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Abstract

Domain adaptation is introduced to exploit the label information of source domain

when labels are not available for target domain. Previous methods minimized domain

discrepancy in a latent space to enable transfer learning. These studies are based on the

theoretical analysis that the target error is upper bounded by the sum of source error,

the domain discrepancy, and the joint error of the ideal hypothesis. However, feature

discriminability is sacrificed while enhancing the feature transferability by matching

marginal distributions. In particular, the ideal joint hypothesis error in the target error

upper bound, which was previously considered to be minute, has been found to be

significant, impairing its theoretical guarantee.

In this paper, to manage the joint error, we propose an alternative upper bound on

the target error that explicitly considers it. Based on the theoretical analysis, we suggest

a joint optimization framework that combines the source and target domains. To min-

imize the joint error, we further introduce Joint Contrastive Learning (JCL) that finds

class-level discriminative features. With a solid theoretical framework, JCL employs

contrastive loss to maximize the mutual information between a feature and its label,

which is equivalent to maximizing the Jensen-Shannon divergence between condi-

tional distributions. Extensive experiments on domain adaptation datasets demonstrate

that JCL outperforms existing state-of-the-art methods.

Keywords: adaptation models, deep learning, domain adaptation, transfer learn-

ing, contrastive learning
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Chapter 1

Introduction

With the advancement in computational resources, deep neural networks have been

successfully adopted in numerous applications and show impressive performance. How-

ever, collecting a large volume of labeled data to enable the deep neural networks is

often expensive or even impractical. This hurdle became a serious bottleneck to the ap-

plication of deep learning algorithms. To circumvent this problem, domain adaptation

has been introduced [1]. In particular, domain adaptation utilizes labeled data from a

source domain to classify the target domain.

The major characteristic of domain adaptation is the dataset shift [2], [3]. In other

words, there is a discrepancy between the distributions of the source and target do-

mains. It precludes a small target error when the classifier trained on the source do-

main is directly applied to the unlabeled target data. To theoretically analyze the target

error, there have been approaches to bound it with the source error and the domain

discrepancy. In particular, the target error is upper bounded by the sum of the source

error, the domain discrepancy, and the error of ideal joint hypothesis [4], while the last

term is often treated as constant in the literature. Based on the theoretical analysis, sev-

eral studies [5]–[10] have endeavored to reduce the discrepancy between the marginal

distributions of the domains in representation space.

Matching the source and target feature distributions has advanced domain adap-
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tation performance as it enhances feature transferability. However, feature discrim-

inability, which is influential in downstream tasks, is hindered. To illustrate, class-

conditional distributions are disregarded in marginal distribution aligning methods. As

a result, it is possible that decision boundaries traverse high-density regions of the tar-

get domain, rendering the learned classifier vulnerable to misclassification [11], [12].

Recent domain adaptation methods have explored two strategies to enhance fea-

ture discriminability. The first strategy is to match the first-order statistics of condi-

tional distributions [13]–[15]. The second strategy is to use pairwise loss [16], [17] or

triplet loss [18] to learn discriminative representations [14], [19], [20]. There are two

key issues with these methods. First, aligning the source and target class centers can

coarsely match the class-conditional distributions, but it can be far from fine alignment

and discriminative features. Second, using pairwise loss or triplet loss cannot properly

estimate and maximize the mutual information (MI) between a learned feature and its

label. The MI between a feature and its label is equivalent to the Jensen-Shannon (JS)

divergence between class-conditional distributions. Therefore, maximizing the MI the-

oretically guarantees the learning of class-wise discriminative representations. In this

paper, we propose maximizing the MI to enhance feature discriminability.

In this dissertation, we first address the error of the ideal joint hypothesis, which

has not been sufficiently investigated but can significantly affect the upper bound on

the target error. To explicitly consider the joint hypothesis error, we propose an alter-

native upper bound on the target error from the perspective of joint optimization. The

joint hypothesis error in the proposed upper bound is directly affected by the hypoth-

esis. Therefore, it is straightforward to implement. Further, we propose a novel Joint

Contrastive Learning (JCL) framework to unsupervised domain adaptation, which con-

siders the union distribution of the source and target to minimize the proposed joint

hypothesis error. To illustrate, labeled data from the source domain and unlabeled data

from the target domain are unified and jointly optimized in this framework. In par-

ticular, we enlarge the JS divergence between different class-conditional distributions
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of the combined dataset by maximizing the MI between a feature and its label using

InfoNCE contrastive loss [21]. Several experiments are conducted and our proposed

JCL achieves state-of-the-art results on benchmark datasets. Note that this dissertation

is based on the following research [22]:

• Changhwa Park, Jonghyun Lee, Jaeyoon Yoo, Minhoe Hur, and Sungroh Yoon,

”Joint Contrastive Learning for Unsupervised Domain Adaptation,” Under re-

view.
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Chapter 2

Background

2.1 Domain Adaptation

Domain adaptation is exploiting labeled source data to improve the performance of

task in the target domain which does not have the label information. We first introduce

the setting of unsupervised domain adaptation with conventional notations. With the

defined notations, we review a theoretical analysis for the target error upper bound [4].

2.1.1 Problem Setting and Notations

In an unsupervised domain adaptation setting, a set of labeled source data {(xis, yis) ∈

(X × Y)}ni=1, sampled i.i.d. from the source domain distribution DS , and a set of

unlabeled target data {xjt ∈ X}mj=1, sampled i.i.d. from the target domain distribution

DT , are available. A domain is defined as a pair comprised of distribution D in the

input space X and labeling function f : X → Y . The output space Y is [0, 1] in the

theoretical analysis. To denote the source and target domains, we use 〈DS , fS〉 and

〈DT , fT 〉, respectively. The objective of unsupervised domain adaptation is to learn

a hypothesis function h : X 7→ Y that provides a good generalization in the target

domain. Formally, the error of a hypothesis h with respect to a labeling function fT

under the target domain distribution DT is defined as εT (h, fT ) := Ex∼DT
[|h(x) −
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fT (x)|]. The introduced notations are summarized in Table 2.1

Table 2.1: Notations

Symbol Definition

X An input space

D A distribution in the input space

f A labeling function

〈D, f〉 A domain

h A hypothesis function

ε(h, f) Ex∼D[|h(x)− f(x)|]

2.1.2 Theoretical Background

We review the theoretical basis of domain adaptation [4]. The ideal joint hypothesis is

defined as,

Definition 1 (Ben-David et al. [4]). Let H be a hypothesis space. The ideal joint

hypothesis is the hypothesis which minimizes the combined error:

h∗ := arg min
h∈H

εS(h, fS) + εT (h, fT ).

We denote the combined error of the ideal hypothesis by,

λ := εS(h∗, fS) + εT (h∗, fT ).

Ben-David et al. [4] proposed the following theorem for the upper bound on the

target error, which is used as the theoretical background for numerous unsupervised

domain adaptation methods.
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Theorem 1 (Ben-David et al. [4]). Let H be a hypothesis space, then the expected

target error is upper bounded as,

εT (h, fT ) ≤ εS(h, fS) +
1

2
dH∆H(DS ,DT ) + λ,

where dH∆H(DS ,DT ) is H∆H-distance between the source and target distributions.

Formally,

dH∆H(DS ,DT ) := 2 sup
h,h′∈H

|Prx∼DS
[h(x) 6= h′(x)]− Prx∼DT

[h(x) 6= h′(x)]|.

Theorem 1 shows that the target error is upper bounded by the sum of the source

error,H∆H-distance between the domains, and the error of the ideal joint hypothesis,

λ. The last term λ is often considered to be minute. Accordingly, many recent works

on domain adaptation endeavored to allow a feature encoder g : X 7→ Z to learn

such that the induced distributions of the domains in feature space Z have a minimal

H∆H-distance, while also minimizing the source error [7], [23]–[25].

2.2 Approaches for Domain Adaptation

2.2.1 Marginal Distribution Alignment Based Approaches

As suggested by the theoretical analysis in [4], aligning the marginal distributions can

result in reducing target error, and is common practice in domain adaptation [5]–[10].

Long et al. [9] utilized the Multiple Kernel variant of Maximum Mean Discrepancy

(MK-MMD) to improve the transferability of feature representation from task-specific

layers. They matched the mean-embeddings of the multi-layer representations across

domains in a reproducing kernel Hilbert space. Long et al. [10] also used the MMD

to measure the discrepancy in marginal distributions but in a different way. They pro-

posed Joint Maximum Mean Discrepancy (JMMD) to reduce the discrepancy in the

joint distributions of the multiple layers. On the other hand, there have been adversarial

training based approaches, inspired by Generative Adversarial Networks (GANs) [26].
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Ganin and Lempitsky [7] introduced a domain discriminator to convert the domain

confusion into a minmax optimization. The domain discriminator is trained to distin-

guish a feature representation whether the feature originates from the source domain

or the target domain. Conversely, a feature extractor is trained to deceive the domain

discriminator, and, as a result, the model can learn domain-invariant features. Bous-

malis et al. [27] hypothesized that modeling both private and shared components of

the representations can improve the extraction of domain-invariant features and pro-

posed Domain Separation Networks (DSN). Although matching marginal distributions

has brought advances in performance, Shu et al. [11] and Zhao et al. [28] theoreti-

cally demonstrated that finding invariant representations is not sufficient to guarantee

a small target error. Moreover, Chen et al. [29] empirically revealed an unexpected

deterioration in discriminability while learning transferable representations. In partic-

ular, Chen et al. [29] compared the optimal joint error on the learned feature repre-

sentation of Domain Adversarial Neural Network (DANN) [7], which attempted to

align marginal distributions of the source and target domains, with that of pre-trained

ResNet-50 [30]. They found that the optimal joint error on the feature space learned

with DANN is much higher than that on the pre-trained feature space. This suggests

that merely learning domain-invariant features is susceptible to substantial optimal

joint error and loosely bounded target error. This shortcoming of marginal distribution

alignment-based methods gave rise to conditional distribution matching approaches.

2.2.2 Conditional Distribution Matching Approaches

Researchers have attempted to learn class-level discriminative features using two main

technologies: first-order statistics matching and Siamese-networks training [16]–[18].

Xie et al. [15] aligned the source and target centroids to learn semantic representations

of the target data. Utilizing the MMD measurement, Kang et al. [13] proposed the

minimization of intra-class discrepancy and maximizing the inter-class margin. Deng,

Luo, and Zhu [14] employed pairwise margin loss to learn discriminative features and
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minimized the distances between the first-order statistics to align the conditional distri-

butions. However, there are two main differences between the proposed JCL approach

and these methods. First, with the theoretical analysis that explicitly handles the joint

hypothesis error, we propose to jointly optimize the source and target domains to have

class-wise discriminative representations. Second, we theoretically guarantee learning

discriminative features from the perspective of JS divergence by maximizing the MI

between a feature and its label. Previous pairwise loss or triplet loss-based methods

cannot properly bound and maximize the MI.

2.3 Contrastive Learning

Contrastive learning has been adopted for self-supervised learning and has led to sig-

nificant performance enhancement. Oord, Li, and Vinyals [21] introduced InfoNCE

loss to estimate and maximize the MI between a present context and a future signal.

High-dimensional data is compressed into a condensed latent embedding to model

conditional predictions and autoregressive models are utilized to predict many steps in

the future. In the image domain, Hjelm et al. [31], Bachman, Hjelm, and Buchwalter

[32], and Chen et al. [33] maximized the MI between features that originated from

the same input with different augmentations. Hjelm et al. [31] introduced local Deep

InfoMax (local DIM) which maximizes the MI between local features and global fea-

tures to encode structure information and improve the quality of representation. Bach-

man, Hjelm, and Buchwalter [32] advanced local DIM with three key modifications:

features across different augmented versions of each input are forced to be invariant,

features from multiple scales are predicted, and a more powerful encoder is used. Chen

et al. [33] utilized simple data augmentations, learnable nonlinear transformation, and

large batch sizes to enhance the performance. He et al. [34] proposed a momentum

encoder to accumulate a large number of negative examples and covered the under-

lying distribution effectively without having substantially large batch sizes. From the
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information-theoretic perspective, Tschannen et al. [35] suggested that these methods

could be subsumed under the same objective, InfoMax [36], and provided a different

perspective on the success of these methods. As opposed to these methods, the pro-

posed approach maximizes the MI between features from the same class to maximize

the JS divergence between different class-conditional distributions.
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Chapter 3

Method

3.1 An Alternative Upper Bound

In the previous studies, the ideal joint hypothesis error was assumed to be insignificant,

and therefore, it was neglected. However, recent studies [28], [29] have suggested that

this error can become substantial, and thus, it must be addressed adequately. To min-

imize the optimal joint error in Theorem 1, computing the ideal joint hypothesis is

needed, but it is usually intractable. As an alternative, we aim to provide an upper

bound on the target error, which explicitly incorporates the concept of joint error, and

is free from the optimal hypothesis. A small ideal joint hypothesis error implies that

there exists a joint hypothesis, which generalizes well on both the source and target

domains. Intuitively, it is natural to consider jointly optimizing within the domains

to minimize the joint error. From this point of view, we define a combined domain

〈DU , fU 〉 as below.

Definition 2. Let φS and φT be the density functions of the source and target distri-

butions, respectively. Then, the distribution of the combined domain DU is the mean

distribution of the source and target distributions:

φU (x) :=
1

2
(φS(x) + φT (x))
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fU (x) :=
1

2
(fS(x) + fT (x))

With the definition of the combined domain, the following theorem holds:

Theorem 2. Let H be a hypothesis space, then the expected target error is upper

bounded as,

εT (h, fT ) ≤ εS(h, fS) +
1

4
dH∆H(DS ,DT ) + 2εU (h, fU ).

Before continue to the proof of the theorem, We first introduce lemmas that are

useful in proving the theorem.

Lemma 1. Let H be a hypothesis space and D be any distribution over input space

X . Then ∀h, h′, h′′ ∈ H, the following triangle inequality holds:

εD(h, h′) ≤ εD(h, h′′) + εD(h′′, h′).

Proof. From the definition of the error and the triangle inequality of norm, we have

εD(h, h′) = Ex∼D[|h(x)− h′(x)|]

= Ex∼D[|h(x)− h′(x) + h′′(x)− h′′(x)|]

≤ Ex∼D[|h(x)− h′′(x)|+ |h′′(x)− h′(x)|]

= Ex∼D[|h(x)− h′′(x)|] + Ex∼D[|h′′(x)− h′(x)|]

= εD(h, h′′) + εD(h′′, h′).

Lemma 2 (Ben-David et al. [4]). For any hypothesis h, h′ ∈ H, the following inequal-

ity holds:

|εS(h, h′)− εT (h, h′)| ≤ 1

2
dH∆H(DS ,DT ).

Proof. From the definition of theH∆H-distance, we have

dH∆H(DS ,DT ) = 2 sup
h,h′∈H

|Prx∼DS
[h(x) 6= h′(x)]− Prx∼DT

[h(x) 6= h′(x)]|

= 2 sup
h,h′∈H

|εS(h, h′)− εT (h, h′)|

≥ 2|εS(h, h′)− εT (h, h′)|.
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With the introduced lemmas, we can prove Theorem 2 as follows:

Proof. From Lemma 1, we have

εT (h, fT ) ≤ εT (h, fU ) + εT (fU , fT )

= εS(h, fU ) + εT (h, fU ) + εT (fU , fT )− εS(h, fU )

≤ εS(h, fU ) + εT (h, fU ) + εT (fU , fT ) + εS(h, fS)− εS(fU , fS).

First, using Lemma 2, the following inequality holds:

εT (fU , fT )− εS(fU , fS)

= Ex∼DT
[|fU (x)− fT (x)|]− Ex∼DS

[|fU (x)− fS(x)|]

=
1

2
Ex∼DT

[|fS(x)− fT (x)|]− 1

2
Ex∼DS

[|fS(x)− fT (x)|]

=
1

2
εT (fS , fT )− 1

2
εS(fS , fT )

≤ 1

2
|εT (fS , fT )− εS(fS , fT )|

≤ 1

4
dH∆H(DS ,DT ).

Second, from the definition of DU and fU , we have

εS(h, fU ) + εT (h, fU )

=

∫
φS(x)|h(x)− fU (x)|dx +

∫
φT (x)|h(x)− fU (x)|dx

= 2

∫
1

2
(φS(x) + φT (x))|h(x)− fU (x)|dx

= 2

∫
φU (x)|h(x)− fU (x)|dx

= 2εU (h, fU ).

Combining the above two inequalities and an equality yields the proof.
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Comparison with Theorem 1

The main difference between Theorem 1 and Theorem 2 lies in λ in Theorem 1 and

2εU (h, fU ) in Theorem 2. To illustrate, λ in Theorem 1 is composed of the ideal joint

hypothesis, which is neither tractable nor manageable, and hence, it has been obliquely

addressed [14], [19], [37], [38]. On the contrary, 2εU (h, fU ), the alternative term in

Theorem 2, is directly affected by the hypothesis h, and thus, it is straightforward to

utilize. Differ from the previous studies that attempt to only alter λ from Theorem 1,

Theorem 2 cannot be directly derived from Theorem 1 because the second term in

Theorem 2 is smaller than that in Theorem 1.

The main idea here is that joint optimization in the source and target domains is

demanded upon simply matching the marginal distributions of the domains. As the

target labels are not provided, we must rely on the source labels. However, optimiza-

tion of the source domain alone can result in poor generalization of the target domain.

We therefore combine the source and target domains and propose their joint optimiza-

tion. To estimate the joint hypothesis error, we resort to target pseudo-labels, and the

following theorem holds:

Theorem 3. LetH be a hypothesis space, and fT̂ be a target pseudo-labeling function.

Accordingly, fÛ is defined as, fÛ (x) := 1
2(fS(x) + fT̂ (x)). Then the expected target

error is upper bounded as,

εT (h, fT ) ≤ εS(h, fS) +
1

4
dH∆H(DS ,DT ) + 2εU (h, fÛ ) + εT (fT , fT̂ ).

Proof. By Lemma 1, the following inequality holds.

εT (h, fT ) ≤ εT (h, fT̂ ) + εT (fT , fT̂ ).

Meanwhile, using the same process in the proof of Theorem 2, we know that

εT (h, fT̂ ) ≤ εS(h, fS) +
1

4
dH∆H(DS ,DT ) + 2εU (h, fÛ ).

Combining the above two inequalities yields the proof.
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3.2 Joint Contrastive Learning

Theorems 2 and 3 suggest that the joint optimization to minimize the combined er-

ror of the joint hypothesis is required for better accuracy on the target domain. For

the joint optimization, a typical classification framework using cross-entropy can be

utilized; however, it is vulnerable to noisy labels [39], which are highly probable in

the target pseudo-labels, and often result in poor margins [40]. As an alternative, dis-

criminative feature learning can be used. Discriminative feature learning extracts the

semantic features that differentiate dissimilar inputs and can benefit the classification.

For instance, in unsupervised learning, which is similar to unsupervised domain adap-

tation because the target true labels are not available, discriminative feature learning

has brought about considerable progress to downstream tasks [21], [33], [34]. In this

respect, we utilize the notion of learning discriminative feature representation to min-

imize the joint hypothesis error.

3.2.1 Theoretical Guarantees

Formally, we aim to learn discriminative features on the intermediate representation

space Z induced through the feature transformation g. We denote the induced distri-

bution of the combined domain DU over the representation space Z as DZU , and its

class-conditional distribution as DZU |y, where y is a class label. We can then formalize

our objective with JS divergence DJS as follows:

max
θg

DJS(DZU |0‖D
Z
U |1), (3.1)

where θg denotes the parameters of the feature encoder g. The values 0 and 1 are

the class labels, and hence, the objective means maximizing the divergence between

different class-conditional distributions. We first consider binary classification for the

simplicity, and then we will generalize the theoretical analysis to multiclass classifica-

tion problem.
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Suppose that the label distribution of the combined domain is uniform, i.e., P (y =

0) = P (y = 1). In practice, this can be achieved by reformulating a dataset to be

class-wise uniform. Let Y be a uniform random variable that takes the value in {0, 1}

and let the distribution DZU |Y be the mixture of DZU |0 and DZU |1, according to Y . We

denote the induced feature random variable with the distribution DZU |Y as ZU |Y . From

the relation between JS divergence and MI, the following holds.

DJS(DZU |0‖D
Z
U |1) = I(Y ;ZU |Y )

Therefore, we can transform our objective as follows:

max
θg

I(Y ;ZU |Y ). (3.2)

The MI between a label and a feature that is induced from the distribution condi-

tioned on the label can be maximized using the following approach. We employ the

InfoNCE loss proposed by Oord, Li, and Vinyals [21] to estimate and maximize the

MI. InfoNCE is defined as,

I(X;Y ) ≥ E

[
1

K

K∑
i=1

log
ec(xi,yi)

1
K

∑K
j=1 e

c(xi,yj)

]

, INCE(X;Y ),

(3.3)

where the expectation is over K independent samples from the joint distribution

p(x, y) [41]. c(x, y) is a critic function used to predict whether the inputs x and y were

jointly drawn by yielding high values for the jointly drawn pairs and low values for the

others [35].

The proposed JCL framework does not directly pair a feature and its label to max-

imize the MI between them. Instead, features from the same conditional distribution

are paired, and we use INCE to maximize the MI between them. For a given Y , we

sample two different data, X(1)
U |Y and X

(2)
U |Y , from the same conditional distribution,

DXU |Y . Then, we obtain Z
(1)
U |Y and Z

(2)
U |Y from X

(1)
U |Y and X

(2)
U |Y , respectively, through

15



the feature transformation, g. Therefore, Y , X(1)
U |Y , X(2)

U |Y , Z(1)
U |Y , and Z

(2)
U |Y satisfy

the Markov relation:

Z
(1)
U |Y ←X

(1)
U |Y ← Y →X

(2)
U |Y → Z

(2)
U |Y , (3.4)

and this is Markov equivalent to

Z
(1)
U |Y →X

(1)
U |Y → Y →X

(2)
U |Y → Z

(2)
U |Y . (3.5)

By the data processing inequality, we know that

I(Z
(1)
U |Y ;Z

(2)
U |Y ) ≤ I(Y ;Z

(1)
U |Y ). (3.6)

Meanwhile, we can observe that the following Markov relation holds.

Y → (X
(1)
U |Y ,X

(2)
U |Y )→ (Z

(1)
U |Y ,Z

(2)
U |Y )→ Z

(1)
U |Y . (3.7)

Therefore, by the data processing inequality, we have

I(Y ;Z
(1)
U |Y ) ≤ I(Y ; (Z

(1)
U |Y ,Z

(2)
U |Y )). (3.8)

Combining Equation 3.6 and Equation 3.8 yields the following inequality.

I(Z
(1)
U |Y ;Z

(2)
U |Y ) ≤ I(Y ;Z

(1)
U |Y ,Z

(2)
U |Y ) (3.9)

Therefore, maxθg I(Z
(1)
U |Y ;Z

(2)
U |Y ) can be seen as a lower bound for our objective

maxθg I(Y ;ZU |Y ), and we optimize it with our InfoNCE loss Lc, as described below.

Comparison with InfoMax Objective.

Comparing our objective,

max
θg

I(Y ;ZU |Y ), (3.10)

16



with the InfoMax objective,

max
θg

I(X; g(X)), (3.11)

[36] provides instructive insights. Recent progress on unsupervised representation learn-

ing [21], [31], [33], [42] can be subsumed under the same objective,

max
θg1 ,θg2

I(g1(X(1)); g2(X(2))), (3.12)

where X(1) and X(2) are instances that originate from the same data [35]. Using the

process similar to that derived above, it can be shown that the objective is a lower

bound on the InfoMax objective. The main difference is that the InfoMax principle

essentially aims to maximize the MI between data and its representation, whereas our

objective focuses on maximizing the divergence between different class-conditional

distributions in the feature space.

Comparison with Triplet Loss-based Methods.

The multi-class-K-pair loss [43], which is the generalized triplet loss [44], can be

shown to be a special case of InfoNCE loss [35], and triplet loss is the same as in

the K = 2 case. The drawback of using triplet loss to learn discriminative features is

that it cannot tightly bound the MI when the MI is larger than logK because INCE

is upper bounded by logK. Pairwise margin loss also compares only two features,

and hence, it is also expected to have a loose bound. Thus, triplet loss or pairwise

loss-based domain adaptation methods [14], [19], [20] cannot guarantee class-level

discriminative features from an information-theoretic perspective.

3.2.2 Generalization to Multiclass Classification

Here, we introduce how the proposed theoretical background can be generalized to a

multiclass classification problem and explain why degenerate solutions can be avoided

from an information-theoretic perspective. The generalized Jensen-Shannon (JS) di-

vergence is defined as:

17



Definition 3 (Lin [45]). LetD1,D2, · · · ,Dn be n probability distributions with weights

π1, π2, · · · , πn, respectively, and let Z1, Z2, · · · , Zn be random variables with distri-

butions D1,D2, · · · ,Dn, respectively. Then, the generalized JS divergence is defined

as:

Dπ
JS(D1,D2, · · · ,Dn) = H(Z)−

n∑
i=1

πiH(Zi),

where π is (π1, π2, · · · , πn) and Z is a random variable with the mixture distribu-

tion of D1,D2, · · · ,Dn with weights π1, π2, · · · , πn, respectively.

The generalized JS divergence measures the overall difference among a finite num-

ber of probability distributions. Notably, for a fixed π, the Bayes probability of er-

ror [46] is minimized if the generalized JS divergence is maximized [45]. With this

divergence, we can generalize our objective to learn discriminative features in the rep-

resentation space, Z , as follows.

max
θg

Dπ
JS(DZU |0,D

Z
U |1, · · · ,D

Z
U |C−1), (3.13)

where π denotes the marginal label distribution and C denotes the number of

classes. From the definition of the generalized JS divergence, we know that

Dπ
JS(DZU |0,D

Z
U |1, · · · ,D

Z
U |C−1)

= H(ZU |Y )−
n∑
y=1

πyH(ZU |y)

= H(ZU |Y )−
n∑
y=1

P (Y = y)H(ZU |Y |Y = y)

= H(ZU |Y )−H(ZU |Y |Y )

= I(Y ;ZU |Y ).

(3.14)

Therefore, we can transform our objective as follows:

18



max
θg

I(Y ;ZU |Y ). (3.15)

With the same theoretical framework introduced in the main manuscript, we can

optimize this objective with the InfoNCE loss.

Avoiding Degenerate Solutions

Algorithms that learn discriminative representations by alternating pseudo-labeling

and updating the parameters of the network are susceptible to trivial solutions [47], re-

ferred to as degenerate solutions. For example, if the majority of samples are assigned

to a few clusters, it is easy to discriminate between features, but this is unfavorable for

downstream tasks. The proposed approach can avoid the tendency towards degenerate

solutions since the method maximizes the MI between a feature and its label. From

Equation 3.14, we can observe that maximizing the MI, I(Y ;ZU |Y ), trades off maxi-

mizing the entropy, H(ZU |Y ), and minimizing the conditional entropy, H(ZU |Y |Y ).

Only minimizing the conditional entropy can be vulnerable to the degenerate solutions,

but the objective also includes the entropy maximization, which cannot be achieved

in the degenerate solutions. Therefore, the objective naturally balances discriminative

representation learning with dispersed features and avoids the degenerate solutions.

3.2.3 Training Procedure

In this section, we formulate the loss functions and architecture of the method based

on the aforementioned theoretical frameworks. The overview of JCL is illustrated in

Figure 3.1.

Momentum Contrast (MoCo) [34] is adopted as the proposed contrastive learning

structure, with an encoder gq with parameters θq and a momentum-updated encoder

gk with parameters θk for feature transformation X 7→ Z . θk are updated by θk ←

mθk+(1−m)θq, wherem ∈ [0, 1) is a momentum coefficient. A fully connected (FC)

layer projection head l : Z 7→ W is implemented to map the encoded representations
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to the space where the InfoNCE loss is applied. Empirical tests determine that it is

beneficial to define InfoNCE loss in the projected spaceW rather than Z , which is in

agreement with the results of Chen et al. [33]. For the feature pairs in the InfoNCE

loss, an encoded query wq = lq(gq(x)) and a key wk = lk(gk(x)) from the queue

of encoded features are used, where lq is a FC layer projection head for a query and

lk is a FC layer projection head for a key. We obtain the new keys on-the-fly by the

momentum encoder and retain the queue of keys. For the critic function c, we employ

a cosine similarity function sim(u,v) = uᵀv/‖u‖‖v‖ with a temperature hyper-

parameter τ according to [48]. Our InfoNCE loss Lc is then formulated as follows:

Lc = Ewq∼DW
U ,w+

k

[
− log

esim(wq ,w
+
k )/τ∑

wk∈Nk∪{w+
k }

esim(wq ,wk)/τ

]
, (3.16)

where w+
k is a feature that has the same label as wq and Nk is a set of features that

have different labels from wq. For the classification task, we have another FC layer h

as a classification head. To guarantee a small source error, we employ the broadly used

cross-entropy loss,

Ls = E(xs,ys)∼DS

[
− log h(gq(xs))ys

]
. (3.17)

CombiningLs andLc with a hyper-parameter γ, the overall objective is formulated

as follows:

min
θ
Ls + γLc. (3.18)

The labels of the target data are required to recognize whether or not the two sam-

ples of the combined domain have the same label. To facilitate this, we generate the

pseudo-labels of the target data. In particular, we perform spherical K-means cluster-

ing of target data on the feature space Z and assign labels at the begining of each

epoch. If the distance between a target sample and its assigned cluster center is larger

than a constant d, then the target sample is excluded from the combined dataset.
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Zhao et al. [28] showed that if the marginal label distributions of source and target

domains are substantially different, a small joint error is not achievable while finding

an invariant representation. To address this problem, we suggest the reformulation of

datasets to provide uniform label distributions, in which the number of data per class

is equalized by data rearrangement.

The pseudo code of JCL is provided in Algorithm 1.
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Algorithm 1: Training procedure for JCL
Input : Labeled source data from DS and unlabeled target data from DT .

Initialize encoders gq and gk; classification head h; projection heads lq and lk;

and a queue of K keys;

while iteration < max iteration do

Cluster the target data using spherical K-means;

Split them into a certain dataset with pseudo-labels and an uncertain

dataset;

Rearrange the source and certain target datasets to obtain uniform label

distributions;

for i← 1 to iterations per epoch do
Sample mini-batches of the source data (xs, ys), certain target data

(xtc, ŷtc), and uncertain target data (xtu);

xqs = pre-process(xs), x
k
s = pre-process(xs);

xqtc = pre-process(xtc), x
k
tc = pre-process(xtc);

xtu = pre-process(xtu);

zqs = gq(x
q
s), zks = gk(x

k
s);

Compute Ls on (h(zqs), ys) using Equation (5);

wq
s = lq(z

q
s), wk

s = lk(z
k
s);

wq
tc = lq(gq(x

q
tc)), w

k
tc = lk(gk(x

k
tc));

Forward the uncertain target data to train the batch normalization

layers, gq(xtu);

Merge wq
s and wq

tc to obtain wq
u, and merge wk

s and wk
tc to obtain wk

u;

enqueue(queue,wk
u), dequeue(queue);

Compute Lc on (wq
u, queue) using Equation (4);

Update the query network parameters, θq with SGD;

Momentum update the key network parameters, θk;

end

end

23



Chapter 4

Experiments

4.1 Datasets and Baselines

ImageCLEF-DA1 is a real-world dataset consisting of three domains: Caltech-256

(C), ImageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). Each domain contains 600

images from 12 common classes. We evaluated all six possible transfer tasks among

these three domains.

Office-Home [49] is a more challenging domain adaptation dataset than Image-

CLEF-DA. It contains objects commonly found in office and home environments and

has four different domains: artistic images (Ar), clip art (Cl), product images (Pr), and

real-world images (Rw). There are around 15,500 images in 65 different categories in

the dataset. We construct all twelve possible transfer tasks among the four domains of

the dataset.

VisDA-2017 [50] is a dataset for the synthetic-to-real transfer task and has a high

dataset shift. It includes 152,397 synthetic 2D renderings of 3D models and 55,388 real

images across 12 classes. The gallery of VisDA-2017 dataset is provided in Figure 4.1

Baselines. We compare JCL with marginal distribution matching methods: Deep

Adaptation Network (DAN) [9], Domain Adversarial Neural Network (DANN) [23],
1https://www.imageclef.org/2014/adaptation
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and Joint Adaptation Network (JAN) [10] and also with methods that endeavor to

learn discriminative features: Multi-Adversarial Domain Adaptation (MADA) [25],

Conditional Domain Adversarial Network (CDAN) [51], Adversarial Dropout Regu-

larization (ADR) [52], Maximum Classifier Discrepancy (MCD) [53], Batch Spectral

Penalization (BSP) [29], Cluster Alignment with a Teacher (CAT) [14], Contrastive

Adaptation Network (CAN) [13], and Adversarial-Learned Loss for Domain Adapta-

tion (ALDA) [54].

4.2 Implementation Details

We follow the standard experimental protocols for unsupervised domain adaptation [7],

[10] and report the average accuracy over three independent runs. To select the hyper-

parameters, we use the same protocol as the one described in [9]: we train a source

classifier and a domain classifier on a validation set that consists of labeled source

data and unlabeled target data, and then, we jointly evaluate the test errors of the

classifiers. We tuned the weight hyper-parameter, γ, and distance threshold, d, for

filtering the certain target data. The weight hyper-parameter, γ, was searched within

{0.1, 0.5, 1.0, 2.0} for ImageCLEF-DA and Office-Home datasets and {0.2, 0.3, 0.4,

0.5} for VisDA-2017 dataset. The distance threshold hyper-parameter, d, was searched

within {0.05, 0.1, 1.0}. The selected hyper-parameters for each task are listed in Ta-

ble 4.1.

We adopt ResNet-50 [30] for the ImageCLEF-DA and Office-Home datasets, and

ResNet-101 for the VisDA-2017 dataset as base networks. Batch normalization layers

are specified to be domain-specific. We finetune from ImageNet [55] pre-trained mod-

els, with the exception of the last FC layer, which we replace with the task-specific

FC layer. We also add another FC layer with an output dimension of 256 for con-

trastive learning. We utilize mini-batch SGD with momentum of 0.9 and follow the

same learning rate schedule as [9], [10], [23]: the learning rate ηp is adjusted accord-

26



Table 4.1: Selected hyper-parameters for each task

Source Target γ d

I P 0.5 0.05

P I 1.0 0.1

I C 2.0 0.1

C I 2.0 0.1

C P 0.1 1.0

P C 1.0 0.1

Ar Cl 2.0 0.1

Ar Pr 2.0 0.1

Ar Rw 0.1 0.1

Cl Ar 2.0 0.1

Cl Pr 0.5 0.1

Cl Rw 0.5 0.1

Pr Ar 1.0 0.1

Pr Cl 1.0 0.1

Pr Rw 2.0 0.1

Rw Ar 0.1 0.1

Rw Cl 0.1 0.1

Rw Pr 0.5 0.1

VisDA-2017

Training

VisDA-2017

Validation
0.3 0.1
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ing to ηp = η0(1 + αp)−β , where p is the training progress that increases from 0 to 1.

The η0 is the initial learning rate, which is set to 0.001 for the pre-trained layers and

0.01 for the added FC layers. The α and β are fixed to 10 and 0.75, respectively. The

temperature parameter, τ , for the critic function was fixed to 0.05. For ImageCLEF-

DA, Office-Home, and VisDA-2017 datasets, the queue size, considering the dataset

sizes, was set to 4,096, 2,048, and 32,768, respectively, and the momentum coeffi-

cient, m, of the momentum encoder to 0.9, 0.9, and 0.99, respectively. For the metric

measuring the distances in the feature space, Z , cosine dissimilarity was applied. At

the end of the encoders, we added L2 normalization layers. Unlike other contrastive

learning methods, we did not utilize additional data augmentation for fair comparison

with domain adaptation baselines; only random crop and horizontal flip were used.

We empirically found that it is beneficial to forward pass the uncertain target data to

train the batch normalization layers. The computing infrastructure used for running

experiments is specified in Table 4.2.

Table 4.2: Computing infrastructure specifications

Item Details

GPU GeForce RTX 2080 Ti

CPU Intel Core i9-10940X

RAM 128 GB

Operating system Ubuntu 18.04

Libraries
python==3.8.5

pytorch==1.6.0

The total iterations for the ImageCLEF-DA, Office-Home, and VisDA-2017 ex-

periments were 20,000, 10,000, and 50,000, respectively, and they took 4 h, 3 h, and

15 h, respectively, on an average.
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4.3 Results

The results obtained using the ImageCLEF-DA dataset are reported in Table 4.3. The

accuracies of the compared methods are directly reported from their original papers

wherever available. For all six adaptation scenarios, our proposed method outper-

forms the other baseline methods and achieves state-of-the-art accuracy. In particu-

lar, the proposed method surpasses CAT by a substantial margin, validating the ef-

fectiveness of jointly learning discriminative features and the discussed information-

theoretic guarantees. Moreover, the methods that consider conditional distributions

achieve higher accuracies than those that focus on marginal distribution matching.

These results suggest that learning discriminative features to minimize the joint hy-

pothesis error is more crucial than general alignment.

The classification accuracies on the Office-Home dataset for unsupervised domain

adaptation are shown in Table 4.4. For 9 out of 12 adaptation tasks, the proposed

method surpasses the other compared methods by a large margin. In particular, JCL

enhances the average accuracy of ALDA by 2.4%, achieving state-of-the-art perfor-

mance.

In Table 4.5, the accuracy obtained for each class and the average accuracy over

all twelve classes on the VisDA-2017 transfer task are reported. Among the twelve ob-

jects, ”truck” is the most challenging object as the baselines show mediocre accuracies.

Notably, the proposed method boosts the accuracy of the truck class by a significant

margin, and, on average, it outperforms the other baseline methods. In particular, it ad-

vances the lowest accuracy among the twelve objects of CAN (59.9%) by 6.9%. These

results can be attributed to the MI maximization between a feature and its label which

trades-off maximizing entropyH(z) and minimizing conditional entropyH(z|y), and

thus avoids degenerate solutions [47].

We visualize the learned target representations of the VisDA-2017 task by t-SNE

[57] in Figure 4.2 to compare our method with DANN in terms of feature discrim-

inability. While aligning the marginal distributions of the source and target domains,
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(a) t-SNE of DANN. (b) t-SNE of JCL.

Figure 4.2: Visualization for different methods (best viewed in color).

the features are not well discriminated with DANN. On the contrary, the target features

learned using our method are clearly discriminated, demonstrating that our objective

to maximize the JS divergence between conditional distributions is achieved.

4.4 Ablation Studies

To investigate the effectiveness of our method in minimizing the joint hypothesis error

by learning discriminative representations, we conduct the same pilot analysis as Chen

et al. [29]; we train a linear classifier on the representations learned using DANN and

our method. The linear classifier is trained on both source and target data using the

labels. The average error rate of the linear classifier corresponds to half of the ideal

joint hypothesis error. The results are shown in Figure 4.3. We can observe that the

ideal joint hypothesis error of the representation learned using our method is signifi-

cantly lower than that learned using DANN. This implies that the proposed method is

effective in achieving our objective to enhance feature discriminability.
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Figure 4.3: Classification error rate on the learned representations.

We investigate the sensitivity of JCL to the weight hyper-parameter γ, and the

results are shown in Figure 4.4. We could observe that JCL is not sensitive to the
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Figure 4.4: The accuracy sensitivity of JCL to γ. The results for other tasks are similar.

change in the value of γ.
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Chapter 5

Conclusion

In this study, we suggest an alternative upper bound on the target error to explicitly

manage the joint hypothesis error. The proposed upper bound with the joint hypothe-

sis error provides a new perspective on the target error that the joint optimization on

the both domains is demanded. Further, a novel approach to domain adaptation, JCL,

is proposed to minimize the joint error. The proposed approach differs from previous

domain adaptation methods that consider conditional distributions, as it can maximize

the JS divergence between class-conditional distributions with information-theoretic

guarantees. The effectiveness of the proposed method is validated with several experi-

ments.

In chapter 2, we introduced the problem setting of unsupervised domain adapta-

tion and explained theoretical background that brings the upper bound on the target

error. We reviewed previous studies that aligned marginal distributions to minimize

the upper bound. To improve the target accuracy further, there have been conditional

distributions matching methods, and we described these works. Finally, contrastive

learning, which is closely related to this work, was also summarized.

In chapter 3, we suggested an alternative upper bound on the target error that ex-

plicitly address the joint hypothesis error. Compared with the previous theoretical anal-

ysis, it enables managing the joint hypothesis error which can affect the target error

35



rate severely. Based on this theoretical framework, we introduced Joint Contrastive

Learning scheme, which theoretically guarantees maximizing the JS divergence be-

tween class-conditional distributions to minimize the joint error.

In chapter 4, we demonstrated the experimental results on several domain adapta-

tion datasets, including ImageCLEF-DA, Office-Home, and VisDA-2017. For most of

the adaptation scenarios, our proposed method outperformed the other baseline meth-

ods and showed its effectiveness. Moreover, the proposed method brought lower clas-

sification error rate on the learned representation compared to the baseline method

DANN, elucidating the reduced joint error as intended.

The proposed method advances domain adaptation performance, but this study has

potential limitations. First, the target error of the learned model depends on the quality

of the pseudo target pseudo-labels. Although we can expect the target pseudo-labels

are generally correct since the source and target domains are similar, the target pseudo-

labels can be completely erroneous when the dataset shift is substantial. In the worst

case, the model will learn totally mistaken feature representations and the performance

of the model may collapse. Second, uncertain target samples that are far from the

closest cluster center are abandoned and unused, whereas certain target samples are

fixed to one-hot pseudo-labels. This one-hot encoding procedure prevents the model

from exploiting the uncertainty information of each sample. If the model can take the

advantage of uncertainty information of each sample and utilize both the uncertain and

certain samples, the accuracy of the learned model can be improved further.

From the limitations of this study, we suggest the following topics to be addressed

in the future. First, research on how to improve the quality of target pseudo-labels can

be conducted. Advancements in clustering the source and target samples together and

assigning the correct target pseudo-labels can benefit domain adaptation methods using

target pseudo-labels. Second, how to give soft pseudo-labels to target samples that can

extract the manifold information of source and target can be studied. Third, with the

soft pseudo-labels, how can positive or negative pairs be defined for discriminative
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learning is also an interesting research direction.
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초록

도메인 적응 기법은 타겟 도메인의 라벨 정보가 없는 상황에서 비슷한 도메인

인소스도메인의라벨정보를활용하기위해개발되었다.기존의방법론들은잠재

공간에서 도메인들 사이의 분포 차이를 줄임으로써 전이 학습이 가능하게 하였다.

이러한기법들은소스도메인의에러율,도메인간분포차이,그리고양도메인에서

이상적인 분류기의 에러율의 합이 타겟 도메인의 에러율의 상계가 된다는 이론을

바탕으로한다.그러나도메인들사이의분포차이를줄이는방법들은동시에잠재

공간에서서로다른라벨을갖는데이터들사이의구별성을감소시켰다.특히,작을

것이라생각되던양도메인에서이상적인분류기의에러율이큰것으로나타났다.

본논문에서는기존의이론에서는다루지않은양도메인에서분류기의에러율

을 조절할 수 있게하기 위해 새로운 이론을 제시한다. 이 이론적 배경을 바탕으로

소스도메인과타겟도메인을함께학습하는공동대조적방법을소개한다.본공동

대조적학습방법에서는각라벨별로구분되는잠재공간을학습하기위해각데이

터의 특징과 라벨 사이의 상호 정보량을 최대화한다. 이 각 데이터의 특징과 라벨

사이의상호정보량은각라벨분포사이의젠센-샤논거리와같으므로이를최대화

하는것은곧라벨들이잘구별되는잠재공간을학습하는것이다.마지막으로공동

대조적학습방법을여러데이터셋에적용하여기존방법론들과비교하였다.

주요어:적응모델,딥러닝,도메인적응,이전학습,대조적학습

학번: 2019-25825
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