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Abstract

Domain adaptation is introduced to exploit the label information of source domain
when labels are not available for target domain. Previous methods minimized domain
discrepancy in a latent space to enable transfer learning. These studies are based on the
theoretical analysis that the target error is upper bounded by the sum of source error,
the domain discrepancy, and the joint error of the ideal hypothesis. However, feature
discriminability is sacrificed while enhancing the feature transferability by matching
marginal distributions. In particular, the ideal joint hypothesis error in the target error
upper bound, which was previously considered to be minute, has been found to be
significant, impairing its theoretical guarantee.

In this paper, to manage the joint error, we propose an alternative upper bound on
the target error that explicitly considers it. Based on the theoretical analysis, we suggest
a joint optimization framework that combines the source and target domains. To min-
imize the joint error, we further introduce Joint Contrastive Learning (JCL) that finds
class-level discriminative features. With a solid theoretical framework, JCL employs
contrastive loss to maximize the mutual information between a feature and its label,
which is equivalent to maximizing the Jensen-Shannon divergence between condi-
tional distributions. Extensive experiments on domain adaptation datasets demonstrate

that JCL outperforms existing state-of-the-art methods.

Keywords: adaptation models, deep learning, domain adaptation, transfer learn-
ing, contrastive learning
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Chapter 1

Introduction

With the advancement in computational resources, deep neural networks have been
successfully adopted in numerous applications and show impressive performance. How-
ever, collecting a large volume of labeled data to enable the deep neural networks is
often expensive or even impractical. This hurdle became a serious bottleneck to the ap-
plication of deep learning algorithms. To circumvent this problem, domain adaptation
has been introduced [1]. In particular, domain adaptation utilizes labeled data from a
source domain to classify the target domain.

The major characteristic of domain adaptation is the dataset shift [2], [3]. In other
words, there is a discrepancy between the distributions of the source and target do-
mains. It precludes a small target error when the classifier trained on the source do-
main is directly applied to the unlabeled target data. To theoretically analyze the target
error, there have been approaches to bound it with the source error and the domain
discrepancy. In particular, the target error is upper bounded by the sum of the source
error, the domain discrepancy, and the error of ideal joint hypothesis [4], while the last
term is often treated as constant in the literature. Based on the theoretical analysis, sev-
eral studies [5]-[10] have endeavored to reduce the discrepancy between the marginal
distributions of the domains in representation space.

Matching the source and target feature distributions has advanced domain adap-



tation performance as it enhances feature transferability. However, feature discrim-
inability, which is influential in downstream tasks, is hindered. To illustrate, class-
conditional distributions are disregarded in marginal distribution aligning methods. As
a result, it is possible that decision boundaries traverse high-density regions of the tar-
get domain, rendering the learned classifier vulnerable to misclassification [11], [12].

Recent domain adaptation methods have explored two strategies to enhance fea-
ture discriminability. The first strategy is to match the first-order statistics of condi-
tional distributions [13]-[15]. The second strategy is to use pairwise loss [16], [17] or
triplet loss [18] to learn discriminative representations [14], [19], [20]. There are two
key issues with these methods. First, aligning the source and target class centers can
coarsely match the class-conditional distributions, but it can be far from fine alignment
and discriminative features. Second, using pairwise loss or triplet loss cannot properly
estimate and maximize the mutual information (MI) between a learned feature and its
label. The MI between a feature and its label is equivalent to the Jensen-Shannon (JS)
divergence between class-conditional distributions. Therefore, maximizing the MI the-
oretically guarantees the learning of class-wise discriminative representations. In this
paper, we propose maximizing the MI to enhance feature discriminability.

In this dissertation, we first address the error of the ideal joint hypothesis, which
has not been sufficiently investigated but can significantly affect the upper bound on
the target error. To explicitly consider the joint hypothesis error, we propose an alter-
native upper bound on the target error from the perspective of joint optimization. The
joint hypothesis error in the proposed upper bound is directly affected by the hypoth-
esis. Therefore, it is straightforward to implement. Further, we propose a novel Joint
Contrastive Learning (JCL) framework to unsupervised domain adaptation, which con-
siders the union distribution of the source and target to minimize the proposed joint
hypothesis error. To illustrate, labeled data from the source domain and unlabeled data
from the target domain are unified and jointly optimized in this framework. In par-

ticular, we enlarge the JS divergence between different class-conditional distributions



of the combined dataset by maximizing the MI between a feature and its label using
InfoNCE contrastive loss [21]. Several experiments are conducted and our proposed
JCL achieves state-of-the-art results on benchmark datasets. Note that this dissertation

is based on the following research [22]:

* Changhwa Park, Jonghyun Lee, Jaeyoon Yoo, Minhoe Hur, and Sungroh Yoon,
”Joint Contrastive Learning for Unsupervised Domain Adaptation,” Under re-

view.



Chapter 2

Background

2.1 Domain Adaptation

Domain adaptation is exploiting labeled source data to improve the performance of
task in the target domain which does not have the label information. We first introduce
the setting of unsupervised domain adaptation with conventional notations. With the

defined notations, we review a theoretical analysis for the target error upper bound [4].

2.1.1 Problem Setting and Notations

In an unsupervised domain adaptation setting, a set of labeled source data {(x%, %) €
(X x Y)}i,, sampled i.i.d. from the source domain distribution Dg, and a set of
unlabeled target data {a:{ ekX };7‘:1, sampled i.i.d. from the target domain distribution
Dr, are available. A domain is defined as a pair comprised of distribution D in the
input space X’ and labeling function f : X — ). The output space ) is [0, 1] in the
theoretical analysis. To denote the source and target domains, we use (Dg, fg) and
(Dr, fr), respectively. The objective of unsupervised domain adaptation is to learn
a hypothesis function h : X — ) that provides a good generalization in the target
domain. Formally, the error of a hypothesis h with respect to a labeling function fr

under the target domain distribution Dy is defined as er(h, fr) = Epop,[|h(x) —



fr(2)|]. The introduced notations are summarized in Table 2.1

Table 2.1: Notations

Symbol Definition

X An input space

D A distribution in the input space

f A labeling function
(D, f) A domain

h A hypothesis function
e(h, f) Egzpl[h(z) — f()|]

2.1.2 Theoretical Background

We review the theoretical basis of domain adaptation [4]. The ideal joint hypothesis is

defined as,

Definition 1 (Ben-David et al. [4]). Let H be a hypothesis space. The ideal joint

hypothesis is the hypothesis which minimizes the combined error:

h* = argmineg(h, fs) + er(h, fr).
heH

We denote the combined error of the ideal hypothesis by,

A= es(h*, fg) + ET(h*, fT)

Ben-David et al. [4] proposed the following theorem for the upper bound on the
target error, which is used as the theoretical background for numerous unsupervised

domain adaptation methods.



Theorem 1 (Ben-David et al. [4]). Let H be a hypothesis space, then the expected

target error is upper bounded as,

1
er(h, fr) < es(h, fs) + §d’HAH(DS,DT) + A,

where dyay(Ds, Dr) is HAH-distance between the source and target distributions.
Formally,
dyan(Ds,Dr) = 2hshupH]PrmNDS [h(x) # W (x)] — Prg~p, [h(x) # b (x)]].
’ le

Theorem 1 shows that the target error is upper bounded by the sum of the source
error, HAH-distance between the domains, and the error of the ideal joint hypothesis,
A. The last term A is often considered to be minute. Accordingly, many recent works
on domain adaptation endeavored to allow a feature encoder g : X +— Z to learn
such that the induced distributions of the domains in feature space Z have a minimal

‘HAH-distance, while also minimizing the source error [7], [23]-[25].

2.2 Approaches for Domain Adaptation

2.2.1 Marginal Distribution Alignment Based Approaches

As suggested by the theoretical analysis in [4], aligning the marginal distributions can
result in reducing target error, and is common practice in domain adaptation [S]-[10].
Long et al. [9] utilized the Multiple Kernel variant of Maximum Mean Discrepancy
(MK-MMD) to improve the transferability of feature representation from task-specific
layers. They matched the mean-embeddings of the multi-layer representations across
domains in a reproducing kernel Hilbert space. Long et al. [10] also used the MMD
to measure the discrepancy in marginal distributions but in a different way. They pro-
posed Joint Maximum Mean Discrepancy (JMMD) to reduce the discrepancy in the
joint distributions of the multiple layers. On the other hand, there have been adversarial

training based approaches, inspired by Generative Adversarial Networks (GANs) [26].



Ganin and Lempitsky [7] introduced a domain discriminator to convert the domain
confusion into a minmax optimization. The domain discriminator is trained to distin-
guish a feature representation whether the feature originates from the source domain
or the target domain. Conversely, a feature extractor is trained to deceive the domain
discriminator, and, as a result, the model can learn domain-invariant features. Bous-
malis et al. [27] hypothesized that modeling both private and shared components of
the representations can improve the extraction of domain-invariant features and pro-
posed Domain Separation Networks (DSN). Although matching marginal distributions
has brought advances in performance, Shu et al. [11] and Zhao et al. [28] theoreti-
cally demonstrated that finding invariant representations is not sufficient to guarantee
a small target error. Moreover, Chen et al. [29] empirically revealed an unexpected
deterioration in discriminability while learning transferable representations. In partic-
ular, Chen et al. [29] compared the optimal joint error on the learned feature repre-
sentation of Domain Adversarial Neural Network (DANN) [7], which attempted to
align marginal distributions of the source and target domains, with that of pre-trained
ResNet-50 [30]. They found that the optimal joint error on the feature space learned
with DANN is much higher than that on the pre-trained feature space. This suggests
that merely learning domain-invariant features is susceptible to substantial optimal
joint error and loosely bounded target error. This shortcoming of marginal distribution

alignment-based methods gave rise to conditional distribution matching approaches.

2.2.2 Conditional Distribution Matching Approaches

Researchers have attempted to learn class-level discriminative features using two main
technologies: first-order statistics matching and Siamese-networks training [16]—[18].
Xie et al. [15] aligned the source and target centroids to learn semantic representations
of the target data. Utilizing the MMD measurement, Kang et al. [13] proposed the
minimization of intra-class discrepancy and maximizing the inter-class margin. Deng,

Luo, and Zhu [14] employed pairwise margin loss to learn discriminative features and



minimized the distances between the first-order statistics to align the conditional distri-
butions. However, there are two main differences between the proposed JCL approach
and these methods. First, with the theoretical analysis that explicitly handles the joint
hypothesis error, we propose to jointly optimize the source and target domains to have
class-wise discriminative representations. Second, we theoretically guarantee learning
discriminative features from the perspective of JS divergence by maximizing the MI
between a feature and its label. Previous pairwise loss or triplet loss-based methods

cannot properly bound and maximize the MI.

2.3 Contrastive Learning

Contrastive learning has been adopted for self-supervised learning and has led to sig-
nificant performance enhancement. Oord, Li, and Vinyals [21] introduced InfoNCE
loss to estimate and maximize the MI between a present context and a future signal.
High-dimensional data is compressed into a condensed latent embedding to model
conditional predictions and autoregressive models are utilized to predict many steps in
the future. In the image domain, Hjelm ef al. [31], Bachman, Hjelm, and Buchwalter
[32], and Chen et al. [33] maximized the MI between features that originated from
the same input with different augmentations. Hjelm ez al. [31] introduced local Deep
InfoMax (local DIM) which maximizes the MI between local features and global fea-
tures to encode structure information and improve the quality of representation. Bach-
man, Hjelm, and Buchwalter [32] advanced local DIM with three key modifications:
features across different augmented versions of each input are forced to be invariant,
features from multiple scales are predicted, and a more powerful encoder is used. Chen
et al. [33] utilized simple data augmentations, learnable nonlinear transformation, and
large batch sizes to enhance the performance. He ef al. [34] proposed a momentum
encoder to accumulate a large number of negative examples and covered the under-

lying distribution effectively without having substantially large batch sizes. From the



information-theoretic perspective, Tschannen et al. [35] suggested that these methods
could be subsumed under the same objective, InfoMax [36], and provided a different
perspective on the success of these methods. As opposed to these methods, the pro-
posed approach maximizes the MI between features from the same class to maximize

the JS divergence between different class-conditional distributions.



Chapter 3

Method

3.1 An Alternative Upper Bound

In the previous studies, the ideal joint hypothesis error was assumed to be insignificant,
and therefore, it was neglected. However, recent studies [28], [29] have suggested that
this error can become substantial, and thus, it must be addressed adequately. To min-
imize the optimal joint error in Theorem 1, computing the ideal joint hypothesis is
needed, but it is usually intractable. As an alternative, we aim to provide an upper
bound on the target error, which explicitly incorporates the concept of joint error, and
is free from the optimal hypothesis. A small ideal joint hypothesis error implies that
there exists a joint hypothesis, which generalizes well on both the source and target
domains. Intuitively, it is natural to consider jointly optimizing within the domains
to minimize the joint error. From this point of view, we define a combined domain

(Dy, fu) as below.

Definition 2. Let ¢ and ¢ be the density functions of the source and target distri-
butions, respectively. Then, the distribution of the combined domain Dy is the mean

distribution of the source and target distributions:

du(e) = ¢ (6s(x) + 6r(a))

10



1
folz) = 5(fs(@) + fr(z))
With the definition of the combined domain, the following theorem holds:

Theorem 2. Let H be a hypothesis space, then the expected target error is upper

bounded as,

er(h, fr) <es(h, fs)+ idHAH(DSaDT) + 2ey (R, fu).

Before continue to the proof of the theorem, We first introduce lemmas that are

useful in proving the theorem.
Lemma 1. Let H be a hypothesis space and D be any distribution over input space
X. ThenVh,h',h" € H, the following triangle inequality holds:
ep(h, 1) < ep(h,h") + ep(h", 1).
Proof. From the definition of the error and the triangle inequality of norm, we have
ep(h, 1) = Eq~pl|h(z) — 1 ()]
= Egp||h(x) — () + 1" (z) — b (z)]]
< Egp(|h(z) — 1" (2)| + |1 (2) — I/ (z)]]
() — b ()] + Egup[|h(x) — I ()]
=ep(h, ") + ep(R", ).

= Eppl[|h

O

Lemma 2 (Ben-David er al. [4]). For any hypothesis h, h' € H, the following inequal-
ity holds:
1
les(h, h') = er(h, 1)| < Sdnan(Ds, Dr).

Proof. From the definition of the HAH-distance, we have

dyan(Ds, Dr) =2 sup [Pro~pg[h(x) # h'()] = Pra~p,[h(z) # I (z)]|
h,h'€H

=2 sup |€S(ha h/) - 6T(h7 h/)|
h,h'eH

> 2‘65(h7 h/) - 6T(h’ h/)‘

11



With the introduced lemmas, we can prove Theorem 2 as follows:

Proof. From Lemma 1, we have
er(h, fr) < er(h, fu) +er(fu, fr)

=es(h, fu) + er(h, fu) +er(fu, fr) — es(h, fu)
<es(h, fu) +er(h, fu) +er(fu, fr) +es(h, fs) —es(fu, [s)-

First, using Lemma 2, the following inequality holds:

er(fu, fr) —es(fu, fs)

= B, [|fu(@) = fr(@)]] = Eznns [ fu(2) — fs()]]

= SEann [1fs(@) — fr(@)]  SEamnyllfs(@) — fr ()]

— Ler(fs, fr) = Ses(fs )

2 2
%! r(fs, fr) — es(fs, fr)]
%dHAH (Ds, Dr).

Second, from the definition of Dy and fi7, we have

es(h, fu) +er(h, fu)

~ [6s@)h@) - fo@lde+ [ or(@)lhi@) - fo(@)de
—2 [ 6s@) + or(@))h(a) - fu(@)lde
—2 [ ov@)h(e) - fu(e)lda

= 2€U(ha fU)

Combining the above two inequalities and an equality yields the proof.

12



Comparison with Theorem 1

The main difference between Theorem 1 and Theorem 2 lies in A in Theorem 1 and
2¢y7(h, fu) in Theorem 2. To illustrate, A in Theorem 1 is composed of the ideal joint
hypothesis, which is neither tractable nor manageable, and hence, it has been obliquely
addressed [14], [19], [37], [38]. On the contrary, 2¢;;(h, fi7), the alternative term in
Theorem 2, is directly affected by the hypothesis h, and thus, it is straightforward to
utilize. Differ from the previous studies that attempt to only alter A from Theorem 1,
Theorem 2 cannot be directly derived from Theorem 1 because the second term in
Theorem 2 is smaller than that in Theorem 1.

The main idea here is that joint optimization in the source and target domains is
demanded upon simply matching the marginal distributions of the domains. As the
target labels are not provided, we must rely on the source labels. However, optimiza-
tion of the source domain alone can result in poor generalization of the target domain.
We therefore combine the source and target domains and propose their joint optimiza-
tion. To estimate the joint hypothesis error, we resort to target pseudo-labels, and the

following theorem holds:

Theorem 3. Let H be a hypothesis space, and [} be a target pseudo-labeling function.
Accordingly, [y is defined as, fy(x) = 5(fs(x) + f3(x)). Then the expected target

error is upper bounded as,

en(h, fr) < es(h fs) + duan(Ds, Dr) + 2e0(h, fo) +exlfr, f7).

Proof. By Lemma 1, the following inequality holds.

6T(ha fT) < ET(h, fj") + ET(fTv fT)

Meanwhile, using the same process in the proof of Theorem 2, we know that

er(h, f7) < es(h, fs) + idHAH(DSaDT) + 2eu (R, fz)-

Combining the above two inequalities yields the proof. O

13



3.2 Joint Contrastive Learning

Theorems 2 and 3 suggest that the joint optimization to minimize the combined er-
ror of the joint hypothesis is required for better accuracy on the target domain. For
the joint optimization, a typical classification framework using cross-entropy can be
utilized; however, it is vulnerable to noisy labels [39], which are highly probable in
the target pseudo-labels, and often result in poor margins [40]. As an alternative, dis-
criminative feature learning can be used. Discriminative feature learning extracts the
semantic features that differentiate dissimilar inputs and can benefit the classification.
For instance, in unsupervised learning, which is similar to unsupervised domain adap-
tation because the target true labels are not available, discriminative feature learning
has brought about considerable progress to downstream tasks [21], [33], [34]. In this
respect, we utilize the notion of learning discriminative feature representation to min-

imize the joint hypothesis error.

3.2.1 Theoretical Guarantees

Formally, we aim to learn discriminative features on the intermediate representation
space Z induced through the feature transformation g. We denote the induced distri-
bution of the combined domain Dy over the representation space Z as Dg , and its
class-conditional distribution as Dgly’ where y is a class label. We can then formalize

our objective with JS divergence Djg as follows:

max DJS(D§|UHD5|1)7 3.
g

where ¢, denotes the parameters of the feature encoder g. The values O and 1 are
the class labels, and hence, the objective means maximizing the divergence between
different class-conditional distributions. We first consider binary classification for the
simplicity, and then we will generalize the theoretical analysis to multiclass classifica-

tion problem.

14



Suppose that the label distribution of the combined domain is uniform, i.e., P(y =
0) = P(y = 1). In practice, this can be achieved by reformulating a dataset to be
class-wise uniform. Let Y be a uniform random variable that takes the value in {0, 1}
and let the distribution Dle be the mixture of DS‘O and Dg\l’ according to Y. We

denote the induced feature random variable with the distribution D§|Y as Zyy. From

the relation between JS divergence and MI, the following holds.
Dys(DgolDE) = 1Y Zuyy)

Therefore, we can transform our objective as follows:

I%&XI(Y; ZU\Y)‘ (32)
g

The MI between a label and a feature that is induced from the distribution condi-
tioned on the label can be maximized using the following approach. We employ the
InfoNCE loss proposed by Oord, Li, and Vinyals [21] to estimate and maximize the
MI. InfoNCE is defined as,

[(X:Y)>E |~ il stau)

Y)2>E | — og —
K i=1 % JKzl ec(zisy;) 3.3)
£ Ince(X;Y),

where the expectation is over K independent samples from the joint distribution
p(x,y) [41]. e(x, y) is a critic function used to predict whether the inputs = and y were
jointly drawn by yielding high values for the jointly drawn pairs and low values for the
others [35].

The proposed JCL framework does not directly pair a feature and its label to max-
imize the MI between them. Instead, features from the same conditional distribution
are paired, and we use Incp to maximize the MI between them. For a given Y, we
sample two different data, X (Ul‘)y and X gJQI)Y’ from the same conditional distribution,
DX

Uy Then, we obtain Z(I) and Z(Q) from X(l) and X(z)

Uy Uy Uy Uly> respectively, through

15



the feature transformation, g. Therefore, Y, X SRY, X (UQ‘)W VA Sfy, and Z gI)Y satisfy
the Markov relation:
1) (1) (2) (2)
ZU‘Y<—XU|Y<—Y—>XU‘Y—>ZU|W 3.4
and this is Markov equivalent to
(1) (1) (2) (2)
ZU‘Y—>XU|Y—>Y—>XU‘Y—>ZU|Y 3.5
By the data processing inequality, we know that
(1) . »(2) .71
I(Zyy: Zyy) < 1(Y; Zy;y ). (3.6)
Meanwhile, we can observe that the following Markov relation holds.
(1) (2) (1) (2) (1)
Y — (XU\Y’ XU|Y) — (ZUlY7 ZU|Y) — ZU|Y. 3.7
Therefore, by the data processing inequality, we have
.7z (7 (2)
I(Y,ZU‘Y) < I(Y; (ZU|Y,ZU‘Y)). (3.8)
Combining Equation 3.6 and Equation 3.8 yields the following inequality.
(1) . (2 .71 (2)
I(ZU|Y,ZU|Y) < I(Y; ZU|Y,ZU‘Y) (3.9
Therefore, maxg, [(Z 8‘))/; VA §]2|)Y) can be seen as a lower bound for our objective

maxy, I(Y; Zyy ), and we optimize it with our InfoNCE loss L, as described below.

Comparison with InfoMax Objective.

Comparing our objective,

r%aXI(Y; Zyyy ), (3.10)
g

16



with the InfoMax objective,
max I(X; g(X)), (3.11)

by

[36] provides instructive insights. Recent progress on unsupervised representation learn-
ing [21], [31], [33], [42] can be subsumed under the same objective,
max 1(g1(XW); g2(X ), (3.12)
09,99,
where X and X ® are instances that originate from the same data [35]. Using the
process similar to that derived above, it can be shown that the objective is a lower
bound on the InfoMax objective. The main difference is that the InfoMax principle
essentially aims to maximize the MI between data and its representation, whereas our
objective focuses on maximizing the divergence between different class-conditional

distributions in the feature space.

Comparison with Triplet Loss-based Methods.

The multi-class-K-pair loss [43], which is the generalized triplet loss [44], can be
shown to be a special case of InfoNCE loss [35], and triplet loss is the same as in
the K = 2 case. The drawback of using triplet loss to learn discriminative features is
that it cannot tightly bound the MI when the MI is larger than log K because Incg
is upper bounded by log K. Pairwise margin loss also compares only two features,
and hence, it is also expected to have a loose bound. Thus, triplet loss or pairwise
loss-based domain adaptation methods [14], [19], [20] cannot guarantee class-level

discriminative features from an information-theoretic perspective.

3.2.2 Generalization to Multiclass Classification

Here, we introduce how the proposed theoretical background can be generalized to a
multiclass classification problem and explain why degenerate solutions can be avoided
from an information-theoretic perspective. The generalized Jensen-Shannon (JS) di-

vergence is defined as:

17



Definition 3 (Lin [45]). Let Dy, Do, - - - , D,, be n probability distributions with weights

M, T2, -+ , Ty, respectively, and let Z1, Za, - -+ , Z, be random variables with distri-
butions D1, Do, - - - , D, respectively. Then, the generalized JS divergence is defined
as:

n
DSTS(D17D27 T 7Dn) = H<Z> - ZﬂiH(Zi)y
i=1
where 7 is (71, w2, -+ , 7, ) and Z is a random variable with the mixture distribu-

tion of Dy, Do, - - - , D, with weights 7y, o, - - - , 7, respectively.

The generalized JS divergence measures the overall difference among a finite num-
ber of probability distributions. Notably, for a fixed 7, the Bayes probability of er-
ror [46] is minimized if the generalized JS divergence is maximized [45]. With this
divergence, we can generalize our objective to learn discriminative features in the rep-

resentation space, Z, as follows.

max Dfs(Dgo, Dy Dfjc-1); (3.13)
g

where 7 denotes the marginal label distribution and C' denotes the number of

classes. From the definition of the generalized JS divergence, we know that

2 nE z
Dis(Dgio, P+ > Phje—1)

= H(ZU|Y) - Z”yH(ZUly)

i
I

(3.14)

NE

=H(Zyy)— ) PY =y)H(Zyy|Y =y)

<
Il
—

= H(Zyy) - H(ZyylY)
= I(Y; Zyyy).

Therefore, we can transform our objective as follows:
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I%&XI(Y; Zyyy)- (3.15)
g

With the same theoretical framework introduced in the main manuscript, we can

optimize this objective with the InfoNCE loss.

Avoiding Degenerate Solutions

Algorithms that learn discriminative representations by alternating pseudo-labeling
and updating the parameters of the network are susceptible to trivial solutions [47], re-
ferred to as degenerate solutions. For example, if the majority of samples are assigned
to a few clusters, it is easy to discriminate between features, but this is unfavorable for
downstream tasks. The proposed approach can avoid the tendency towards degenerate
solutions since the method maximizes the MI between a feature and its label. From
Equation 3.14, we can observe that maximizing the ML, I(Y’; Zy;y ), trades off maxi-
mizing the entropy, H(Zyy ), and minimizing the conditional entropy, H(Zyy|Y).
Only minimizing the conditional entropy can be vulnerable to the degenerate solutions,
but the objective also includes the entropy maximization, which cannot be achieved
in the degenerate solutions. Therefore, the objective naturally balances discriminative

representation learning with dispersed features and avoids the degenerate solutions.

3.2.3 Training Procedure

In this section, we formulate the loss functions and architecture of the method based
on the aforementioned theoretical frameworks. The overview of JCL is illustrated in
Figure 3.1.

Momentum Contrast (MoCo) [34] is adopted as the proposed contrastive learning
structure, with an encoder g, with parameters 6, and a momentum-updated encoder
g with parameters 6, for feature transformation X +— Z. 0 are updated by 6 <«
mby+(1—m)b,, where m € [0, 1) is a momentum coefficient. A fully connected (FC)

layer projection head [ : Z — WV is implemented to map the encoded representations
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to the space where the InfoNCE loss is applied. Empirical tests determine that it is
beneficial to define InfoNCE loss in the projected space WV rather than Z, which is in
agreement with the results of Chen et al. [33]. For the feature pairs in the InfoNCE
loss, an encoded query w, = [,(gq(x)) and a key wy, = l;(gi(x)) from the queue
of encoded features are used, where [, is a FC layer projection head for a query and
I is a FC layer projection head for a key. We obtain the new keys on-the-fly by the
momentum encoder and retain the queue of keys. For the critic function ¢, we employ
a cosine similarity function sim(w,v) = wTwv/||ul|||v|| with a temperature hyper-

parameter 7 according to [48]. Our InfoNCE loss L. is then formulated as follows:

esim(wq ,w,j )/ T

+ | —log (3.16)

EC — qu ND[‘/]V ’wk

sim(wq,wg) /7 |’
ZkaNkU{w;f}e (wg )/

where w,j is a feature that has the same label as w, and N}, is a set of features that
have different labels from w,. For the classification task, we have another FC layer h
as a classification head. To guarantee a small source error, we employ the broadly used

cross-entropy loss,

Es - E(w57ys)NDS [ - log h(gq(xs))ys] ‘ (317)

Combining L and L. with a hyper-parameter -, the overall objective is formulated

as follows:

min £s +7Le. (3.18)

The labels of the target data are required to recognize whether or not the two sam-
ples of the combined domain have the same label. To facilitate this, we generate the
pseudo-labels of the target data. In particular, we perform spherical K-means cluster-
ing of target data on the feature space Z and assign labels at the begining of each
epoch. If the distance between a target sample and its assigned cluster center is larger

than a constant d, then the target sample is excluded from the combined dataset.
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Zhao et al. [28] showed that if the marginal label distributions of source and target
domains are substantially different, a small joint error is not achievable while finding
an invariant representation. To address this problem, we suggest the reformulation of
datasets to provide uniform label distributions, in which the number of data per class
is equalized by data rearrangement.

The pseudo code of JCL is provided in Algorithm 1.
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Algorithm 1: Training procedure for JCL

Input : Labeled source data from Dg and unlabeled target data from Dyp.

Initialize encoders g, and gy; classification head h; projection heads [, and [};
and a queue of K keys;

while iteration < max_iteration do

Cluster the target data using spherical K-means;

Split them into a certain dataset with pseudo-labels and an uncertain
dataset;

Rearrange the source and certain target datasets to obtain uniform label
distributions;

for i < 1 to iterations_per_epoch do

Sample mini-batches of the source data (xs, ys), certain target data
(x4c, Uic), and uncertain target data (x4, );

x¢ = pre-process(x;), ¥ = pre-process(x;);

x{, = pre-process(xs.), TF. = pre-process(zy.);

&y, = pre-process(Xyy,);

zd = gy(xd), 2§ = Qk( M

Compute L on (h( ys) using Equation (5);
wi = 1,(21), wh ( "

wtqc = lq(gq(wgc)) wtc l (gk(mtc))

Forward the uncertain target data to train the batch normalization

layers, gq(@ty);
Merge w and wY. to obtain wf,, and merge w* and w¥, to obtain wk;
enqueue(queue, w"), dequeue(queue);
Compute L. on (w, queue) using Equation (4);

Update the query network parameters, 6, with SGD;

Momentum update the key network parameters, 6y ;

end

end
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Chapter 4

Experiments

4.1 Datasets and Baselines

ImageCLEF-DA! is a real-world dataset consisting of three domains: Caltech-256
(C), ImageNet ILSVRC 2012 (1), and Pascal VOC 2012 (P). Each domain contains 600
images from 12 common classes. We evaluated all six possible transfer tasks among
these three domains.

Office-Home [49] is a more challenging domain adaptation dataset than Image-
CLEF-DA. It contains objects commonly found in office and home environments and
has four different domains: artistic images (Ar), clip art (Cl), product images (Pr), and
real-world images (Rw). There are around 15,500 images in 65 different categories in
the dataset. We construct all twelve possible transfer tasks among the four domains of
the dataset.

VisDA-2017 [50] is a dataset for the synthetic-to-real transfer task and has a high
dataset shift. It includes 152,397 synthetic 2D renderings of 3D models and 55,388 real
images across 12 classes. The gallery of VisDA-2017 dataset is provided in Figure 4.1

Baselines. We compare JCL with marginal distribution matching methods: Deep

Adaptation Network (DAN) [9], Domain Adversarial Neural Network (DANN) [23],

"https://www.imageclef.org/2014/adaptation
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and Joint Adaptation Network (JAN) [10] and also with methods that endeavor to
learn discriminative features: Multi-Adversarial Domain Adaptation (MADA) [25],
Conditional Domain Adversarial Network (CDAN) [51], Adversarial Dropout Regu-
larization (ADR) [52], Maximum Classifier Discrepancy (MCD) [53], Batch Spectral
Penalization (BSP) [29], Cluster Alignment with a Teacher (CAT) [14], Contrastive
Adaptation Network (CAN) [13], and Adversarial-Learned Loss for Domain Adapta-
tion (ALDA) [54].

4.2 Implementation Details

We follow the standard experimental protocols for unsupervised domain adaptation [7],
[10] and report the average accuracy over three independent runs. To select the hyper-
parameters, we use the same protocol as the one described in [9]: we train a source
classifier and a domain classifier on a validation set that consists of labeled source
data and unlabeled target data, and then, we jointly evaluate the test errors of the
classifiers. We tuned the weight hyper-parameter, ~, and distance threshold, d, for
filtering the certain target data. The weight hyper-parameter, -, was searched within
{0.1,0.5,1.0,2.0} for ImageCLEF-DA and Office-Home datasets and {0.2,0.3,0.4,
0.5} for VisDA-2017 dataset. The distance threshold hyper-parameter, d, was searched
within {0.05,0.1,1.0}. The selected hyper-parameters for each task are listed in Ta-
ble 4.1.

We adopt ResNet-50 [30] for the ImageCLEF-DA and Office-Home datasets, and
ResNet-101 for the VisDA-2017 dataset as base networks. Batch normalization layers
are specified to be domain-specific. We finetune from ImageNet [55] pre-trained mod-
els, with the exception of the last FC layer, which we replace with the task-specific
FC layer. We also add another FC layer with an output dimension of 256 for con-
trastive learning. We utilize mini-batch SGD with momentum of 0.9 and follow the

same learning rate schedule as [9], [10], [23]: the learning rate 7, is adjusted accord-
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Table 4.1: Selected hyper-parameters for each task

Source Target vy d
I P 0.5 0.05

P I 1.0 0.1

I C 20 0.1

C I 20 0.1

C P 0.1 1.0

P C 1.0 0.1
Ar Cl 20 0.1
Ar Pr 20 0.1
Ar Rw 0.1 0.1
Cl Ar 20 0.1
Cl Pr 0.5 0.1
Cl Rw 0.5 0.1
Pr Ar 1.0 0.1
Pr Cl 1.0 0.1
Pr Rw 20 0.1
Rw Ar 0.1 0.1
Rw Cl 0.1 0.1
Rw Pr 0.5 0.1
VisDA-2017  VisDA-2017 03 01

Training Validation
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ing to n, = no(1 + ap) —B, where p is the training progress that increases from 0 to 1.
The 7 is the initial learning rate, which is set to 0.001 for the pre-trained layers and
0.01 for the added FC layers. The « and 3 are fixed to 10 and 0.75, respectively. The
temperature parameter, 7, for the critic function was fixed to 0.05. For ImageCLEF-
DA, Office-Home, and VisDA-2017 datasets, the queue size, considering the dataset
sizes, was set to 4,096, 2,048, and 32,768, respectively, and the momentum coeffi-
cient, m, of the momentum encoder to 0.9, 0.9, and 0.99, respectively. For the metric
measuring the distances in the feature space, Z, cosine dissimilarity was applied. At
the end of the encoders, we added L2 normalization layers. Unlike other contrastive
learning methods, we did not utilize additional data augmentation for fair comparison
with domain adaptation baselines; only random crop and horizontal flip were used.
We empirically found that it is beneficial to forward pass the uncertain target data to
train the batch normalization layers. The computing infrastructure used for running

experiments is specified in Table 4.2.

Table 4.2: Computing infrastructure specifications

Item Details
GPU GeForce RTX 2080 Ti
CPU Intel Core 19-10940X
RAM 128 GB
Operating system Ubuntu 18.04
thon==3.8.5
Libraries Py
pytorch==1.6.0

The total iterations for the ImageCLEF-DA, Office-Home, and VisDA-2017 ex-
periments were 20,000, 10,000, and 50,000, respectively, and they took 4 h, 3 h, and

15 h, respectively, on an average.
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4.3 Results

The results obtained using the ImageCLEF-DA dataset are reported in Table 4.3. The
accuracies of the compared methods are directly reported from their original papers
wherever available. For all six adaptation scenarios, our proposed method outper-
forms the other baseline methods and achieves state-of-the-art accuracy. In particu-
lar, the proposed method surpasses CAT by a substantial margin, validating the ef-
fectiveness of jointly learning discriminative features and the discussed information-
theoretic guarantees. Moreover, the methods that consider conditional distributions
achieve higher accuracies than those that focus on marginal distribution matching.
These results suggest that learning discriminative features to minimize the joint hy-
pothesis error is more crucial than general alignment.

The classification accuracies on the Office-Home dataset for unsupervised domain
adaptation are shown in Table 4.4. For 9 out of 12 adaptation tasks, the proposed
method surpasses the other compared methods by a large margin. In particular, JCL
enhances the average accuracy of ALDA by 2.4%, achieving state-of-the-art perfor-
mance.

In Table 4.5, the accuracy obtained for each class and the average accuracy over
all twelve classes on the VisDA-2017 transfer task are reported. Among the twelve ob-
jects, ’truck” is the most challenging object as the baselines show mediocre accuracies.
Notably, the proposed method boosts the accuracy of the truck class by a significant
margin, and, on average, it outperforms the other baseline methods. In particular, it ad-
vances the lowest accuracy among the twelve objects of CAN (59.9%) by 6.9%. These
results can be attributed to the MI maximization between a feature and its label which
trades-off maximizing entropy H (z) and minimizing conditional entropy H (z|y), and
thus avoids degenerate solutions [47].

We visualize the learned target representations of the VisDA-2017 task by t-SNE
[57] in Figure 4.2 to compare our method with DANN in terms of feature discrim-

inability. While aligning the marginal distributions of the source and target domains,
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(a) t-SNE of DANN. (b) t-SNE of JCL.

Figure 4.2: Visualization for different methods (best viewed in color).

the features are not well discriminated with DANN. On the contrary, the target features
learned using our method are clearly discriminated, demonstrating that our objective

to maximize the JS divergence between conditional distributions is achieved.

4.4 Ablation Studies

To investigate the effectiveness of our method in minimizing the joint hypothesis error
by learning discriminative representations, we conduct the same pilot analysis as Chen
et al. [29]; we train a linear classifier on the representations learned using DANN and
our method. The linear classifier is trained on both source and target data using the
labels. The average error rate of the linear classifier corresponds to half of the ideal
joint hypothesis error. The results are shown in Figure 4.3. We can observe that the
ideal joint hypothesis error of the representation learned using our method is signifi-
cantly lower than that learned using DANN. This implies that the proposed method is

effective in achieving our objective to enhance feature discriminability.
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Figure 4.3: Classification error rate on the learned representations.

We investigate the sensitivity of JCL to the weight hyper-parameter ~, and the

results are shown in Figure 4.4. We could observe that JCL is not sensitive to the
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Figure 4.4: The accuracy sensitivity of JCL to . The results for other tasks are similar.
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Chapter 5

Conclusion

In this study, we suggest an alternative upper bound on the target error to explicitly
manage the joint hypothesis error. The proposed upper bound with the joint hypothe-
sis error provides a new perspective on the target error that the joint optimization on
the both domains is demanded. Further, a novel approach to domain adaptation, JCL,
is proposed to minimize the joint error. The proposed approach differs from previous
domain adaptation methods that consider conditional distributions, as it can maximize
the JS divergence between class-conditional distributions with information-theoretic
guarantees. The effectiveness of the proposed method is validated with several experi-
ments.

In chapter 2, we introduced the problem setting of unsupervised domain adapta-
tion and explained theoretical background that brings the upper bound on the target
error. We reviewed previous studies that aligned marginal distributions to minimize
the upper bound. To improve the target accuracy further, there have been conditional
distributions matching methods, and we described these works. Finally, contrastive
learning, which is closely related to this work, was also summarized.

In chapter 3, we suggested an alternative upper bound on the target error that ex-
plicitly address the joint hypothesis error. Compared with the previous theoretical anal-

ysis, it enables managing the joint hypothesis error which can affect the target error
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rate severely. Based on this theoretical framework, we introduced Joint Contrastive
Learning scheme, which theoretically guarantees maximizing the JS divergence be-
tween class-conditional distributions to minimize the joint error.

In chapter 4, we demonstrated the experimental results on several domain adapta-
tion datasets, including ImageCLEF-DA, Office-Home, and VisDA-2017. For most of
the adaptation scenarios, our proposed method outperformed the other baseline meth-
ods and showed its effectiveness. Moreover, the proposed method brought lower clas-
sification error rate on the learned representation compared to the baseline method
DANN, elucidating the reduced joint error as intended.

The proposed method advances domain adaptation performance, but this study has
potential limitations. First, the target error of the learned model depends on the quality
of the pseudo target pseudo-labels. Although we can expect the target pseudo-labels
are generally correct since the source and target domains are similar, the target pseudo-
labels can be completely erroneous when the dataset shift is substantial. In the worst
case, the model will learn totally mistaken feature representations and the performance
of the model may collapse. Second, uncertain target samples that are far from the
closest cluster center are abandoned and unused, whereas certain target samples are
fixed to one-hot pseudo-labels. This one-hot encoding procedure prevents the model
from exploiting the uncertainty information of each sample. If the model can take the
advantage of uncertainty information of each sample and utilize both the uncertain and
certain samples, the accuracy of the learned model can be improved further.

From the limitations of this study, we suggest the following topics to be addressed
in the future. First, research on how to improve the quality of target pseudo-labels can
be conducted. Advancements in clustering the source and target samples together and
assigning the correct target pseudo-labels can benefit domain adaptation methods using
target pseudo-labels. Second, how to give soft pseudo-labels to target samples that can
extract the manifold information of source and target can be studied. Third, with the

soft pseudo-labels, how can positive or negative pairs be defined for discriminative
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learning is also an interesting research direction.
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