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Abstract

Although the demand for exploiting neural networks is steadily increasing, there

are many design challenges since deep neural networks (DNNs) entail excessive mem-

ory and computation cost. This dissertation studies a number of new techniques for

effectively processing DNN inference operations.

Firstly, we attempt to overcome that the maximal computation speedup is bounded

by the total number of non-zero bits of the weights. Precisely, this work, based on

the signed-digit encoding, (1) proposes a transformation technique which converts the

two’s complement representation of every weight into a set of signed-digit representa-

tions of the minimal number of essential bits, (2) formulates the problem of selecting

signed-digit representations of weights that maximize the parallelism of bit-level mul-

tiplication on the weights into a multi-objective shortest path problem to achieve a

maximal digit-index by digit-index (i.e. column-wise) compression for the weights

and solves it efficiently using an approximation algorithm, and (3) proposes a support-

ing novel acceleration architecture (DWP) with no additional inclusion of non-trivial

hardware. In addition, we (4) propose a variant of DWP to support bit-level paral-

lel multiplication with the capability of predicting a tight worst-case latency of the

parallel processing. Through experiments on several representative models using the

ImageNet dataset, it is shown that our proposed approach is able to reduce the number

of essential bits by 69% on AlexNet, 74% on VGG-16, and 68% on ResNet-152, by

which our accelerator is able to reduce the inference computation time by up to 3.57×

over the conventional bit-level weight pruning.

Secondly, a new algorithm for extracting common kernels and convolutions to

maximally eliminate the redundant operations among the convolutions in binary- and

ternary-weight convolutional neural networks is presented. Specifically, we propose

(1) a new algorithm of common kernel extraction to overcome the local and limited
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exploration of common kernel candidates by the existing method, and subsequently

apply (2) a new concept of common convolution extraction to maximally eliminate the

redundancy in the convolution operations. In addition, our algorithm is able to (3) tune

in minimizing the number of resulting kernels for convolutions, thereby saving the total

memory access latency for kernels. Experimental results on ternary-weight VGG-16

demonstrate that our convolution optimization algorithm is very effective, reducing the

total number of operations for all convolutions by 25.8-26.3%, thereby reducing the

total number of execution cycles on hardware platform by 22.4% while using 2.7-3.8%

fewer kernels over that of the convolution utilizing the common kernels extracted by

the state-of-the-art algorithm.

Finally, we propose solutions for DNNs with “unfitted compression” to maintain

the accuracy, in which all distinct weights of the compressed DNNs could not be en-

tirely contained in on-chip memory. Precisely, given an access sequence of weights,

(1) the first problem is to arrange the weights in off-chip memory, so that the number

of memory accesses to the off-chip memory (equivalently the energy consumed by

the accesses) be minimized, and (2) the second problem is to devise a strategy of se-

lecting a weight block in on-chip memory for replacement when a block miss occurs,

with the objective of minimizing the total energy consumed by the off-chip memory

accesses and the overhead of scanning indexes for block replacement. Through exper-

iments with the model of compressed AlexNet, it is shown that our solutions are able

to reduce the total energy consumption of the off-chip memory accesses including the

scanning overhead by 34.2% on average over the use of unoptimized memory layout

and LRU replacement scheme.

Keywords: Deep neural networks, Bit-level weight pruning, Signed-digit

representation, Common kernel extraction, Common convolution extraction,

Unfitted compression

Student number: 2015-20943
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Chapter 1

Introduction

1.1 Deep Neural Networks and Its Challenges

Deep neural networks (DNNs) have been inspired by biological neural networks. In

biological neural networks, impulses from dendrites are carried toward the cell body,

and new impulses are transmitted to another cell body through the axon when the

stimulus collected in the cell body exceeds the threshold. In DNNs, imitating this idea,

each layer is composed of nodes corresponding to the cell bodies and edges toward the

next layer’s nodes, and a quite large number of layers are arranged repeatedly.

With the introduction of DNNs, remarkable progress and improvement have been

made in various fields. In particular, since the advent of AlexNet [1] DNN in ImageNet

Large Scale Visual Recognition Competition (ILSVRC; the most representative com-

petition for image classification) in 2012, several outstanding DNNs (e.g., VGGNet

[2], GoogLeNet [3], ResNet [4], Xception [5], SENet [6], GPipe [7]) have significantly

improved the recognition accuracy.

Fig. 1.1 shows top-5 classification error rates for each model of ILSVRC. For

example, VGGNet [2] in 2014 achieved an error rate of 7.3%. ResNet [4] in 2015

achieved an error rate of 3.5%, which has shown that neural network models can rec-

ognize images with less misclassification than humans. In addition, long short-term

1
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Figure 1.1: Top-5 classification error rates and the number of parameters for each

model of ILSVRC. Since the introduction of DNN models, the top-5 error rates have

significantly decreased.
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memory (LSTM) [8] and gated recurrent unit (GRU) [9], which are variants of DNNs,

have made outstanding progress on natural language processing (NLP). Besides, var-

ious models based on DNN show good performance on the real-time object detection

[10, 11, 12] and semantic segmentation [13, 14].

According to that DNN proves its efficiency in various fields and computing tech-

nology greatly advances, DNN has been proposed as a solution to many problems.

Early DNNs have aimed at improving application performance, which motivates to

design deeper and wider networks to achieve the goal. However, its demand for exces-

sive memory space makes it difficult to efficiently perform DNN inference. As shown

in Fig. 1.1, which also shows the number of parameters for each model of ILSVRC,

a huge amount of parameters are still needed to build models. For example, AlexNet

in Caffe model representation needs nearly 240MB memory to store all the parameter

values, and VGG-16 in Caffe model needs 500MB memory [16]. Since most devices

have a limited on-chip memory space, the whole parameter values cannot be stored

into the on-chip memory, which means many memory read invocations are required

to access the parameter values from off-chip memory to on-chip memory. The penalty

caused by these off-chip memory accesses is significant. For example, by referring

to the energy consumption numbers of memory operations in a 45nm CMOS process

in Table 1.1, fetching a 32-bit data from off-chip LPDDR2 DRAM consumes 640pJ,

which is 128 times more than that of fetching the data from on-chip SRAM.

Furthermore, its intensive computation requirement hinders the installation of DNNs.

In particular, in the convolutional neural networks (CNNs), the convolutional opera-

tions between input activations and filter weights performed in successive layers oc-

cupy almost all of the DNN operations. According to [17], more than 92% of pro-

cessing time is consumed in the multiply-and-accumulate (MAC) operations between

input activations and filter weights in the convolutional layer.

In order to overcome these problems, various studies have been conducted such as

reducing the size of DNN models or proposing techniques for efficiently performing

3



DNN computation.

1.2 Redundant Weight Elimination Methods in DNN

In earlier researches, it has been aimed only at improving the computational speed-up

through parallelization of the MAC operations between input activations and weights

[17, 18]. Representative examples of high performance and low energy architectures

are those in [19, 20], developed with emerging non-volatile memories such as resistive

RAM. However, they did not efficiently utilize the hardware resources in that they

overlooked the resource waste on MAC operations with zero-valued weights or zero-

bits in weight representation that never contribute to the quality of the computation

outcomes.

In this section, we review a number of representative techniques that eliminate

redundant parameters in DNN model or redundant operations in DNN inference com-

putation. To improve computation efficiency, many studies have attempted various ap-

proaches. Thus, numerous studies have focused on making memory and computation-

ally expensive DNN inference energy-efficient and fast in various hardware devices

such as CPU, GPU, FPGA, and ASIC.

A low-rank approximation method has been proposed to eliminate redundancy for

the weight of DNNs. For a weight matrix W having a size of m × n, W can be ex-

pressed as a product of two full-rank matrices U and V having a size of m × r and

r×n, respectively. The number of parameters mn of the weight matrix W is replaced

by (mr+ rn), so it decreases if (mr+ rn) < mn is satisfied. Jaderberg, Vedaldi, and

Zisserman [21] achieves a 4.5× speedup while approximating a full-rank filter bank as

combinations of a rank-1 filter basis. Denton et al. [22] achieve 2-2.5× speedup with

negligible classification performance drop by applying a low-rank approximation to

the first layers of CNN. Taking one step further, there have been several studies that

have achieved performance improvement through tensor decomposition by consider-
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ing kernels as 3D tensors for a single convolutional layer of CNN [23, 24, 25, 26].

Various acceleration architectures have taken into account attenuating the compu-

tation waste and reducing the DNN model size, such as weight pruning [27, 28, 29, 30,

31, 32, 33], which eliminates some of the weights to exploit its sparsity, and weight

sharing or quantization [34, 35, 36, 37, 38, 39], which shares a small number of repre-

sentative weights. Chen et al. [40] propose a DNN compression model called HASH-

NET, which expresses all parameter values (also referred to as weights) on the edges

(i.e., synapses) between neuron nodes in every layer of DNN with a limited number of

distinct values through weight sharing: initially, they are given a hash function h(i, j)

and a number K such that h(i, j) returns an integer value in [0,K − 1] for the edge

weight between neurons i and j. Thus, the hash function leads to weight sharing; then,

they perform DNN training under the weight sharing constrained by the hash func-

tion; finally, the trained K values will be stored in on-chip memory. DNN then will

use the hash function to access weights during the inference stage. One fundamental

drawback of HASHNET is that since the training is constrained by the predetermined

hash function, the accuracy loss is inevitable.

On the other hand, rather than employing hash function, Han, Mao, and Dally [41]

proposed a three-step compression model, called DEEPCOMPRESSION: (1) for an ini-

tially trained uncompressed DNN, prune edges with nearly zero-weight; (2) cluster

the remaining unpruned weights in a way that weights with a small difference should

be grouped to the same cluster, from which a representative value is assigned to each

cluster; (3) apply Huffman encoding to the edge indexes based on the occurrence fre-

quency of accessing the cluster values. Note that DEEPCOMPRESSION would have less

accuracy loss than HASHNET since the weight clustering is performed with no hash

function constraint. However, in this process, a time-consuming repetitive retraining

process is inevitable and an accuracy loss still occurs due to the compressed weights.

Also, it requires ‘index’ storage space that is used to link from each edge index to an

address of weight memory.
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Table 1.1: Energy table for 45nm process [15]

Operation Energy (pJ)

32-bit int ADD 0.1

32-bit float ADD 0.9

32-bit int MULT 3.1

32-bit float MULT 3.7

32-bit SRAM access 5.0

32-bit DRAM access 640

Table 1.2: Fraction of zero-valued weights [42]

Models Zero weights

AlexNet 0.093%

GoogLeNet 0.050%

VGG-16 0.156%

VGG-19 0.182%

NiN 0.193%

GeoMean 0.135%
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Meanwhile, studies for accelerating the DNN inference process by eliminating un-

necessary operations while maintaining model accuracy by not changing any values of

the weights that have already been trained have been simultaneously conducted. These

can be classified into two methods: word-level weight pruning and bit-level weight

pruning. Word-level weight pruning skips the weights with zero values from the oper-

ation to reduce inefficient operations caused by zero-valued weights with no accuracy

loss [43, 44, 45]. However, as shown in Table 1.2, the ratio with the weight value of

zero is only 0.135% of the total weight on average [42] for the typical DNN mod-

els, so the performance improvement is not significant. Bit-level weight pruning1 is a

method of avoiding zero-bits in the value representation of weights in the MAC opera-

tions of inference computation. The work in [42] called Tetris has proposed to extract

non-zero bits in a bit column after stacking multiple weights together with split-and-

accumulate (SAC) calculation-based accelerator architecture suitable for bit column-

wise condensed weights. Overall, it achieves 1.3× to 1.5× the inference computation

performance improvement compared to DaDianNao [17], although it has 1.13× more

area.

In addition, prior studies have widely conducted bit-serial processing similar to bit-

level pruning. Stripes [46] has extended the DaDianNao [17] accelerator by proposing

a method to sequentially process each bit of input activation with pre-specified per

layer precisions. Pragmatic (PRA) [47] has taken one step further by removing the

zero bits that are still present in the input activations in addition to the zero prefix and

suffix bits, thereby achieving 10% more energy efficiency and 1.4× speedup. However,

since each input activation varies depending on the model input, additional hardware

logic is required to perform bit-level pruning for the input activation. Loom [48] has

proposed an accelerator architecture that supports bit-serial processing approach for

not only convolutional layers but also fully-connected layers. For the long short-term
1In a strict sense, it means to “zero-bit elimination”. However, we use, in this dissertation, the general

term “bit-level weight pruning” to be consistent with the terms used in the prior works.
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memory (LSTM), BLINK [49] has reduced circuit area and power consumption by

38.7% and 38.4%, respectively, without loss of accuracy by making use of bit-sparse

representation.

Also, several studies have tried to reduce the DNN model parameters by chang-

ing the existing convolution method differently. SqueezeNet [50] introduces the Fire

module composed of 1×1 and 3×3 filters to reduce a model size while maintaining

the AlexNet-level accuracy. MobileNetV2 [51] uses depth-wise separable convolu-

tion rather than the standard convolution in order to build a very small DNN model

for mobile devices. ShuffleNet [52] utilizes point-wise group convolution and channel

shuffle.

1.3 Redundant Representation Elimination Methods in DNN

One noticeable research direction is to reduce the size of bit-width of DNNs’ weights

or activations to speed up the computation as well as to save the power consump-

tion on the DNN inference while maintaining the loss of accuracy minimally. Most of

the arithmetic operations of DNNs were based on the 32-bit floating-point represen-

tation for high accuracy. However, sufficiently good performance is achieved even if

the numerical precision is reduced to 32-bit, 16-bit, and 10-bit fixed-point representa-

tion [53, 54, 55]. Further memory space reduction is possible without loss of accuracy

through 8-bit quantization [41].

Recently, it has been proposed to express DNN weights or input activations ex-

tremely as binary. BinaryConnect [56] uses weights limited to two values (-1 and +1)

to train a neural network. XNOR-Net [57] binarizes both weights and inputs to con-

volutional layers. In addition, DoReFa-Net [58] trains CNNs using low bit-width pa-

rameter gradients. Furthermore, Bitwise Neural Network [59] not only binarizes the

input, output, weight, and bias terms but also replaces floating-point or fixed-point

operations with fast and simple logical operations. On the other side, ternary DNNs
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[60, 61, 62, 63], in which every weight value is constrained to be one of three num-

bers (-1, 0, and +1), are proposed to increase the accuracy of image classification over

the binary DNNs at the expense of the compression rate. Consequently, though a little

accuracy loss occurs, all multiplication operations between the input activations and

kernel weights for convolution in a layer can be replaced by addition and subtraction

operations, thereby significantly improving the hardware efficiency. In addition, the

work in [64] shows that by transforming the original kernels in a convolutional layer

to produce overlapping sparser kernels (we call it common kernels) in the binary- or

ternary-weight CNNs and convolving the input feature map with the transformed ker-

nels on behalf of the original kernels, it is possible to significantly reduce the total

number of addition/subtraction operations required for all convolutions on the layer.

Fig. 1.2 shows an illustrative example of the common kernel extraction and uti-

lization in convolution computation. Fig. 1.2(a) shows two convolutions of the origi-

nal kernels K1 and K2 without utilizing common kernels, resulting in 13 total number

of operations. On the other hand, Fig. 1.2(b) uses common kernel C1 of K1 and K2.

Thus, the convolutions A·K1 and A·K2 can be evaluated by computing A·C1 + A·K ′1
andA·C1 +A·K ′2 whereK ′1 andK ′2 indicate theK1 andK2 with no C1, satisfying the

element-wise additions K1 = C1 + K ′1 and K2 = C1 + K ′2, respectively. Since A·C1

takes 5 operations and the resulting convolution value can be shared when comput-

ing the convolutions A·C1 + A·K ′1 and A·C1 + A·K ′2, the total number of operations

for the CNN convolutions is 5 + (2+1) + (1+1) = 10, which results in eliminating 3

redundant addition and subtraction operations in Fig. 1.2(a).

YodaNN [65] is the firstly proposed binary-weight CNN accelerator. By avoiding

the expensive multiplication operations in convolutions and reducing I/O bandwidth

and storage for weight values, it significantly saves the energy consumption while

speeding up the convolution process. However, it does not take into account the ex-

ploitation of common kernels potentially present like the one in Fig. 1.2(b) to remove

the redundancy in the binary-weight convolution computation. The work in [66] de-
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Input feature map Initial kernels

Convolution

𝐾1

𝐾2

𝐴 ⋅ 𝐾1 → 7 OPs

𝐴 ⋅ 𝐾2 → 6 OPs

13 OPs

𝐴

+

-1 1 1

0 1 1

1 0 -1

-1 0 0

-1 1 1

1 0 -1

(a) The number of addition/subtraction

operations in convolutions A·K1 and

A·K2 is 7 + 6 = 13 where K1 and K2

are original kernels.

Input feature map

𝐾1
′

𝐶1

𝐴

-1 0 0

0 1 1

1 0 -1

𝐾2
′ 𝐾2 = 𝐶1 + 𝐾2

′

𝐾1 = 𝐶1 + 𝐾1
′

Kernels after 
common kernel extraction

Convolution

𝐴 ⋅ 𝐶1 → 5 OPs ⋯①

①+ 𝐴 ⋅ 𝐾1
′ → 3 OPs

10 OPs

①+ 𝐴 ⋅ 𝐾2
′ → 2 OPs+

Common
kernel

0 1 1

0 0 0

0 0 0

0 0 0

-1 0 0

0 0 0

(b) By extracting common kernel C1 from K1 and

K2, the number of operations in convolutions A·C1,

A·K′
1, and A·K′

2 including two addition operations

of the resulting values of the three convolutions is 5 +

(2+1) + (1+1) = 10.

Figure 1.2: An example of extracting a common kernel and sharing its convolution to

reduce the redundancy in convolution computation.

10



composes every original binary-weight kernel into exactly two kernels, called base

kernel and filtered kernel. Every position in the base kernel contains the value of -1,

and the filtered kernel is the one formed by filtering out the positions containing the

value of -1 in the original kernel. Thus, the convolution result on the base kernel can

be shared among all convolutions on the original kernels. The limitations of the kernel

decomposition method are that it is not applicable to ternary-weight CNNs and it is

infeasible to exploit multiple base kernels.

On the other side, the work in [64] overcomes the limitations in [66] by extracting

multiple common kernels. More precisely, for a set S of kernels, initially consisting of

all original kernels, (1) it extracts the largest common kernel (i.e., the kernel containing

the largest number of non-zero common values) for every pair of kernels in S and

selects the common kernel C that maximizes the sharing (i.e., overlapping) among all

kernels in S; (2) it then updates S by including C and replacing every kernel in S that

embeds C by its filtered kernel with respect to C, as shown in Fig. 1.2(b); it repeats

(1) and (2) until there is no common kernel with at least two non-zero values. Besides

C in ternary-weight CNNs, its opposite (+↔−) kernel should also be considered for

the maximal common kernel candidates. This method entails three critical limitations:

• Limited search space: Since it considers the maximal common kernels between

every pair of kernels in S, it severely limits the search space for the exploration of

common kernels.

• Lack of exploiting common expressions of convolutions: It does not take into ac-

count the possibility of sharing the evaluation results of common (addition/subtraction)

expressions of the convolution values of common kernels on deriving the final outputs

corresponding to the convolution values of original kernels. (We refer such common

expressions to as common convolutions.)

• Lack of controlling or minimizing the number of kernels: Since all kernels to be

used in the convolution process should be stored in an external memory, it is highly

important to control or minimize the total number of resulting kernels. Nevertheless,

11



it does not address controlling/minimizing the number of kernels during the common

kernel extraction.

1.4 Contributions of This Dissertation

In this dissertation, we present several methodologies to overcome excessive memory

and computation requirement problems for high performance neural network acceler-

ator.

In Chapter 2, we address a new bit-level weight pruning which we call DWP (deep

weight pruning). The inherent limitation of the existing accelerator supporting bit-

level pruning without accuracy loss is that the speedup is limited. Precisely, for a DNN

with N total number of bits in the representation of all weights, the maximal speedup

cannot be more than ne
N where ne is the total number of essential bits2 in the value

representation of all weights. For example, +62 can be expressed as (00111110)2

in two’s complement representation. Assuming that one bit per cycle is processed,

8 cycles are required whereas 5 cycles are needed when 0-bits are skipped. In this

case, the maximum achievable speedup is 1.6×, and this value could not be changed

unless the value of the weight is changed. So far, it is challenging to push down the

amount of ne, though it is an important factor that critically determines the inference

performance.

The contribute of this work can be summarized as follows:

1. We propose a transformation technique to increase the degree of freedom for

each weight representation using a signed-digit encoding, by which we trans-

form the fixed-point representation of every weight into a set of signed-digit

representations of minimal number of essential (i.e., non-zero) bits.3

2In binary representation, essential bits refer to all bits other than 0-bits (i.e., 1) while in signed-digit

representation, essential bits indicate -1 as well as 1.
3In this dissertation, we consistently use the term ‘bit’ rather than ‘digit’ to indicate ‘-1’ as well as 0

and 1 in signed-digit representation unless confusion occurs.
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2. We formulate the problem of selecting the signed-digit representation of weights

with the objective of maximal digit-serial parallelism among the weights into a

multi-objective shortest path problem and solved it effectively using an approx-

imation algorithm.

3. We propose a novel hardware architecture which is able to exploit the bit-level

pruning fully and effectively on the signed-digit representation of weights.

4. We also propose DWP-intra (a variant of DWP) which is suitable for bit-level

parallelism exploiting signed-digit representations with the capability of pre-

dicting a tight worst-case latency of the parallel processing. Our signed-digit

transformation technique is able to reduce not only the number of essential bits

in the same bit column on a set of weights stacked vertically but also the number

of essential bits for each weight. (Note that both techniques cannot be applied

at the same time.) Thus, it is also possible to perform weight-wise (i.e. hori-

zontal) condensation by changing the compressing direction of the column-wise

(i.e. vertical) condensation in DWP. We call the parallel processing based on the

horizontal condensation DWP-intra (deep intra-weight pruning).

5. Through experiments, it is shown that our proposed signed-digit based weight

pruning is able to reduce the number of essential bits by 69% on AlexNet, 74%

on VGG-16, and 68% on ResNet-152, thereby DWP and DWP-intra acceler-

ating the inference time up to 2.22× and 3.57× over the conventional bit-level

weight pruning, respectively. Further, our supporting architecture has achieved

an energy-delay product (EDP) improvement of up to 1.42× with a slight area

overhead over the state-of-the-art architecture supporting bit-level weight prun-

ing.

In Chapter 3, we propose a new algorithm called ConvOpt for common kernel

and common convolution extraction to fully and effectively eliminate the redundancy
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in the convolution computations in binary- and ternary-weight DNNs as well as to take

into account controlling/minimizing the number of resulting kernels.

The contributions of this work can be summarized as:

1. We propose a new algorithm of common kernel extraction to overcome the local

and limited exploration of common kernel candidates by the existing method.

2. We subsequently apply a new concept of common convolution extraction to max-

imally eliminate the redundancy in the convolution operations.

3. We develop an algorithm, which is able to tune in minimizing the number of re-

sulting kernels for convolutions, thereby saving the total memory access latency

for kernels.

4. Experimental results on ternary-weight VGG-16 demonstrate that our convolu-

tion optimization algorithm is very effective, reducing the total number of op-

erations for all convolutions by 25.8-26.3%, thereby reducing the total number

of execution cycles on hardware platform by 22.4% while using 2.7-3.8% fewer

kernels over that of the convolution utilizing the common kernels extracted by

the state-of-the-art algorithm.

In Chapter 4, this work is the first study to answer the following question: (unfitted

compression) “we attempted to aggressively compress the original DNN in the hope

that the reduced parameters can be entirely contained in the on-chip memory under

the budget constraint of accuracy loss, but failed in fitting them into the memory. Then,

what should we do to mitigate the inherent off-chip memory access problem?” As the

complexity and size of DNNs grow rapidly in many applications, compressing DNNs

is not being always successful in that the number of distinct weights by compression,

together with indexes if hash function is not used, is not small enough to be contained

in on-chip memory. In this state, the best solution is, in the inference stage, to use

the number of off-chip memory accesses as minimal as possible. Fortunately, since
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we have already known the distribution of shared (or clustered) weights produced by

the compression as well as the entire index sequence to be accessed for processing

inference computation on a given DNN architecture, we can make use of those in-

formation in two ways: (memory layout) arranging weights in off-chip memory so

that the number of (block-based) off-chip memory accesses is minimized and (block

replacement) requiring a mechanism to minimize the on-chip misses for the known

index access sequence. Through experiments with the model of compressed AlexNet,

it is shown that our solutions are able to reduce the total energy consumption of the

off-chip memory accesses including the scanning overhead by 34.2% on average over

the use of unoptimized memory layout and LRU replacement scheme.
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Chapter 2

Bit-level Weight Pruning Techniques for High-Performance

Neural Networks

2.1 Preliminary

2.1.1 Bit-level Weight Pruning in Binary Representation

An operation F that performs MAC on N pairs of weight Wi in B-bit fixed-point

representation and input activation Ai of the same bits for 0 ≤ i ≤ N − 1 can be

expressed as:

F =

N−1∑
i=0

(Ai ×Wi) =

B−1∑
b=0

(
2b ×

N−1∑
i=0

(
Ai × wb

i

))
(2.1)

where wb
i represents the bth bit value inWi. (B is 8 or 16 in many DNN models.) Then,

F can be evaluated in the following two steps:

• Step 1. Bit-level multiplication:

Xb =

N−1∑
i=0

(
Ai × wb

i

)
, b = 0, · · · , B − 1 (2.2)

• Step 2. Shift-and-accumulation:
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F = X0 +X1 · 21 +X2 · 22 + · · ·+XB−1 · 2B−1 (2.3)

The bit-level weight pruning is applied to the bit-level multiplication in Step 1 by

pruning the computation of Ai × wb
i if wb

i = 0. Since the weight values have already

been known when performing inference, a bit column-wise condensed arrangement on

the bit values in Wi, i = 0, · · · , N − 1 is possible by pulling out the 0-bits from the

arrangement to accelerate the computation of Xb, b = 0, · · · , B − 1 in Eq.2.2.

A well-known conventional bit-level weight pruning called weight kneading [42]

is illustrated in Fig. 2.1, in which the bit values of the six weights (i.e., N = 6), one

row for each weight as shown in Fig. 2.1(a), are rearranged as shown in Fig. 2.1(b) by

removing 0-bits and moving up 1-bits column-wise. Consequently, if a bit-level mul-

tiplication in Eq.2.2 for each row takes one clock cycle, the compressed arrangement

of bit values enables to reduce the total number of execution cycles from 6 to 4.

We use notation k to refer the number of initial weights to be collectively consid-

ered for bit-level pruning, which we call pruning stride while we use notation k′ (< k)

to refer the number of weights compressed via bit-level pruning (e.g., k = 6 and k′ = 4

in Fig. 2.1).

In the weight kneading process, for each 1-bit, the information of the correspond-

ing activation (i.e., which activation should be matched) should be retained. This infor-

mation is the activation selection index, and dlog2 ke bits are required for a set with k

weights. In Fig. 2.1(b), 1-bits of different background colors indicate different activa-

tion selection indexes. A detailed description of the activation selection index is given

in Sec. 2.5.2.

2.1.2 Bit-level Weight Pruning in Signed-digit Representation

The two-step MAC operation on the binary weight described in Sec. 2.1.1 can be

extended to the ternary weight represented by signed-digits. wb
i in both Eq.2.1 and

Eq.2.2 has a value in {0, 1} for binary weights, but has a value in {0, 1, -1} for weights
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in signed-digit representation. We want to cut the operations of Ai ×wb
i for wb

i = 0 to

process only the operations with wb
i = 1 or wb

i = −1 for calculating Xb in Eq.2.2.

Fig. 2.2(a) illustrates a bit-level pruning for weights in signed-digit representation

comparable to that in Fig. 2.1(b), which shows bit-level pruning for weights in binary

representation.

The MAC operation discussed in Sec. 2.1.1 can also be performed by the following

two steps.

• Step 1. Shift-and-add:

Yi =

B−1∑
b=0

(
Ai × wb

i × 2b
)
, i = 0, · · · , N − 1 (2.4)

• Step 2. Accumulation:

F = Y0 + Y1 + · · ·+ YN−1 (2.5)

For weights in signed-digit representation, we apply bit-level pruning in a way to skip

the calculation of Ai × wb
i × 2b if wb

i = 0 in Eq.2.4, which we call bit-level intra-

weight pruning. Fig. 2.2(b) illustrates the vertical parallel computation using the bit-

level intra-weight pruning in Eq.2.4 as opposed to that in Fig. 2.1(b) corresponding to

the horizontal parallel computation using the bit pruning in Eq.2.2. We describe our

proposed weight pruning technique for the horizontal parallel computation in Sec. 2.3,

followed by our intra-weight pruning technique for the vertical parallel computation

in Sec. 2.5. It should be noted that our exploitation of signed-digit representation is

nothing else but to perform an effective bit-level weight pruning.

2.1.3 CSD Representation Conversion

A value in sign-magnitude or two’s complement representation does not have a unique

signed-digit representation. Canonical signed-digit (CSD) representation is a special

form of signed-digit representation. First, let us consider an unsigned binary number
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X = (xn−1, xn−2, · · · , x0) such that

X =
n−1∑
i=0

(
xi × 2i

)
, ∀xi ∈ {0, 1} (2.6)

where xn−1 = 0 to convert to Y = (yn−1, yn−2, · · · , y0) in CSD representation such

that yi ∈ {−1, 0, 1}, i = 0, · · ·n− 1. Reitweisner [67] proposed a simple right-to-left

algorithm to produce Y , as explained in the following.

It scans the bits in X from the rightmost bit toward the left and replaces 1-bit

substrings delimited by 0-bits or rightmost boundary of size greater than one with

substrings of one bit increased size such that their leftmost bits is 1, the rightmost

bits are 1̄, and the rest are all 0-bits. For example, for X = 237 = (011101101)2,

substring 11 delimited by 0-bits is replaced with 101̄, so that (011101101)2 becomes

(0111101̄01). Then, the scanning continues and replaces maximal substring 1111 with

10001̄ to produce Y = (10001̄01̄01) in CSD representation.

For negative two’s complement binary number, we transform it into sign-magnitude

binary number X and apply the CSD conversion method to its positive binary num-

ber i.e., −X . Once CSD representation Y for −X is obtained, we switch every 1-

bits in Y to 1̄-bits and every 1̄-bits in Y to 1-bits to produce Y ′ in CSD representa-

tion for X in binary representation. For example, for X = −237 = (111101101)2

in sign-magnitude representation, we produce −X = 237 = (011101101)2, which

is then converted into Y = (10001̄01̄01) in CSD representation. Then, we obtain

Y ′ = (1̄00010101̄) from Y .

The CSD representation can also be obtained directly without converting to sign-

magnitude representation through the following process. First, for (100010011)2 in

two’s complement representation ofX = −237, we flip each bit (e.g., 0-bits convert to

1-bits and 1-bits convert to 0-bits) and add 1 to obtain two’s complement of X namely

X ′ = (011101101)2. Then, we apply the right-to-left algorithm to X ′ to produce

−Z = (10001̄01̄01). Finally, we switch every 1-bit in −Z to 1̄-bit and every 1̄-bit in

−Z to 1-bit to produce Z = (1̄00010101̄).
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CSD representations produced by using the method has the following properties

[67]:

1. There are no two or more consecutive non-zero bits in the CSD representations.

2. The converted CSD representation of a number is unique.

3. The converted CSD representation of a number has at most n/3+1/9+O(2−n)

number of non-zero bits for an n-bit number [68].

Note that property 3 provides the bound on the number of essential bits in CSD rep-

resentations, which is the basis on building up DWP-intra, which will be described in

Sec. 2.5.

2.2 Motivations

2.2.1 Inefficiency in Two’s Complement Representation

Two’s complement number system is commonly used to represent signed fixed-point

values. One biggest advantage of two’s complement over the other number systems is

that the fundamental arithmetic operations of addition, subtraction, and multiplication

are identical to those of unsigned binary numbers. This property makes the system

simple to implement. However, it is not true in the domain of bit-level weight pruning.

For example, for -13, its two’s complement representation in 8 bits is (11110011)2

which includes 6 essential bits out of the 8 bits. On the other hand, if we use sign-

magnitude representation, -13 is expressed as (10001101)2 which includes the leftmost

sign-bit and 3 essential bits out of the remaining 7 bits. Fig. 2.3 shows the changes of

the number of essential bits when converting to sign-magnitude representation for all

negative numbers in 8 bits. For the case of numbers with small absolute value, the

number of essential bits is smaller than that of the numbers with large absolute value.

Thus, sign-magnitude representation is effective in reducing the number of essential
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bits when negative numbers with small absolute value occupy a majority. In addi-

tion, if we are able to handle the sign-bit efficiently1 in sign-magnitude representation

in performing the bit-level multiplication in Eq.2.2, it is desirable to apply bit-level

pruning to weights in sign-magnitude representation rather than to weights in two’s

complement representation.

Fig. 2.4 shows the comparison of the word/bit-level value distributions of the

weights in AlexNet and VGG-16 trained with ImageNet dataset when expressing the

weights in two’s complement and sign-magnitude representations. Fig. 2.4(a) shows

the normalized weight value distributions, which form bell-shapes. Fig. 2.4(b) then

shows essential bit (i.e., one-bit) distributions over the 16 bit-positions (LSB on the

rightmost) when the weights are expressed in two’s complement and sign-magnitude

representation. Since the number of essential bits in representing a near-zero nega-

tive weight in sign-magnitude representation is much smaller than that in two’s com-

plement representation (the bars on bit-positions 11 to 14 in Fig. 2.4(b)), the sign-

magnitude representation uses 31.3% fewer essential bits on AlexNet and 35.9% fewer

essential bits on VGG-16 than the two’s complement representation.

2.2.2 Inability to Exploit Signed-digit Representation

By converting the magnitude of the sign-magnitude representation or the two’s com-

plement representation of every weight into the signed-digit representation, it allows

to use the same or fewer number of essential bits. Considering a ternary numeral

system in signed-digit representation using three digits of -1, 0, and 1, for example,

(000011110)2 (= 1 ·24 +1 ·23 +1 ·22 +1 ·21 = 30) can be expressed as (00010001̄0)2

(= 1 · 25 + (−1) · 21 = 30) in which 1̄ denotes a digit value of -1, thereby saving two

essential bits.

Utilizing the signed-digit representation for a deeper bit-level weight pruning re-

quires to solve the following four problems:
1Our idea of efficiently handling the sign-bit will be described in Sec. 2.3.
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Figure 2.4: Comparison of word/bit-level value distributions of the weights in AlexNet

and VGG-16 trained with ImageNet dataset when using two’s complement and sign-

magnitude representations.
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P1. (Multiple signed-digit representations) Signed-digit representation for a num-

ber is not unique. For example, decimal number 103 (= (001100111)2) can be

expressed as any of the following signed-digit representations of a fewer or equal

number of essential bits: (001101001̄)2, (0101̄00111)2, and (0101̄01001̄)2. In

Sec. 2.3, we propose a method of selecting signed-digit representations that

leads to maximal parallelism of bit-level multiplication in Eq.2.2.

P2. (Memory space for representing ternary values) Together with 0 and 1, signed-

digit representation requires a memory space for encoding -1, which intuitively

implies that for each digit, two bits are required, for example, 00, 01, and 10 re-

spectively encode 0, 1, and 1̄ in a signed-digit representation. Accordingly, the

double memory space for storing weights in signed-digit representation would

be required. In Sec. 2.4, we devise a novel technique to use nearly the same

amount of memory space as required for storing binary numbers of 0 and 1

though we use signed-digit representation.

P3. (Sign-bit in sign-magnitude representation) The sign-bit which is the leftmost

bit in a sign-magnitude representation indicates whether the magnitude is posi-

tive (= 0) or negative (= 1). The sign-bit is one major obstacle to complicate the

process of arithmetic operation, i.e., (1) depending on the sign-bit, the operation

type of addition or subtraction is determined, and (2) by comparing the magni-

tudes, the sign-bit of resulting magnitude of the operation is set. In Sec. 2.3, we

propose a way of completely removing this burden by exploiting our extended

notation of signed-digit representation.

P4. (Supporting subtraction for 1̄) Two’s complement representation offers the

most economical hardware for supporting subtraction as well as addition, but

our signed-digit representation-based approach to minimizing the number of

essential bits stems from sign-magnitude representation. In Sec. 2.4, we pro-

pose an architectural technique which is able to seamlessly link the transformed
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signed-digit representation to efficient hardware supporting two’s complement

operations in performing the bit-level multiplication in Eq.2.2.

2.3 Signed-digit Representation-based Deeper Weight Prun-

ing

Before generating signed-digit representations, Sec. 2.1.3 has introduced the CSD rep-

resentation conversion method with our modification to fit into our pruning context.

The first step in Sec. 2.3.1 is to generate all signed-digit representations with the min-

imal or near-minimal number of essential bits for every weight. The second step in

Sec. 2.3.2 is then to select signed-digit representations among the ones obtained in the

first step that leads to maximal parallelism on bit-level multiplication.

2.3.1 Generating Signed-digit Representations

Since all the weight values are known, generating possible signed-digit representations

for weight values is processed off-line, and the generation is performed in two steps.

• Step 1 (Recursively applying the right-to-left algorithm): For a weight value in sign-

magnitude representation, we recursively apply right-to-left algorithm to the weight

from the rightmost 1-bit string of size≥ 2 to the left. Fig. 2.5(a) shows the signed-digit

enumeration tree produced by recursively applying the conversion to (10110111)2

(= −55) where 1 is sign-bit and the 0/1/1̄-bit strings in red color are the signed-

digit representations resulting from the 1-bit strings in the dotted circles of their parent

nodes.

• Step 2 (Eliminating sign-bit for negative value): Since signed-digit representation

uses 1̄ as well as 0 and 1, it is possible to convert the leftmost 1-bit for a negative value

into 0-bit by converting 1-bit in every remaining bit to 1̄ and 1̄-bit to 1. Fig. 2.5(b)

shows the sign-bit (i.e., leftmost 1-bit) free signed-digit representations produced by
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the application of such extended signed-digit conversion to every signed-digit repre-

sentation obtained in Fig. 2.5(a).

Through Steps 1 and 2, we ensure that all possible signed-digit representations

with a fewer or equal number of essential bits for every weight are available and there

is no meaning on the leftmost sign-bit of every signed-digit representation. To boost up

the opportunity of maximal parallelism of bit-level multiplication, rather than collect-

ing the signed-digit representation of minimal essential bits only, we employ a user-

defined relaxing parameter γ to additionally include the signed-digit representations

of up to γ more essential bits over the minimal essential bits.2

2.3.2 Selecting Signed-digit Representations for Maximal Parallelism

We formulate the problem of selecting signed-digit representations that maximize bit-

level parallelism into a variant problem of finding the shortest path in a graph. We

describe our formulation using the example in Fig. 2.6, which illustrates a full flow

of selecting signed-digit representations for maximal parallelism. The three columns

at the left in Fig. 2.6 illustrate the signed-digit representation generation process per-

formed in Sec. 2.3.1.

From the signed-digit representations, we construct a directed graph G(V,A,C)

as shown in Fig. 2.6 where every signed-digit representation has a distinct node in V

arranged horizontally in G for signed-digit representations for each weight (labeled as

gray or blue), and V has two additional nodes (labeled as red): src having no entering

arc, and dest having no leaving arc. There exists an arc between every pair of nodes

vi(·) and vi+1
(·) (vi(·) → vi+1

(·) ) where vi(·) and vi+1
(·) represent nodes arranged in the ith

and (i+ 1)th horizontal lines in G, respectively. (In such convention, src = v−1
0 and

dest = vk0 where k is pruning stride.) We set a vector cost ci+1
j1,j2

∈ C for arc (vij1 ,

vi+1
j2

) ∈ A to a bit vector of the same bit-size of signed-digit representation such that

for 0 ≤ b ≤ B − 1, ci+1
j1,j2

[b] = 1, if bth bit value of j th
2 signed-digit representation for

2We set γ = 2 for B = 8 and γ = 4 for B = 16 in our experiments.
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Wi+1 is 1 or 1̄, and ci+1
j1,j2

[b] = 0 otherwise, as illustrated in Fig. 2.6.3

Since we want to minimize the maximum among the numbers of essential bits

in bit columns when the selected signed-digit representations are vertically stacked,

as shown at the right in Fig. 2.6, we solve the signed-digit representation selection

problem into a problem of finding a multi-objective shortest path (MOSP) from src

to dest in G(V,A,C). Since the decision version of MOSP problem is known to

be NP-complete even when B = 2 [69], we use Warburton’s polynomial-time ε-

approximation algorithm in [70], which guarantees the worst-case time and space

bounds of O(rn3(n/ε)2r) and O(rn(n/ε)r) respectively, where n = |V | and r = B.

The heavy line in G in Fig. 2.6 shows the MOSP solution and the two figures at the

right show the corresponding arc costs and the arrangement of the selected signed-digit

representations for parallel bit-level multiplication.

2.3.3 Extension to the Low-precision Weights

In the case of quantization using non-linear methods such as logarithm-based [35] and

weighted-entropy-based [37], it is difficult to convert each weight into signed-digit rep-

resentation. On the other hand, in the outlier quantization method [39], weights with

small absolute values close to 0 are expressed in low-precision, and weights with large

absolute values are expressed in full-precision. They have proved that 3.5% outlier

weights (weights with large absolute values) and the remaining low-precision weights

yield less than a 1% loss in top-5 accuracy in image classification. This outlier quan-

tization method allows conversion to signed-digit representation because the weights

have a partially linear spacing.

Since our bit-level weight pruning method can be applied to weights with vari-

ous bit-size, we can propose a hybrid approach that performs bit-level weight pruning

for both weights having small absolute values expressed in low-precision and outlier
3One exception is that our full hardware utilization to be explained later in Sec. 2.4.4 allows to set

ci+1
j1,j2

[0] = ci+1
j1,j2

[B − 1] = 1/2 if 0th bit value of j th
2 signed-digit representation for Wi+1 is 1 or 1̄.
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weights of large absolute values expressed in full-precision.

2.4 Supporting Hardware Architecture

The baseline of our signed-digit representation supporting architecture follows that in

[42], but ours has a number of novel features that are unique to handling signed-digit

representations.

2.4.1 Technique for Using a Single Bit to Encode Ternary Value

Storing a ternary value (0, 1, and 1̄) in memory normally requires 2 bits. Thus, for

k′ (< k) weights compressed from a set of initial weights of pruning stride k, a mem-

ory space of 2k′ · B bits shall be needed. Thus, we propose a technique to reduce

from the space requirement of 2k′ · B bits to (k′ + 1) · B bits, which is also much

lower than k ·B bits for storing initial k weights. (Note that in processing parallel bit-

level multiplication on weights produced by bit-level pruning, k′ ·B · log2 k additional

bits are commonly and essentially required to index the right ones among the k input

activations for bit-level multiplication.) We describe our technique using the exam-

ple in Fig. 2.7. An initial weight alignment in signed-digit representation produced by

Sec. 2.3.2 with pruning stride k = 6 is shown in Fig. 2.7(a), which is then column-wise

condensed as shown in Fig. 2.7(b). To achieve the memory constraint of (k′ + 1) · B

bits, we introduce B flags (f0, f1, · · · , fB−1), and define ternary ordering rule:

Definition 1. (Ternary ordering rule): Let Li be the list of all bit values on the ith

column in the condensed weight alignment of signed-digit representation. Thus, |Li| =

k′. We then sort the elements in Li such that 1̄ has the highest priority, and 1 has a

higher priority over 0. We call such ordering of ternary values in Li ternary ordering

rule. Fig. 2.7(c) shows the column-wise ordered arrangement from Fig. 2.7(b). We

denote S1̄, S1, and S0 to the sublists of all 1̄, all 1, and all 0 values in a list Li satisfying
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Li = S1̄||S1||S0 where || means concatenation.

Example 1. In Fig. 2.7(c), L2 = [1, 1, 0, 0], thus S1̄ = [], S1 = [1, 1], and S0 = [0, 0]

while L0 = [1̄, 1̄, 1, 0], thus S1̄ = [1̄, 1̄], S1 = [1], and S0 = [0].

Then, the rules for setting flag f i and k′ memory bits in the ith bit column are:

1. If S1 = [], set f i = 0, and all memory bits for S1̄ to 1 and the rest to 0.

2. If S1 6= [], set f i = 1, and all memory bits for S1 to 1 and the rest to 0.

3. When the ordered memory bits transit from 1 to 0, reset f i to 0.

Example 2. Fig. 2.7(d) shows a set of cases in setting f i and memory bits: For the

0th column, Rule 2 is applied, which means memory bit 0 with flag 1 indicates the

value is 1̄, thus subtraction (i.e., A× (−1) = −A) will be performed. Then, during the

subsequent accumulation process, when memory bit changes to 1, it means the value

is 1, thus addition will be performed. Lastly, the flag is reset to 0 when memory bit

changes to 0 according to Rule 3, as shown by the green dotted arrow in Fig. 2.7(d),

which means no further operation will be performed. Likewise, Rule 1, Rules 2 and 3,

and Rule 1 are applied to the 1st, 2nd, and 3rd columns, respectively.

2.4.2 Structure of Supporting Architecture

Fig. 2.8(a) shows the overall hardware structure. Initially, all values of flags f , acti-

vations A, pruned weights W aligned by ternary ordering rule, and indexes idx for

activation selection are loaded from on-chip eDRAM to internal buffers, which are

then transmitted to the corresponding splitters. For each splitter, 〈wi, idxi〉 combina-

tions (wi and idxi represent the ith memory bit and activation selection index of W , as

shown in Fig. 2.8(b)) are transmitted for every time step, and activations and flags are

transmitted for every k′th time step when corresponding initial set of weights are com-

pressed into k′ weights. It should be noted that before feeding to splitters, the circuit in

the yellow boxes in Fig. 2.8(a) and Fig. 2.8(c) decodes the fi value in conjunction with
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Figure 2.8: (a) Our proposed hardware architecture with 16 parallel lanes, each lane

processing k′ condensed weights, one weight at a time. 16 processing elements (PEs)

are operating concurrently. (b) Microarchitecture of splitter for processing signed-digit

representation. (c) Implementation for decoding a flag and memory bit. (d) Final adder

tree for suming all bit-level partial-sums.
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ith weight bit values to decipher if the encoding is addition (+A), subtraction (−A),

or no (0 · A) accumulation. The decoded two signal values are then transmitted to the

splitters to prepare one’s complement representations Ā for−A in the splitters (shown

in Fig. 2.8(b)) and to complete the two’s complement accumulation by adding extra 1

for −A (i.e., −A = Ā+ 1). The weights compressed through bit-level weight pruning

as shown in Fig. 2.2(a) achieve performance improvement as it reduces the number of

activations from the splitter array accumulated by the 16 adder trees. The final adder

tree as shown in Fig. 2.8(d) shifts and sums all bit-level partial accumulations produced

by the adder tree on each lane and delivers the result to the output activation function.

Note that the architecture can speed up by 2× if B = 8.

2.4.3 Memory Analysis

Like the prior architectures of DaDianNao [17] and Tetris [42], we has used eDRAM,

which is more energy-efficient than off-chip DRAM and has higher storage density

than SRAM. At 28nm technology node, 10MB SRAM occupies 20.73mm2 [71] whereas

eDRAM of the same size requires only 7.27mm2 [72]. Also at the same technology

node, while 256 bit read access to eDRAM consumes 0.0192nJ [73], read access to

Micron DDR3 DRAM with the same bit wide requires 6.18nJ [74], which is 321 times

more energy consumption.

For unpruned case, 512 bits must be loaded to the buffer every cycle in order

to perform MAC operation for 16 input activations and 16 weights in 16-bit fixed-

point representation. To perform the same amount of computation, Tetris [42] needs

to load 16 〈W, idx〉 combinations for every cycle and 256 input activations for every

k′ cycle. In other words, since idx has 4 bits when pruning stride k = 16, 1280(=

(1+4)×16×16) bits for weight and 4096
k′ bits for input activation should be loaded for

every cycle. In addition, our hardware has to load 256 bits of flags for every k′ cycle.

Therefore, Tetris [42] and our architecture must configure a wider internal bandwidth

compared to the unpruned case, resulting in area overhead. We assume that k′ = 4
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which is achievable minimum so that 4.5×wider internal bandwidth than the unpruned

case is used.

2.4.4 Full Utilization of Accumulation Adders

We have two observations regarding parallel bit-level multiplication:

Observation 1: The sum of the sizes of S1̄ and S1 in L0 (i.e., the number of the ternary

values of 1̄ and 1 in the rightmost bit column in the signed-digit weight alignment)

is the largest among all digits as shown in Fig. 2.9(a), which is a critical obstacle for

boosting up maximal parallelism;

Observation 2: The elimination of the 1-bit in the leftmost bit in sign-magnitude

weight representation (e.g., Fig. 2.5(b)) means to save one accumulation adder.

Thus, by equally partitioning the essential values in S1̄ and S1 of L0 into two parts

and performing them concurrently by the two accumulation adder trees responsible

for the 0th and (B− 1)th bit columns, the obstacle in Observation 1 can be completely

removed at no hardware cost as supported by Observation 2. As shown in Fig. 2.9(b),

a considerable overall cycle reduction (16%) is possible. In the actual implementation

as shown in Fig. 2.8(d), the ith(i ≥ 1) bit column is processed in the (i + 1)th lane

while the 0th bit column is processed in the 0
th

and 1
st

lanes.

2.4.5 Modification for Hybrid Approach

In Sec. 2.3.3, a hybrid approach using low-precision weights has been described. It is

possible to exploit this approach by slightly changing the final adder tree as shown in

Fig. 2.10. Both 4-bit weights and 16-bit weights are supported by the modified final

adder tree, and modes are identified through the control signal int4. Similar to what is

mentioned in Sec. 2.4.2, this architecture can speed up by 4× when B = 4.
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Figure 2.10: Modified final adder tree to support hybrid approach.
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2.5 Bit-level Intra-weight Pruning

In Sec. 2.1.2 we have introduced DWP-intra, which is a variant of DWP for bit-level

weight pruning. The usefulness of DWP-intra is the tight bound (i.e., n/3 + 1/9 +

O(2−n) in Sec. 2.1.3) on the worst latency of bit-level parallelism. This section is

composed of converting weights into signed-digit representations, encoding logic, and

supporting hardware architecture.

2.5.1 Signed-digit Representation Conversion

In order to get a small value of pruning stride k′ for a set of weights by compress-

ing them vertically, as illustrated in Fig. 2.2(a), DWP generates multiple signed-digit

representation candidates for each weight. However, for DWP-intra, since compress-

ing weights are performed horizontally, as shown in Fig. 2.2(b), the smallest value

of the pruning stride k′ is exactly the smallest number of essential bits among the

(unique) CSD representations of the weights. As shown in Fig. 2.2(a) and Fig. 2.2(b),

DWP-intra uses the transposed convention of DWP (e.g., Xb and Yb, and pruning

stride k′). We simply use Reitweisner’s right-to-left algorithm to this end. Thus, the

conversion ensures that the signed-digit representation of every weight has at most

n/3+1/9+O(2−n) number of essential bits according to the property 3 in Sec. 2.1.3.

2.5.2 Encoding Technique

We have described in Fig. 2.7 a technique of encoding ternary values for DWP. Since

the only differences in processing DWP-intra with DWP are the compression direction

and the step that performs shift operation, the encoding used in DWP needs to be

slightly modified to fit into DWP-intra context as follows.

The activation selection index (idx in Fig. 2.8) that indicates the correct input

activation corresponding to each essential bit on CSD representations in DWP will be

replaced with the shifting size of the shift operation corresponding to that essential bit
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for performing the shift-and-add operation in Eq.2.4 in DWP-intra. (Bits of the same

color in Fig. 2.2(a) have the same activation selection index, and bits of the same color

in Fig. 2.2(b) have the same shifting size.) Since each essential bit has its own number

of shifting sizes, the essential bits in the CSD representation of every weight will be

rearranged according to a rule which is conceptually exactly the same as the ternary

ordering rule applied in DWP employing a flag bit.

2.5.3 Supporting Hardware Architecture

The hardware components for DWP-intra and their logic are quite different from that

for DWP in Sec. 2.4. The key differences are the following.

The shift-and-add (SAA) unit in Fig. 2.11(a) consists of B shifting units and one

adder tree. Fig. 2.11(b) shows the details of the shifting unit that performs a shift

operation of Eq.2.6 suitable for signed-digit representation. For the ith shifting unit,

the input activation Ai shall be negated or zeroed according to wi and a flag fi, and

is shifted to the left by idxi, producing A′i. The shifted input activations A′i received

from the B shifting units are summed up through the adder tree, and the outcome is

transmitted to the final adder tree.

Once activations A and a set of encoded pruned weights W are loaded from an

on-chip eDRAM into an internal buffer, they are transferred to the SAA units via de-

coding logics. Since DWP-intra requires the same amount of data as DWP for every

cycle, it is configured with the same internal bandwidth as that of DWP. The imple-

mentation of splitter array and adder trees in Fig. 2.8(a) are replaced by 16 SAA units.

The accumulations from the 16 SAA units are summed through the final adder tree

and activation function and the output is stored in eDRAM again. The hardware archi-

tecture consists of 16 processing elements (PEs), and each PE is composed of 16 SAA

units, a final adder tree, and an activation function.
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2.6 Experimental Results

For our experiment, we use several CNN models (AlexNet [1], VGG-16 [2], and

ResNet-152 [4]) pre-trained with ImageNet dataset. For area and power evaluation,

we compile our design using Synopsys Design Compiler with Nangate 45nm open

cell library. The following two architectures are used as baselines. The first one is a

state-of-the-art implementation Tetris [42] exploiting weight kneading which is a kind

of column-wise bit-level weight pruning. The second one is PRA [47], which is orig-

inally designed for bit-level input activation pruning. In our experiment, we modify it

to apply the proposed pruning technique in weights for a fair comparison.

Experiments are performed to assess (1) “how much our signed-digit representa-

tion is able to reduce the number of essential digits”, (2) “how much our accelerator is

effective in performance and memory usage”, (3) “how much inference speed has been

improved compared to the existing column-wise bit-level weight pruning technique”,

and (4) “how much the area and power efficiency is improved compared to the existing

neural network accelerator architectures”.

2.6.1 Essential Bits

Table 2.1 shows the comparison of the total number of essential bits used by AlexNet

[1], VGG-16 [2], and ResNet-152 [4] when expressing every weight with two’s com-

plement representation, sign-magnitude representation, and our signed-digit represen-

tations. We set the pruning stride k to 8 for a fair comparison. In short, our signed-digit

representation conversion technique is able to represent the weights by using 52-74%

fewer number of essential bits over that of the two’s complement representation. Since

DWP-intra reduces the number of essential bits as many as possible via CSD repre-

sentation, it uses the smaller number of essential bits than DWP, but the difference is

negligible.
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2.6.2 Memory Usage

Fig. 2.12 compares the memory sizes used by Tetris [42] and our DWP. Since DWP

uses a much fewer number of essential bits, it directly affects the memory size for

weights. Overall, our architecture uses up to 52% less memory space than that of the

conventional architecture supporting parallel bit-level multiplication.

Fig. 2.13 compares the memory sizes occupied by the weights without compres-

sion and the weights encoded in our methods DWP and DWP-intra. As explained in

Sec. 2.1.1, bit-level weight pruning accompanies the activation selection index (orange

part in Fig. 2.13). Thus, both DWP and DWP-intra inevitably use more memory space

than the case without pruning. Meanwhile, (i) in DWP, during the process of selecting

a signed-digit representation combination for column-wise condensation described in

Sec. 2.3.2, it could happen that a signed-digit representation of the minimum essen-

tial digit is not selected. For this reason, it uses a larger number of essential bits than

DWP-intra, which always selects the signed-digit representation with the minimum

essential bits. In addition, (ii) DWP often needs a large number of dummy 0-bits to

make the vertical heights of all the bit columns of the compressed weights the same

due to its uneven distribution of essential bits as illustrated in Fig. 2.9(a). By (i) and

(ii), DWP requires up to 83% more memory space than DWP-intra.

2.6.3 Performance

Fig. 2.14 compares the performance of Tetris [42] and ours (DWP and DWP-intra) in

terms of clock cycles required to perform a set of weights with bit-size of 8 and 16,

and pruning stride of 8 and 16. The clock frequencies of the circuits in comparison

are the same. Note that in experiment results, k and B used in DWP are B and k in

DWP-intra, respectively.

We observe a considerable reduction of clock cycles, saving up to 64% cycles

for DWP over the parallel bit-level multiplication without applying any compression

technique, and 26-45% cycles over Tetris [42]. In addition, up to 61% fewer cycles
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Figure 2.12: Comparison of memory usage by Tetris [42] and our DWP when bit-size

B = 8 and 16, and pruning stride k = 8, 16 and 32. Mw includes the bits for weight

encoding (Tetris and DWP) and flag (DWP) and Midx includes the bits for activation

selection in the splitters (Tetris and DWP).
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Figure 2.13: Comparison of memory usage by uncompressed case, DWP, and DWP-

intra for several models when bit-size B = 8 and 16, and pruning stride k = 8 and

16. For a fair comparison, DWP with (B, k) = (16, 8) and (8, 16) has compared with

DWP-intra with (B, k) = (8, 16) and (16, 8), respectively.
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Figure 2.14: Comparison of the averaged number of clock cycles in performing a set

of weights with B = 8 and 16, and pruning stride k = 8 and 16.
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is used in DWP-intra compared with that in DWP. When DWP-intra is compared

with the uncompressed case and Tetris [42], a reduction of 65-76% and 50-72% in the

number of clock cycles are achieved, respectively.

Fig. 2.15 shows how much it affects the performance as the sparsity of the model

(i.e., the ratio of zero weights) increases. For Tetris [42], the number of essential bits

decreases as sparsity increases, and the average of clock cycles required to process a

set of weight also decreases. However, for the case of ours using signed-digit represen-

tation, the performance improvement is less than that of the prior study. By increasing

the sparsity of the model, the weights with the small absolute value are mostly elimi-

nated. As shown in Fig. 2.9(a), since a part of the computation of the 0th bit column is

processed after migration, the performance improvement is limited until the sparsity

increases so that the weights of sufficiently large absolute value should be removed.

When applying the hybrid approach described in Sec. 2.3.3, Fig. 2.16 shows the

result of comparing the average execution cycle after applying our proposed bit-level

weight pruning for low precision weights. While the bit-size B decreases from 7 to 5,

performance improvement is limited due to the reduced number of selectable signed-

digit representation candidates. However, for B = 4, as the quantization interval in-

creases, zero-valued weights after quantization increases significantly resulting in a

significant performance improvement.

2.6.4 Area

Table 2.2 compares the areas of ours with other baselines, and Tables 2.3 and 2.4 show

the area breakdown for DWP and DWP-intra. For fair comparison, both bit size B

and pruning stride k are fixed to 16 and the size of I/O RAMs and buffers are set to be

the same for all accelerator designs.

For the area breakdowns of both DWP and DWP-intra, I/O RAMs and buffers for

storing activation and weight information occupy most of the area. Assessing only the

parts that process MAC operations, in DWP the splitter array that distributes activa-
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tions to adder trees takes almost all areas, whereas in DWP-intra the area of the SAA

unit that shifts and adds activations dominates other components.

As the complexity of the splitter increases and the decoding logic is added, DWP

requires a slight more area (1.06×) than Tetris [42]. Since the process of extracting

essential bits from the weights in two’s complement representation in PRA [47] is

performed by a hardware, area overhead is reached 1.22× over DWP. Although DWP-

intra performs operations with wider bandwidth compared to DWP (e.g., DWP’s final

adder tree shown in Table 2.3 uses 16-bit input while DWP-intra shown in Table 2.4

uses wider 32-bit input), resulting in using excessive multiplexers in DWP, DWP-intra

reduces the area by 5.6%. Compared to the state-of-the-art Tetris [42], DWP-intra has

almost the same area.

2.6.5 Energy Efficiency

Finally, Fig. 2.17 shows a comparison of EDP (energy-delay-product) for the compu-

tation by Tetris [42], PRA [47], and our DWP and DWP-intra. Although DWP has a

complicated hardware structure over Tetris, a considerable inference speedup offsets

the increase of energy consumption to a large extent, resulting in 1.40× EDP improve-

ment on average. PRA has shown a higher EDP than Tetris due to its online weight

encoding process in hardware architecture. DWP-intra has achieved almost same EDP

as Tetris. As shown in Sec. 2.6.3, DWP-intra has a faster inference speed than DWP.

However, unlike DWP, each activation in DWP-intra is shifted first and added later, re-

sulting in an additional computational bandwidth and high power consumption. Thus,

DWP-intra shows higher EDP numbers than DWP.
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Chapter 3

Convolution Computation Techniques for High-Performance

Neural Networks

3.1 Motivations

We start with a few definitions in the following:

Definition 1. (partial kernel): A kernel P is called a partial kernel of a kernel K

if every non-zero value in P is embedded in the corresponding position in K. (For

example, in Fig. 3.1(a), kernels K ′1 and C1 are partial kernels of a kernel K1.)

Definition 2. (common kernel): If a partial kernel is commonly included in all partial

kernel sets of kernels, it is referred to as common kernel.

Definition 3. (filtered kernel): A kernel formed by filtering out the non-zero values

of the partial kernel in the original kernel is called filtered kernal. Precisely, if P is

a partial kernel of a kernel K, a kernel formed by (K − P ) is classified as a filtered

kernel.

3.1.1 Limited Space Exploration for Common Kernels

Fig. 3.1(a) shows a step-by-step procedure of common kernel extraction performed

by [64], in which from an original kernel set S = {K1,K2,K3}, it selects, among all
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common kernels of the pairs of kernels in S, common kernelC1 ofK1 andK2 since its

use enables the maximal elimination of operation redundancy. As a result, the filtered

kernelsK ′1 andK ′2 respectively replaceK1 andK2, resulting in S = {K ′1, C1,K
′
2,K3}

and the convolution evaluations with an input feature mapA can be expressed asA·K1

=A·K ′1 +A·C1 andA·K2 =A·K ′2 +A·C1. Then, at the next iteration, common kernel

C2 is selected and filtered kernels C ′1 and K ′3 respectively replace C1 and K3. Thus,

S = {K ′1, C ′1, C2,K
′
2,K

′
3} and the convolution evaluations are expanded to A·K1 =

A·K ′1 + A·C ′1 + A·C2, A·K2 = A·K ′2 + A·C ′1 + A·C2, and A·K3 = A·K ′3 + A·C2. The

numbers of addition/subtraction operations for the convolutions on the kernels in S =

{K ′1, C ′1, C2,K
′
2,K

′
3} are 1, 1, 3, 2, and 2, respectively, and once all convolutions on

S are evaluated, A·K1, A·K2, and A·K3 need 2, 2, and 1 more addition operations in

the evaluation, respectively. Hence, the total number of operations is (1+1+3+2+2) +

(2+2+1) = 14. On the other hand, Fig. 3.1(b) shows a common kernel extraction by

exploring all kernels simultaneously. Consequently, C3 is identified as the common

kernel that leads to the least count on the total number of operations. That is, A · C3

takes 3 operations while A·K1 = A·C3 + A·K ′′1 , A·K2 = A·C3 + A·K ′′2 , and A·K3 =

A·C3 + A·K ′′3 require (2+1) + (3+1) + (2+1) = 10 additions/subtractions if the value

of A·C3 has been computed in advance. Thus, a total number of 13 operations are

required for the convolutions, which is 7.1% fewer operations over that by [64].

3.1.2 Inability to Exploit Common Expressions of Convolution Values

The expanded expressions of kernel evaluations by using common kernels imply that

an additional computation saving will be possible if there exists a common expression.

For example, A·K1 = A·K ′1 + A·C ′1 + A·C2 and A·K2 = A·K ′2 + A·C ′1 + A·C2 in

Fig. 3.2(a) contain A·C ′1 + A·C2 as a common expression. Consequently, by utilizing

X = A·C ′1 + A·C2, as shown in Fig. 3.2(b), 1 more operation can be saved.
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3.2 The Proposed Algorithm

Our algorithm ConvOpt, which minimizes the total number of operations required for

the convolutions, performs two tasks: (Step 1) extracting common kernels in Sec. 3.2.1

and (Step 2) extracting common convolutions in Sec. 3.2.2. In addition, ConvOpt can

tune in minimizing the total number of resulting kernels in Sec. 3.2.3, thereby reducing

the total latency of memory accesses for kernels.

3.2.1 Common Kernel Extraction

Let Sinit be the original kernels to calculate their convolutions. Then, we set S = Sinit

and perform the following three steps:

Step 1.1 (Generating all partial kernels): We exhaustively collect all partial kernels

with at least two non-zero weight values from all the kernels in S.

Time complexity: For |S| kernels of each kernel size l×l, generating all partial kernels

takes O(|S| · 2 · 2l2) time since the number of partial kernels in a kernel is bounded

by O(2 · 2l2) with the consideration of opposite partial kernels and the time to insert a

partial kernel to a hash table can be done in O(1). We practically control run time by

limiting the number non-zero values in the partial kernels (e.g., ≥ 3).

For example, Fig. 3.3(a) shows the generation of all partial kernels of the kernels in S

= {K1,K2,K3}. For example, for K2 with 6 non-zero values in Fig. 3.3(a), with the

exception of the partial kernels with at most one non-zero value and the consideration

of opposite kernels, there are 2 × (26 − 6 − 1) = 114 partial kernels, which is much

lower than the theoretical upper boundO(2 ·232). LetH be the hash table that contains

all distinct partial kernels in S. Thus, theoretically |H| ≤ min{|S| · 2 · 2l2 , 3l
2} and

the actual values of |H| for CNN models are listed in Table 3.1.

Most of old CNN models like AlexNet [1] are composed of shallow layers with kernels

of large size. However, CNN models of high performance such as VGGNet [2] and

ResNet [4] are made up of deeper layers with kernels of small size, for which the
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generation of all partial kernels can be done very quickly.

Step 1.2 (Computing operation saving costs): Let Pi be a partial kernel in H . For

Kj in S, we produce kernel K ′j that satisfies Kj = K ′j + Pi if Pi is a partial kernel of

Kj , and K ′j = Kj otherwise. We call K ′j the filtered kernel of Kj with respect to Pi.

Operation saving f(Kj , Pi), which represents the number of addition and subtraction

operations that can be saved for the convolution on Kj if Pi were utilized, can be

expressed as:

f(Kj , Pi) = Nop(Kj)−Nop(K
′
j) (3.1)

where Nop(·) is the number of non-zero weight values in the corresponding kernel.

Then, we compute the total amount of operation saving∇Ops(Pi) for the convolutions

on all kernels in S:

∇Ops(Pi) =

|S|∑
j=1

(f(Kj , Pi)− αj)−Nop(Pi), 1 ≤ i ≤ |H| (3.2)

in which αj is 1 if f(Kj , Pi) ≥ 1 and 0, otherwise. For example, Fig. 3.3(b) shows the

process of calculating the f(·) and∇Ops(·) values of some of partial kernels obtained

in Fig. 3.3(a).

Time complexity: We construct a max-heap priority queue, QH , for the partial kernels

in H according to the ∇Ops(·) values. Since computing ∇Ops(·) for each kernel in

H can be done in O(|S|) while |H| ≤ |S| · 2 · 2l2 , and the construction of QH with

|H| insertions can be done in O(|H|), the total time is O(|S|2 · 2 · 2l2).

Step 1.3 (Selecting common kernels): We select the partial kernel in QH which has

the largest value of ∇Ops(·). If the ∇Ops(·) is a positive value, we remove its partial

kernel fromQH and update S by replacing every kernelKj in S with its filtered kernel

K ′j only if Nop(K
′
j) ≥ 1. Finally, we include the selected partial kernel, which we call

now a common kernel, in S. Note that in this updating process, we also maintain a

linked-list set L by including the information that the convolution output on Kj will

be obtained later by using the convolution results on K ′j and Pi. Then, repeat Steps
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1.1, 1.2, and 1.3 if the selected∇Ops(·) is a positive value. Otherwise, stop and return

L.

Time complexity: The partial kernel selection and kernel replacement can be done in

O(log|QH | + |S|) = O(|S|). Note that at each iteration, an incremental calculation of

operation saving cost in Eq.3.1 and Eq.3.2, and incremental insertion to QH will be

performed in practice.

For example, Fig. 3.3(c) shows the process of incrementally updating kernel set S and

its linked-list set L, starting from the selected partial kernel P1 (common kernel C1)

in Fig. 3.3(b).

3.2.2 Common Convolution Extraction

Once the linked-list set L is obtained from Step 1, this step extracts common expres-

sions from the addition and subtraction expressions of convolution results on common

kernels for computing the convolutions on the original kernels. we employ a greedy

method which iteratively performs the following two steps.

Step 2.1 (Creating a counting graph): We generate so-called a counting graphG(V,E,W )

from L, in which a node vi ∈ V represents a distinct kernel in L. There exists an edge

(vi, vj) ∈ E if at least two kernels in Sinit contain the two kernels corresponding to

vi and vj in their convolution evaluation expressions and w(vi, vj) ∈ W indicates

the number of such original kernels. For example, Fig. 3.4(a) shows an example of

generating graph G from a linked-list set L.

Time complexity: This step can be done in O(|Sinit|) since the length of linked-list for

each kernel in Sinit is limited to a small number (≤ 4) for CNN models with small-size

kernels.

Step 2.2 (Selecting common expressions of convolution evaluations): From the

counting graph G(V,E,W ), we select an edge with the largest w(·) value. Then, we

select the two kernels on the edge as a common expression of convolution evaluations.
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We then update G by creating a new node which represents the two corresponding

nodes and updating the weights of adjacent edges, and repeat this step until there is no

edge inG with an edge weight greater than 2 or the space for storing evaluation results

of all common expressions exceeds a memory limit. For example, Fig. 3.4(b) shows

the process of selecting a common expression from the counting graph produced by

Step 2.1.

Time Complexity : The iterative process of this step can be done in O(|E| · log |E|) =

O(|S|2 · log |S|).

3.2.3 Memory Access Minimization

The objective of ConvOpt described in Sec. 3.2.1 (for common kernel extraction)

and Sec. 3.2.2 (for common convolution extraction) is to minimize the number of

addition and subtraction operations required for the convolutions in binary- or ternary-

weight CNNs. Together with this, since the memory access would also contribute a

significant delay if it were not performed in parallel with convolution computation, we

need to analyze the impact of ConvOpt on the number of external memory accesses

for kernels and find a way to take into account minimizing the total latency caused by

the memory accesses.

1. The common convolution extraction in Step 2 of ConvOpt influences no or very

little on the external memory accesses since the convolution evaluation will be

done internally in the computing processors.

2. The common kernel extraction in Step 1 of ConvOpt certainly affects the mem-

ory accesses for kernels since using the common kernels extracted implies they

should be stored in external memory. However, fortunately, as our experimen-

tal data shown in Sec. 3.4, the total number of kernels to be stored after the

application of ConvOpt is usually lower than the number of original kernels.

Considering the impact of memory accesses on performance, we want to diver-
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sify the applicability of ConvOpt:

• ConvOpt-op: we place the primary importance on minimizing the number of

operations, i.e., exactly performing Steps 1 and 2 in Sec. 3.2.1 and Sec. 3.2.2.

• ConvOpt-mem: we place the primary importance on minimizing the number

of kernels, thereby indirectly minimizing external memory accesses for kernels.

Thus, unlike ConvOpt-op, ConvOpt-mem uses the kernel saving (or memory

access saving) ∇Nker(Pi, S) in Eq.3.3 as the primary cost in selecting a partial

kernel in H in Step 1.3 while using ∇Ops(·) in Eq.3.2 as the secondary cost to

break ties if exist.

∇Nker(Pi,S) = |S| −Nker(Pi,S), 1 ≤ i ≤ |H| (3.3)

where Nker(Pi,S) represents the number of distinct kernels in the kernel set

updated from S in the current iteration whenPi is selected in the current iteration

as a common kernel.

3.3 Hardware Implementation

The architecture utilizing common kernels obtained from Step 1 of ConvOpt is shown

in Fig. 3.5(a) [64], and the architecture supporting common convolutions obtained

from Step 2 of ConvOpt as well as common kernels is shown in Fig. 3.5(b).

For a convolutional layer, the architecture in Fig. 3.5(a) performs the sequence of

three subtasks (i.e., 1 → 2 → 3 ): 1 loading the input feature map, the kernels in

the linked-list set L, and the linked-list information in L to produce the convolution

results on the original kernels into input buffer block (IB), weight buffer block (WB),

and lookup table (LT) addressed by the indices of the original kernels, respectively;

2 broadcasting the contents in IB to processing elements (PEs), (In our experiments,

the number of PEs for parallel processing is set to 16 or 32.) performing convolution

on every kernel in WB with the data in PEs, and storing the convolution results to
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(a) An architecture supporting Step 1 of ConvOpt [64], performing 1© (data loading) → 2© (convolution on

common kernels)→ 3© (accumulation of convolution values for original kernels).
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③ Accumulation④ Common convolution evaluation

(b) An architecture fully supporting ConvOpt, performing 1© → 2© → 4©

(evaluation of common expressions of convolutions)→ 3©.

Figure 3.5: A hardware architecture supporting ConvOpt
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temporary buffer block (TB); 3 bringing the intermediate convolution results in TB

to PEs, accumulating the convolution values for each original kernel according to LT,

and storing the final result to the output buffer block (OB).

To exploit the common convolution values obtained in Step 2 of ConvOpt, the

supporting architecture needs to be updated, as shown in Fig. 3.5(b), which includes

one more subtask in between 2 and 3 (i.e., 1 → 2 → 4 → 3 ): 4 accumulating

convolution values for each common convolution in LT, and storing the result to TB.

In addition, to maximize the parallelism on PEs, we employed an off-line scheduler

for kernel convolutions in 2 and common convolution evaluations in 4 to balance

loads on PEs.

3.4 Experimental Results

3.4.1 Experimental Setup

The CNN model tested in our experiment is the ternary-weight VGG-16 [2] trained

with ImageNet dataset, on which the state-of-the-art work of common kernel extraction

in [64] was tested as well. Since the binary-weight CNN is a constrained version of

the ternary-weight one, we consider in the experiment the ternary-weight model only.

Our ConvOpt algorithm written in Python-3 code runs on a server equipped with an

Intel i7-8700k CPU running at 4.70GHz and a 32GB DDR4 RAM. We use our custom

cycle-accurate simulator for performance evaluation on the hardware architecture.

3.4.2 Assessing Effectiveness of ConvOpt-op and ConvOpt-mem

Table 3.2 shows the total number of addition and subtraction operations produced

by No-sharing (the convolution without exploitation of common kernels), Local-

sharing (the existing work in [64] of common kernel sharing), and our ConvOpt-op

and ConvOpt-mem, which not only extract common kernels globally but also ex-

ploit common expressions of convolutions, performing in 2 to 4 in Fig. 3.5 for the
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convolutional layers in VGG-16. In summary, ConvOpt uses 63% and 25-26% fewer

operations over the convolution without using common kernels and the state-of-the-art

work in [64] that exploits common kernels, respectively.

On the other hand, Table 3.3 summarizes the total number of kernels (which af-

fects the data loading (i.e., memory access) time performed in 1 in Fig. 3.5) used

by No-sharing, Local-sharing, and our ConvOpt-op and ConvOp-mem for per-

forming convolution operations on VGG-16. Clearly, Local-sharing, ConvOpt-op,

and ConvOpt-mem which take advantage of common kernel sharing use 86% fewer

kernels. In addition, by exploiting global search space, both ConvOpt methods use

2.7-3.8% fewer kernels than that of Local-sharing. In comparison with ConvOpt-op,

ConvOpt-mem which places a more emphasis (i.e., Eq.3.3) on reducing the number

of kernels over that of ConvOpt-op reduces the number of kernels by 2.51K (1.1%)

further.

Fig. 3.6 shows the breakdown of the operation counts in Table 3.2 for the convolu-

tions of four layers in VGG-16. Since No-sharing does not extract common kernels, it

produces the convolution results by performing 2 only (blue bars in Fig. 3.6). Local-

sharing performs 2 for the convolution on the common kernels, which is much fewer

than that of the original kernels, and produces the final convolution results using the

intermediate ones. Thus, the operation count on 2 is greatly reduced, but 3 (or-

ange bars in Fig. 3.6) requires more operations. On the other side, ConvOpt-op and

ConvOpt-mem use fewer operations over that of Local-sharing by fully utilizing

the convolution results for the common kernels (in 2 ) and common convolutions (in

4 , green bars in Fig. 3.6) on performing 3 . In comparison with ConvOpt-mem,

ConvOpt-op uses more kernels, consequently requires more operations in 2 (blue

bars) and 4 (green bars), but tends to require fewer operations in 3 .
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Table 3.2: Comparison of the total number of operations produced by No-sharing

(the convolution without exploitation of common kernels), Local-sharing (the exist-

ing work in [64] of common kernel sharing), and ConvOpt-op & ConvOpt-mem

performing in 2© to 4© in Fig. 3.5 for the convolutional layers in VGG-16.

Layer No-sharing Local-sharing [64] ConvOpt-op ConvOpt-mem

CONV1 1 33.9M 20.8M 16.8M 16.8M

CONV1 2 656.7M 393.8M 315.3M 315.3M

CONV2 1 371.1M 197.0M 150.2M 150.2M

CONV2 2 729.0M 388.3M 304.9M 304.9M

CONV3 1 326.0M 157.4M 116.7M 117.2M

CONV3 2 675.4M 323.6M 233.8M 235.0M

CONV3 3 691.3M 328.1M 242.1M 243.5M

CONV4 1 282.6M 124.2M 85.8M 87.3M

CONV4 2 553.5M 243.6M 165.4M 169.2M

CONV4 3 572.8M 251.0M 171.6M 175.0M

CONV5 1 139.5M 62.0M 41.8M 42.6M

CONV5 2 105.6M 49.6M 32.2M 32.5M

CONV5 3 73.8M 36.6M 22.9M 22.9M

Total #operations 5.21G 2.58G 1.90G 1.91G

Reduction over No-sharing - 50.6% 63.5% 63.3%

Reduction over Local-sharing N/A - 26.3% 25.8%
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Table 3.3: Comparison of the total number of kernels used by No-sharing (the con-

volution without exploitation of common kernels), Local-sharing (the existing work

in [64] of common kernel sharing), and ConvOpt-op & ConvOpt-mem performing

convolutions in 2© in Fig. 3.5 for the convolutional layers in VGG-16.

Layer No-sharing Local-sharing [64] ConvOpt-op ConvOpt-mem

CONV1 1 0.19K 0.09K 0.09K 0.09K

CONV1 2 4.10K 1.72K 1.70K 1.70K

CONV2 1 8.19K 2.77K 2.66K 2.66K

CONV2 2 16.38K 5.69K 5.46K 5.46K

CONV3 1 32.77K 7.38K 7.14K 7.08K

CONV3 2 65.54K 14.39K 14.07K 13.86K

CONV3 3 65.54K 14.73K 14.29K 14.13K

CONV4 1 131.07K 17.63K 16.79K 16.66K

CONV4 2 262.14K 33.96K 33.14K 32.26K

CONV4 3 262.14K 34.49K 33.35K 32.94K

CONV5 1 262.14K 34.57K 33.24K 32.99K

CONV5 2 262.14K 29.22K 29.07K 28.66K

CONV5 3 262.14K 23.54K 23.23K 23.23K

Total #kernels 1,634.50K 220.15K 214.23K 211.72K

Reduction over No-sharing - 86.5% 86.9% 87.0%

Reduction over Local-sharing N/A - 2.7% 3.8%
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Figure 3.6: A breakdown of operation counts used by No-sharing, Local-sharing

[64], ConvOpt-op, and ConvOpt-mem for the convolutional layers in VGG-16. Blue,

green, and orange bars stand for the operation counts in convolution on common or

original kernels ( 2©), calculating common expressions of intermediate convolution re-

sults ( 4©), and accumulation to produce final convolution outputs ( 3©), respectively.
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3.4.3 Measuring Performance through Hardware Implementation

Table 3.4 summarizes the total number of execution cycles on the hardware architec-

ture in Fig. 3.5 with 16 and 32 processing elements when using the kernels produced

by Local-sharing [64], ConvOpt-op, and ConvOpt-mem for image inferencing with

VGG-16. We assume that retrieving the kernels from the external memory and loading

them to the internal memory blocks IB, WB, and LT (i.e., 1 ) in Fig. 3.5 will be pro-

cessed in parallel with the execution of 2 , 3 , and 4 . Overall, ConvOpt-op uses up

to 22.4% smaller number of clock cycles over Local-sharing [64].

The breakdown of the execution cycles on the hardware platform in Fig. 3.5 is

shown in Fig. 3.7. Due to the utilization of intermediate results produced by common

convolution evaluation in 4 (green pies), the cycle portion taken by the accumulation

in 3 (orange pies) is shrunk. Note that the operation count saving by ConvOpt over

Local-sharing shown in Table 3.4 unbends as the number of PEs used increases from

16 to 32, i.e., 22%→ 13-14%. This is because more parallelism implies shortening the

total execution cycles, thus relatively lower percentage on the cycle count reduction.

For example, convolution on 68 common kernels can be completed in five iterations

on 16 PEs. (There are 28 to 68 common kernels on average for each input channel

in VGG-16 layers.) However, on 32 PEs three iterations are enough where in the last

iteration 28 among 32 PEs are in idle state.

3.4.4 Running Time of ConvOpt

Table 3.5 shows the comparison of the running time (hour:min:sec) spent by Local-

sharing [64] and ConvOpt-op for all convolutional layers in VGG-16. (We found

no non-trivial difference in running time between ConvOpt-op and ConvOpt-mem.)

Except for the layer of CONV1 1, which size is very small, despite our ConvOpt-

op method requires performing two steps of common kernel extraction and common

convolution extraction, it uses 64.5-96.5% less running time than Local-sharing [64].

In short, ConvOpt-op achieves an overall speedup of 18.4×.

78



■② Conv. op. ■④ Common conv. ■③ Accum.

16.7%

83.3%

18.4%

81.6%

Local-sharing using 16 PEs Local-sharing using 32 PEs

22.8%

5.3%

71.9%

23.6%

5.6%

70.8%

ConvOpt-op using 16 PEs ConvOpt-op using 32 PEs

22.2%

5.2%

72.6%

22.9%

5.7%

71.4%

ConvOpt-mem using 16 PEs ConvOpt-mem using 32 PEs

Figure 3.7: A breakdown of the execution cycles on the hardware platform in Fig. 3.5.

Blue, green, and orange pies stand for the execution cycles in convolution on common

kernels ( 2©), calculating common expressions of intermediate convolution results ( 4©),

and accumulation to produce final convolution outputs ( 3©), respectively.
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Chapter 4

Memory Layout and Block Replacement Techniques for

High-Performance Neural Networks

4.1 Motivation

Fig. 4.1 illustrates how a careful arrangement (i.e., memory layout) of weights in off-

chip memory and a block replacement policy exploiting the complete index sequence

influence the resulting total number of off-chip memory accesses. We assume that

DNN compression with weight sharing produces a total number of 8 distinct weights,

thus requiring off-chip memory of size 8. Further, we assume the size of on-chip mem-

ory is 4 and the block size for off-chip memory access is 2. Fig. 4.1(a) shows the values

of 8 weights and the access sequence of the weights by index for performing MAC

(multiply-and-accumulate) operations1, and Fig. 4.1(b) depicts a memory configura-

tion for storing/accessing the weights produced by the unfitted DNN compression.

Fig. 4.2 describes, for the index sequence, shared weights, and memory configura-

tion in Fig. 4.1, how frequently the off-chip memory accesses occur according to unop-

timized memory layout and LRU (least recently used) block replacement (Fig. 4.2(a)),
1Note that the index sequence corresponds to the order of performing the MAC operations in DNN

and highly depends on the underlying DNN computing architecture. In this work, the index sequence is

given.
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Figure 4.1: An example of DNN with unfitted compression to illustrate our motivation

of reducing the number of off-chip memory accesses in Fig. 4.2. (a) MAC (multiply-

and-accumulate) operations in a layer of DNN and index sequence for accessing the

weights, assuming DNN compression with weight sharing results in a total number

of 8 weights. (b) The configuration of off-chip (containing 8 weights) and on-chip

memories (containing up to 4 weights). The block size for access is 2.
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Figure 4.2: Four cases of handling memory layout and block replacement for the DNN

in Fig. 4.1. (a) Off-chip memory accesses resulting from the use of unoptimized mem-

ory layout and LRU replacement scheme. (b) Off-chip memory accesses resulting from

the use of our optimized memory layout and LRU replacement scheme. (c) Off-chip

memory accesses resulting from the use of unoptimized memory layout and our op-

timized replacement scheme. (d) Off-chip memory accesses resulting from the use of

our optimized memory layout and our optimized replacement scheme.
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our optimized layout and LRU replacement (Fig. 4.2(b)), unoptimized layout and our

optimized replacement (Fig. 4.2(c)), and our optimized layout and our optimized re-

placement (Fig. 4.2(d)). The comparison of the four cases clearly reveals that it is

essential to devise techniques for memory layout and replacement scheme that are

able to minimize the number of off-chip memory accesses for DNNs with unfitted

compression.

4.2 Algorithms for Off-chip Memory Access Optimization

for DNNs with Unfitted Compression

The inputs to our algorithms are:

• S = (i1, i2, · · · ): a complete index sequence.

• W = {w1, w2, · · · }: a set of distinct weights obtained from the weight sharing

in DNN compression.

• ws(ik): a function that maps index ik ∈ S to a weight inW . ws(·) is also given

by the result of DNN compression.

• |Moff |: size of off-chip memory in terms of weight count and |Moff | ≥ |W|.

• |Mon|: size of on-chip memory in terms of weight count and |Mon| ≤ |Moff |.

• |B|: block size for transferring weights in single access in terms of weight count

and |B| ≤ |Mon|.

The proposed algorithms for solving the memory layout and block replacement

problems are described in the following two subsections.

4.2.1 Algorithm for Off-chip Memory Layout

Our strategy to tackle the off-chip memory layout problem is that our algorithm allows

being broadly applicable to every kind of block replacement with an equal impact. As
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a result, we assume |Mon| = |B| to minimally link the selection of block replacement

scheme to our memory layout solution. The memory layout problem for DNNs with

unfitted compression then can be described as:

Memory layout problem for DNNs with unfitted compression: For S, W , Mon

with |Mon| = |B|, and Moff partitioned by |B|, find a function φ(wj) that maps

weight wj ∈ W to {0, 1, · · · , |Moff | − 1} (i.e., addresses) of Moff that satisfies

(1) φ(wj1) 6= φ(wj2) if wj1 6= wj2 for wj1 , wj2 ∈ W and (2) the number of two

consecutive accesses ij and ij+1 in S such that ws(ij) and ws(ij+1) are in the same

block is maximized.

The memory layout problem is translated into finding an arrangement of the |W|

weights to Moff so that the number of consecutive accesses of which the correspond-

ing weights are in the same block of Moff is maximized. We propose a greedy algo-

rithm called Mem-layout which iteratively performs the following three steps:

1. Generating an access graph G: From S, W , and ws(·), we create a graph,

called access graph G(N,E, nSize(·), eSize(·)) where each node in N indi-

cates a distinct weight inW and there is an edge (ni, nj) ∈ E if there exists a

pair of consecutive index accesses in S of which their accessed weights of differ-

ent values are exactly those of ni and nj . Node size nSize(ni) for every ni ∈ N

is set to 1, and edge size eSize(ni, nj) is set to the number of occurrences of

consecutive index accesses that form edge (ni, nj).

2. Merging a pair of nodes in G: We select the edge, (ni, nj), that has the largest

value of eSize(·) and nSize(ni) + nSize(nj) ≤ |B|. If exists, we merge the

two terminal nodes of the edge into one in G. Otherwise, we stop.

3. Updating G: The value of nSize(·) of the merged node in Step 2 is set to the

value of nSize(·) + nSize(·) for the nodes before merging. Similarly, the values

of eSize(·) for the edges connecting the merged node are updated, by summing

the eSize(·) values of the constituent edges before merging. Finally, N and E

85



are updated accordingly. Then, repeat step 2.

Fig. 4.3 shows an example of the stepwise procedure of the application of Mem-

layout for the weights and index sequence in Fig. 4.1 with |B| = 4. The initial access

graph constructed by step 1 of Mem-layout is shown in Fig. 4.3(a), from which the

two nodes (shown in red color) with the largest eSize(·) value (= 3) are chosen by step

2 of Mem-layout to be merged as indicated in Fig. 4.3(b). Then, step 3 of Mem-layout

produces the updated access graph, as shown in Fig. 4.3(c). By repeating this process

through Fig. 4.3(c) and Fig. 4.3(d), we generate the final graph shown in Fig. 4.3(e),

resulting in a memory layout of two blocks, one containing w1, w3, w4, and w7, the

other containing the rest.

Time complexity: The total number of iterations of Mem-layout is (|B|−1)· |W||B| , which

is nearly |W|. Step 1 requiresO(|S|) time in total, step 2 takesO(log|W|) time at each

iteration by using maximum heap implementation, and step 3 needs constant time in

each iteration. Thus the total time of Mem-layout is bounded byO(|S|+|W|·log|W|).

4.2.2 Algorithm for On-chip Memory Block Replacement

If the future access sequence is unknown, as the ordinary program execution, the con-

ventional strategies are to make use of the history of the prior access sequence. The

most well-known schemes are LRU, which evicts the block in on-chip memory that is

the least recently accessed by exploiting the temporal access locality, and MRU, which

evicts the block that is most recently used, considering the uniform distribution of ac-

cesses. The other schemes are FIFO/LIFO, which discard the first/last accessed block,

and RR, which evicts an arbitrary block.

On the other hand, when the future access sequence is completely known, it is

theoretically feasible to devise an optimal replacement scheme. The MIN algorithm

in [75, 76, 77] shows that it can guarantee a minimum number of block replacement.

However, it incurs overhead for scanning the index sequence whenever a block miss

occurs. The potential performance degradation caused by the scanning process can be
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overcome by performing the current off-chip memory access and the access sequence

scanning for the next replacement block concurrently, but the increase of energy is

unavoidable. Here, our objective focuses on minimizing energy consumption.

The block replacement problem for DNNs with unfitted compression can be de-

scribed as:

Block replacement problem for DNNs with unfitted compression: For S ,W , Mon

with |Mon| ≥ |B|, Moff partitioned by |B|, and a memory layout result (i.e., by

φ(·)), select a block for replacement when a block miss occurs, with the objective of

minimizing the quantity of Etot:

Etot = Eoff + Escan (4.1)

whereEoff andEscan represent the amounts of energy consumed by the off-chip mem-

ory accesses and the process of scanning the index sequence for selecting blocks for

replacement, respectively.

To minimize theEtot cost inEq.4.1, we propose a modified version of MIN, called

MIN-k that scans the future index sequence up to k (scanning distance) when a block

miss happens. Furthermore, to reduce the redundant scanning of indexes, we employ

a bookkeeping mechanism using an array of size k. The value of scanning distance k

is chosen experimentally, which is normally set to a number in 8 ∼ 20 with nearly

no miss-rate increase. Specifically, MIN-k employs three hardware components for the

process of selecting a block for eviction:

• rp: a register that locates the position in the index sequence where the current block

miss occurs.

• rq: a register that locates the position in the index sequence, from which forward or

backward scanning will be performed to find a block to evict. Whenever rp > rq, we

reset rq to rp to constrain rq ≥ rp. In addition, we constrain the scanning length by:

rq − rp ≤ k (4.2)

88



• hitCount[·]: an array in which each of its element records the number of accesses

to a particular block for the interval [rp, rq] in the index sequence. As the values in rp

and rq dynamically change, the value of each element in hitCount[·] will be updated

accordingly. Since rq − rp ≤ k, the array size of hitCount[·] is k.

We explain how MIN-k selects a block for replacement when block miss occurs by

checking/performing the following three actions:

• Checking 1: Is there one and only one element in hitCount[·] of value 0? If the an-

swer is “yes”, the block corresponding to the element will be the one for replacement.

• Checking 2: If the answer to Checking 1 is “no”, we consider two mutually exclusive

cases:

A. (hitCount[·] has more than one element of value 0): perform a recursive for-

ward scanning by incrementing rq until (A.1) the answer to Checking 1 is “yes”,

(A.2) Eq.4.2 is not met or there is no more index to scan. For A.1, we perform

the action in Checking 1 while for A.2, we randomly select a block whose cor-

responding element in hitCount[·] has value 0.

B. (hitCount[·] has no element of value 0): perform a recursive backward scan-

ning by decrementing rq until (B.1) the answer to Checking 1 is “yes”. Then,

we perform the action in Checking 1. (Note that since backward scanning al-

ways decreases the count value in hitCount[·], it eventually returns “yes” for

Checking 1.)

A block diagram corresponding to the procedure of MIN-k that selects a block in on-

chip memory for replacement when a block miss occurs is shown in Fig. 4.4.

Time complexity: Since both forward and backward scanning for every replacement is

bounded byO(k), the total run time isO(k·N) whereN is the number of block misses.

We apply MIN-k by varying the value of k and can find the value of k that leads to the

smallest amount of total energy consumed by the off-chip memory accesses (∼ N ) and
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on-chip scanning overhead (∼ k). (Our experiments show that the scanning overhead

in terms of the energy consumption is considerably less than the energy-saving by

MIN-k, which means N is a dominant factor that should be minimized.)

4.2.3 Exploitation of Parallel Computing

As shown in Fig. 4.1(a), in a layer withm input nodes and n output nodes, up tom×n

multiplications, and the length of the index sequence is also needed by that amount.

Because it takes a long time to process one multiplication operation at a time, par-

allelism can be applied to improve throughput by processing multiple multiplication

operations at the same time.

As shown in Fig. 4.5, each processing element placed in parallel performs indepen-

dent MAC operation, and each PE calculates by dividing the amount of whole compu-

tation required to process a single layer. Each PE has its own on-chip memory which

stores input activations and weight information needed for each calculation from com-

mon off-chip memory. A unique weight sequence is determined according to the order

in which each PE calculates, and there are weight index sequences corresponding to

the number of PEs. Since all PEs load common weight blocks from off-chip memory,

an optimized memory layout for all index sequences is required. By creating a single

access graph from given index sequences and repeating the merge process using the

proposed Mem-layout, a single optimized layout for index sequences can be obtained.

Also, since each PE has a different index sequence, it is possible to perform opti-

mal block replacement dynamically by scanning each index sequence when MIN-k is

applied independently to each PE to minimize the off-chip memory accesses.
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4.3 Experimental Results

4.3.1 Experimental Setup

The architecture our work targets is the one containing small on-chip memory, which

is suitable for embedded applications requiring limited (low cost) on-chip memory

resources. An example is the XA6SLX4 model of the Xilinx Spartan 6 FPGA with

12 BRAMs, each of which is capable of storing up to 2.25KB of data, thus, a total of

27KB. For such architecture, careful management of off-chip memory layout and data

access is essential because not only the values of weight parameters in DNN model

but also the input and output activations and intermediate results should be stored to

and accessed from the off-chip memory.

We tested our proposed algorithms Min-layout and MIN-k on the compressed

DNN of AlexNet by DeepCompression in [41] from which we used the three fully

connected layers FC6, FC7, and FC8. (We obtained the compressed DNN from the

Caffe model uploaded on the authors’ github.) The statistics of the number of weights

before and after the compression are summarized in Table 4.1. The last column of

the table indicates that the most frequently accessed 16 weights of the compressed

AlexNet take a portion of 28-47% of the total number of weight accesses. The exper-

iments are performed in two-fold: (1) to assess the effectiveness of Mem-layout for

reducing the number of off-chip memory accesses and (2) to assess the effectiveness

of MIN-k combined with Mem-layout for reducing the energy consumption i.e., Etot

in Eq.4.1.

4.3.2 Assessing the Effectiveness of Mem-layout

Table 4.2 lists the numbers of off-chip weight accesses using the memory layouts be-

fore and after the application of Mem-layout for two cases: the number of blocks (i.e.,

|Mon|/|B|) in on-chip memory is 4 or 8, assuming the size of a block (i.e., |B|) is 4.

The reduction numbers in the table show that Mem-layout uses consistently less or
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Table 4.2: The numbers of off-chip weight accesses before and after applying our

Mem-layout under various conventional schemes of block replacement, assuming

|B| = 4.

AlexNet Eviction # blocks in Mon = 4 # blocks in Mon = 8

FC layer scheme Unopt. / Mem-layout Red. Unopt. / Mem-layout Red.

FC6

FIFO 1,750K / 1,520K 13.1% 1,400K / 1,127K 19.5%

LIFO 1,794K / 1,434K 20.1% 1,297K / 849K 34.6%

LRU 1,732K / 1,484K 14.3% 1,349K / 1,045K 22.5%

MRU 2,009K / 1,894K 5.7% 1,870K / 1,772K 5.3%

RR 1,762K / 1,534K 13.0% 1,406K / 1,132K 19.5%

FC7

FIFO 762K / 733K 3.8% 573K / 532k 7.09%

LIFO 701K / 635K 9.3% 460K / 381K 17.2%

LRU 757K / 724K 4.3% 553K / 504K 8.9%

MRU 876K / 877K -0.1% 810K / 819K -1.2%

RR 762K / 733K 3.8% 574K / 532K 7.2%

FC8

FIFO 446K / 440K 1.5% 371K / 360k 2.9%

LIFO 420K / 412K 1.7% 324K / 351K -8.4%

LRU 445K / 438K 1.5% 364K / 353K 3.2%

MRU 484K / 482K 0.3% 454K / 452K 0.4%

RR 447K / 440K 1.5% 371K / 360K 2.9%
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an equal number of off-chip accesses for every combination of replacement schemes

and network layers (i.e., access sequences) except that of LIFO on FC8 layer with

|Mon|/|B| = 8, which comes from the discrepancy between the use of |Mon|/|B| = 1

in Mem-layout to unlink replacement scheme and the use of |Mon|/|B| = 4 in ex-

periments. The trend of off-chip memory access saving as well as the discrepancy for

the LIFO on FC8 is further validated by the curves shown in Fig. 4.6. Nevertheless,

Mem-layout reduces the number of off-chip accesses on FC6 and FC7 with LIFO

scheme by up to 45% and 28%, respectively.

4.3.3 Assessing the Effectiveness of MIN-k Combined with Mem-layout

Table 4.3 shows the amount of saving (5Eoff in Eq.4.1) of the energy consumption

for the off-chip memory accesses and the energy overhead (Escan in Eq.4.1) by scan-

ning index sequence for block replacement by our MIN-k combined with Mem-layout

over that by LRU replacement scheme with initial off-chip memory layout. The en-

ergy numbers per on-chip and off-chip memories are taken from the energy datasheet

at 45nm technology in [15]. The comparison of the values of5Eoff and Escan shows

that the energy penalty Escan is two or three orders of magnitude less than the en-

ergy saving5Eoff . Overall, the total energy-saving (5Etot in Eq.4.1) by MIN-k and

Mem-layout is 34.2% on average.

Finally, Fig. 4.7 shows the changes of the values of Eoff (blue curves) and Escan

(red curves) for various off-chip memory sizes (= |Mon|/|B|) as the value of scanning

distance parameter k changes. The sharp increase of the value of Escan implies that

using a long scanning distance rapidly increases the amount of energy consumed by

the index scanning process. On the other hand, the slow decrease of the value of Eoff

indicates that using a scanning distance longer than 20 does not much help save the

energy consumed by the off-chip memory accesses.
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Table 4.3: Energy reduction by our MIN-k and Mem-layout over the conventional

approach.

AlexNet Parameter # off-chip accesses Energy consumption (mJ)

FC layer (|M |*, k) Conv.† Ours‡ 5Eoff / Escan 5Etot

FC6

(4, 8) 1,732K 1,273K 587.27 / 2.93 584.33

(4, 16) 1,732K 1,079K 835.91 / 3.44 832.47

(8, 16) 1,349K 751K 765.27 / 2.91 762.36

(8, 32) 1,349K 622K 929.80 / 3.43 926.37

FC7

(4, 8) 757K 614K 182.70 / 1.25 181.46

(4, 16) 757K 514K 310.81 / 1.60 309.21

(8, 16) 553K 332K 283.13 / 1.23 281.90

(8, 32) 553K 286K 341.78 / 1.66 340.12

FC8

(4, 8) 445K 394K 65.01 / 0.68 64.34

(4, 16) 445K 326K 151.94 / 0.83 151.10

(8, 16) 364K 252K 144.29 / 0.67 143.62

(8, 32) 364K 213K 193.85 / 0.96 192.88

Average 34.2%
*|M | = |Mon|/|B|, †Unoptimized layout + LRU,

‡Optimized layout from Mem-layout + MIN-k
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Chapter 5

Conclusions

5.1 Bit-level Weight Pruning Techniques for High-Performance

Neural Networks

The section proposed an effective technique to resolve the inherent limitation of the

bit-level weight pruning: the maximal computation speedup was bounded by the total

number of non-zero bits of the weights, but the bound had consistently been considered

as ‘unoptimizable’. Specifically, based on the notion of canonical signed digit (CSD)

encoding, we (1) proposed a transformation technique which converted the two’s com-

plement representation of every weight into a set of signed-digit representations of

the minimal or near-minimal number of essential bits, (2) formulated the problem of

selecting signed-digit representations of weights that maximized the parallelism of

bit-level multiplication into a multi-objective shortest path problem and solved it effi-

ciently, and (3) proposed a supporting novel acceleration architecture at no additional

non-trivial hardware cost. In addition, we (4) proposed a variant to support bit-level

parallel multiplication with the capability of predicting a tight worst-case latency of

the parallel processing. Through experiments, it was shown that our proposed approach

reduced the number of essential bits by 69% on AlexNet, 74% on VGG-16, and 68%

on ResNet-152, by which our accelerators of DWP and DWP-intra sped up the infer-
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ence computation time up to 2.22× and 3.57× over the conventional bit-level weight

pruning, respectively. Furthermore, ours improved EDP by up to 1.42× with a slight

area overhead than that of the existing state-of-the-art bit-level pruning architecture.

5.2 Convolution Computation Techniques for High-Performance

Neural Networks

The section presented a new algorithm ConvOpt for extracting common kernels and

convolutions to maximally eliminate the redundant operations among the convolutions

in binary- and ternary-weight convolutional neural networks. Precisely, ConvOpt em-

ployed two engines, (1) performing a new algorithm for common kernel extraction

to overcome the limited and local view of the conventional method and (2) applying

a new concept called common convolution extraction to maximally eliminate the re-

dundancy in the convolution operations. Besides, ConvOpt was able to (3) tune in

minimizing the number of resulting kernels for convolutions, thereby saving the total

memory access latency for kernels. Experimental results on ternary-weight VGG-16

showed that our convolution optimization ConvOpt was able to reduce the total num-

ber of operations by 25.8-26.3%, thereby reducing the total number of execution cycles

on hardware platform by 22.4% while using 2.7-3.8% fewer kernels over that of the

convolutions utilizing the common kernels extracted by the state-of-the-art algorithm

in [64].

5.3 Memory Layout and Block Replacement Techniques for

High-Performance Neural Networks

The section introduced a couple of new problems, called off-chip memory layout prob-

lem and on-chip block replacement problem, that could arise when DNN compression

led to an unsuccessful weight compression in that off-chip memory was necessarily
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needed to store all the weights, and proposed effective solutions called Mem-layout

and MIN-k for minimizing the total energy consumption by the off-chip memory ac-

cesses and the scanning overhead of selecting blocks for replacement. Experiments

with the model of AlexNet compression showed that our algorithms were able to save

the energy consumption by 32.4% on average over the conventional approach.

103



104



Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks,” Advances in Neural Information Pro-

cessing Systems (NIPS), pp. 1097–1105, 2012.

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” International Conference on Learning Representa-

tions (ICLR), 2015.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going Deeper with Convolutions,” IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-

nition,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 770–778, 2016.

[5] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolu-

tions,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 1251–1258, 2017.

[6] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,” IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141,

2018.

105



[7] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee, J. Ngiam,

Q. V. Le, Y. Wu, and Z. Chen, “GPipe: Efficient Training of Giant Neural Net-

works using Pipeline Parallelism,” Advances in Neural Information Processing

Systems (NeurIPS), pp. 103–112, 2019.

[8] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Compu-

tation, MIT Press, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling,” Advances in Neural Infor-

mation Processing Systems (NIPS) Deep Learning and Representation Learning

Workshop, 2014.

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft COCO: Common Objects in Context,” European

Conference on Computer Vision (ECCV), pp. 740–755, 2014.

[11] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Ob-

ject Detection with Region Proposal Networks,” Advances in Neural Information

Processing Systems (NIPS), pp. 91–99, 2015.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once:

Unified, Real-Time Object Detection,” IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 779–788, 2016.

[13] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Seman-

tic Segmentation,” IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp. 3431–3440, 2015.

[14] H. Noh, S. Hong, and B. Han, “Learning Deconvolution Network for Seman-

tic Segmentation,” IEEE International Conference on Computer Vision (ICCV),

pp. 1520–1528, 2015.

106



[15] M. Horowitz, “Energy Table for 45nm Process, Stanford VLSI Wiki,” [Online].

Available: https://sites.google.com/site/seecproject. [Accessed: 17-Oct-2020].

[16] Berkeley AI Research, “Caffe Model Zoo,” [Online]. Available:

https://caffe.berkeleyvision.org/model zoo. [Accessed: 17-Oct-2020].

[17] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun,

and O. Temam, “DaDianNao: A Machine-Learning Supercomputer,” IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 609–622, 2014.

[18] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Dian-

Nao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-

Learning,” International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pp. 269–284, 2014.

[19] M. N. Bojnordi and E. Ipek, “Memristive Boltzmann Machine: A Hardware

Accelerator for Combinatorial Optimization and Deep Learning,” IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA), pp. 1–

13, 2016.

[20] H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara, “Probabilistic Inter-

polation Recoder for Energy-Error-Product Efficient DBNs with p-bit Devices,”

IEEE Transactions on Emerging Topics in Computing (TETC), 2020.

[21] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up Convolutional Neu-

ral Networks with Low Rank Expansions,” British Machine Vision Conference

(BMVC), 2014.

[22] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting Linear

Structure Within Convolutional Networks for Efficient Evaluation,” Advances in

Neural Information Processing Systems (NIPS), pp. 1269–1277, 2014.

107



[23] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, “Speeding-up

Convolutional Neural Networks Using Fine-tuned CP-Decomposition,” Interna-

tional Conference on Learning Representations (ICLR), 2015.

[24] C. Tai, T. Xiao, Y. Zhang, X. Wang, and E. Weinan, “Convolutional Neural

Networks with Low-rank Regularization,” International Conference on Learning

Representations (ICLR), 2016.

[25] P. Wang and J. Cheng, “Accelerating Convolutional Neural Networks for Mo-

bile Applications,” ACM International Conference on Multimedia (ACM-MM),

pp. 541–545, 2016.

[26] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of Deep

Convolutional Neural Networks for Fast and Low Power Mobile Applications,”

International Conference on Learning Representations (ICLR), 2016.

[27] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is More: Towards Compact CNNs,”

European Conference on Computer Vision (ECCV), pp. 662–677, 2016.

[28] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning Structured Sparsity

in Deep Neural Networks,” Advances in Neural Information Processing Systems

(NIPS), pp. 2082–2090, 2016.

[29] S. Anwar, K. Hwang, and W. Sung, “Structured Pruning of Deep Convolutional

Neural Networks,” ACM Journal on Emerging Technologies in Computing Sys-

tems (JETC), vol. 13, no. 3, pp. 1–18, 2017.

[30] Y. He, X. Zhang, and J. Sun, “Channel Pruning for Accelerating Very Deep

Neural Networks,” IEEE International Conference on Computer Vision (ICCV),

pp. 1389–1397, 2017.

108



[31] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning Efficient

Convolutional Networks through Network Slimming,” IEEE International Con-

ference on Computer Vision (ICCV), pp. 2736–2744, 2017.

[32] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning Filters

for Efficient ConvNets,” International Conference on Learning Representations

(ICLR), 2017.

[33] H. Wang, Q. Zhang, Y. Wang, and H. Hu, “Structured Probabilistic Pruning for

Convolutional Neural Network Acceleration,” British Machine Vision Confer-

ence (BMVC), 2018.

[34] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized Convolutional Neu-

ral Networks for Mobile Devices,” IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 4820–4828, 2016.

[35] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional Neural Networks us-

ing Logarithmic Data Representation,” arXiv preprint arXiv:1603.01025, 2016.

[36] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained Ternary Quantization,” Inter-

national Conference on Learning Representations (ICLR), 2017.

[37] E. Park, J. Ahn, and S. Yoo, “Weighted-Entropy-Based Quantization for Deep

Neural Networks,” IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp. 7197–7205, 2017.

[38] S.-C. Zhou, Y.-Z. Wang, H. Wen, Q.-Y. He, and Y.-H. Zou, “Balanced Quan-

tization: An Effective and Efficient Approach to Quantized Neural Networks,”

Journal of Computer Science and Technology (JCST), vol. 32, no. 4, pp. 667–

682, 2017.

109



[39] E. Park, D. Kim, and S. Yoo, “Energy-Efficient Neural Network Accelerator

Based on Outlier-Aware Low-Precision Computation,” International Symposium

on Computer Architecture (ISCA), pp. 688–698, 2018.

[40] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compressing Neu-

ral Networks with the Hashing Trick,” International Conference on Machine

Learning (ICML), pp. 2285–2294, 2015.

[41] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neu-

ral Networks with Pruning, Trained Quantization and Huffman Coding,” Inter-

national Conference on Learning Representations (ICLR), 2016.

[42] H. Lu, X. Wei, N. Lin, G. Yan, and X. Li, “Tetris: Re-architecting Convolutional

Neural Network Computation for Machine Learning Accelerators,” IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pp. 1–8, 2018.

[43] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos,

“Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing,” Interna-

tional Symposium on Computer Architecture (ISCA), pp. 1–13, 2016.

[44] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,

J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An Accelerator for Compressed-

sparse Convolutional Neural Networks,” International Symposium on Computer

Architecture (ISCA), pp. 27–40, 2017.

[45] D. Kim, J. Ahn, and S. Yoo, “ZeNA: Zero-Aware Neural Network Accelerator,”

IEEE Design & Test (D&T), vol. 35, no. 1, pp. 39–46, 2017.

[46] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes:

Bit-Serial Deep Neural Network Computing,” IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), pp. 1–12, 2016.

110



[47] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov, and

A. Moshovos, “Bit-Pragmatic Deep Neural Network Computing,” IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 382–394, 2017.

[48] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom: Exploiting

Weight and Activation Precisions to Accelerate Convolutional Neural Networks,”

Design Automation Conference (DAC), pp. 1–6, 2018.

[49] Z. Chen, G. J. Blair, H. T. Blair, and J. Cong, “BLINK: Bit-Sparse LSTM In-

ference Kernel Enabling Efficient Calcium Trace Extraction for Neurofeedback

Devices,” ACM/IEEE International Symposium on Low Power Electronics and

Design (ISLPED), pp. 217–222, 2020.

[50] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and <0.5MB

Model Size,” arXiv preprint arXiv:1602.07360, 2016.

[51] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:

Inverted Residuals and Linear Bottlenecks,” IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pp. 4510–4520, 2018.

[52] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient

Convolutional Neural Network for Mobile Devices,” IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 6848–6856, 2018.

[53] D. Hammerstrom, “A VLSI Architecture for High-Performance, Low-Cost, On-

chip Learning,” International Joint Conference on Neural Networks (IJCNN),

pp. 537–544, 1990.

[54] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learn-

ing with Limited Numerical Precision,” International Conference on Machine

Learning (ICML), pp. 1737–1746, 2015.

111



[55] M. Courbariaux, Y. Bengio, and J.-P. David, “Training Deep Neural Networks

with Low Precision Multiplications,” International Conference on Learning Rep-

resentations (ICLR), 2015.

[56] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training Deep

Neural Networks with Binary Weights during Propagations,” Advances in Neural

Information Processing Systems (NIPS), pp. 3123–3131, 2015.

[57] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural Networks,” European Confer-

ence on Computer Vision (ECCV), pp. 525–542, 2016.

[58] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net: Training

Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients,”

arXiv preprint arXiv:1606.06160, 2016.

[59] M. Kim and P. Smaragdis, “Bitwise Neural Networks,” International Conference

on Machine Learning (ICML) Workshop on Resource-Efficient Machine Learn-

ing, 2015.

[60] K. Hwang and W. Sung, “Fixed-Point Feedforward Deep Neural Network Design

Using Weights +1, 0, and -1,” IEEE Workshop on Signal Processing Systems

(SiPS), pp. 1–6, 2014.

[61] F. Li, B. Zhang, and B. Liu, “Ternary Weight Networks,” arXiv preprint

arXiv:1605.04711, 2016.

[62] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural Networks with

Few Multiplications,” International Conference on Learning Representations

(ICLR), 2016.

112



[63] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot, “Ternary Neural Networks

for Resource-Efficient AI Applications,” IEEE International Joint Conference

on Neural Networks (IJCNN), pp. 2547–2554, 2017.

[64] S. Zheng, Y. Liu, S. Yin, L. Liu, and S. Wei, “An Efficient Kernel Transformation

Architecture for Binary- and Ternary-Weight Neural Network Inference,” Design

Automation Conference (DAC), 2018.

[65] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An Architecture

for Ultra-Low Power Binary-Weight CNN Acceleration,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 1,

pp. 48–60, 2018.

[66] H. Kim, J. Sim, Y. Choi, and L.-S. Kim, “A Kernel Decomposition Architecture

for Binary-weight Convolutional Neural Networks,” Design Automation Confer-

ence (DAC), 2017.

[67] G. W. Reitwiesner, “Binary Arithmetic,” Advances in Computers, Elsevier, vol. 1,

pp. 261–265, 1960.

[68] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementa-

tion, John Wiley & Sons, 2007.

[69] M. Ehrgott, Multicriteria Optimization, Springer Science & Business Media,

vol. 491, 2005.

[70] A. Warburton, “Approximation of Pareto Optima in Multiple-Objective, Shortest-

Path Problems,” Operations Research, INFORMS, vol. 35, no. 1, pp. 70–79,

1987.

[71] N. Maeda, S. Komatsu, M. Morimoto, K. Tanaka, Y. Tsukamoto, K. Nii, and

Y. Shimazaki, “A 0.41 µA Standby Leakage 32 kb Embedded SRAM with

Low-Voltage Resume-Standby Utilizing All Digital Current Comparator in 28

113



nm HKMG CMOS,” IEEE Journal of Solid-State Circuits, IEEE, vol. 48, no. 4,

pp. 917–923, 2013.

[72] G. Wang, D. Anand, N. Butt, A. Cestero, M. Chudzik, J. Ervin, S. Fang, G. Free-

man, H. Ho, B. Khan, B. Kim, W. Kong, R. Krishnan, S. Krishnan, O. Kwon,

J. Liu, K. McStay, E. Nelson, K. Nummy, P. Parries, J. Sim, R. Takalkar,

A. Tessier, R. M. Todi, R. Malik, S. Stiffler, and S. S. Iyer, “Scaling Deep Trench

Based eDRAM on SOI to 32nm and Beyond,” IEEE International Electron De-

vices Meeting (IEDM), pp. 1–4, 2009.

[73] K. C. Huang, Y. W. Ting, C. Y. Chang, K. C. Tu, K. C. Tzeng, H. C. Chu,

C. Y. Pai, A. Katoch, W. H. Kuo, K. W. Chen, T. H. Hsieh, C. Y. Tsai, W. C. Chi-

ang, H. F. Lee, A. Achyuthan, C. Y. Chen, H. W. Chin, M. J. Wang, C. J. Wang,

C. S. Tsai, C. M. Oconnell, S. Natarajan, S. G. Wuu, I. F. Wang, H. Y. Hwang,

and L. C. Tran, “A High-Performance, High-Density 28nm eDRAM Technol-

ogy with High-K/Metal-Gate,” IEEE International Electron Devices Meeting

(IEDM), pp. 1–4, 2011.

[74] Micron, “DDR3 SDRAM RDIMM,” [Online]. Available: https://media-

www.micron.com/-/media/client/global/documents/products/data-

sheet/modules/parity rdimm/jsf18c1gx72pdz.pdf. [Accessed: 19-Jan-2021].

[75] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation Techniques

for Storage Hierarchies,” IBM Systems Journal, IBM, vol. 9, no. 2, pp. 78–117,

1970.

[76] B. Van Roy, “A Short Proof of Optimality for The MIN Cache Replacement

Algorithm,” Information Processing Letters, Elsevier, vol. 102, no. 2-3, pp. 72–

73, 2007.

114



[77] W. Vogler, “Another Short Proof of Optimality for The MIN Cache Replacement

Algorithm,” Information Processing Letters, Elsevier, vol. 106, no. 5, pp. 219–

220, 2008.

115



116



초록

인공신경망연산을수행하고자하는수요가꾸준히증가하고있지만,깊은인공

신경망에는과도한메모리와계산비용이수반되기때문에많은설계문제가있다.

본논문에서는인공신경망추론연산을효과적으로처리하기위한여러가지새로

운기술을연구한다.

첫번째로,최대계산속도향상이가중치의 0아닌비트의총수에의해제한되는

한계의극복을시도한다.구체적으로,부호있는숫자인코딩에기반한본연구에서,

(1)모든가중치의 2의보수표현을필수비트를최소로하는부호있는숫자표현의

집합으로변환하는변환기법을제안하며, (2)가중치의비트단위곱셈의병렬성을

최대하화는가중치의부호있는숫자표현을선택하는문제를숫자인덱스 (열단위)

압축 최대화를 달성하도록 다목적 최단 경로 문제로 공식화하여 근사 알고리즘을

사용하여효율적으로해결하며, (3)주요하드웨어를추가로포함하지않고앞서제

안한기법을지원하는새로운가속기아키텍처(DWP)를제안한다.또한,우리는 (4)

병렬 처리에서 최악의 지연 시간을 엄격하게 예측할 수 있는 기능이 포함된 비트

단위 병렬 곱셈을 지원하도록 다른 형태의 DWP를 제안한다. 실험을 통해 본 연

구에서제안하는접근방법은필수비트수를 AlexNet에서 69%, VGG-16에서 74%,

ResNet-152에서 68%까지줄일수있음을보여주었다.또한이를지원하는가속기는

추론연산시간을기존의비트단위가중치가지치기방법에비해최대 3.57배까지

감소시켰다.

두 번째로, 이진 및 삼진 가중치의 컨볼루션 인공 신경망에서 컨볼루션 간의

중복연산을최대한제거하기위하여공통커널및컨볼루션을추출하는새로운알
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고리즘을제시한다.구체적으로, (1)기존방법에서공통커널후보의국부적이고제

한적인탐색을극복하기위한새로운공통커널추출알고리즘을제안하고,이후에

(2) 컨볼루션 연산에서의 중복성을 최대한으로 제거하기 위한 새로운 개념의 공통

컨볼루션추출을적용한다.또한,우리의알고리즘은 (3)컨볼루션에대해최종적으

로 도출된 커널 수를 최소화하여 커널에 대한 총 메모리 접근 지연 시간을 절약할

수있다.삼진가중치의 VGG-16에대한실험결과로모든컨볼루션에대한총연산

수를 25.8-26.3%감소시켜,최신알고리즘으로추출한공통커널을사용하는컨볼루

션에비해 2.7-3.8%더적은커널을사용하는동안하드웨어플랫폼에서의총수행

사이클을 22.4%감소시킴으로써우리가제안한컨볼루션최적화알고리즘이매우

효과적임을보였다.

마지막으로,우리는압축된 DNN의모든고유가중치들을온-칩메모리에완전

히 포함할 수 없는 경우 정확도 유지를 위해 “부적합 압축”을 사용하는 DNN 솔루

션을 제안한다. 구체적으로, 가중치의 접근 시퀀스가 주어지면, (1) 첫 번째 문제는

오프-칩 메모리의 메모리 접근 수(접근에 의해 소비되는 에너지)를 최소화하도록

오프-칩메모리에가중치를배열하는것이고, (2)두번째문제는블록교체를위한

인덱스 탐색에 소비되는 오버헤드와 오프-칩 메모리 접근에 소모되는 총 에너지의

최소화를 목적으로 하여 블록 미스 발생 시 온-칩 메모리에서 교체될 가중치 블록

을 선택하는 전략을 고안하는 것이다. 압축된 AlexNet 모델을 사용한 실험을 통해

우리의 솔루션은 최적화되지 않은 메모리 레이아웃 및 LRU 교체 방법을 사용하는

경우에 비해 탐색 오버헤드를 포함하여 오프-칩 메모리 접근에 필요한 총 에너지

소비를평균 34.2%까지줄일수있음을보였다.

주요어:깊은인공신경망,비트단위가중치가지치기,부호있는숫자표현,

공통커널추출,공통컨볼루션추출,부적합압축

학번: 2015-20943
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