation process of worker messages is described as

y
(k)
j→i =

1
1
r̂

∑
i′∈δj\i

(
d
(k)
j→i′

) . (5.14)

In section C, we will prove that the oracle estimator gives each worker j the optimal

weight in proportion to (wj + 1). The expected distance and (5.14) implies that our

algorithm gives each worker j similar weight but not equal. Thus, we can obtain the

expected worker message after k iteration.

E[y
(k)
j→i]
∼=

1
1
r̂

∑
i′∈δj\i E[d

(k)
j→i′]

. (5.15)

Therefore, as k →∞, the expected worker message satisfies

E
[
y
(∞)
j→i

]
∼=

1
1

(wj+1) + 1
l̂r̂q

· Ti. (5.16)

Theorem 5.2. For fixed l > 1, r > 1 and dimension D > 1, assume that m tasks

are assigned to n workers according to a random (l, r)-regular bipartite graph. If the

average quality satisfies q > (1 + (D + 1)/l̂r̂), then when k → ∞ the average error

of the our algorithm achieves

EALG 6

(
(1 + 1/l̂r̂)2

(
√

2 + 1)qr̂

)
· 1

l̂m

∑
i∈[m]

Ti. (5.17)

This result implies that we can control the error performance by adjusting the average

quality of workers and the number of queries assigned to each task. As q and lr in-

crease, the upper bound of our algorithm becomes lower.

Proof of Theorem 5.2 Here the detailed proof of Theorem 5.2 is provided using the

result of Lemma 5.1. In Section 2, we adopt a random (l, r)-regular bipartite graph as

88

a task assignment. If this sparse task-worker graph is assumed (|m| � r, |n| � l),

we can claim that the graph has locally-tree like structure. This property implies that

the response Aij is uncorrelated with the task message x(k)i→j . Then, for each task i, the

expected error of our algorithm Eiter is represented as

EALG =
1

m

∑
i∈[m]

∑
j∈δi

E
[(y∞j→i

y∞δi

)2]
· 1

wj + 1︸ ︷︷ ︸
si

·Ti.

In this point, we can obtain the expected worker message using Lemma 5.1,

E
[
y
(∞)
j→i

]
∼=

(wj + 1)

1 +
(wj+1)
lq

· Ti. (5.18)

According to the definition of the worker message, the weight is described as

y∞j→i
y∞δi

=
y∞j→i∑
j∈δi y

∞
j→i

. (5.19)

Using (5.16), (5.19) and arithmetic-geometric mean inequality with wj > 0, the si is

bounded as

si 6
(1 + 1/l̂r̂)2

(
√

2 + 1)ql̂r̂
. (5.20)

The second inequality comes from the definition of average quality. Thus, we obtain

the error bound Uiter

EALG 6 UALG =

(
(1 + 1/l̂r̂)2

(
√

2 + 1)qr̂

)
· 1

l̂m

∑
i∈[m]

Ti. �

Next we compare the upper bound of our algorithm to the error performance of

majority voting.

Corollary 5.2.1. Under the hypotheses of Theorem 5.2,

EALG 6 UALG 6 EMV (5.21)

89

Proof of Corollary 5.2.1 From the results of (9) and (13), we always have

1 >
(1 + 1/l̂r̂)2

(
√

2 + 1)l̂r̂
,

given the fixed average quality q if the size of batch satisfies l̂r̂ > (
√

2 + 1) and

l > 1, r > 1. Even if we assume the sparse random bipartite graph (i.e., |m| � l,

|n| � r), only a few number of task allocation is sufficient to outperform majority

voting. However, the performance gap is further increases as batch size increases. �

Corollary 5.2.2. Under the hypotheses of Theorem 5.2, if the distribution of the relia-

bility satisfies

P
(

(w + 1) > 2µw

)
6

(
√

2 + 1)l̂r̂

l(1 + 1/(l̂r̂))2
,

and symmetrical, then the upper bound of EALG is close to the oracle estimator’s

average performance.

UALG → EOC . (5.22)

Proof of Corollary 5.2.2 Here, we compare the average error of our algorithm with

that of the oracle estimator. From (7) and (9), the gap between EALG and EOC is as

follows.

∆ =

{
l(1 + 1/l̂r̂)2

(
√

2 + 1)ql̂r̂
− 1

EW
[
w + 1

]︸ ︷︷ ︸
∆w

}
· 1

lm

∑
i∈[m]

Ti. (5.23)

To show concisely, the mean and variance of the reliability distribution are denoted

as µw and σ2w respectively.

Using (5.23) with the definition of ∆w, we are left to find the condition that satisfies

∆w = 0. If the distribution of worker reliability W is degenerate distribution with zero

variance, the level of each worker is equal. Thus, it is not meaningful to distinguish the

quality of the worker and for some l > 1and the error bound of Theorem 5.2 is loose.

As mentioned in (11), equal weighting is the best in degenerate distribution. However,

90

when the distribution of worker reliability W follows certain probabilistic distribution

rather than degenerate, we can approximate the quality as

q−1 = EW

[
1

w + 1

]
∼=

1

EW
[
w + 1

] EW
[
(w + 1)2

]
EW
[
w + 1

]2 (5.24)

using third order Taylor expansion around EW[w + 1]. It is known that this approxi-

mation is quite accurate when the distribution of worker reliability is symmetric. Sub-

stituting (5.24) into (5.23) provides ∆w = 0 is equivalent to

σ2w
µ2w

=

(
(
√

2 + 1)l̂r̂

l(1 + 1/l̂r̂)2
− 1

)
.

Then, applying Chebyshev’s inequality, it immediately follows

P
(

(w + 1) > 2µw

)
6

(
√

2 + 1)l̂r̂

l(1 + 1/l̂r̂)2
. �

5.5 Experimental Results

In our experiments, we have evaluated the performance of our algorithm with two

popular benchmarks, MSCOCO [10] and the Leeds Sports Pose Extended Training

(LSPET) datasets. We compare our algorithm with baselines algorithms which are

majority voting (MV) and weighted voting (WV) whose weights are externally given

by web-based crowdsourcing platform. We also implemented several state-of-the art

which are inner-product method (IP) [50], Welinder’s EM model [56], DALE model

[48], and outlier rejection methods which are Mean shift and Top-K selection.

5.5.1 Real Crowdsourcing Data

We crowdsourced two types of tasks in CrowdFlower. One is for image object local-

ization in which the task is to draw a bounding box on the specified object as tightly

as possible. The other one is for human pose estimation, where the task is to construct

a skeleton-like structure of a human in a given image.

91

(a
)

G
ro

un
d

tr
ut

h
(b

)
R

es
po

ns
es

(c
)

M
V

(d
)

O
ur

s

Fi
gu

re
5.

5:
D

ra
w

in
g

a
bo

un
di

ng
bo

x
ta

sk
on

th
e

‘b
at

’.
(a

)
th

e
gr

ou
nd

tr
ut

h
(b

)
bo

un
di

ng
bo

xe
s

dr
aw

n
by

25
w

or
ke

rs
.(

c)
es

tim
at

ed

an
sw

er
of

m
aj

or
ity

vo
tin

g.
(d

)e
st

im
at

ed
an

sw
er

of
ou

ra
lg

or
ith

m
.

92

Bounding box on MSCOCO dataset. In this task, we randomly chose 2,000 arbitrary

images from MSCOCO dataset, and each image was distributed to 25 distinct workers,

so there were 50,000 tasks to be solved in total. Total 618 workers were employed, and

each worker solved 10 (min) to 100 (max) tasks. We exclude some invalid responses

(no box, box over out of bounds [0, image size]). Note that a general bipartite graph

is created with different node degrees li and rj , which is not a regular bipartite graph.

We measured algorithms’ performances by the average error in the `2 norm and the

Intersection over Union (IoU), which is another standard measure for object localiza-

tion computed by a ratio of intersection area to union area of two bounding boxes. In

this experiment, DALE model does not converge due to its complex graphical model

raising an out of memory error.

Dataset MSCOCO LSPET

Type Box(`2) Box(IoU) Joints Angles

WV 0.22227 0.89593 0.15877 0.10524

MV 0.22090 0.89666 0.15858 0.10462

IP 0.22026 0.89712 0.15483 0.10462

Welinder 0.21886 0.89821 N/A N/A

DALE 0.21834 0.89914 N/A N/A

Top-K 0.18869 0.91250 0.12222 0.10051

MeanShift 0.18034 0.92150 0.11812 0.09962

Ours 0.14837 0.93445 0.09308 0.09941

Table 5.2: An error table of experimental results on real crowdsourced data where the

tasks are (1st column) an object detection on MSCOCO dataset, (2nd column) same

task with Intersection of Union measure (3rd column) a human joints estimation and

(4th column) an angle segmentation by neck and adjacent human joints on LSPET

dataset. For Top-K selection, we choose K as a half of the task degree l.

93

0 5 10 15 20
0

0.1

0.2

0.3

task degree l

er
ro

r(
` 2

-n
or

m
)

Average error

MV WV
IP Welinder

DALE MeanShift
Top-K Ours

0 5 10 15 20

0.84

0.86

0.88

0.9

0.92

0.94

task degree l

Io
U

(I
nt

er
se

ct
io

n
of

U
ni

on
)

Intersection of Union

MV WV
IP Welinder

DALE MeanShift
Top-K Ours

Figure 5.6: Comparisons of error and IoU between different algorithms with varying

task degree l.

To measure the performance of DALE model in smaller data, we collected a dedi-

cated dataset of 100 images each of which was assigned to 20 distinct workers. Results

are listed in Table 5.2 with two evaluation metric Euclidean distance(`2) and Intersec-

tion over Union(IoU). Our algorithm significantly outperforms others and, even with

small number of iterations, can reduce errors rapidly. Empirically, our algorithm con-

verges in less than 20 iterations as plotted in Figure 5.7.

Varying degree on MSCOCO dataset. Here we show how the performances of dif-

ferent algorithms vary with task degree l. We made a number of task-worker bipartite

graphs by randomly dropping some edges to make degree l for each task. As expected,

the average error of each algorithm decreases as the task degree l increases. Even when

the degree value falls until 5, ours can still keep the large gap among other algorithms.

In other words, our algorithm needs less budget to get same error rate. The results are

listed in Figure 5.6.

Robustness. Since it is well known that message-passing algorithms suffers from the

initialization issue in general, we tested robustness of our algorithm by initializing

workers’ weights to be sampled from proper distributions with moderate hyperpa-

rameters. Here we used Beta distribution with (α, β), and Gaussian distribution with

94

0 2 4 6 8 10 12 14
0.14

0.16

0.18

0.2

0.22

0.24

iteration k

er
ro

r(
` 2

-n
or

m
)

Average error

Ours

0 2 4 6 8 10 12 14

0.89

0.9

0.91

0.92

0.93

0.94

iteration k
Io

U
(I

nt
er

se
ct

io
n

ov
er

U
ni

on
)

Intersection over Union

Figure 5.7: Error bar plots of our algorithm for the initialization issue on 2k-edge

bounding box task.

8 10 12 14 16 18 20

0.15

0.16

0.17

task degree l

er
ro

r(
` 2

-n
or

m
)

Average error

ε = 1e-3
ε = 1e-4
ε = 1e-5
ε = 1e-6

8 10 12 14 16 18 20
0.92

0.93

0.93

0.93

0.93

0.93

0.94

task degree l

Io
U

(I
nt

er
se

ct
io

n
of

U
ni

on
)

Intersection over Union

ε = 1e-3
ε = 1e-4
ε = 1e-5
ε = 1e-6

Figure 5.8: The influence of ε on error and IoU when computing y-messages with

varying task degree l.

95

(µ, σ2) sampled from uniform distribution U . The result is shown by error bar plots in

Figure 5.7 which represents the deviation reduces rapidly. This result shows that our

algorithm is robust to the initialization of workers’ weights.

When the number of edges are not sufficient to estimate worker message, our al-

gorithm can diverge as iteration progresses since worker message is computed by the

reciprocal of the summation between the response and the task message. It can be re-

solved by adding a very small positive constant ε on the summation before computing

the reciprocal.

y
(k)
j→i =

(
1

r̂

∑
i′∈δj\i

(
‖Aij − x(k)

i→j‖2)
2
)

+ ε

)−1
. (5.25)

We investigate the influence of ε in Figure 5.8. This result shows our algorithm works

well when ε ≤ 10−5.

Human pose estimation. We collected the human pose estimation data of 1,000 im-

ages chosen from LSPET dataset using CrowdFlower platform. Each image was dis-

tributed to ten distinct workers who were asked to mark dots on the 14 human joints

(head, neck, left/right shoulders, elbows, wrists, hips, knees, and ankles). In this exper-

iment, we aggregated their answers to estimate the point of each human joint. More-

over, we estimated angles from the neck and adjacent joints (head, shoulders, hips)

as another task which is also important in pose estimation. Estimating angles can be

viewed as dividing angle task whose domain is [0, 2π]. As shown in Table 5.2, our

algorithm outperforms others on both joint and angle estimation tasks.

5.5.2 Verification of the Error Bounds with Synthetic data

In order to empirically verify the correctness of the analysis, experiments were per-

formed with synthetic dataset. Assuming hypothetical 2,000 workers and 2,000 tasks

with two dimensions (D = 2, 5), task assignment follows regular bipartite graph. The

performance of the oracle estimator is presented as a theoretical lower bound. Also,

each result is averaged of 20 experiments by changing the initial value.

96

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.6

0.8

1

1.2

1.4

·10−2

Spammer/Hammer Ratio γ

A
ve

ra
ge

er
ro

r
D = 2

MV
IP

DALE
Ours
OC

0.2 0.3 0.4 0.5 0.6 0.7 0.8
3

4

5

6

·10−3

Spammer/Hammer Ratio γ

A
ve

ra
ge

er
ro

r

D = 5

MV
IP

DALE
Ours
OC

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

·10−2

Inverse Quality q−1

A
ve

ra
ge

er
ro

r

D = 2

MV
IP

DALE
Ours
OC

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

·10−2

Inverse Quality q−1

A
ve

ra
ge

er
ro

r

D = 5

MV
IP

DALE
Ours
OC

Figure 5.9: Comparison of average errors between different algorithms with D =

(2, 5): (top) varying γ (ws = 0.5, wh = 5), (bottom) varying q.

Spammer/Hammer ratio. In this experiment, we assume the Spammer/Hammer sce-

nario which means that each worker is randomly sampled from a Spammer (ws = 0.5)

or a Hammer (wh = 5); the response of a Hammer is much closer to the ground truth

than that of a Spammer. The ratio γ denotes the Hammer proportion of all workers.

Figure 5.9 (left) shows that our algorithm can distinguish Hammer from Spammer

much better than others.

Quality. According to the definition of (5.7), the reliability of each worker was drawn

from Beta distribution
(
i.e., (1 + w)−1 ∼ Beta(α, β)

)
. In Figure 5.9 (right), our algo-

rithm shows a large performance gap when the quality is sufficiently high. The average

97

errors of the five algorithms are indistinguishable when the quality is low, but our algo-

rithm is better at estimating the workers’ reliabilities if the quality is sufficiently high.

Since our algorithm regards the average response of other workers as approximated

true answers, high quality promotes its performance.

5.6 Conclusion

In this study, we have proposed an iterative algorithm for vector regression tasks. We

observed the considerable gains with both real and synthetic datasets through various

experiments. In the theoretical analysis, we proved that the error bound depends on

the average worker quality and the number of queries batch achieving near-optimal

performance in the probabilistic worker model. Our work can be easily generalized

to many image processing tasks such as 3D image processing and multiple object

detection. Also, it can be exploited for estimating the precise level of workers in an

adaptive manner.

98

Chapter 6

Conclusions

In this dissertation, we propose iterative algorithms to infer groundtruths by aggregat-

ing noisy answers from crowdsourcing workers. We explore several types of crowd-

sourcing tasks that contains multiple-choice question, short-answer questions,K-approval

voting, and real-valued vector regression. These tasks are fundamental components

composing complex crowdsourcing tasks, but have been not of interest to academic

studies in general. Our proposed algorithms provide reliable solutions for those tasks

with performance guarantees. In particular, our proposed algorithms achieve order-

optimal performance where the optimal performance comes from oracle estimator who

knows every worker’s reliability. We give a rigorous theoretical analysis for the pro-

posed algorithms and verify their remarkable performance by numerous experiments

in both real and synthetic crowdsourcing datasets. We hope that our work would be of

practical use in web-based crowdsourcing services.

99

Bibliography

[1] Chris J Lintott, Kevin Schawinski, Anže Slosar, Kate Land, Steven Bamford,

Daniel Thomas, M Jordan Raddick, Robert C Nichol, Alex Szalay, Dan An-

dreescu, et al. Galaxy zoo: morphologies derived from visual inspection of galax-

ies from the sloan digital sky survey. Monthly Notices of the Royal Astronomical

Society, 389(3):1179–1189, 2008.

[2] TechCrunch. recaptcha: Using captchas to digitize

books. https://techcrunch.com/2007/09/16/

recaptcha-using-captchas-to-digitize-books/, 2007. [On-

line; September 16, 2007].

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-

genet: A large-scale hierarchical image database. In Computer Vision and Pat-

tern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE,

2009.

[4] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y Ng. Cheap

and fast—but is it good?: evaluating non-expert annotations for natural language

tasks. In Proceedings of the conference on empirical methods in natural language

processing, pages 254–263. Association for Computational Linguistics, 2008.

[5] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

100

[6] Aniket Kittur, Ed H Chi, and Bongwon Suh. Crowdsourcing user studies with

mechanical turk. In Proceedings of the SIGCHI conference on human factors in

computing systems, pages 453–456. ACM, 2008.

[7] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and An-

drew Zisserman. The pascal visual object classes (voc) challenge. International

journal of computer vision, 88(2):303–338, 2010.

[8] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

Imagenet large scale visual recognition challenge. International journal of com-

puter vision, 115(3):211–252, 2015.

[9] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.

Labelme: a database and web-based tool for image annotation. International

journal of computer vision, 77(1-3):157–173, 2008.

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common ob-

jects in context. In European Conference on Computer Vision, pages 740–755.

Springer, 2014.

[11] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d

human pose estimation: New benchmark and state of the art analysis. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

[12] Sam Johnson and Mark Everingham. Learning effective human pose estimation

from inaccurate annotation. In CVPR 2011, pages 1465–1472. IEEE, 2011.

[13] Benjamin Sapp and Ben Taskar. Modec: Multimodal decomposable models for

human pose estimation. In In Proc. CVPR, 2013.

101

[14] Dieu-Thu Le, Jasper Uijlings, and Raffaella Bernardi. Tuhoi: Trento universal

human object interaction dataset. In Proceedings of the Third Workshop on Vision

and Language, pages 17–24, 2014.

[15] Chao-Yeh Chen and Kristen Grauman. Predicting the location of “interactees” in

novel human-object interactions. In Asian conference on computer vision, pages

351–367. Springer, 2014.

[16] Yu-Wei Chao, Zhan Wang, Yugeng He, Jiaxuan Wang, and Jia Deng. Hico: A

benchmark for recognizing human-object interactions in images. In Proceedings

of the IEEE International Conference on Computer Vision, pages 1017–1025,

2015.

[17] Carl Vondrick, Donald Patterson, and Deva Ramanan. Efficiently scaling up

crowdsourced video annotation. International journal of computer vision,

101(1):184–204, 2013.

[18] Alessandro Prest, Christian Leistner, Javier Civera, Cordelia Schmid, and Vitto-

rio Ferrari. Learning object class detectors from weakly annotated video. In 2012

IEEE Conference on Computer Vision and Pattern Recognition, pages 3282–

3289. IEEE, 2012.

[19] David Tsai, Matthew Flagg, Atsushi Nakazawa, and James M Rehg. Motion

coherent tracking using multi-label mrf optimization. International journal of

computer vision, 100(2):190–202, 2012.

[20] Guangnan Ye, Yitong Li, Hongliang Xu, Dong Liu, and Shih-Fu Chang. Event-

net: A large scale structured concept library for complex event detection in video.

In Proceedings of the 23rd ACM international conference on Multimedia, pages

471–480, 2015.

[21] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Li Fei-Fei. Large-scale video classification with convolutional neu-

102

ral networks. In Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 1725–1732, 2014.

[22] Yu-Gang Jiang, Jingen Liu, A Roshan Zamir, George Toderici, Ivan Laptev,

Mubarak Shah, and Rahul Sukthankar. Thumos challenge: Action recognition

with a large number of classes, 2014.

[23] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori,

and Li Fei-Fei. Every moment counts: Dense detailed labeling of actions in

complex videos. International Journal of Computer Vision, 2017.

[24] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Car-

los Niebles. Activitynet: A large-scale video benchmark for human activity

understanding. In Proceedings of the ieee conference on computer vision and

pattern recognition, pages 961–970, 2015.

[25] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and

Abhinav Gupta. Hollywood in homes: Crowdsourcing data collection for activity

understanding. In European Conference on Computer Vision, pages 510–526.

Springer, 2016.

[26] Stanislaw Antol, C Lawrence Zitnick, and Devi Parikh. Zero-shot learning via

visual abstraction. In European conference on computer vision, pages 401–416.

Springer, 2014.

[27] Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. Quality management on

amazon mechanical turk. In Proceedings of the ACM SIGKDD workshop on

human computation, pages 64–67. ACM, 2010.

[28] Gabriella Kazai, Jaap Kamps, and Natasa Milic-Frayling. An analysis of human

factors and label accuracy in crowdsourcing relevance judgments. Information

retrieval, 16(2):138–178, 2013.

103

[29] Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. Get another label?

improving data quality and data mining using multiple, noisy labelers. In Pro-

ceedings of the 14th ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 614–622. ACM, 2008.

[30] Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo Valadez,

Charles Florin, Luca Bogoni, and Linda Moy. Learning from crowds. The Jour-

nal of Machine Learning Research, 11:1297–1322, 2010.

[31] Peter Welinder, Steve Branson, Pietro Perona, and Serge J Belongie. The mul-

tidimensional wisdom of crowds. In Advances in neural information processing

systems, pages 2424–2432, 2010.

[32] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R Movellan, and Paul L

Ruvolo. Whose vote should count more: Optimal integration of labels from label-

ers of unknown expertise. In Advances in neural information processing systems,

pages 2035–2043, 2009.

[33] David R Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal crowdsourc-

ing using low-rank matrix approximations. In Communication, Control, and

Computing (Allerton), 2011 49th Annual Allerton Conference on, pages 284–

291. IEEE, 2011.

[34] David R Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable

crowdsourcing systems. In Advances in neural information processing systems,

pages 1953–1961, 2011.

[35] David R Karger, Sewoong Oh, and Devavrat Shah. Budget-Optimal Task Allo-

cation for Reliable Crowdsourcing Systems. Operations Research, 62(1):1–24,

February 2014.

[36] Qiang Liu, Jian Peng, and Alex Ihler. Variational inference for crowdsourcing.

In Advances in Neural Information Processing Systems, pages 692–700, 2012.

104

[37] David R Karger, Sewoong Oh, and Devavrat Shah. Efficient crowdsourcing for

multi-class labeling. In Proceedings of the ACM SIGMETRICS/international

conference on Measurement and modeling of computer systems, pages 81–92.

ACM, 2013.

[38] Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation

of observer error-rates using the em algorithm. Applied statistics, pages 20–28,

1979.

[39] Pinar Donmez, Jaime G Carbonell, and Jeff Schneider. Efficiently learning the

accuracy of labeling sources for selective sampling. In Proceedings of the 15th

ACM SIGKDD international conference on Knowledge discovery and data min-

ing, pages 259–268. ACM, 2009.

[40] S Ertekin, H Hirsh, and C Rudin. Approximating the wisdom of the crowd. In

Proceedings of the Workshop on Computational Social Science and the Wisdom

of Crowds, 2011.

[41] Chien-Ju Ho, Shahin Jabbari, and Jennifer W Vaughan. Adaptive task assign-

ment for crowdsourced classification. In Proceedings of the 30th International

Conference on Machine Learning (ICML-13), pages 534–542, 2013.

[42] Yaling Zheng, Stephen Scott, and Kun Deng. Active learning from multiple

noisy labelers with varied costs. In Data Mining (ICDM), 2010 IEEE 10th Inter-

national Conference on, pages 639–648. IEEE, 2010.

[43] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel

Blum. recaptcha: Human-based character recognition via web security measures.

Science, 321(5895):1465–1468, 2008.

[44] Noga Alon and Joel H. Spencer. The probabilistic method. John Wiley & Sons,

Hoboken, NJ, 2008.

105

[45] Nihar B Shah, Dengyong Zhou, and Yuval Peres. Approval voting and incentives

in crowdsourcing. arXiv preprint arXiv:1502.05696, 2015.

[46] Ariel D Procaccia and Nisarg Shah. Is approval voting optimal given approval

votes? In Advances in Neural Information Processing Systems, pages 1792–1800,

2015.

[47] Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I Jordan. Spectral meth-

ods meet em: A provably optimal algorithm for crowdsourcing. In Advances in

neural information processing systems, pages 1260–1268, 2014.

[48] Mahyar Salek and Yoram Bachrach. Hotspotting-a probabilistic graphical model

for image object localization through crowdsourcing. In AAAI, 2013.

[49] Dengyong Zhou, Qiang Liu, John C Platt, and Christopher Meek. Aggregating

ordinal labels from crowds by minimax conditional entropy. In ICML, volume 14,

pages 262–270, 2014.

[50] Donghyeon Lee, Joonyoung Kim, Hyunmin Lee, and Kyomin Jung. Reliable

multiple-choice iterative algorithm for crowdsourcing systems. In Proceedings

of the 2015 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems, pages 205–216. ACM, 2015.

[51] Joonyoung Kim, Donghyeon Lee, and Kyomin Jung. Reliable aggregation

method for vector regression tasks in crowdsourcing. In Pacific-Asia Conference

on Knowledge Discovery and Data Mining, pages 261–273. Springer, 2020.

[52] Ece Kamar, Severin Hacker, and Eric Horvitz. Combining human and machine

intelligence in large-scale crowdsourcing. In Proceedings of the 11th Interna-

tional Conference on Autonomous Agents and Multiagent Systems-Volume 1,

pages 467–474. International Foundation for Autonomous Agents and Multia-

gent Systems, 2012.

106

[53] Steve Branson, Grant Van Horn, and Pietro Perona. Lean crowdsourcing: Com-

bining humans and machines in an online system. In Computer Vision and Pat-

tern Recognition (CVPR), 2017 IEEE Conference on. IEEE, 2017.

[54] Grant Van Horn, Steve Branson, Scott Loarie, Serge Belongie, and Pietro Per-

ona. Lean multiclass crowdsourcing. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2714–2723, 2018.

[55] Nilesh Dalvi, Anirban Dasgupta, Ravi Kumar, and Vibhor Rastogi. Aggregating

crowdsourced binary ratings. In Proceedings of the 22nd international confer-

ence on World Wide Web, pages 285–294. ACM, 2013.

[56] Peter Welinder and Pietro Perona. Online crowdsourcing: rating annotators and

obtaining cost-effective labels. In Computer Vision and Pattern Recognition

Workshops (CVPRW), 2010 IEEE Computer Society Conference on, pages 25–

32. IEEE, 2010.

[57] Asif R Khan and Hector Garcia-Molina. Attribute-based crowd entity resolution.

In Proceedings of the 25th ACM International on Conference on Information and

Knowledge Management, pages 549–558. ACM, 2016.

[58] A. Vempaty, L.R. Varshney, and P.K. Varshney. Reliable crowdsourcing for

multi-class labeling using coding theory. Selected Topics in Signal Processing,

IEEE Journal of, 8(4):667–679, August 2014.

[59] Hao Su, Jia Deng, and Li Fei-Fei. Crowdsourcing annotations for visual ob-

ject detection. In Workshops at the Twenty-Sixth AAAI Conference on Artificial

Intelligence, volume 1, 2012.

[60] Yao Ma, Alex Olshevsky, Venkatesh Saligrama, and Csaba Szepesvari. Crowd-

sourcing with sparsely interacting workers. arXiv preprint arXiv:1706.06660,

2017.

107

[61] Chenxi Qiu, Anna C Squicciarini, Barbara Carminati, James Caverlee, and

Dev Rishi Khare. Crowdselect: increasing accuracy of crowdsourcing tasks

through behavior prediction and user selection. In Proceedings of the 25th ACM

International on Conference on Information and Knowledge Management, pages

539–548. ACM, 2016.

[62] Yao Zhou, Lei Ying, and Jingrui He. Multic2: an optimization framework for

learning from task and worker dual heterogeneity. In Proceedings of the 2017

SIAM International Conference on Data Mining, pages 579–587. SIAM, 2017.

[63] Béla Bollobás. Random graphs. In Modern graph theory, pages 215–252.

Springer, 1998.

[64] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge

university press, 2008.

108

초록

다양한 분야에서 라벨된 빅데이터를 필요로 하는 현재, 웹 기반 크라우드소싱

서비스들이출범하며상대적으로적은예산과짧은시간에도효율적으로사람들의

지혜를활용할수있는방법들이제시되고있다.이러한방법들의효율성에도불구

하고,크라우드소싱시스템의선천적인문제점은일을맡은사람들의적은보상및

책임감결여로인해그들의응답을완전히신뢰할수없다는점에있다.이에다수결

방식이자연스러운해법으로사용되지만,보다신뢰높은답을얻어내기위해많은

연구들이진행되고있다.본박사학위논문에서는크라우드소싱시스템에서수많은

사람들로부터받은응답들을모아신뢰성높은응답을추론하는반복적메세지전달

형태의 알고리즘들을 제시한다. 본 알고리즘들은 낮은랭크근사에 기반한 반복 추

론 방법으로, 기존에 각광받던 EM 알고리즘들에 비해 더 빠르고 신뢰적인 정답을

추론해낸다. 더불어 본 알고리즘들의 추론 정확도가 최적에 매우 근접하며 다수결

방식및 EM알고리즘들의정확도를상회한다는것을이론적증명및실험적결과를

통해 제시한다. 본 연구는 실제 크라우드소싱에서 대다수의 응답 유형을 차지하는

객관식 응답, 주관식 응답, 복수 선택 응답, 및 실수 값 응답의 추론 문제를 다루며,

기존양자택일응답추론문제만을다루는기존연구들과큰차별성을가진다.

주요어:크라우드소싱,메세지전달형태알고리즘,근사추론

학번: 2013-23125

109

ACKNOWLEGEMENT

I would like to say a special thank you to my supervisor, Kyomin Jung. His support,

guidance and overall insights in this field have made this an inspiring experience for

me. I would also like to thank all of MILaboratory colleagues, understanding and help

throughout my research and projects, especially to Joonyoung Kim for our numerous

works as a team. Finally, I would like to say my biggest thanks to my family for all the

unconditional support through my long academic years.

110

	1 Introduction
	2 Background
	2.1 Crowdsourcing Systems for Binary-choice Questions
	2.1.1 Majority Voting
	2.1.2 Expectation Maximization
	2.1.3 Message Passing

	3 Crowdsourcing Systems for Multiple-choice Questions
	3.1 Related Work
	3.2 Problem Setup
	3.3 Inference Algorithm
	3.3.1 Task Allocation
	3.3.2 Multiple Iterative Algorithm
	3.3.3 Task Allocation for General Setting

	3.4 Applications
	3.5 Analysis of Algorithms
	3.5.1 Quality of Workers
	3.5.2 Bound on the Average Error Probability
	3.5.3 Proof of the Error Bounds
	3.5.4 Proof of Sub-Gaussianity

	3.6 Experimental Results
	3.6.1 Comparison with Other Algorithms
	3.6.2 Adaptive Scenario
	3.6.3 Simulations on a Set of Various D Values

	3.7 Conclusion

	4 Crowdsourcing Systems for Multiple-choice Questions with K-Approval Voting
	4.1 Related Work
	4.2 Problem Setup
	4.2.1 Problem Definition
	4.2.2 Worker Model for Various (D, K)

	4.3 Inference Algorithm
	4.4 Analysis of Algorithms
	4.4.1 Worker Model
	4.4.2 Quality of Workers
	4.4.3 Bound on the Average Error Probability
	4.4.4 Proof of the Error Bounds
	4.4.5 Proof of Sub-Gaussianity
	4.4.6 Phase Transition

	4.5 Experimental Results
	4.5.1 Performance on the Average Error with q and l
	4.5.2 Relationship between Reliability and y-message
	4.5.3 Performance on the Average Error with Various (D, K) Pairs

	4.6 Conclusion

	5 Crowdsourcing Systems for Real-valued Vector Regression
	5.1 Related Work
	5.2 Problem Setup
	5.3 Inference Algorithm
	5.3.1 Task Message
	5.3.2 Worker Message

	5.4 Analysis of Algorithms
	5.4.1 Worker Model
	5.4.2 Oracle Estimator
	5.4.3 Bound on the Average Error Probability

	5.5 Experimental Results
	5.5.1 Real Crowdsourcing Data
	5.5.2 Verification of the Error Bounds with Synthetic data

	5.6 Conclusion

	6 Conclusions

<startpage>13
1 Introduction 1
2 Background 9
 2.1 Crowdsourcing Systems for Binary-choice Questions 9
 2.1.1 Majority Voting 10
 2.1.2 Expectation Maximization 11
 2.1.3 Message Passing 11
3 Crowdsourcing Systems for Multiple-choice Questions 12
 3.1 Related Work 13
 3.2 Problem Setup 16
 3.3 Inference Algorithm 17
 3.3.1 Task Allocation 17
 3.3.2 Multiple Iterative Algorithm 18
 3.3.3 Task Allocation for General Setting 20
 3.4 Applications 23
 3.5 Analysis of Algorithms 25
 3.5.1 Quality of Workers 25
 3.5.2 Bound on the Average Error Probability 27
 3.5.3 Proof of the Error Bounds 29
 3.5.4 Proof of Sub-Gaussianity 32
 3.6 Experimental Results 36
 3.6.1 Comparison with Other Algorithms 37
 3.6.2 Adaptive Scenario 38
 3.6.3 Simulations on a Set of Various D Values 41
 3.7 Conclusion 43
4 Crowdsourcing Systems for Multiple-choice Questions with K-Approval Voting 45
 4.1 Related Work 47
 4.2 Problem Setup 49
 4.2.1 Problem Definition 49
 4.2.2 Worker Model for Various (D, K) 50
 4.3 Inference Algorithm 51
 4.4 Analysis of Algorithms 53
 4.4.1 Worker Model 55
 4.4.2 Quality of Workers 56
 4.4.3 Bound on the Average Error Probability 58
 4.4.4 Proof of the Error Bounds 59
 4.4.5 Proof of Sub-Gaussianity 62
 4.4.6 Phase Transition 67
 4.5 Experimental Results 68
 4.5.1 Performance on the Average Error with q and l 68
 4.5.2 Relationship between Reliability and y-message 69
 4.5.3 Performance on the Average Error with Various (D, K) Pairs 69
 4.6 Conclusion 72
5 Crowdsourcing Systems for Real-valued Vector Regression 73
 5.1 Related Work 75
 5.2 Problem Setup 77
 5.3 Inference Algorithm 78
 5.3.1 Task Message 79
 5.3.2 Worker Message 80
 5.4 Analysis of Algorithms 81
 5.4.1 Worker Model 81
 5.4.2 Oracle Estimator 84
 5.4.3 Bound on the Average Error Probability 86
 5.5 Experimental Results 91
 5.5.1 Real Crowdsourcing Data 91
 5.5.2 Verification of the Error Bounds with Synthetic data 96
 5.6 Conclusion 98
6 Conclusions 99
</body>

