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Abstract

Learning-based image denoising models have been bounded to situations where

well-aligned noisy and clean images are given, or training samples can be synthe-

sized from predetermined noise models. While recent generative methods introduce

a methodology to accurately simulate the unknown distribution of real-world noise,

several limitations still exist. The existing methods are restrained to the case that un-

realistic assumptions are made, or the data of actual noise distribution is available. In

a real situation, a noise generator should learn to simulate the general and complex

noise distribution without using paired noisy and clean images. As a noise genera-

tor learned for the real situation tends to fail to express complex noise maps and fits

to generate specific texture patterns, we propose an architecture designed to resolve

this problem. Therefore, we introduce the C2N, a Clean-to-Noisy image generation

framework, to imitate complex real-world noise without using any paired examples.

Our C2N combined with a conventional denoising model outperforms existing unsu-

pervised methods on a challenging real-world denoising benchmark by a large margin,

validating the effectiveness of the proposed formulation. We also extend our method

to a practical situation when there are several data constraints, an area not previously

explored by the previous generative noise modeling methods.

keywords: Image Denoising, Image Restoration, Real-World Denoising, Generative

Model, Generative Adversarial Network, Unsupervised Denoising

student number: 2018-27051
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Chapter 1

INTRODUCTION

Image denoising aims to remove unintended signals from a given noisy observation.

The task has been considered as one of the fundamental vision problems and han-

dled by numerous studies [10, 11, 12]. While recent deep convolutional neural net-

works (CNNs) have achieved promising performance [9, 13, 14, 15, 16] on the various

dataset, several challenges prevent the methods from being used as practical applica-

tions. A primary limitation of the learning-based approaches is that they are usually

data-driven, where an accurate fitting on training dataset does not guarantee the model

to work well for real-world situations.

In the real-world scenario, the noise from a camera pipeline is different from the

conventional assumption for ideal noise in several aspects. For instance, the widely-

used additive white Gaussian noise (AWGN) formulation assumes that the term is

signal-independent [17, 18], while real-world noises are not. Therefore, it is diffi-

cult to generalize a denoising algorithm toward real-world images when the model

is trained on synthetic examples with the ideal noise assumption. As an alternative,

few studies have collected well-aligned noisy and clean image pairs in the wild [19, 5]

so that the following denoising methods can be trained in a supervised manner. While

such an approach can be an effective way to deal with the real-world noise, it re-

mains challenging to acquire the pairs due to practical issues. Recent self-supervised
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deep approaches [18, 20] aim to deal with the limitations, but they usually leverage

some statistical properties of the noise, which are insufficient to represent realistic

noise [5, 21].

On the other hand, generation-based approaches [22, 23] have been proposed to

deal with challenging real-world situations. Rather than using a single model, those

methods usually adopt a two-stage pipeline for the denoising problem. First, a noise

generator [24] is learned in an unsupervised fashion to simulate the distribution of

given real noisy examples so that any clean images can be mapped to pseudo-noisy

data. A denoising model can then be trained in a straightforward manner using the

synthesized input and target pairs. Earlier methods [22, 17] train their generators using

realistic noise maps extracted from nearly-plain image patches. However, the noise

map is extracted with handcrafted operators, which may prevent the generalization

ability toward the real-world camera noise. Several methods have provided more ac-

curate supervision on the noise distribution [23] or trained their network with unpaired

data [25] to generalize their generation models. Still, it has not been explored whether

the generation-based formulation can deal with the situation where only the noisy ex-

amples are available, without sufficient clean images nor samples captured from the

same scene.
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(a) Clean (b) GT (c) C2N (d) C2N+DIDN

Figure 1.1: Examples of generated and denoised image from our proposed method.

(a) Clean image, (b) Ground truth noisy image, (c) Generated noisy image from the

proposed C2N, (d) Denoising results of DIDN [1] trained on the images generated by

our C2N. These results shows that our C2N can accurately imitate the real noise.

In this paper, we introduce C2N, a novel generative noise modeling framework

trained with no paired data. As shown in Figure 1.1, the C2N can learn a variety of

complex noise distributions successfully and generates accurate noisy images from

arbitrary clean images. We can combine any denoising models to this by training it

on the generated pairs of pseudo-noisy and clean images to achieve state-of-the-art

performance. Even with a significantly small amount of training data, our C2N can be

trained to simulate the real-world noise and further preserve its performance under the

constraints of lacking clean images. Our contributions is summarized as follows: (1)

We propose a noise generator with explicit modules to express noise terms of according

characteristics, making it possible to imitate a wide range of real-world noise and solve

the structural problem of a noise-generating CNN. (2) With the data pairs generated
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by our C2N, we train denoising models that outperform state-of-the-art unsupervised

methods for denoising real photographs. (3) We show that our method performs well

regardless of the data constraints in a practical situation.

4



Chapter 2

RELATED WORK

2.1 Deep Image Denoising.

After the DnCNN [9] model has achieved a significant performance gain over tradi-

tional methods [10, 11], CNN-based methods have become mainstream in the image

denoising area. The FFDNet [13] model uses a noise level map as to remove spatially

varying AWGN effectively. Using large models and complex architectures, the perfor-

mance of denoising models can be improved by extracting rich features from the input

noisy image [15, 26]. While such methods successfully erase AWGN with state-of-the-

art performances, they still require numerous training pairs that contain the exact target

noise distribution. Therefore, the real-world denoising task has remained challenging

since the desired noise model is unknown without appropriate training examples.

2.2 Deep Denoising of Real-World Noise.

If enough amount of training samples are given, it is straightforward to train the meth-

ods mentioned to function properly. For such purpose, Anaya and Barbu [27] acquire

the Renoir dataset where clean samples are synthesized from a sequence of low-ISO

images. However, spatial misalignment and remaining noise in training pairs make
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it challenging to use the dataset for practical purpose. The DND [21] dataset post-

processes low-ISO images to align their spatial contents and illuminations with high-

ISO counterparts. The SIDD [5] dataset captures noisy images under various light-

ing conditions with five different smartphone cameras. It gets clean images by merg-

ing the noisy images with complicated post-processing techniques to consider image

alignments, lens motion, radial distortion, and optical stabilization. To deal with more

challenging real-world scenarios, SID [28] and ELD [29] datasets introduce extreme

low-light camera noise. With these real-world noise datasets, denoising models with

various attention modules [30, 31], multi-scale resizing in features [32, 33, 1], or use

of self-similarity in images [34, 35, 36] manage to remove complex real noises.

Nevertheless, it is difficult to collect large-scale real-world dataset for our specific

purpose. To remove noise even when the accurate distribution of it is not given(bling

denoising), the CBDNet [14] includes a part that performs noise level estimation based

on Poisson-Gaussian Noise Model [37]. It is intended to also operate on real noisy im-

ages, receiving indirect supervision from training the denoiser. The Path-Restore [38]

dynamically selects an appropriate restoration path for each region of an input image.

The self-supervised denoising methods [18, 20] use only individual noisy images for

training and estimates a pixel value of its input noisy image itself, where the value

of that location is masked-out as ’blind spot’. Since these methods require the noise

to satisfy strong statistical assumptions, [39, 40] modify these according to the prior

knowledge of noisy images. Recently, the AINDNet [41] performs N2N [19] train-

ing with adaptation through varying noise levels. And the Noise2Blur [42] performs

an additional procedure to preserve image details after training a model with blurred

labels.

On the other hand, generation-based approaches [22, 23] have been proposed to

deal with challenging real-world situations. Rather than using a single model, those

methods usually adopt a two-stage pipeline for the denoising problem. First, a noise

generator is learned in an unsupervised fashion [24] to simulate the distribution of

6



given real noisy examples so that any clean images can be mapped to pseudo-noisy

data. A denoising model can then be trained in a straightforward manner using the

synthesized input and target pairs. The GCBD [22] is the first generation-based ap-

proach for deep blind image denoising. Later, the GAN2GAN [17] method leverages

better noisy-patch-extraction, generating more realistic noisy samples to train the fol-

lowing N2N model. While the methods above are limited to signal-independent and

synthetic noise only, the Noise Flow [23] proposes a formulation to imitate chal-

lenging real-world noise. By leveraging the normalizing flow formed of invertible

transforms, the shift of distribution between synthetic and desired noise maps can be

learned precisely. Although the model successfully imitates in-camera noise occur-

ring pipeline, true noisy and clean image pairs are required to get the correct noise

distribution. Recently, the UIDNet [25] model handles the unpaired generative noise

modeling with the sharpening technique for better noise separation. Furthermore, the

NTGAN [43] method demonstrates that noise maps synthesized with a given camera

response function (CRF) can be used for the following denoising network. Unlike the

existing generation-based denoising methods, we introduce a novel noise generator

that can be trained without any paired data or heuristics.
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Chapter 3

C2N: Clean-to-Noisy Image Generation Framework

3.1 Complexity of Real-World Noise

To generate realistic noise with CNNs, it is necessary to understand the properties of

real-world cameras and their statistical behavior. Due to several physical limitations,

the noise occurs from various sources, including electronic sensors, in-camera ampli-

fiers, photon noise, quantization, and compression artifacts [44]. Combining all these

factors, the noise term n is mixed with an underlying clean signal x, resulting the noisy

observation y as follows:

y = x+ n. (3.1)

In traditional deep denoising methods [9, 13], the noise term n is usually simpli-

fied as an ideal additive white Gaussian (AWGN), i.e., n ∼ N (0, σ2), where σ denotes

the standard deviation. On the other hand, the photon noise is signal-dependent, where

Poisson distribution can be used to simulate the case [37]. Considering the signal-

independent and dependent terms together, the resulting Poisson-Gaussian noise model

can be defined as follows:

n ∼ N (0, σ2sx+ σ2c ), (3.2)

where σ2s and σ2c are tunable parameters. While the noise model in (3.2) can provide

a proper approximation of the realistic noise [14, 43], several studies [44, 29] have
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demonstrated that the real-world cases appear to be much more complicated. Further-

more, the physical limitations of in-camera electronic devices and in-camera compres-

sion pipeline make the noise term to exhibit random spatial pattern [45]. Such proper-

ties lead the noise term n and its local neighbors to be spatially correlated, making the

precise modeling more challenging.

To deal with the problem without using paired data, the previous approaches [14,

43] construct noise maps using a synthetic noise model and known camera response

function (CRF). However, such handcrafted features prevent those methods from being

generalized toward realistic configurations. Therefore, we propose to adopt a learning-

based method, namely C2N, to simulate the real-world noise rather than using some

handcrafted formulations. Our framework fully utilizes the advantage of unsupervised

learning to simulate the more comprehensive real-world noise, with novel design com-

ponents and objective terms.

3.2 Learning to Generate Pseudo-Noisy Images

A denoising network F aims to reconstruct the underlying clean signal x from a given

noisy observation y in (3.1). When enough training pairs are available, the model can

be trained in a supervised manner to estimate the clean signal. However, in real-world

scenarios, it is challenging to acquire ideal clean images even with complicated post-

processing [5], and so as the well-aligned noisy-clean training pairs for supervised

learning.
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Figure 3.1: Our two-step pipeline for real-world denoising. (a) Our method first learns

to generate samples from target noise distribution, with a noise generator G. We used

clean image x and noise image y′ to be unpaired. (b) Secondly, using the generated

pairs, we train a denoising model F . The clean images for this step can be sampled

from an arbitrary distribution P ′C 6= PC .

Hence we first train our generator in C2N framework for target noise distribution,

and train the following denoising model F on the generated noise. Figure 3.1 shows

the two-step pipeline of our method.

Our generator G is designed to synthesize a realistic noise map n̂ for a given clean

image x to produce the pseudo-noisy image ŷ as follows:

ŷ = x+ n̂, n̂ = G (x, r) , (3.3)

where r is a random vector to reflect stochastic behavior of the noise. We spatially

replicate the 32-dim random vector r through all pixel positions of x, similar to the

GAN applications [46, 47].

Simultaneously, we train a discriminator networkD to distinguish whether a given

noisy image is synthesized from our generator G or sampled from the real-world

dataset. The two networks G and D can be optimized in an adversarial way [24],
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using the Wasserstein distance [48] as follows:

Ladv(D,G) = Ey′∼PN [D(y′)]

− Ex∼PC ,r∼Pr [1−D(x+G(x, r))]

+ λExδ∼Pδ [(‖∇xδD(xδ)‖2 − 1)2],

(3.4)

where the term is minimized with respect to G and maximized with respect to D. PN

and PC denote the distribution of the real-world noisy and clean images, respectively.

The real noisy sample y′ is sampled from PN , and we note that the corresponding

clean image is not available in our configuration. Pr is a known distribution where

the random vector r is drawn from, e.g., Gaussian. For stable learning, we adopt the

gradient penalty [48], which is weighted by a hyperparameter λ = 10, where xδ ∼ Pδ
is a linear interpolation of the generated and real images.

The significant advantage of the proposed C2N framework is that the generator of

it can synthesize realistic noise without adopting handcrafted features. However, the

generated noise n̂may bias the image color and negatively affect the overall framework

if our C2N is trained without any constraints. To deal with the case, we additionally

define a stabilizing loss term Lstb, which is defined as follows:

Lstb =
∑
c

∥∥∥∥∥∥ 1

mHW

m,H,W∑
k,h,w

n̂k,h,w

∥∥∥∥∥∥
1

, (3.5)

where k is index of each images in a mini-batch of size m, h and w are index of pixel

positions in height and width of an image of size H , W , respectively, and c is index of

each color channels. By minimizing the stabilizing loss, the channel-wise average of

the generated noise approaches zero, which prevents the color-shifting problem. Since

we do not take a mean over a single sample or local area, the generated noise may have

varying nonzero local means depending on the underlying signal to consider spatially-

correlated patterns. Combining our two loss terms (3.4) and (3.5), we optimize the

total loss LG = Ladv + wstbLstb to train our C2N method, where wstb = 0.01.
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3.3 C2N Architecture

The previous generation-based approaches have been limited to signal-dependent [22]

or spatially uncorrelated [23] noise terms, which limit their practical usages. There-

fore, we define a new generator to represent diverse and complex noise distributions

discussed in 3.1. Starting from the simplest CNN structure, we gradually implement

several design components to express more general properties of real-world noise.

3.3.1 Signal-Independent Pixel-Wise Transforms

A general CNN is basically a sequence of fixed filtering operations. Therefore, the

structure is not appropriate to synthesize purely noisy outputs but tends to generate

some structured patterns. Instead, the noise generation can be formulated as a nonlin-

ear mapping from an initial random noise sI to the desired complex noise. A noise

generator often consists of a sequence of transposed convolutions, , upconv, on a ran-

dom vector [22], or pixel-wise operations applied to the noise map of known distribu-

tion [23]. Similarly, we construct a basic pixel-wise noise transformation moduleGI1×1

to simulate spatially i.i.d. noise. Specifically, we have modified residual blocks [49] for

low-level vision problems [3] with 1 × 1 convolutional layers. We sample the initial

noise sI from the standard normal distribution while using uniform distribution shows

similar behavior.

3.3.2 Signal-Dependent Sampling and Transforms

To express signal-dependent noise, our noise generator should extract useful features

from the clean input signal. However, it is not desirable for the generated noise map

n̂ to show too much correspondence with the given image and follow some structures

in the scene. To effectively represent the signal-dependent term without biased to the

given sample, we use convolutional features from the input as a statistics of the initial

noise sD. At the front of GD, the signal-dependent part of G, we define the image

12
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Figure 3.2: Overview of C2N framework. r map denotes the spatially replicated ran-

dom vector r. For sampling a initial noise map for the signal-dependent transforms,

we used reparameterization trick [2] to preserve gradients of the parameters.

feature extractor consisting of 5 ResBlocks with 3×3 convolutions. Its outputs feature

map as the mean and standard deviation of each position-wise normal distributions.

We then sample the initial signal-dependent component of noise sDi at each position i,

and apply another pixel-wise noise transforms GD1×1.

3.3.3 Spatially Correlated Transforms

A number of existing manual noise models [37] and denoising methods assume spa-

tially uncorrelated noise. On the other hand, C2N handles color sRGB image contain-

ing various conversion and compression degradations from in-camera post-processing [45]

in end-to-end manner. To achieve this, We add transforms of 3× 3 convolution in GI

andGD each, which are denoted asGI3×3 andGD3×3. These 3×3 convolutions tends to

transform the noise term therefrom, rather than making unwanted artifacts that affect

the content of the underlying signal.

Figure 3.2 shows the overall structure of our C2N framework. We set the number

of channels C as 64, and all the intermediate features from sI and sD have the same

number of channels. We add all the features transformed by GI1×1, GI3×3, GD1×1, GD3×3

into one, and take the last 1×1 convolution to reduce its number of channels according
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generated ෝ𝒚

𝓛adv

noisy 𝒚

Discriminator 𝑫

ResBlock
(𝟑 × 𝟑)

Convolution
(𝟏 × 𝟏)

Figure 3.3: Discriminator architecture. The ResBlocks, like those of the generator, are

modified for low-level vision problems [3].

to the color space.

3.3.4 Discriminator

We define the discriminator architecture as six sequential ResBlocks with 3 × 3 con-

volutions, and a 1 × 1 convolution applied to reduce the number of channels to one.

Figure 3.3 shows the discriminator architecture of our C2N framework. The result val-

ues produced by the discriminator is averaged through pixel positions so that it can

output one value for discriminate whether the image is real or generated one.

3.4 Learning to Denoise with the Generated Pairs

With the C2N, it is straightforward to optimize the following denoising network F .

We first generate pseudo-noisy images ŷ from the clean examples x and use the pairs

to train a denoising model in a supervised manner [9, 13]. Similar to the previous deep

denoising methods [1, 30], we minimize the L1 reconstruction loss which is defined

as follows:

Lrec =
1

m

m∑
k=1

‖F (ŷ)− x‖1 , (3.6)
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where ŷ is pseudo noisy image generated by ŷ = x+G(x, r), on a clean image x ∼ P ′C
sampled from arbitrary distribution of clean images.

The major advantages of our approach is that our framework is independent to

the selection of following denoising architecture. Previous attempts like [17, 25] train

their noise generator and denoising model jointly. Since the C2N model doesn’t get

any supervision from the reconstruction loss Lrec, the generated images are not spe-

cialized for certain denoising model. In C2N, whether the generated sample ŷ is good

or not is determined with only resulting pseudo-noisy images. Also, in real situation, a

denoising model cannot be trained with (3.6) because there are none or very few clean

images available in the same scene distribution.
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Chapter 4

Experiment

4.1 Experimental Setup

4.1.1 Dataset

To train and test our method on synthetic noise, we use clean color images from the

BSD500 [7] dataset, which consists of 68 test samples (CBSD68) and 432 training im-

ages. We also use the high-resolution images from the DIV2K [6] dataset to synthesize

images with more complex noise. To train our C2N and the following denoising model

on challenging real-world noise, we leverage the SIDD [5] dataset captured under a re-

alistic environment. Recent generation-based methods on real noisy images [23, 25]

also use this dataset for training and evaluation, for it covers a wide range of cap-

turing conditions and noise from them. The training split of the SIDD dataset (SIDD

Medium) contains 320 noisy and clean image pairs, on which we train our C2N model

by sampling each image in an unpaired manner. We evaluate the denoising models

followed by the C2N with the SIDD Benchmark and its validation set.
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4.1.2 Implementation Details and Optimization

To optimize our C2N framework, we crop 36,000 unpaired noisy and clean patches

of 96 × 96 from each dataset unless mentioned otherwise. All training samples are

augmented by random flipping and 90◦ rotations to construct a mini-batch of size

36. We used the Adam optimizer [50] with an initial learning rate of 10−4, which

is multiplied by 0.8 every 3 epochs. A single C2N model is trained over 36 epochs.

After the whole training is done, we create pseudo-noisy images from a set of clean

samples to train the following denoising model. We train our denoising model only

with the generated pseudo-noisy and clean image pairs. Following the C2N pipeline,

the denoising network is trained in a similar manner, where we adopt 36,000 generated

pairs of 96× 96 image patches with a mini-batch size of 16. The Adam [50] optimizer

is used with an initial learning rate of 10−4, which is halved every 4 epochs for the total

16 epochs. For the denoising architecture, we choose CDnCNN-B [9] as our baseline

unless otherwise stated.

We applied the self-ensemble technique [51, 3] for the final denoising results spec-

ified as so. For a noisy image, we make total 8 augmented inputs by flipping and 90◦

rotations, including the original. We obtain each corresponding results and convert

them back to the original geometry by the inverse transformations. Finally, we average

all the results to get the self-ensembled result.

4.2 Model Analysis

To confirm the validity and usefulness of our C2N framework, we first analyze how

each of our design components supports the proposed method in handling the synthetic

noise of various properties.
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(a)
PG

15.70 dB / 0.264
(b)

PG + J

18.78 dB / 0.511

(c)
GI

1×1

26.24 dB / 0.754
(d)

GI
1×1 +GD

1×1

22.11 dB / 0.563

(e)
GI

1×1 +GD
1×1

26.56 dB / 0.792
(f)

GI +GD

23.49 dB / 0.720

Figure 4.1: Ablation study on various synthetic noise. (a), (b) Synthetic noisy image

of Poisson-Gaussian noise and the same degradation with JPEG compression, respec-

tively, (c), (d), (e), (f) Results of our denoising models trained on the generated data

from independent C2N frameworks. Values represent PSNR(dB) / SSIM [4] of each

image with respect to the ground-truth.
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Figure 4.1 shows how each module in our C2N model can be used to handle the

unique characteristic of complicated noise explicitly. Each C2N variant has a differ-

ent range of expressions depending on the existence of each module. Here, PG and

PG + J stand for the Poisson-Gaussian noise of (σc, σs) = (25, 50) and the same

Poisson-Gaussian noise with JPEG compression of quality factor 70, respectively. We

train the C2N models on high-resolution clean images from the DIV2K dataset with

corresponding noisy examples in an unpaired setting.

Since the model only withGI1×1 module is not proper to synthesize signal-dependent

noise, the following denoising model does not remove Poisson-Gaussian noise well,

especially on bright regions as shown in Figure 4.1(c). By explicitly considering the

signal-dependent transformation module in our method, the following denoising method

can reconstruct a visually pleasing result, as shown in Figure 4.1(e). Figure 4.1(d) il-

lustrates that our C2N model cannot be used to imitate spatially-correlated noise with

1 × 1 convolutional layers only. Introducing 3 × 3 convolutions to the generator im-

proves the representation power of our method and performance of the following de-

noising model on challenging JPEG artifacts removal, as shown in Figure 4.1(f).
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Test Noise Level

Training Data σ = 15 σ = 25 σ = 50

Synthetic

σ = 15 33.48 27.24 18.30

σ = 25 31.39 30.68 20.88

σ = 50 27.82 27.81 27.14

C2N 32.96 30.51 27.09

Table 4.1: Denoising performance on synthetic AWGN. PSNR(dB) is calculated on

the CBSD68 dataset. We note that the C2N models are trained for each noise level

independently.

Besides, we evaluate our method on synthetic data and compare the performance

with supervised denoising models, as shown in Table 4.1. The supervised models are

trained with pairs of clean and noisy images synthesized by AWGN with the exact

corresponding noise level. On the other hand, our method does not use the paired

data obtained from the known noise model. Instead, the proposed C2N framework

can learn to simulate various noise levels in an unsupervised fashion. Nevertheless,

our approach shows comparable performance to the denoising models trained in a

supervised manner, regardless of the underlying noise level.
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(a) GT x (b) GT n (c) Ours n̂ (d) Baseline n̂

Figure 4.2: Visual comparison of C2N and baseline generator. (a) Ground truth noisy

images, (b) Ground truth noise maps, (c) Generated noise maps from the generator in

C2N, (d) Generated noise maps from baseline generator.

Secondly, we check the effectiveness of each modules in our C2N framework un-

der the real-world degradations. For comparison, we construct a network consisting of

conventional 3 × 3 ResBlocks with the same number of parameters as the generator

in C2N, and call it a baseline generator. The input of the baseline generator is a con-

catenation of the same clean image x, r map, and initial noise map sI in Figure 3.2.

After training our C2N and baseline generator on the the SIDD with the same strategy,

we compare the noise maps generated by each model. The results in Figure 4.2 shows

that the generator in our C2N can generate realistic noise maps, whereas the baseline

generator tends to produce a particular texture. The stochastic behavior and explicit

transforms of the C2N model help its output to maintain the characteristics of noise,

solving the difficulties of a regular CNN functioning as a noise generator.
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GI GD GI
3×3, GD

3×3 Lstb PSNR(dB)

3 3 3 - 9.81

3 - - 3 28.54

3 3 - 3 31.74

3 - 3 3 32.19

- 3 3 3 32.21

3 3 3 3 34.08

Table 4.2: Model ablation study on SIDD validation set. The notation of each modules

follows the Figure 3.2.

(a) wo Lstb (b) wo GI (c) all (d) GT noise

Figure 4.3: Generated samples from model ablation study. (a) without stabilizing loss,

(b) without independent transforms, (c) with all modules and stabilizing loss, (d)

Ground truth noisy image.

Also, Table 4.2 and Figure 4.3 shows that each component of our C2N model is

also essential for real-world noise modeling. Since our method learns the noise model

distribution without any accurate noise maps or a heuristic technique to stabilize the

learning, the stabilizing loss Lstb plays an important role. By comparing the 3rd to 6th

rows of Table 4.2, we can again verify the necessity ofGI ,GD and 3×3 convolutional

transforms. For example, the model without GI of the 5th row lacks in expressing

accurate noise and produces samples that differ in noise distribution, like the one in

Figure 4.3. From the results, we confirm that the entire elements of the C2N together

22



can well simulate challenging real-world noise.

4.3 Results on Real-World Noise

Method PSNR(dB) SSIM

Non-learning

-based

BM3D [11] 25.65 0.685

WNNM [12] 25.78 0.809

K-SVD [52] 26.88 0.842

EPLL [53] 27.11 0.870

Supervised

TNRD [54] 24.73 0.643

DnCNN [9] 28.46 0.784

CBDNet [14] 33.28 0.868

Unsupervised

N2V [18] 27.68 0.668

UIDNet-NS [25] 31.34 0.856

UIDNet [25] 32.48 0.897

C2N + DnCNN 33.76 0.901

C2N∗ + DnCNN 34.00 0.907

C2N + DIDN 35.02 0.932

C2N∗ + DIDN 35.35 0.937

Table 4.3: Quantitative evaluation on the SIDD benchmark. We adopt the two-stage

pipeline which is denoted by ‘C2N + Denoiser.’ ∗ denotes the method with self-

ensemble strategy.

Table 4.3 shows the performance of our method evaluated on the SIDD Benchmark

of denoising in sRGB space. We categorize the compared methods as non-learning-

based, supervised, and unsupervised methods. The supervised methods are trained

with the paired data from the SIDD dataset. Though they are not on the same track

23



Figure 4.4: Qualitative results on the SIDD benchmark. The first row images are from

the SIDD Benchmark, and the images of the second row are the denoising results of our

method. Representative examples are selected by benchmark providers for the purpose

of announcing the results.

of denoising methods learned without paired supervision, we note that our method

outperforms them, including the CBDNet, a framework proposed for blind denoising

of real photographs. The non-learning-based methods do not include the process of

learning, and denoising is performed using the priors obtained from the test images.

The unsupervised methods are trained without using exact data pairs of noisy and clean

images in the SIDD.

We note that our method outperforms existing unsupervised methods by a large

margin. Especially, our method with C2N and DnCNN denoiser shows better results

than the UIDNet, a previous generative noise modeling method with its denoising

backbone adopted from the same DnCNN model. We also use much fewer data than

the 520,965 noisy and clean image patches of 64 × 64 size used by UIDNet. We fur-

ther improve the performance of our method by using the DIDN [1] as its denoising

model, which has larger capacity of ∼217M parameters compared to that of ∼0.67M

parameters of the DnCNN. It shows that we can train arbitrary denoising models with

C2N, unlike UIDNet with a fixed denoising backbone.
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(a) Clean (b) GT (c) GT res (d) C2N (e) C2N res

Figure 4.5: Examples of ground truth noisy image and generated image from our C2N.

(a) Clean image, (b) Ground truth noisy image and (c) its residual noise map, (d)

Generated noisy image from the proposed C2N and (e) its residual noise map.
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Figure 4.5 shows more pseudo-noisy samples generated by our C2N for visual

comparison. The generated samples closely resembles the ground truth samples. In

the residual noise maps of our C2N, there are no artifacts or loss of randomness that

destroy the content of the signal.

Figure 4.4 shows the example noisy images of the SIDD benchmark and our de-

noising results on them. Along with quantitative results, our method is able to recon-

struct clean images successfully without losing the details.

4.4 Performance Under Practical Data Constraints

(a) SIDD (b) DIV2K (c) BSD (d) Urban100

Figure 4.6: Different scenes in various datasets. Sampled clean image patches from (a)

the SIDD [5], (b) the high-resolution images of the DIV2K [6], (c) the 432 training

images of the BSD [7], (d) the high-resolution images of the Urban100 [8].

Due to several physical limitations [19], it is not feasible to capture an ideal clean

image from the wild. Rather, a long sequence of aligned noisy images must be captured

beforehand [5] to synthesize the pseudo-clean reference. Thus, only a few clean images

are available from the same scene distribution of the noisy images in a real situation,
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which can be considered as the first data constraint we handle here. Secondly, once the

noise generator is trained on the desired distributions PN and PC , it should be able to

produce pseudo-noisy images paired to any clean image x ∼ P ′C to train a denoising

model. Figure 4.6 shows a variety of scenes in each different datasets. They differ in

many points, such as types and scale of the contents, brightness, and color temperature.

The existing generative noise modeling methods [22, 23, 25] used large amount of

samples in PC , and assumed P ′C to be same as PC . Such a setting is possible only if a

sufficiently large noisy and clean image dataset is given, which is not a practical situa-

tion. Our method overcomes the limitation of this problem that have not been explored

before and can be used in general real situations. To verify this, we use Urban100 [8]

along with the other datasets mentioned above as the samples in P ′C .
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Number of Samples ∼ PC P ′C PSNR(dB) SSIM

36K

(100%)

S 34.08 0.909

D 31.72 0.826

B 31.74 0.825

U 31.32 0.803

18K

(50%)

S 33.53 0.882

D 30.68 0.760

B 29.96 0.742

U 29.72 0.741

720

(2%)

S 31.98 0.847

D 29.36 0.745

B 29.27 0.735

U 29.21 0.738

360

(1%)

S 31.84 0.849

D 29.35 0.740

B 29.08 0.733

U 29.24 0.739

Table 4.4: Denoising performance of our C2N under data constraints. S, D, B, U de-

note the SIDD, the DIV2K high-resolution images, the BSD traning images, and the

Urban100 dataset, respectively. PC is fixed to S for all experiments. Evaluation is done

on the SIDD validation set.
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Table 4.4 shows that our method preserves its performance when there are two

data constraints, (1) where not enough clean images in PC are given to train the noise

generator, (2) where the clean images from different scene distribution P ′C are used

to train a denoising model. Our method already uses surprisingly small amount of

samples for training the C2N model, compared to ∼500K image patches of 64 × 64

size used in the previous generative noise modeling methods [23, 25]. The C2N model

trained with much smaller amount of clean images in PC still shows performance

comparable to previous unsupervised denoising methods. Also, for the case of P ′C

to be different to PC , our C2N can still train the following denoising model with its

generated pseudo-noisy data.
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(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4 (d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure 4.7: Image generation with interpolated r. For the same clean image patch, we

interpolate two different r vectors with a factor λ and obtain the resulting images. Each

column is generated using same vector r. The standard deviation of each residual noise

map is displayed in each image. Best with zoomed.

4.5 Generating noise by interpolation in latent space

We also studied the effects of r, the random vector input of the generator. in Figure ??,

we sampled two r vectors that correspond to different pseudo-noisy images and visual-

ize the generated images with interpolated r as following equation, r = (1−λ)r1+λr2.

Here, r1 and r2 are the two sampled vectors and λ is interpolation factor between the

two vectors. The qualitative results show that our C2N can generate real-world noise

that corresponds to varying conditions, such as strong or weak noise from various

camera types in the SIDD [5].
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Figure 4.8: Denoising performance on SIDD validation set according to training

epochs. The blue, green, and red learning curves correspond to those of the DnCNN [9]

trained to denoise true noisy images in SIDD training set, pseudo-noisy images gener-

ated by our C2N, and noisy images synthesized by AWGN, respectively.

4.6 Verifying C2N in Denoiser Training

To show that the distribution of generated noise is close enough to that of the ground

truth, we observe the difference in the learning curves of denoising models accord-

ing to their training noisy images. Suppose a denoising model learns to remove non-

feasible noise. In that case, although it helps to restore the clean image for some time

in the first place, the model eventually overfits to removing the wrong noise and cannot

perform correct denoising.

Figure 4.8 shows that this phenomenon does not appear while learning to denoise

using C2N, unlike learning in an unrealistic synthetic noise. For AWGN synthetic
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noise, we randomly sampled the standard deviation from [0.24, 11.51], a range that fits

the noise of the SIDD training dataset, following [23].
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Chapter 5

Conclusion

In this paper, we propose a framework for practical real-world denoising which in-

cludes our novel noise generator and a denoising model. By explicitly designing each

components of the generator considering characteristics of general real-world noise,

it can successfully learn to simulate the noise distribution of the noisy images, with-

out using any paired clean images. Using the generated data, we train an arbitrary

denoising model to outperform the existing denoising methods without use of actual

data pairs. Furthermore, our method preserves its higher performance when only small

amount of ground truth images are available and they are not approachable during

training of a denoising model. We believe our method can be a key to solve the chal-

lenging points of practical real-world denoising.
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초록

학습 기반 영상 잡음 제거 모델의 사용은, 잡음이 있는 이미지들과 깨끗한 이미지들이

잘정렬된쌍을이룬상태로제공되거나,주어진잡음의분포로부터학습용샘플들을합성

할 수 있는 상황에 한정되어 있다. 최근의 생성모델 기반의 방법들은 실제 잡음의 분포가

알려지지 않은 경우에도 그것을 정확하게 시뮬레이션하는 방법론을 도입하고 있지만, 몇

가지 제한점들이 여전히 존재한다. 기존의 그러한 방법들은 실제 잡음의 분포를 얻을 수

있는 데이터가 주어지거나 잡음에 대해 비현실적인 가정이 내려진 경우로 적용 범위가 제

한되었다. 실제 상황에서의 잡음 생성모델은 잡음이 있는 이미지와 깨끗한 이미지의 쌍을

사용하지 않고도 복잡하며 일반적인 잡음의 시뮬레이션을 학습할 수 있어야 한다. 이러한

실제적 상황에서 학습한 잡음 생성모델은 복잡한 잡음의 분포가 아닌 특정 질감의 패턴을

만들어내는동작을하게되어버리기쉽기에,이문제를해결하기위해설계한모델구조를

제안한다.이렇게설계한, C2N즉 Clean-to-Noisy영상생성프레임워크를개발하여복잡한

실영상의잡음을어떠한쌍을이룬학습데이터없이모방할수있다.이 C2N을기존의잡음

제거모델과결합하는것으로실영상잡음제거벤치마크에서기존의비감독학습방법들을

큰폭으로능가할수있으며,이를통해제안방법의효과를검증한다.또한이전의잡음생

성모델방법들에의해선탐구되지않았던영역인,데이터에대한여러제약이있는실용적

상황에대해본방법을확장한다.

주요어:영상잡음제거,영상복원,실영상잡음제거,생성모델,적대적생성신경망,비감독

잡음제거

학번: 2018-27051
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