

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Designing Scalable Computer Systems to
Accelerate Heterogeneous NLP Models

이종자연어처리모델을위한
확장형컴퓨터시스템설계

BY

Kim Joonsung

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Designing Scalable Computer Systems to
Accelerate Heterogeneous NLP Models

이종자연어처리모델을위한
확장형컴퓨터시스템설계

BY

Kim Joonsung

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Abstract

Modern neural-network (NN) accelerators have been successful by accelerating a

small number of basic operations (e.g., convolution, fully-connected, feedback) com-

prising the specific target neural-network models (e.g., CNN, RNN). However, this

approach no longer works for the emerging full-scale natural language processing

(NLP)-based neural network models (e.g., Memory networks, Transformer, BERT),

which consist of different combinations of complex and heterogeneous operations

(e.g., self-attention, multi-head attention, large-scale feed-forward). Existing accelera-

tion proposals cover only the proposal-specific basic operations and/or customize them

for specific models only, which leads to the low performance improvement and the

narrow model coverage. Therefore, an ideal NLP accelerator should first identify all

performance-critical operations required by different NLP models and support them as

a single accelerator to achieve a high model coverage, and can adaptively optimize its

architecture to achieve the best performance for the given model.

To address these scalability and model/config diversity issues, the dissertation in-

troduces two novel projects (i.e., MnnFast and NLP-Fast) to efficiently accelerate a

wide spectrum of full-scale NLP models. First, MnnFast proposes three novel opti-

mizations to resolve three major performance problems (i.e., high memory bandwidth,

heavy computation, and cache contention) in memory-augmented neural networks.

Next, NLP-Fast adopts three optimization techniques to resolve the huge performance

variation due to the model/config diversity in emerging NLP models. We implement

both MnnFast and NLP-Fast on different hardware platforms (i.e., CPU, GPU, FPGA)

and thoroughly evaluate their performance improvement on each platform.

i

keywords: Hardware-Software Co-Design, Natural Language Processing (NLP), AI

Accelerator, Machine Learning, Computer Architecture

student number: 2017-36250

ii

Contents

Abstract i

Contents ii

List of Tables v

List of Figures vi

1 INTRODUCTION 1

2 Background 6

2.1 Memory Networks . 6

2.2 Deep Learning for NLP . 9

3 A Fast and Scalable System Architecture for Memory-Augmented Neural

Networks 14

3.1 Motivation & Design Goals . 14

3.1.1 Performance Problems in MemNN – High Off-chip Memory

Bandwidth Requirements . 15

3.1.2 Performance Problems in MemNN – High Computation . . . 16

3.1.3 Performance Problems in MemNN – Shared Cache Contention 17

3.1.4 Design Goals . 18

3.2 MnnFast . 19

ii

3.2.1 Column-Based Algorithm 19

3.2.2 Zero Skipping . 22

3.2.3 Embedding Cache . 25

3.3 Implementation . 26

3.3.1 General-Purpose Architecture – CPU 26

3.3.2 General-Purpose Architecture – GPU 28

3.3.3 Custom Hardware (FPGA) 29

3.4 Evaluation . 31

3.4.1 Experimental Setup . 31

3.4.2 CPU . 33

3.4.3 GPU . 35

3.4.4 FPGA . 37

3.4.5 Comparison Between CPU and FPGA 39

3.5 Conclusion . 39

4 A Fast, Scalable, and Flexible System for Large-Scale Heterogeneous NLP

Models 40

4.1 Motivation & Design Goals . 40

4.1.1 High Model Complexity . 40

4.1.2 High Memory Bandwidth 41

4.1.3 Heavy Computation . 42

4.1.4 Huge Performance Variation 43

4.1.5 Design Goals . 43

4.2 NLP-Fast . 44

4.2.1 Bottleneck Analysis of NLP Models 44

4.2.2 Holistic Model Partitioning 47

4.2.3 Cross-operation Zero Skipping 51

4.2.4 Adaptive Hardware Reconfiguration 54

4.3 NLP-Fast Toolkit . 56

iii

4.4 Implementation . 59

4.4.1 General-Purpose Architecture – CPU 59

4.4.2 General-Purpose Architecture – GPU 61

4.4.3 Custom Hardware (FPGA) 62

4.5 Evaluation . 64

4.5.1 Experimental Setup . 65

4.5.2 CPU . 65

4.5.3 GPU . 67

4.5.4 FPGA . 69

4.6 Conclusion . 72

5 Related Work 73

5.1 Various DNN Accelerators . 73

5.2 Various NLP Accelerators . 74

5.3 Model Partitioning . 75

5.4 Approximation . 76

5.5 Improving Flexibility . 78

5.6 Resource Optimization . 78

6 Conclusion 80

Abstract (In Korean) 106

iv

List of Tables

2.1 Representative models in emerging NLP models and their key compu-

tational components. 10

3.1 Memory networks configuration for the evaluation. 32

4.1 Time and space complexity of each key operation commonly used in

emerging NLP models. 45

4.2 Base configurations of each NLP model. 64

v

List of Figures

1.1 (a) shows an example story with a question. (b) shows where the mem-

ory network stores the story, and how it processes the question to de-

rive the answer. 2

2.1 Computational steps of memory networks (MemNN). MemNN con-

sists of embedding, input memory representation, output memory rep-

resentation and output calculation. nw means the maximum number of

words in a sentence. nq and ns are the number of questions and given

story sentences, respectively. ed is the embedding dimension. 7

2.2 Computational steps of key components used in state-of-the-art NLP

models. 11

3.1 Limited scalability due to memory bandwidth. The speedup results

of each channel configuration are normalized to the corresponding

single-thread result. 15

3.2 Performance degradation due to co-executed embedding threads. The

slowdown results are relative to the corresponding 1-embedding thread

cases. Embedding threads contend with inferencing threads for shared

memory system, thus reducing the performance of MemNN. 17

3.3 Dataflow comparison betweeen the baseline and the column-based al-

gorithm. 20

vi

3.4 Probability value distribution. Each column represents the probability

vector to each question. We use the Facebook bAbi dataset and test-

set [135]. 22

3.5 Tradeoffs between accuracy loss and computation reduction according

to the skip threshold. 24

3.6 A high-level architecture of FPGA-based MnnFast. 30

3.7 Performance of column-based algorithm on CPU. 33

3.8 Scalability of column-based algorithm on CPU. 35

3.9 The number of off-chip memory accesses on CPU. 36

3.10 Scalability of column-based algorithm on GPU. 37

3.11 Latency reduction of FPGA-based MnnFast. Each latency is normal-

ized to the baseline. 38

3.12 Effectiveness of embedding cache in FPGA-based MnnFast. Each la-

tency result is normalized to the No Cache. 38

4.1 Limited scalability due to memory bandwidth. The speedup results

of each channel configuration are normalized to the corresponding

single-thread result. 41

4.2 Performance breakdown of NLP models with various parameter con-

figurations. base configurations are in the evaluation section (i.e., ex-

perimental setup), and S/H/F-4x are configurations with a fourfold in-

crease of s, dH , and dFF , respectively. 46

4.3 Dataflow comparison between baseline and our optimizations: partial-

head update (P), column-based algorithm (C), and feed-forward split-

ting (F). 48

4.4 Probability value distribution. Each column is the probability vector

of each query. We randomly choose 512 queries in BERT during in-

ference on SQuAD. 51

vii

4.5 Tradeoffs between accuracy loss and computation reduction according

to the skip threshold. 52

4.6 Stall-minimized resource rebalancing. C-n and M-n represent the exe-

cution time of compute and memory parts in nth operation, respectively. 56

4.7 The overview of our NLP-Fast toolkit. The left figure shows an exam-

ple of applying NLP-Fast’s optimizations by using the pre-implemented

NLP-Fast libraries. The right figure presents the overview of bottle-

neck analysis for given NLP models with various configurations. . . . 57

4.8 Performance improvement on a single GPU with multiple CUDA streams.

NLP-Fast’s model partitioning enables GPU to exploit CUDA streams. 61

4.9 The architecture of FPGA-based NLP-Fast. 63

4.10 Performance improvement of CPU-based NLP-Fast on various NLP

models and configurations. MP means model partitioning. 66

4.11 Scalability on different memory bandwidth. 66

4.12 Normalized LLC MPKI for each partitioning optimization. P/C/F means

partial-head update, column-based algorithm, and feed-forward splitting. 67

4.13 Single-GPU performance improvement of GPU-based NLP-Fast on

various NLP models. 68

4.14 The overhead analysis of multi-GPU version of NLP-Fast (NE) and

the expected speedup of NLP-Fast with high bandwidth (e.g., NVLink

2.0). 68

4.15 Performance of FPGA-based NLP-Fast on various models. MP means

model partitioning. 69

4.16 Latency reduction of FPGA-based NLP-Fast on BERT. Each latency is

normalized to baseline. P/C/Z/F represents partial-head update/column-

based algorithm/zero skipping/feed-forward splitting, respectively. . . 70

viii

4.17 Effectiveness of adaptive hardware reconfiguration on various config-

urations of BERT. S/H/F-4x are parameter configurations with a four-

fold increase of s, dH , and dFF , respectively. 71

ix

Chapter 1

INTRODUCTION

Recently, the rapid advancement of natural language processing (NLP) attracts mas-

sive attention from both industry and research as the technology enhancement un-

locks some new products and services. For example, big technology companies (e.g.,

Google, Facebook) continuously develop new types of NLP workloads, which leads

to technological breakthroughs. Also, many researchers and open-source communities

propose specific NLP workloads for their own purpose.

Memory-augmented neural networks (MemNN) are getting more attention from

NLP researchers as they dramatically increase the accuracy of state-of-the-art NLP

tasks [130, 101, 100]. In contrast to typical neural networks (e.g., DNNs, CNNs,

RNNs), these memory-augmented neural networks can discretely read and write to-

kens (e.g., words, sentences) from and to an external memory, which provides the

capability to make an inference with the previous history stored in memory. Also, the

memory-augmented neural networks exploit the attention mechanism which allows

a model to learn interdependence between input and output tokens. Thanks to these

powerful context-aware information processing capabilities, the attention-based neu-

ral networks successfully become one of the most popular neural networks for NLP

researchers.

Figure 1.1 shows how MemNN processes a story with a question and an answer. In

1

S1: Mary and Sandra had dinner in the
kitchen.

S2: Sandra went to the bedroom.

S3: Mary followed Sandra

S4: Mary watched TV there

Q: Where is TV?

A. Bedroom

I1 I2 I3 I4

O1 O2 O3 O4

Q

AInput story sentences (S1 – S4)

E
m

b
e

d
d

in
g

In
fe

re
n

ce

(a) Example scenario (b) Memory Network(a) Example scenario

S1: Mary and Sandra had dinner in the
kitchen.

S2: Sandra went to the bedroom.

S3: Mary followed Sandra

S4: Mary watched TV there

Q: Where is TV?

A. Bedroom

I1 I2 I3 I4

O1 O2 O3 O4

Q

AInput story sentences (S1 – S4)

E
m

b
e

d
d

in
g

In
fe

re
n

ce

(a) Example scenario (b) Memory Network(b) Memory network

Figure 1.1: (a) shows an example story with a question. (b) shows where the memory

network stores the story, and how it processes the question to derive the answer.

this example, MemNN first receives a four-sentence story and stores it in its memory.

Next, it receives a question asking the location of TV, which can be answered only by

understanding the story (e.g., the order of sentences, the relation of words across the

sentences). To enable such context-aware information processing, MemNN performs

an inference by utilizing the information stored in the memory against the question. In

this process, the question and input sentences are converted into internal state values

(i.e., Q, Ii, Oi), and these values are stored into memory components.

To improve the reasoning power, MemNN needs to increase the size of memory

and train the network with a large-scale dataset. In fact, recent studies propose large-

scale memory networks to support growing demands for large-scale question answer-

ing tasks, but performed within the target latency [17].

These increasing demands to perform a large-scale Q/A task within the target la-

tency require a fast and scalable computer infrastructure; however, the current system

architecture does not provide the expected scalability due to the following reasons.

First, a large-scale MemNN can suffer from the increasing number of cache misses

as the data do not fit into the cache. Second, when MemNN goes through a memory-

intensive phase (i.e., the embedding operation), the increased number of DRAM ac-

cesses can degrade the overall performance significantly. Third, when MemNN goes

2

through a compute-intensive phase (i.e., the inference operation), the infrastructure can

be short of the required computing resources. Lastly, a large-scale MemNN can suffer

from a significant number of cache conflicts when different operations contend for the

shared cache (e.g., embedding vs. inference).

In addition to this scalability issue, recent emerging NLP workloads have huge

model/config diversity as researchers propose various types of network models accord-

ing to different purposes. For example, Memory networks, developed by Facebook, is

used in a simple language question answering system and language modeling tasks.

Transformer, developed by Google, is proposed to solve many sequence transduction

tasks (e.g., language translation). BERT, also proposed by Google, causes a stir in the

NLP community by providing state-of-the-art results in a wide variety of NLP tasks

(e.g., question answering, natural language inference, GLUE benchmarks).

This huge model/config diversity makes the current computer infrastructure diffi-

cult to provide enough scalability due to the follwing reasons. First, there is no work

endeavoring to holistically optimize all operations in the NLP workloads. Second, a

wide variety of parameter configurations incurs a huge performance variation, which

makes the current system architecture difficult to find out an optimal design point.

Therefore, we need a fast, scalable, and flexible system architecture for emerging

heterogeneous NLP workloads.

In this dissertation, we introduce two novel schemes (i.e., MnnFast, NLP-Fast)

to address aforementioned scalability and diversity problems in recent NLP models.

We first present MnnFast a novel large-scale MemNN system architecture to achieve

fast and scalable reasoning performance. MnnFast adopts three novel optimizations:

column-based algorithm with streaming, zero-skipping, and embedding cache. To re-

duce the memory bandwidth overhead, MnnFast applies a modified memory-access

algorithm (called column-based algorithm) to minimize the size of data spills and en-

able more efficient data chunking by transforming a large-scale memory access to

many parallelized small-scale memory accesses. With the column-based algorithm ap-

3

plied, MnnFast can further improve its performance by performing data computation

and prefetching data required for the next calculation in parallel (called streaming

optimization). To reduce the computation overhead, MnnFast applies an optimization

technique (called zero-skipping) to bypass computations dealing with zero or near-zero

numbers stored in the memory. To solve the cache contention problem, MnnFast can

make memory-intensive embedding operations either bypass the cache or stored in a

dedicated memory (called embedding cache).

Next, we show NLP-Fast, a novel fast, scalable, and adaptive system architec-

ture for the emerging NLP workloads. To cover various types of emerging NLP work-

loads, we extract common operations used in the NLP workloads by conducting exten-

sive profiling and static analysis. Then, we propose three novel optimizations: holistic

model partitioning, cross-operation zero-skipping, and model/config-adaptive hard-

ware reconfiguration. To holistically reduce the memory accessing overhead, NLP-

Fast applies three novel model partitioning techniques (i.e., partial-head update, column-

based algorithm, feed-forward splitting), which can cover all types of operations in

state-of-the-art NLP workloads. These model partitioning techniques minimize the

size of data spills and enable the current infrastructure to hide most memory accessing

overhead by significantly reducing the working set size. To reduce the computation

overhead, NLP-Fast applies an optimization technique (called cross-operation zero

skipping) to bypass computations dealing with zero or near-zero values stored in the

memory. Also, NLP-Fast carefully manages an execution time skewness caused by the

zero-skipping optimization to maximize resource utilization. To increase the system

flexibility, we provide further optimization (called model/config-adaptive hardware

reconfiguration) to fully leverage hardware accelerators. Our adaptive hardware recon-

figuration helps an HW accelerator to achieve full potential performance by finding an

optimal design point.

For the evaluation, we implement both MnnFast and NLP-Fast on top of various

platforms: CPU, GPU, and FPGA. For MnnFast, we first present the results of CPU-

4

based MnnFast with extensive profiling and analysis: memory throttling test and cache

statistics. Next, we implement GPU-based MnnFast and show that our optimizations

can improve single-GPU performance as well as achieve the scalable performance in

the multi-GPU environment. Lastly, we build FPGA-based MnnFast with the embed-

ding cache and measure its performance and energy efficiency.

For NLP-Fast, we present the similar results for CPU-based and GPU-based NLP-

Fast (i.e., extensive profiling and analysis for CPU, scalable performance improve-

ment for GPU). Here, we highlight the results of FPGA-based NLP-Fast with the

model/config-adaptive hardware reconfiguration and measure its performance.

The rest of the dissertation is organized as follows. Chapter 2 explains the char-

acteristics of memory networks and the state-of-the-art deep learning approaches for

NLP workloads. Chapter 3 describes how MnnFast solves the performance problems

to achieve the scalable performance in memory networks. Chapter 4 shows how NLP-

Fast provides enough scalability for heterogeneous NLP models on various hardware

platforms. Finally, Section 5 and Section 6 provide related work and conclusion, re-

spectively.

5

Chapter 2

Background

In this section, we introduce a representative memory-augmented neural network,

memory networks developed by Facebook [125, 136] (Section 2.1). We then provide

state-of-the-art neural networks (including memory networks) widely used in NLP

field (Section 2.2).

2.1 Memory Networks

Neural networks have shown high accuracy comparable to the human on image classi-

fication and speech recognition. Recurrent neural networks (RNNs), designed to work

on sequence prediction problems, derive an answer to a question from the previous

reasonings [86, 57]. However, RNNs cannot memorize the previous history for a long

time [15] nor handle a large amount of history due to their small memory [136]. There-

fore, they cannot perform sophisticated tasks requiring a large amount of memory, such

as a task which comprehends a series of books to provide useful information to users.

Memory networks (MemNNs), developed by Facebook, solve the problem of RNNs

by augmenting neural networks with external memory [136, 125]. The large-scale ex-

ternal memory allows MemNN to solve the sophisticated tasks. Nowadays, thanks to

its huge reasoning power, MemNN is widely used in various fields from simple dialog

6

Q
nw x nq

U
ed x nq

MIN

ns x ed
TIN

ns x nq
P

ns x nq

Input memory representationEmbedding

Inner product SoftmaxLookup

P
ns x nq

MOUT

ns x ed
O

ed x nq
W

nw x ed
A

nw x nq

Output memory representation Output calculation

∑ +

Weighted sum SoftmaxSum FC

Figure 2.1: Computational steps of memory networks (MemNN). MemNN consists of

embedding, input memory representation, output memory representation and output

calculation. nw means the maximum number of words in a sentence. nq and ns are

the number of questions and given story sentences, respectively. ed is the embedding

dimension.

comprehension to large-scale question & answering system using a large-scale dataset

(e.g., Wikipedia) [134, 125, 55, 34, 87]

Figure 2.1 shows a high-level overview of MemNN’s computational structure.

MemNN consists of two major operations: embedding and inference. The embedding

operation converts a given sentence into an internal state. MemNN first converts story

and question sentences into internal states, and these states are stored into input/output

memory (MIN /MOUT) and question state memory (U), respectively. The inference op-

eration calculates answers to each question by going through multiple different types

7

of computational layers: input memory representation, output memory representation,

and output calculation. By doing so, MemNN successfully reasons out answers by ex-

ploiting the large-scale memory components. The following paragraphs describe each

operation and their characteristics in more details.

Embedding operation. The main purpose of the embedding operation is convert-

ing an input sentence into a representative internal state vector (of size 1× ed). First,

MemNN extracts features from texts by using a bag-of-words (BoW) model [109]. By

following the BoW model, MemNN embeds each word by looking up a vector from an

embedding matrix (of size ed×V , V is the number of words in a dictionary) and sums

the resulting vectors.1 Internal state vectors of story sentences are stored into matrices

MIN and MOUT , and question sentences are also embedded in a matrix U (Figure 2.1).

Inference operation. With the extracted internal states, MemNN calculates an

answer during the inference operation which consists of three computational steps:

input memory representation, output memory representation, and output calculation.

First, in the input memory representation step, MemNN calculates a probability

vector, p-vector, which represents the correlation between the given question and each

story sentence.

p = So f tmax(u×MIN) (2.1)

Equation (2.1) shows how to compute the p-vector. MemNN computes the p-vector by

calculating dot product of the internal state vector of a question (u) and each memory

state vector in the input matrix (MIN) and applying a softmax function (So f tmax(xi) =

exi/∑ j ex j) to the results of the dot products. By doing so, MemNN can extract the

correlation of questions and sentences.

Second, in the output memory representation step, MemNN calculates a weighted

sum of an output memory. The output memory (MOUT) holds internal state vectors

corresponding to given story sentences. MemNN computes a sum over these output

1Some studies multiply position weights to vectors before the sum of all vectors to preserve the order

of words in the sentence.

8

vectors (mOUT
i) weighted by the probability value (pi) extracted from the previous

step:

o = ∑
i

pimOUT
i (2.2)

The resulting vector o is called a response vector, and the response vector is delivered

to the output calculation step to make the final answer.

In the output calculation step, MemNN generates the final prediction for the given

question. It computes the sum of the response vector o and the question vector u, and

the outcome passes through the fully connected (FC) layer with a weight matrix (W).

Depending on the applications, the input memory and output memory representation

steps iterate over several times for better results, followed by the FC layer and the

softmax function.

2.2 Deep Learning for NLP

Recently, neural networks have risen as new information processing paradigms in nat-

ural language processing (NLP) as they break records on many NLP tasks. In the

early period, simple neural networks (e.g., RNNs) are used for NLP tasks; however,

they cannot perform sophisticated tasks due to their limited capability of memoriz-

ing the previous history. To resolve these limitations, big technology companies (e.g.,

Google, Facebook, Microsoft) and open-source research communities (e.g., OpenAI)

actively propose new types of complex NLP models (e.g., memory-augmented neu-

ral networks [136, 125], attention-based neural networks [128, 32]). Nowadays, these

complex emerging NLP models are widely used in various NLP tasks from simple

dialog comprehension to large-scale question & answering system using a large-scale

dataset (e.g., Wikipedia) [134, 55, 34, 87].

We group emerging NLP models into three representative models (i.e., Memory

networks, Transformer, BERT) and classify their key computational components by

conducting extensive profiling and static analysis. Table 2.1 shows the category of

9

Table 2.1: Representative models in emerging NLP models and their key computa-

tional components.

Key Computational Components

Attention

mechanism

Multi-head

attention

Multi-head

self-attention

Feed

forward

Memory networks

[136, 125, 17, 87, 72]
X

Transformer

[128, 29, 141, 98, 12, 68]
X† X X

BERT

[32, 73, 79, 149, 28, 66]
X X

† Encoder-decoder attention layer in the transformer decoder.

recent NLP models and their key computational components: attention mechanism,

multi-head attention, multi-head self-attention, and feed-forward network.

Memory networks consists of multiple consecutive attention mechanisms followed

by a simple fully-connected layer with softmax. Transformer has an encoder-decoder

structure. The encoder consists of two components (i.e., multi-head self-attention,

feed-forward network), and the decoder comprises three components: two components

in the encoder with an additional component (i.e., multi-head attention). BERT con-

sists of multiple Transformer encoders. Different from the Transformer, BERT uses

GELU (not ReLU) as an activation function in the feed-forward network.

In Figure 2.2, we illustrate how each computational component operates. Fig-

ure 2.2a shows the attention mechanism. There are three input matrices in the attention

mechanism: a query matrix (Q ∈ Rnq×d), a key matrix (K ∈ Rns×d), and a value matrix

(V ∈ Rns×d). Here, nq and ns represent the number of queries and key-value pairs re-

spectively, and d is the dimension of internal states. The query matrix passes through

10

K
ns x d

∑

Dot product Softmax Weighted sum

Q
nq x d

S
nq x ns

V
ns x d

A
nq x d

P
nq x ns

(a) Attention mechanism.

Q-Gen

I
s x dem

Concat + FC

Wi
Q

dem x dhd

Qi
s x dhd

Ai
s x dhd

WO

dH x dH

Z
s x dH

X X

co
n
ca
tAttention

nq  s
ns  s
d  dhd

(b) Multi-head attention.

Q/K/V-Gen

Attention
nq  s
ns  s
d  dhd

X

X

co
n
ca
t

X

X

Wi
K

Wi
V

Wi
Q

Ai WO Z

I

Qi

Vi

Ki

(c) Multi-head self-attention.

Z’
s x dH

X X

W1
FF

dH x dFF

T1
s x dFF

W2
FF

dFF x dH

T2
s x dFF

O
s x dH

Linear trans-1
Activation func.
(e.g., ReLU, GELU) Linear trans-2

ReLU
GELU

(d) Feed-forward network.

Figure 2.2: Computational steps of key components used in state-of-the-art NLP mod-

els.

11

three operations (i.e., dot product, softmax, weighted sum) to calculate an attention

result for each query. Equation (2.3) shows how to compute the attention result (A).

A = Attention(Q,K,V) = So f tmax(Q×KT)×V (2.3)

The attention mechanism first computes a score matrix (S) by computing dot products

of each query with all keys. Next, it calculates a probability matrix (P) by applying a

softmax function (So f tmax(xi) = exi/∑ j ex j) to the score matrix. Then, the attention

mechanism computes a sum of values weighted by these probabilities to calculate the

attention result (A).

Figure 2.2b illustrates how the multi-head attention works. The multi-head atten-

tion computes different versions of attention results (Ai) for each head, concatenates

the attention results, and applies a fully-connected (FC) operation (called attention FC)

to the concatenated results for calculating the final output (Z). Equation (2.4) shows

the details.
Z = MultiHead(I,K,V) =Concat({headi}h

i=1)×W O

headi = Attention(I×W Q
i ,ki,vi)

(2.4)

There are three input matrices in the multi-head attention: an input matrix (I ∈Rs×dem),

a key matrix (K∈Rs×dH), and a value matrix (V∈Rs×dH). Both key and value matrices

are split into h sub-key/value matrices (ki ∈ Rs×dhd , vi ∈ Rs×dhd), respectively. Here, h

is the number of heads, s means a sequence length in the model, and dem and dH are

the dimensions of input and internal states, respectively. For each attention head, dH is

mapped into the lower dimension of size dhd . Different from the attention mechanism,

the multi-head attention conducts a query generation (Q-Gen) to calculate the query

matrix from an input (I×W Q
i).

Figure 2.2c shows the multi-head self-attention. Compared to the multi-head atten-

tion (which needs three input matrices), the multi-head self-attention requires only one

input matrix (I). Instead, it generates query/key/value matrices from the input matrix

(Q/K/V-Gen) as Equation (2.5).

12

Z = MultiHeadSel f (I) =Concat({headi}h
i=1)×W O

headi = Attention(I×W Q
i , I×W K

i , I×WV
i)

(2.5)

In addition to attention components, state-of-the-art NLP models also contain a

feed-forward network. Figure 2.2d shows the high-level overview of the feed-forward

network (FFN) commonly used in NLP models. There are two weight matrices for two

linear transformations (WFF
1 ∈ RdH×dFF , WFF

2 ∈ RdFF×dH). Equation (2.6) shows the

details.

O = FFN(Z′) = ActFunc(Z′×W FF
1)×W FF

2 (2.6)

An activation function (ActFunc) may differ for each type of NLP models. For exam-

ple, the Transformer uses ReLU as the activation function while BERT uses GELU.

13

Chapter 3

A Fast and Scalable System Architecture for Memory-

Augmented Neural Networks

3.1 Motivation & Design Goals

Researchers start exploiting the huge reasoning power of MemNN to solve sophisti-

cated problems such as large-scale question answering tasks. To solve such complex

problems, MemNN becomes bigger and turns into a large-scale memory network, de-

manding larger embedding dimension (ed) and more input sentences (ns) [17, 18, 55,

34, 87, 76]. The large-scale memory networks require high-scalability to handle the

increasing computation and memory demands. The current MemNN, however, cannot

achieve scalability for three reasons: high memory bandwidth, heavy computation, and

cache contention.

In this section, we show the major performance bottlenecks in the state-of-the-art

MemNN [125]. We first explain how memory bandwidth affects the overall perfor-

mance (Section 3.1.1). Next, we provide the characteristics of MemNN computation,

which requires huge compute resources (Section 3.1.2). Lastly, we show cache con-

tention between the inference and embedding operations and quantify its performance

impacts (Section 3.1.3).

14

0

5

10

15

20

0 5 10 15 20

S
p
e
e
d
u
p

of threads

1-channel
2-channel
4-channel
Ideal

Figure 3.1: Limited scalability due to memory bandwidth. The speedup results of each

channel configuration are normalized to the corresponding single-thread result.

3.1.1 Performance Problems in MemNN – High Off-chip Memory Band-

width Requirements

MemNN requires a significant amount of memory bandwidth. For example, during the

embedding operation, MemNN looks up the embedding matrix to convert input sen-

tences into internal state vectors. Larger embedding dimension is good at solving com-

plicated questions [17] but incurs higher memory pressure. Not only the embedding

operation, but also the inference operation causes high memory traffic (e.g., input/out-

put memory accesses, intermediate data spills). In the inference operation, MemNN

has to load the whole input and output memory (MIN and MOUT , respectively) whose

size is proportionate to the embedding dimension (ed) and the number of story sen-

tences (ns). As the networks are getting larger, the size of these in/out memory is

rapidly increasing. Furthermore, MemNN spills a large amount of intermediate data

between each layer: Inner product, Softmax, and Weighted sum (Figure 2.1). These

data spills are proportionate to ns as well. Therefore, their overheads will continuously

increase.

Figure 3.1 shows how available memory bandwidth affects the scalability of MemNN.

To prove the high memory bandwidth requirement is one of the key limiting factor, we

measure the performance speedup with multiple threads, reducing memory bandwidth

15

(# of memory channels). Here, our experimental environment has enough CPU cores

(i.e., Xeon E5-2650 v4 12C/24T 2x), so the computation does not be a performance

bottleneck. We can observe that MemNN quickly reaches a performance saturation

point as the bandwidth decreases; in other words, a large amount of memory band-

width requirements prevent MemNN from achieving scalable performance.

To overcome the memory bandwidth problem, we need more efficient memory

management mechanisms to achieve good scalability. Fortunately, we find out a novel

method to reduce memory bandwidth requirements and hide memory accessing over-

heads in the background. We propose a new computation algorithm (called column-

based algorithm) which minimizes the size of data spills, provides more efficient data

chunking, and enable MemNN to hide most memory accessing overheads. We explain

the algorithm in Section 3.2.1 for more details.

3.1.2 Performance Problems in MemNN – High Computation

MemNN is not only memory-intensive but also compute-intensive application. An-

alyzing the characteristics and types of computation, we find out MemNN consists

of a few compute-intensive operations. For example, MemNN requires multiple ma-

trix multiplication operations (i.e., Inner product, Weighted sum, FC layer) known as

compute-intensive tasks. Also, the Softmax function uses exponentiation requiring a

large number of integer multiplications.

Therefore, MemNN is challenging to achieve scalable performance due to its sub-

stantial computational overheads. The amount of computation in MemNN superlin-

early increases as its time complexity is O(na) (where a >= 2.375) [137]. So, even

if the number of CPU cores increases, the overall system will show sublinear per-

formance. Also, we cannot easily scale-up CPU performance due to technology con-

straints; the overall performance will be quickly saturated.

To overcome the high computation problem, we need more powerful computing

units (e.g., GPU, FPGA, ASIC) and optimization techniques to reduce the amount of

16

0.7

0.8

0.9

1

1 2 4 8 16 20

S
lo

w
d
o
w

n

of threads

1-embed 4-embed 8-embed 12-embed

Figure 3.2: Performance degradation due to co-executed embedding threads. The slow-

down results are relative to the corresponding 1-embedding thread cases. Embedding

threads contend with inferencing threads for shared memory system, thus reducing the

performance of MemNN.

computation. From an in-depth analysis, we find out the high potential for reducing

the computation in the output memory representation step. The probability vector p

represents the correlation between a question sentence and story sentences, and only a

few story sentences are related to the given question; therefore, most values are close to

zero. So, we propose a zero-skipping optimization to bypass a large amount of output

computation. We explain the optimization in Section 3.2.2 for more details.

3.1.3 Performance Problems in MemNN – Shared Cache Contention

MemNN consists of the embedding and inference operations, and these two opera-

tions exhibit different characteristics: memory-intensive and compute-intensive, re-

spectively. The inference operation has a large amount of computation; to efficiently

handle such a large amount of computes with high throughput, they need to keep their

necessary data in a shared cache as much as possible [49]. However, as multiple ques-

tion answering tasks are executed simultaneously (multi-tenant setting), two opera-

tions contend for the shared cache, which results in the cache contention problem.

The embedding operation accesses a large amount of data, polluting the shared cache.

17

Since the inference operation heavily uses the shared cache (e.g., OpenBLAS [49],

Intel MKL [131]), the cache contention results in significant performance degradation.

Figure 3.2 shows the performance degradation due to the cache contention. We

measure the cache contention’s impact on different scales of MemNN by varying the

number of simultaneously-executed embedding operations. The impact increases with

the scale of MemNN and the number of embedding operations, which indicates that we

cannot simply scale up MemNN to meet the increasing demands due to the contention.

To overcome the cache contention problem, we should isolate memory accesses

during the embedding operation from the entire memory accesses. We can simply ap-

ply cache bypassing techniques for CPU; however, it results in high latency overheads

to the embedding operation and more memory pressure on off-chip DRAM. To mini-

mize these overheads, we propose an embedding cache dedicated to efficiently cache

the embedding matrix. We describe a caching policy and an architecture of the embed-

ding cache in Section 3.2.3 for more details.

3.1.4 Design Goals

Based on the discussion of the performance problems so far, we set our key design

goals and provide a brief description of our key ideas to achieve the scalable large-

scale memNN.

• Efficient memory management algorithm. It should minimize the memory

bandwidth requirements. We propose the column-based algorithm to eliminate

the intermediate data spills.

• Reduction of computation. It should reduce the amount of computation. We

propose the zero-skipping optimization to decrease the output computation by

skipping output operations of near-zero probability values.

• Shared cache isolation. It should avoid cache contention between the embed-

ding and inference operations. We propose the embedding cache dedicated for

the embedding matrix.

18

3.2 MnnFast

3.2.1 Column-Based Algorithm

MemNN suffers from a large amount of off-chip memory bandwidth (Section 3.1.1),

which results in poor scalability. The current algorithm (baseline) consecutively cal-

culates each layer (i.e., in-memory dot product (Inner product), softmax for p-value

(Softmax), weighted sum with out-memory (Weighted sum)), which generates a num-

ber of intermediate data spills between each layer. Since shared cache cannot afford

to hold these intermediate data, the baseline MemNN necessarily flushes and re-reads

those temporary data to and from off-chip DRAM. Not only intermediate data spills

but the baseline MemNN also suffers from inefficient data chunking of current matrix

multiplication libraries (e.g., OpenBLAS) as their data chunking mechanisms are not

MemNN-friendly.

o = ∑
i

So f tmax(u×mIN
i)mOUT

i = ∑
i

eu×mIN
i mOUT

i

∑ j eu×mIN
j

(3.1)

Equation (3.1) shows how baseline MemNN computes the output vector. The base-

line first calculates a probability vector (p) by calculating the dot product between an

input vector (u) and each in-memory vector (mIN
i) followed by applying the softmax

function. Next, the baseline computes the sum of weighted values multiplying each

output-memory vector (mOUT
i) by a corresponding probability value (pi). Figure 3.3a

describes dataflow of these computational steps. The baseline generates three tempo-

rary vectors (i.e., TIN , Pexp, P) for each question, and the size of these vectors is propor-

tionate to the number of story sentences (ns) which continuously increases to support

more complex question answering tasks. For example, when MemNN uses Wikipedia

for training, the number of story sentences are around 200M [7]. In this case, the size

of each intermediate vector is 800MB (use float data type) per each question, which

easily exceeds the size of the typical shared cache (8MB – 40MB). Therefore, these

temporary data are spilled to off-chip DRAM, incurring huge memory traffic and ex-

19

Pexp

P

TIN

MIN

MOUT

(1) Inner product

(2-1) Exp & Sum

(2-2) Div

(3) Weighted sum

Pexp

TIN

MIN

MOUT

(2) Exp & Sum

(1) Inner product

Input vector Input vector

(3) Weighted sum

(4) Lazy div

(a) Baseline

Pexp

P

TIN

MIN

MOUT

(1) Inner product

(2-1) Exp & Sum

(2-2) Div

(3) Weighted sum

Pexp

TIN

MIN

MOUT

(2) Exp & Sum

(1) Inner product

Input vector Input vector

(3) Weighted sum

(4) Lazy div

(b) Column-based algorithm

Figure 3.3: Dataflow comparison betweeen the baseline and the column-based algo-

rithm.

acerbating the overall performance.

To reduce the size of temporary data, we propose a column-based algorithm en-

abling MemNN to partially calculate output vectors. The key idea of the proposed

algorithm is a lazy softmax calculation, which computes the Softmax’s division opera-

tion at last, not in the middle.

o =
1

∑ j eu×mIN
j

∑
i

eu×mIN
i mOUT

i (3.2)

Equation (3.2) shows how the column-based algorithm calculates the output vector.

Compared to the baseline, the column-based algorithm pulls the sum (∑ j eu×mIN
j) out

of the outer summation (∑i). Since the sum does not depend on the index i, the column-

based algorithm generates the same results to the baseline. By doing so, the column-

based MemNN does not need to wait for the sum of entire values in the Softmax func-

tion and possible to calculate a part of the output vector.

Figure 3.3b describes the computational steps of the column-based algorithm and

its dataflow. The column-based MemNN partitions input/output memory into multi-

20

ple chunks, and calculates partial output vectors for each chunk. The column-based

MemNN computes dot products of the input vector with each in-memory vector and

applies exponential function to the results, similar to the baseline. Here, in contrast

to the baseline, the column-based MemNN directly calculates the weighted sum. The

column-based MemNN iterates above operations over multiple chunks and accumu-

lates each weighted sum into the output vector. After the end of the iteration, the

column-based MemNN divides the output vector by the sum (∑ j eu×mIN
j) calculated

in the second step (lazy softmax calculation).

By doing so, the column-based MemNN can successfully reduce the size of tempo-

rary data to fit those into the cache. For example, when the chunk size is 1K, the total

amount of intermediate vectors (i.e., TIN , Pexp) is 8KB per each chunk calculation;

therefore, we can eliminate the entire off-chip DRAM accesses for intermediate vec-

tors. In addition, the column-based MemNN facilitates input/output memory streaming

to hide the memory access overheads. In contrast to the baseline, which cannot load in-

put/output memory into caches due to their enormous size, the column-based MemNN

can load those memory into the cache because it partially loads input/output memory

per each chunk operation. We show the performance impacts of both temporary data

reduction and input/output memory streaming in Section 3.4.2.

Also, the column-based MemNN can reduce the amount of computation (i.e., soft-

max’s division operation). In the baseline, the number of division operations is pro-

portionate to the number of story sentences ns (step 2-2 in Figure 3.3a). However,

the column-based MemNN requires the division operations in the size of the embed-

ding dimension ed (step 4 in Figure 3.3b). Since the typical size of ed (32 – 256) is

much smaller than ns (¿ 100M), the column-based MemNN can significantly reduce

the amount of computation.

Lastly, the column-based algorithm enables MemNN to achieve scale-out architec-

ture. As the baseline computes each layer step-by-step, it cannot split each layer into

multiple sub-layers due to enormous synchronization overheads. Therefore, to improve

21

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Questions

0
10
20
30
40
50M

e
m

o
ry

 p
o
si

ti
o
n

0.0
0.2
0.4
0.6
0.8
1.0

P
ro

b
a
b

ili
ty

 v
a
lu

e

Figure 3.4: Probability value distribution. Each column represents the probability vec-

tor to each question. We use the Facebook bAbi dataset and testset [135].

the overall performance, the system should be scaled-up. Instead, the column-based

MemNN can partition each layer into multiple sub-layers based on the chunk and

merge the results at once. Here, synchronization overheads are negligible because the

size of output results are proportionate to ed. Therefore, the column-based MemNN

can distribute these sub-tasks into multiple compute units (e.g., CPU, GPU, FPGA) and

fully utilize these resources. We evaluate this scale-out characteristic in Section 3.4.3.

3.2.2 Zero Skipping

Increasing demands for large-scale MemNN result in significant computation over-

heads because its computation algorithm shows super-linear complexity. As described

in Section 3.1.2, MemNN’s compute-intensive phase (the inference operation) con-

sists of three core computation steps: inner product, softmax, and weighted sum. For

inner product and weighted sum, we need to calculate matrix multiplication known for

super-linear time complexity. In this section, to reduce these computation overheads,

we propose a zero-skipping technique and show its tradeoff between accuracy loss and

the ratio of computation reduction.

The key observation for the zero-skipping technique is that the probability vector,

calculated from the inner product between a question vector and in-memory matrix,

22

Algorithm 1: MnnFast’s zero-skipping algorithm.
input : The skip threshold thskip

input : The probability vector P.

input : The output memory MIN

output: The weighted sum O.

/* Calculate the weighted sum of the output memory with the

probability values. */

1 O = [0] /* Initialize the output vector. */

2 foreach i < ns do

/* ns is the number of story sentences. */

3 if pi > thskip then

4 O = O + pimOUT
i

5 end

6 return O

shows a huge imbalance. Specifically, only a few values are non-zero and others are

close to zero.1 Figure 3.4 shows the probability value distribution. We use Facebook

bAbi tasks and its dataset [135] and measure probability values to each question. In

this evaluation, MemNN gets up to 50 story sentences followed by a question, and we

show probability vectors for randomly chosen 100 questions. The results show that

only a few probability values are activated and most values are close to zero. It is

because the probability vector means the correlation of question sentence with story

sentences, and only a few story sentences are related to the given question.

By using this characteristic, we propose the zero-skipping optimization to bypass

a large amount of output computation. Algorithm 1 shows how MnnFast reduces the

quantity of output memory computation by using the zero-skipping optimization. In

contrast to the baseline which calculates all multiplications between probability values

1Note that the sum of all values in the probability vector is one because these values are normalized

by the softmax function.

23

0
20
40
60
80
1000

20
40
60
80

100

0.001 0.01 0.1 1

S
k
ip

 R
a
ti
o
 (

%
)

(H
ig

h
e
r

is
 b

e
tt

e
r)

A
cc

u
ra

cy
 L

o
ss

 (
%

)

(H
ig

h
e
r

is
 b

e
tt

e
r)

Zero-skip Threshold (log-scale)

Accuracy Loss
Skip Ratio

Figure 3.5: Tradeoffs between accuracy loss and computation reduction according to

the skip threshold.

and output memory vectors, the zero-skipping algorithm only computes the multipli-

cation when the probability value is larger than a threshold value (thskip) (line 3 and

4). By doing so, MnnFast can skip some portions of output memory computation.

The zero-skipping optimization can significantly reduce the amount of output mem-

ory computation; however, it also sacrifices the prediction accuracy. If the skip thresh-

old is too high, we can skip an enormous amount of computation; however, its predic-

tion accuracy will dramatically decrease. On the other hands, if the skip threshold is

too low, we cannot get enough opportunity to reduce the quantity of computation.

To quantify tradeoffs between accuracy loss and computation reduction, we mea-

sure both the accuracy loss and the ratio of computation reduction according to the

different skip thresholds. We use Facebook’s bAbi dataset and 20 QA tasks and get

an average among the QA tasks. Both accuracy loss and computation reduction are

measured by comparing with the baseline’s accuracy and the amount of computation

respectively.

Figure 3.5 shows the results of the evaluation. The results show that the zero-

skipping optimization can achieve 97% reduction of output computation while sac-

rificing 0.87% of accuracy when the skip threshold is 0.1. When the skip threshold

is 0.01, our optimization shows 81% reduction without any accuracy loss. Note that

probability values in MemNN represent the correlation between a question and story

24

sentences, and generally few story sentences are related to the given question; there-

fore, the zero-skipping optimization is highly promising for MemNN to reduce the

amount of computation.

3.2.3 Embedding Cache

As described in Section 3.1.3, the large-scale MemNN suffers from huge cache con-

tention between the embedding and inference operations. While the inference opera-

tion actively uses the shared cache to maximize CPU utilization, the embedding op-

eration generates a large quantity of memory requests and pollutes the shared cache.

This cache contention dramatically increases the number of cache misses for the in-

ference operation, which results in huge performance degradation. In this section, we

provide some techniques (i.e., cache bypassing, embedding cache) to solve the cache

contention problem in various hardware architectures.

In the CPU environment, we can simply apply a cache bypassing technique for

embedding’s memory requests. By using non-temporal memory instructions [9] for

the embedding operation, we can achieve the memory isolation between the infer-

ence and embedding operations. However, the bypassing techniques has two major

drawbacks. First, memory access overheads of the embedding operation are limited

to DRAM access latencies, which increases the execution latency of the embedding

operation significantly. Second, the technique raises the amount of memory pressure

as the number of DRAM accesses increases.

To overcome these limitations, we propose an embedding cache. The embedding

cache is a dedicated cache for storing internal state vectors during the embedding oper-

ation. As explained in Section 2.1, during the embedding operation, MemNN looks up

a vector from the embedding matrix per each word in a sentence. Here, the embedding

cache stores pairs of word ID (represented by the BoW model) and a corresponding

internal state vector. Since each access loads the vectors whose size is the embedding

dimension, we set the word size of our embedding cache as the embedding dimension.

25

With the embedding cache, we can perfectly eliminate the cache contention.

In addition, the embedding cache reduces the quantity of off-chip DRAM mem-

ory requests because of a high word locality. Linguistics researchers show that the

high word locality exists in from daily conversations to literature [30]. Therefore,

most lookup operations load coresponding internal vectors from the embedding cache,

which leads to reducing the number of DRAM accesses.

3.3 Implementation

To show the effectiveness of our idea MnnFast across various platforms, we implement

the baseline MemNN and MnnFast on CPU, GPU, and FPGA. While specialized ar-

chitectures are getting lots of attention for machine learning, general-purpose CPU and

GPU are still popular. Thus, we first validate our idea on CPU and GPU first, then we

elaborate on the possible specialized hardware design, which is based on the analysis

of the general-purpose architecture.

3.3.1 General-Purpose Architecture – CPU

We first implement the baseline MemNN [125] and MnnFast on CPU. In Section 3.4.2,

we elaborate on the potential effect of column-based MemNN based on this implemen-

tation.

Baseline Implementation (MemNN). We implement MemNN in C++ with open-

source BLAS library, OpenBLAS [132, 140]. We implement each operation (described

in Section 2.1) as a single function. Our implementation takes three input data: input

memory, output memory, and question sentences. The input and output memory are

usually provided by the system while users give the question sentences to the system.

For interactive applications, users could provide necessary sentences to build the in-

put and output memory containing user-specific contextual database (e.g., the book

contents a user has read).

26

We assume that all the input and output memory have already been converted into

the internal data format as the data would be prepared from an external database in

advance. On the other hand, as questions are generated on-the-fly by users, we assume

each question is in a raw format, Bag-of-Words.

First, we convert a given question into an internal representation. The operation

consists of lookup operations. For each word in the question, we find the corresponding

embedding vector from an embedding matrix (an embedding dictionary) and sum up

the vectors into a single vector to represent the question. We implement the embedding

matrix as an array to retrieve embedding vectors in O(1).

Then, we inference the corresponding answer from the given knowledge database,

input and output memory. The remaining computational steps (input and output mem-

ory representation and output calculation) consist of a series of Inner product, Softmax,

Weighted sum, Vector sum, and FC. All operations excluding Softmax are represented

in vector operations (Section 2.1). For example, Inner product and Weighted sum are

implemented as matrix-vector (vector-matrix) multiplications. To implement them, we

rely on OpenBLAS for efficient computation.

We parallelize each operation in a lock-step manner. To parallelize the BLAS-

based operations, we exploit the multi-threading feature of BLAS library. To paral-

lelize Softmax, which does not rely on BLAS operations, we divide it into three steps:

(1) applying the natural exponential function on the elements of a vector, (2) calculat-

ing the sum of the exponential results, and (3) normalizing the exponential results with

the summation. We exploit data-level parallelization of each step with PThread.

Column-based algorithm & zero-skipping. The column-based algorithm simul-

taneously applies the inference operation on sub-chunks of the given knowledge database.

We divide the knowledge database into sub-chunks, each of which contains 1000 sen-

tences, and then make multiple worker threads to process them independently. Unlike

MemNN, each thread performs a series of inference operations on only a given sub-

chunk, not on the entire data.

27

To perform inference on sub-chunks in parallel, we use Partial softmax we propose

in Section 3.2.1. The other operations are implemented in a similar way to the baseline

MemNN. Compared to the baseline MemNN, column-based algorithm parallelizes

operations not only within a single operation but also across multiple operations.

As only a few sentences of the output memory are related to a given question,

we apply zero-skipping (Section 3.2.2) to Weight sum operation. Our implementation

skips adding up output sentences whose weight (or probability) is lower than 0.1.

3.3.2 General-Purpose Architecture – GPU

As an intermediate step before we move on to the FPGA implementation, we evalu-

ate the proposed algorithm on GPUs. As discussed earlier, column-based algorithm

changes the following four consecutive steps, namely Inner product, Softmax,

Weighted sum, and Sum. Therefore, we make these four steps into GPU kernels

and perform memory copy from/to GPUs between kernel invocations if needed.

GPU kernel implementation. We use cuBLAS [1] provided with CUDA Toolkit

10.0 to perform matrix-matrix multiplications. By using the state of the art GPU BLAS

library, we try to avoid any inefficiency incurred by unoptimized kernel implementa-

tion. All steps except Softmax is implemented by calling a cuBLAS function, while

Softmax is implemented as one custom kernel followed by a cuBLAS function. The

custom kernel of Softmax calculates exponential value of each input value, which is

too simple to be further optimized, as threads are regularly mapped to one input/output

memory address. The other three steps are simply translated into cuBLAS calls; specif-

ically, Inner product is multiplication of two matrices MIN and U , Weighted

sum is multiplication of PT (transpose of T) and MOUT , and Sum is multiplication of

a vector filled with ones and the result of the previous step.

Column-based algorithm. To apply column-wide data partition, we use multi-

ple CUDA streams with one GPU, or multiple GPUs each with one stream. Each

stream/GPU processes sub-matrices consisting of smaller number of sentences. Thanks

28

to the column-based algorithm, the first three steps are executed in parallel. Only the

last step, which serves as reducing the partial results from different streams/GPUs, is

executed by one stream/GPU. Fortunately, this step takes a negligible portion of the

entire latency, as it sums up small matrices (ed×nq) whose count equals the number

of streams/GPUs.

Zero skipping. A pruning scheme like zero skipping is ineffective or even harm-

ful for GPUs [91, 56]. The reason is that a warp cannot complete early unless all 32

threads in the warp are zero skipped, which is very unlikely. To eliminate the poor

utilization problem, we can compact the pruned matrix into a sparse matrix, but the

transformation itself is costly again. We implement the transformation by following an

example of the official cuSPARSE document, but the latency of transforming MOUT

is comparable to Weighted sum stage. This means that even with an unrealistic

assumption such as 100% skip ratio cannot justify the use of the sparse matrix mul-

tiplication at Weighted sum step. Even worse, sparse matrices are basically much

slowly processed due to indirect memory accesses.

Currently, we consider DeftNN [56], a recently proposed GPU compaction scheme

for CNNs, as the most promising option, but it is effective only for an extreme case

(small nq). By adopting DeftNN, we have to eliminates the same number of rows

from P and MOUT from our Weighted sum stage. Meanwhile, we need sufficiently

high nq to prevent the host-to-GPU memcpys from taking an excessive portion of the

execution time (Section 3.4.3). As a result, we can hardly find all-zero rows, as a row

of P has nq probabilities relying on independent questions.

3.3.3 Custom Hardware (FPGA)

We design and implement an FPGA-based accelerator for MnnFast by using Vivado

High-Level Synthesis (HLS). We create MnnFast’s IP core from Vivado HLS and use

the IP core in Xilinx Vivado Design Suite to generate a bitstream file for ZedBoard

Zynq-7020 FPGA. In this section, we omit the baseline implementation because its

29

Inner Product

+×

Q

Tmp Exp +

× +

/

MOUT

Partial Softmax

Psum

Weighted Sum

O

DRAM

MIN

W
ID

State vector

Embedding Cache

Otmp

Lazy

Softmax

B
a
rr
ie
r

W
o
rd

<thskip

v

√

Figure 3.6: A high-level architecture of FPGA-based MnnFast.

design is straightforward.

Column-based algorithm. Figure 3.6 shows a high-level architecture of our FPGA-

based accelerator design. First, each word in a sentence passes through the embedding

cache to calculate a corresponding internal state vector. During embedding, MnnFast

converts a question and new incoming story sentences into internal state vectors, and

the state vectors of story sentences are appended to the input and output memory: MIN

and MOUT , respectively.

Next, MnnFast partitions a number of story sentences ns into multiple chunks to

reduce the size of intermediate data between each computational layer. For each chunk,

MnnFast calculates the inner product between question vectors Q and each story vector

mIN
i . The resulting vector T mp, whose size is same as ns, is delivered to the partial

softmax.

In contrast to the baseline which is blocked until calculating the inner product

over all chunks, MnnFast partially computes the softmax function followed by the

weighted sum. During the partial softmax, MnnFast applies an exponential function to

each value in the vector T mp and accumulates the exponential results into Psum. The

exponential results are also delivered to the weighted sum to calculate a partial output

vector Otmp.

30

After the end of the iteration over all chunks, MnnFast applies a remaining part of

the softmax function, lazy softmax. MnnFast divides each value in Otmp by Psum and

returns the final output vector O.

Zero skipping. To implement the zero-skipping optimization, MnnFast compares

the exponential results with the skip threshold thskip. If the skip threshold is larger than

an exponential result, MnnFast does not calculate the weighted sum and only adds the

result into Psum.

As multiple partial softmax units are parallelly executed at runtime, all exponential

results may not be lower than the skip threshold. In this case, we calculate the weighted

sum with those values although only a few values are higher than the skip threshold.

We believe that this case does not frequently occur because most probability values

are zero in general. As a result, MnnFast can reduce the amount of output computation

significantly.

Embedding cache. We design the embedding cache as a direct mapped cache.

Each entry in the embedding cache consists of three fields: a valid bit (1 bit), a word

ID (log2(# words in dictionary) bits), and a state vector (32 * ed bits). By using the

embedding cache, MnnFast can achieve memory isolation between the inference and

the embedding operation and reduce the number of DRAM accesses, which improves

the performance of the embedding operation. We show the performance impact of the

embedding cache according to different cache sizes in Section 3.4.4.

3.4 Evaluation

3.4.1 Experimental Setup

We implement the baseline, the baseline with each optimization (i.e., column-based

algorithm, column-based with streaming, zero-skipping, embedding cache), and Mnn-

Fast in various hardware platforms: CPU, GPU, and FPGA.

CPU configuration. We compare the baseline with MnnFast on a 24-core dual-

31

Table 3.1: Memory networks configuration for the evaluation.

Entry CPU GPU FPGA

Embedding dimension (# entry) 48 64 25

Database size (# sentences) 100M 100M 1000

Chunk-size (# sentences) 1000 Variable 25

socket Xeon CPU system with DDR4-2400MHz 256GB memory. We run our imple-

mentation on Ubuntu 16.04 LTS and use OpenBLAS [132, 140] for BLAS operations.

For evaluation, we use the following network configuration, described in Table 3.1.

GPU configuration. We use a SUPERMICRO SuperServer 4028GR-TRT with

two Intel Xeon CPU E5-2650 v4 and six Nvidia TITAN Xp GPUs. We measure the

performance of GPU-based MnnFast with Linux kernel version (4.4.0-89-generic) and

CUDA Toolkit version 10.0.

FPGA configuration. We implement FPGA-based MnnFast on ZedBoard featur-

ing Xilinx Zynq-7020 Soc and DDR3 memory by using Vivado HLS. Our implemen-

tation on the programmable logic (PL) runs at 100MHz with DDR3 memory operating

at 533MHz. The memory has 32-bit effective width. To control MnnFast implemented

on the PL, we build a monitoring program executed on the ARM Cortex-A9 processor

of Zynq SoC.

Memory network configuration. Table 3.1 shows the configuration parameters

of MemNN for the evaluation. We use a similar configuration for CPU and GPU but

scale it down for FPGA due to lack of available logic cells. The embedding dimension

of GPU is different to that of CPU to fully utilize streaming multiprocessors (SMs) in

GPUs.

32

0.0

0.5

1.0

B C S M B C S M B C S M B C S M B C S M B C S M
1 2 4 8 16 20

N
or

m
al

iz
ed

La

te
nc

y

of
threads

Inner product Softmax(P) exp
Softmax(P) div Weighted sum
Softmax(FC) FC

B: Baseline, C: Column-based MemNN
S: C with Streaming, M: MnnFast

(a) Execution latency breakdown

0
2
4
6

1 2 4 8 16 20

Sp
ee

du
p

of threads

B C S M

(b) Performance speedup

Figure 3.7: Performance of column-based algorithm on CPU.

3.4.2 CPU

This section shows the performance and its scalability of MnnFast compared to the

baseline MemNN. To validate the key idea of our proposal, we compare the results

from 1) the baseline MemNN, 2) Column-based MemNN, 3) Column-based MemNN

with data streaming, and 4) MnnFast.

Performance. Figure 3.7 shows the performance of MnnFast and its comparison

targets. Column-based algorithm brings two benefits, 1) improved cache uses from

data chunking and 2) data streaming enabled by small-size data chunk. To analyze

each benefit, we compare the performance of column-based algorithm without data

streaming and with streaming against the baseline. Column-based algorithm achieves

1.21x speedup compared to the baseline. The speedup comes from the efficient data

33

chunking and intermediate data reuse of our algorithm, which reduces the execution

latency of Softmax(P) exp (Figure 3.7a).

Data streaming significantly improves the performance against the baseline (3.33x

on average). As data streaming brings all necessary data into computational units

timely, we can avoid lots of cache misses and in turn improve the performance of

Inner product and Weighted sum operation.

MnnFast achieves 4.02x average speedup compared the baseline thanks to our

column-based algorithm and zero-skipping techniques. As MnnFast improves cache

utilization, its effects increase with the number of working threads as shown in Fig-

ure 3.7b.

Cache Efficiency. Figure 3.8 shows the scalability of MnnFast. Ideally, the per-

formance should be linearly proportionate to the number of threads. We measure the

performance improvement of parallelization at different memory bandwidth configu-

rations. As shown in Figure 3.8a, the performance of MemNN using column-based

algorithm is saturated at 10-thread on 4-memory channel system and is more scalable

than the baseline, whose saturation point is around 4-thread. Column-based algorithm

improves the scalability, but the results from different memory bandwidth diverge and

are still far from the ideal result.

Figure 3.8b and 3.8c show that MnnFast achieves highly scalable performance with

data streaming-enabled column-based algorithm, reaching the ideal speedup. Such a

scalability comes from the fact that column-based algorithm with data streaming re-

duces the number of accesses to the shared memory system including shared cache.

Figure 3.9 shows the number of off-core memory accesses. The counts are normalized

to the baseline result. Column-based algorithm makes off-core DRAM accesses of the

baseline hit onto LLC, which in turn achieves higher scalability than the baseline (Fig-

ure 3.8a). As column-based algorithm with data streaming cuts off more than 60% of

off-core accesses, MnnFast can achieve highly-scalable performance.

34

0
5

10
15
20

Baseline's
saturation point

of threads
0 5 10 15 20

Sp
ee

du
p

1-channel 2-channel 4-channel Ideal

(a) Column

of threads

Sp
ee

du
p

0
5

10
15
20

0 5 15 2010

(b) Column-S

of threads

0
5

10
15
20

0 5 10 15 20

Sp
ee

du
p

(c) MnnFast

Figure 3.8: Scalability of column-based algorithm on CPU.

3.4.3 GPU

Figure 3.10 shows the experiment results for CUDA stream and multiple GPUs. Note

that sum and device-to-host memcpy take a small portion of the entire latency, so we

did not show it here.

35

0 0.2 0.4 0.6 0.8 1

MnnFast

Column+S

Column

Baseline

Normalized Off-core Memory Accesses

LLC DRAM

Figure 3.9: The number of off-chip memory accesses on CPU.

GPU streams. Figure 3.10a shows the latency of CUDA stream chunking. As

we use only one GPU for the multiple streams case, there is a restriction that memcpy

cannot overlap; other overlaps are achievable if the GPU has enough resources. The re-

sult resembles typical pipelined parallelization. Two streams almost perfectly achieve

overlap of memcpy of one stream and kernels of the other stream. This simple change

gives 1.33X speedup, confirming the importance of data transfer overheads between

host memory and accelerator memory [35]. Increasing the number of streams does not

reduce the latency much, as memcpys form a critical path.

Multiple GPUs. Figure 3.10b shows a similar experiment with multiple GPUs.

To show the best latency achievable without PCIe bandwidth limit, we additionally

experiment with only one GPU running on its chunk, and present the results labeled as

‘B’. We achieve much better scalability than before, as using multiple GPUs eliminates

the previous overlap constraint. However, the scalability is still limited, because of two

reasons. First, kernel efficiency decreases as we reduce the size of input data. This is

the fundamental limit of the GPU scale-out approach, and explain why the best ‘B’

latency does not scale perfectly. Second, PCIe bandwidth is limited for one node. This

problem is solvable by using multiple nodes, each with a small number of GPUs.

Note that the extra communication overheads for the last Sum in this case would be

negligible as well due to small input data for Sum.

36

0 0.2 0.4 0.6 0.8 1

0

0
1

0
1
2
3

1

2

4

Normalized Time

#
st

re
am

s
st

re
am

d_
id

Idle H2D Inner Product
Softmax Weighted sum

(a) Multiple streams

0 0.2 0.4 0.6 0.8 1
0
B

0
1
B

0
1
2
3
B

1

2

4

Normalized Time

#
st

re
am

s
st

re
am

d_
id

H2D
Inner product
Softmax
Weighted sum

(b) Multiple GPUs (B: best run-alone)

Figure 3.10: Scalability of column-based algorithm on GPU.

3.4.4 FPGA

Performance In this experiment, we evaluate the effectiveness of each optimization

on FPGA. We implement four versions: baseline, column (applying column-based al-

gorithm only), column+S (applying both column-based and streaming), and MnnFast.

Figure 3.11 shows the latency results of four versions of the FPGA implementation.

37

0 0.2 0.4 0.6 0.8 1

MnnFast

Column+S

Column

Baseline

Normalized Latency

Figure 3.11: Latency reduction of FPGA-based MnnFast. Each latency is normalized

to the baseline.

0

0.5

1

No Cache 32KB 64KB 128KB 256KB

Embedding Cache

N
o
rm

a
liz

e
d
 L

a
te

n
cy

Figure 3.12: Effectiveness of embedding cache in FPGA-based MnnFast. Each latency

result is normalized to the No Cache.

Each latency result is normalized to the baseline. The results show each optimization

gradually reduces the execution latency. Compared with the baseline, the column-

based algorithm and the streaming optimization reduce the latency by 27.6% and

39.2% respectively. With all the optimizations (i.e., column-based algorithm, stream-

ing optimization, zero-skipping), MnnFast shows the performance improvement by up

to 2.01×.

Effectiveness of Embedding Cache. To evaluate the effectiveness of the embed-

ding cache, we use the word frequency of the Corpus of Contemporary American

English dataset (COCA) [30], and the size of the embedding dimension is 256. We

38

measure the latency reduction according to different sizes of the embedding cache:

32KB, 64KB, 128KB, and 256KB. Figure 3.12 shows the latency reduction of the em-

bedding cache among various sizes. Each latency is normalized to the “No Cache” ver-

sion. The results show that the embedding cache effectively reduces latency overheads

during the embedding operation. For each cache size (32KB, 64KB, 128KB, 256KB),

the embedding cache reduces the latency by 34.5%, 41.7%, 47.7%, and 53.1%, respec-

tively. Note that the required cache size is moderate thanks to the word locality.

3.4.5 Comparison Between CPU and FPGA

We compare energy efficiency between CPU-based MnnFast and FPGA-based Mnn-

Fast. For a fair comparison, we resize the network configuration for both platforms to

process the same quantity of question answering tasks. We use turbostat to mea-

sure energy consumption for CPU-based MnnFast. For FPGA-based MnnFast, we use

power stats provided by Xilinx Vivado Design Suite after generating the bitstream. The

results show that FPGA-based MnnFast improves energy efficiency by up to 6.54×.

3.5 Conclusion

We propose MnnFast, a novel system architecture for large-scale memory networks

to achieve fast and scalable reasoning performance. We identify three performance

problems of the current architecture and propose three key optimizations (i.e., column-

based algorithm with streaming, zero-skipping, and embedding cache). We show Mn-

nFast outperforms the baseline on various hardware: CPU, GPU, and FPGA.

39

Chapter 4

A Fast, Scalable, and Flexible System for Large-Scale

Heterogeneous NLP Models

4.1 Motivation & Design Goals

4.1.1 High Model Complexity

As described in Section 2.2, emerging NLP models consist of various combinations of

basic operations with different parameter configurations; therefore, an ideal NLP ac-

celerator should cover a wide variety of the basic operations in NLP models. However,

existing work only optimizes specific operations, which results in the narrow model

coverage. To the best of our knowledge, there is no work aiming to holistically opti-

mize whole operations in emerging NLP models. For example, some studies [62, 52]

propose optimization techniques to accelerate the attention mechanism only, but the

attention mechanism is not a major performance bottleneck in most models and con-

figurations (e.g., 11.8% in Transformer, 8.5% in BERT). In this case, their end-to-end

performance improvements are only 13.4% and 9.3%, respectively.

To overcome this high model complexity in NLP models, we need to identify

performance-critical operations in different NLP models. We conduct static analysis

and extensive profiling to identify all performance-critical operations required by most

40

0

8

16

24

32

0 8 16 24 32

S
p
e
e
d
u
p

of threads

1-channel
2-channel
4-channel
Ideal

Figure 4.1: Limited scalability due to memory bandwidth. The speedup results of each

channel configuration are normalized to the corresponding single-thread result.

NLP models. We explain analysis methods and results in Section 4.2.1 for more de-

tails.

4.1.2 High Memory Bandwidth

All NLP models require a considerable amount of memory bandwidth, and this mem-

ory overhead continuously increases because of growing demands for high reasoning

power. Each parameter (i.e., s, dH , dFF) can be scaled-up to enhance the accuracy of

NLP models. For example, as sequence length (s) increases, the models can learn more

long-distance relationships among words and sentences stored in external memory. In

addition, the larger dimensions (dH and dFF) of internal states help to solve compli-

cated questions. Therefore, the memory pressure problem becomes intensified, which

makes the current system difficult to achieve scalable performance.

Figure 4.1 shows how memory bandwidth affects the scalability of NLP mod-

els. We measure the performance of BERT with the default configuration (see Sec-

tion 4.5.1). To show the performance impact of memory bandwidth, we measure the

speedup with multiple threads while reducing memory bandwidth (# of memory chan-

nels). In this evaluation, we use enough CPU cores (i.e., two Intel Xeon Gold 5220

18C/36T CPUs with turning-off hyperthreading) to prevent the computation from be-

41

coming a performance bottleneck. We can observe that BERT quickly reaches a perfor-

mance saturation point as the bandwidth decreases; in other words, the high memory

bandwidth requirements of BERT prevent the current system from achieving scalable

performance.

To overcome the memory bandwidth problem, we need more efficient memory

management mechanisms applicable to all kinds of operations in emerging NLP mod-

els. We propose a new computation algorithm (called holistic model partitioning) that

(1) minimizes the size of data spills, (2) provides more efficient data chunking, and (3)

enables the current system to hide most memory accessing overhead by significantly

reducing the working set size. We explain this algorithm in Section 4.2.2 for more

details.

4.1.3 Heavy Computation

Similar to the high memory bandwidth problem, the computation overhead in NLP

models also increases as the size of recent NLP models continuously increases. By

analyzing the characteristics of each operation, we find out that attention-related op-

erations (e.g., Q/K/V-Gen, dot product, softmax, weighted sum) are the most compute-

intensive parts in state-of-the-art NLP models. Q/K/V-Gen, dot product, and weighted

sum require multiple dense matrix multiplications known for compute-intensive oper-

ations. Also, softmax uses exponential functions that are highly compute-intensive.

To overcome the heavy computation problem, we need an optimization technique

to reduce the amount of computation. From an in-depth analysis, we find out the high

potential for reducing the computation in V-Gen, softmax, and weighted sum. The key

insight is that most probability values (representing the correlation between a query

token and a key token) are close to zero because only a few key tokens are related

to the given query token. Therefore, we propose cross-operation zero skipping to by-

pass a large amount of computation in attention-related operations. We explain this

optimization in Section 4.2.3 for more details.

42

These near-zero approximations are beneficial to computation reduction; however,

these optimizations incur a new problem: execution time skewness. As each partitioned

block has a different skipping opportunity and these blocks should be synchronized at

the last part of attention components, the overall execution time is delayed by the

worst-case latency, which results in resource underutilization. To overcome this skew-

ness problem, we propose a dynamic scheduler to maximize resource utilization in

NLP accelerators (Section 4.2.3).

4.1.4 Huge Performance Variation

Through extensive profiling, we find out various models and parameter configurations

incur a huge performance variation in NLP models as shown in Figure 4.2. In other

words, one operation can be a major performance bottleneck on a specific model, but

its overhead can be negligible on other models. Therefore, this huge performance vari-

ation makes the current system architecture difficult to find out an optimal design point.

For example, if one accelerator (optimized to a specific parameter configuration) exe-

cutes the NLP model with a different configuration, it can only achieve 29.7% of the

performance we can get from an accelerator optimized for that configuration. (Sec-

tion 4.5.4).

To overcome the huge performance variation, we need an efficient resource re-

balancing technique to achieve the best performance for a given parameter configura-

tion. We propose an adaptive hardware reconfiguration enabling an HW accelerator to

achieve full potential performance by finding an optimal design point. We explain the

details in Section 4.2.4.

4.1.5 Design Goals

We set our key design goals to achieve scalable performance on the wide variety of

NLP models.

• High coverage of various NLP models. It should support diverse NLP models.

43

We extract key basic operations used in the NLP models and propose a holistic

solution optimizing all these operations.

• Efficient memory management algorithm. It should minimize the memory

bandwidth requirements. We propose holistic model partitioning to eliminate

intermediate data spills by minimizing the working set size.

• Reduction of computation. It should reduce the computation amount. We pro-

pose the cross-operation zero skipping to reduce the computations of various

operations by skipping operations of near-zero values.

• Model/config-adaptive system architecture. It should provide an optimal de-

sign point for a given configuration. We propose the adaptive hardware recon-

figuration to fully leverage hardware accelerators.

4.2 NLP-Fast

4.2.1 Bottleneck Analysis of NLP Models

Aforementioned in Section 4.1.1, there are various kinds of NLP models, and each

model is composed of diverse operations. Therefore, we conduct (1) static analysis

to find the basic operations in NLP models and (2) extensive profiling to find the

performance-critical operations.

Table 4.1 shows the result of our static analysis. We analyze the types of opera-

tions used in the key computational components (in Table 2.1) and calculate their time

and space complexity according to various parameters. We observe that NLP models

consist of some key operations (i.e., Q/K/V-Gen, dot product, softmax, weighted sum,

attention FC, linear trans-1, activation func, linear trans-2).

Figure 4.2 shows the profiling results of representative NLP models (i.e., Memory

networks (MemNet), Transformer (TF), BERT) with different parameter configura-

tions. We scale a specific parameter (S: s, H: dH , F: dFF) from base configurations to

profile models with various configurations. We break the total execution time down in

44

Table 4.1: Time and space complexity of each key operation commonly used in emerg-

ing NLP models.

Operations Time complexity Space complexity

Q-Gen O(s ·d2
H) O((s+dH) ·dH)

K/V-Gen O(s ·d2
H) O((s+dH) ·dH)

Dot product O(s2 ·dH) O(s ·dH)

Softmax O(s2 ·h) O(s2 ·h)

Weighted sum O(s2 ·dH) O(s · (s+dH))

Attention FC O(s ·d2
H) O((s+dH) ·dH)

Linear trans-1 O(s ·dH ·dFF) O((s+dFF) ·dH)

Activation func O(s ·dFF) O(s ·dFF)

Linear trans-2 O(s ·dH ·dFF) O((s+dH) ·dFF)

A
tte

nt
io

n

M
ul

ti-
he

ad
se

lf-
A

tt.
†

F
F

N

† Multi-head self-attention contains key/value generation

overhead; otherwise, multi-head attention does not include the

key/value generation overhead.

different types of operations described in Table 4.1. In Figure 4.2, we notice that the

recent NLP models suffer from a huge performance variation due to the following rea-

sons. First, a wide variety of models causes the performance variation as each model

consists of different types of operations (model diversity). Furthermore, different pa-

rameter configurations incur different performance breakdown ratio (config diversity).

Model diversity. The performance breakdown shows different aspects accord-

ing to each model. For example, the attention mechanism (i.e., dot product, softmax,

weighted sum) dominates the total execution time in MemNet (base) (85.3%). How-

ever, these operations only take 11.8% and 8.5% in TF (base) and BERT (base), re-

spectively.

TF (base) and BERT (base) show different performance aspects, although they

45

0%

20%

40%

60%

80%

100%

base H-4x base base S-4x H-4x F-4x

MemNet TF BERT

E
x
e
cu

ti
o
n
 T

im
e

P
e
rc

e
n
ta

g
e

Q-Gen K/V-Gen Dot product
Softmax Weighted sum Attention FC
Linear trans-1 Activation func Linear trans-2
Others

Figure 4.2: Performance breakdown of NLP models with various parameter configu-

rations. base configurations are in the evaluation section (i.e., experimental setup), and

S/H/F-4x are configurations with a fourfold increase of s, dH , and dFF , respectively.

have the same parameter configuration. Instead of using ReLU as the activation func-

tion, BERT uses GELU, a more complex operation; therefore, the activation function

takes 9.6% more in BERT. Also, in TF, a portion of Q-Gen overhead in Q/K/V-Gen is

larger than BERT’s Q-Gen overhead because the multi-head attention of TF decoder

does not contain K/V-Gen.

Config diversity. Not only model diversity, but various parameter configurations

also cause a huge performance variation. Figure 4.2 shows the performance with a

fourfold increase of each parameter (i.e., s, dH , dFF). As described in Table 4.1, if

s increases, the overhead of the attention mechanism (i.e., dot product, softmax, and

weighted sum) would be significantly higher as their time complexity is quadratic with

respect to the s. Similarly, if dH increases, the Q/K/V-Gen and attention FC takes a

more portion of the total execution time. Lastly, the overhead of the feed-forward

network (composed of the linear transformation-1, activation function, and linear

transformation-2) linearly increases with dFF .

46

As shown in this section, NLP models are composed of some basic operations.

Also, they have huge performance variation because of various models and parameter

configurations. Therefore, we propose a holistic solution that optimizes every opera-

tion in NLP models.

4.2.2 Holistic Model Partitioning

As the size of NLP models continuously increases, all NLP models suffer from a large

amount of off-chip memory bandwidth (Section 4.1.2), which results in poor scala-

bility. The current system (baseline) consecutively calculates each operation (listed in

Table 4.1), which generates an immense amount of intermediate data between each

operation. Figure 4.3a and Figure 4.3d describe the dataflow of baseline multi-head

self-attention and feed-forward network, respectively. Note that we only show the case

of multi-head self-attention as it includes all attention-related operations (i.e., Q/K/V-

Gen, dot product, softmax, weighted sum, attention FC). As shown in Figure 4.3a,

during the attention-related operations, the baseline system accesses multiple weight

matrices (i.e., WQ
i , WK

i , WV
i , WO) and generates various intermediate data (i.e., Qi, Ki,

Vi, Si, Pi, Ai). Similarly, as shown in Figure 4.3d, the baseline system uses multiple

weights (i.e., WFF
1 , WFF

2) and generates intermediate data (i.e., T1, T2) while passing

through the feed-forward network.

To reduce the size of intermediate data, we propose three model partitioning op-

timizations: partial-head update, column-based algorithm, and feed-forward splitting.

These optimizations can cover all types of operations in the NLP models. With these

optimizations, NLP-Fast can significantly reduce the working set size from quadratic

or cubic to linear space complexity, which enables the system to hide memory access-

ing overhead by prefetching data required in the next operation.

Partial-head Update. For the partial-head update optimization, we first exploit in-

herent parallelism in the multi-head attention component. As each head is independent

of each other, we can separately execute each operation in head granularity. Then, we

47

X

X

co
n
ca
t

X

Wi
V

Wi
Q Qi

Ai
WO Z

I

Si Pi

So
ft
m
ax

I X

X

X Wi
K Ki

I

Vi

(a) Baseline dataflow of multi-head self-attention.

X

XX

Wi
V Vi

Wi
Q Qi

Ai Z
I

Si Pi
So
ft
m
ax

I X

X

X Wi
K KiI

R
ed

u
ce

 S
u

m

HEADi

WO

(b) Dataflow of baseline+P.

X

XX

Wi
V

Wi
Q Qi

Ai Z
I

P
ar

ti
al

 e
xp

X

X

X Wi
K

R
ed

u
ce

 S
u

m
HEADi

WO

I

I Ki

Vi

Si Pi

La
zy

 d
iv

(c) Dataflow of baseline+P+C.

X X
ReLU
GELU

Z’ W1
FF T1 W2

FFT2 O

(d) Baseline dataflow of feed-forward network.

X X
ReLU
GELU

Z’ OW1
FF T1 T2

Reduce
SumW2

FF

(e) Dataflow of baseline+F.

Figure 4.3: Dataflow comparison between baseline and our optimizations: partial-head

update (P), column-based algorithm (C), and feed-forward splitting (F).

48

apply partial attention FC and Reduce Sum operations to partially calculate the final

output (Z) without waiting for attention results (Ai) of all heads.

By doing so, different from the baseline system which needs to synchronize all

attention results (Ai) before the attention FC operation, NLP-Fast can directly compute

the partial attention FC operation. Figure 4.3b shows modified computational steps and

the dataflow after applying partial-head update. We highlight the reduced intermediate

data (i.e., Qi, Ki, Vi, Si, Pi, Ai) and weights (i.e., WQ
i , WK

i , WV
i , WO) in the figure (color

with light blue). All operations in each head use the reduced internal state vectors of

which size is called head size (dH divided by the number of heads, h), and the head

size is fixed in different NLP models [128, 32]. Therefore, the partial-head update

optimization can successfully reduce the space complexity of weights and intermediate

data used in attention-related operations.

Column-based Algorithm. Although the partial-head update optimization reduces

the working set size of attention-related operations, some intermediate data still have

high space complexity (e.g., score (S), probability (P), and other intermediate data1).

To reduce the size of the remaining intermediate data, we propose a column-based

algorithm enabling NLP-Fast to partially generate K/V and calculate a partial atten-

tion result (Ai) for these partial K/V. The key idea is a lazy softmax calculation, which

computes the softmax’s division operation at last, not in the middle. Our advanced

column-based algorithm is similar to MnnFast [62]. We apply a lazy softmax calcula-

tion, which computes the softmax’s division operation at last, not in the middle.

P = ∑
α

eq×kα × vα

∑β eq×kβ

=
1

∑β eq×kβ
∑
α

eq×kα × vα (4.1)

Equation (4.1) shows the difference between the baseline (LHS) and the column-based

algorithm (RHS) in the probability calculation process. Compared to the baseline, the

column-based algorithm pulls the sum (∑β eq×kβ) out of the outer summation (∑α).

Since the sum does not depend on the index i, the column-based algorithm generates
1In addition to score and probability, many intermediate data are generated during softmax, we omit

them for the sake of simplicity.

49

the same results to the baseline. By doing so, NLP-Fast does not need to wait for

the sum of entire values in softmax and possible to calculate a partial attention result.

In addition to partitioning the attention mechanism, our column-based algorithm also

partitions input matrices (IK and IV) used in K/V generation into multiple chunks. As

the column-based algorithm only requires partial K/V to calculate the partial attention

result, we generate these K/V chunks from corresponding input chunks. Figure 4.3c

shows the dataflow of the modified computational steps when applying both partial-

head update and column-based algorithm simultaneously. We highlight inputs (i.e., IK ,

IV) and intermediate data (i.e., Ki, Vi, Si, Pi) reduced by the column-based algorithm

(color with light orange).

Feed-forward Splitting. Now, we explain how our NLP-Fast can reduce the size

of intermediate data generated in the feed-forward network. As explained in Sec-

tion 2.2, the first part of the feed-forward network is the linear transformation (di-

mension of internal state vectors: dH → dFF) followed by an activation function (e.g.,

ReLU, GELU).

O = ActFunc(Z×W) (4.2)

There are two partitioning options to parallelize the first linear transformation: row-

based weight splitting and column-based weight splitting. The first option splits the

weight matrix and input matrix along its rows and columns respectively ([Z1,Z2]×[
W1
W2

]
). In this case, we cannot separately apply the activation function to each partial

result of matrix multiplication because the activation function is a non-linear function.

Therefore, this option requires an additional synchronization point before the activa-

tion function. However, another option (column-based weight splitting, [Z]× [W1,W2])

does not require any synchronization point as each partial result is independent of

each other. Therefore, we choose the column-based weight splitting to partition the

first part of the feed-forward network. The partial output of the activation function

directly passes through the second linear transformation with corresponding weights,

and the outputs of the second linear transformation are reduced to calculate the final

50

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Sample Queries

0
50

100
150
200
250

Se
qu

en
ce

1e-3

1e-2

1e-1

1

Pr
ob

ab
ilit

y
Va

lu
e

Figure 4.4: Probability value distribution. Each column is the probability vector of

each query. We randomly choose 512 queries in BERT during inference on SQuAD.

output (O). Figure 4.3e illustrates how our feed-forward splitting optimization works

by highlighting the partial chunks (i.e., WFF
1 , T1, T2, WFF

2) (color with light green).

4.2.3 Cross-operation Zero Skipping

The key observation for the proposed two zero-skipping optimizations (i.e., zero skip-

ping, V-Gen skipping) is that the probability matrix has a huge imbalance (i.e., most

probability values are close to zero). It is because the probability vector means the cor-

relation between a query and keys, and only a few keys are related to the given query.

Figure 4.4 shows the distribution of probability values in BERT. We use a pre-trained

model [32] and conduct a fine-tuning for SQuAD dataset [101]. Then we measure

probability values during inference. The results show that only a few probability val-

ues are activated and most values are close to zero.

Zero Skipping in Various Operations – Zero skipping. We first propose the

zero skipping optimization to bypass a large amount of computation in softmax and

weighted sum. In softmax, our zero skipping computes exponents of score values only

when a score value is larger than a score threshold. If a score value is lower than

the score threshold, a corresponding probability value is set to zero. In this case, the

51

Accuracy Loss Skip Ratio

0

50

1000

50

100

1 0.9 0.8

S
k
ip

 R
a
ti
o
 (

%
)

Zero-ratio Threshold

0

50

1000

50

100

-2.5 0.5 3.5

A
cc

u
ra

cy
 L

o
ss

 (
%

)

Score Threshold

0

50

1000

50

100

1 0.9 0.8

S
k
ip

 R
a
ti
o
 (

%
)

Zero-ratio Threshold

(a) Zero skipping. (b) V-Gen skipping.

Figure 4.5: Tradeoffs between accuracy loss and computation reduction according to

the skip threshold.

number of zero values in a probability matrix increases proportionally to the number of

skipped operations. In weighted sum, our zero skipping skips multiplications for zero

probability values. By doing so, we can bypass both time-consuming exponentiation

operations in softmax and multiplications in weighted sum.

This zero skipping optimization can significantly reduce the amount of computa-

tion in the attention mechanism; however, it also sacrifices the prediction accuracy. If

the score threshold is too high, we can skip a large amount of computation; however,

its prediction accuracy will dramatically decrease. On the other hands, if the score

threshold is too low, we cannot get enough opportunity to reduce the quantity of com-

putation. To quantify tradeoffs between accuracy loss and computation reduction, we

measure both the accuracy loss and the ratio of computation reduction according to

different score thresholds. We use SQuAD dataset for the inference test. Both accu-

racy loss and computation reduction are measured by comparing with the baseline’s

accuracy and the amount of computation respectively. Figure 4.5a shows the results

of the evaluation. The results show that zero skipping can achieve 79.0% computation

reduction in both softmax and weighted sum while sacrificing only 1.4% of accuracy

when the score threshold is 1.0, which is a negligible accuracy loss.

52

Zero Skipping in Various Operations – V-Gen skipping. In addition to the zero

skipping optimization, we propose a more aggressive skipping optimization: V-Gen

skipping. The key observation of V-Gen skipping is that, in the probability matrix,

there are lots of columns in which almost all elements are zero. It is because each

column represents the correlation between queries and a key, and some unimportant

keys are not related to any queries.

As weighted sum is the matrix multiplication (P×V), if all elements of a certain

column in the probability matrix (P) are zero, we do not need to generate a correspond-

ing row in the value matrix (V). In other words, our V-Gen skipping skips generating

the ith row in the value matrix when most elements in the ith column in the probability

matrix are zero. We adopt a zero-ratio threshold to determine whether a row in the

value matrix would be a skip target or not. For example, if the ratio of zeros in the jth

column is larger than the zero-ratio threshold, we do not generate the jth row in the

value matrix during V-Gen operation.

To quantify tradeoffs between accuracy loss and computation reduction, we con-

duct a similar measurement (Figure 4.5a) according to different zero-ratio thresholds.

In this case, score threshold is 1.0. Figure 4.5b shows the results of the evaluation. The

results show that V-Gen skipping can achieve 54.0% computation reduction in V-Gen

operation while sacrificing only 1.8% of accuracy when the zero-ratio threshold is 1.0,

which is negligible. If we apply more aggressive V-Gen skipping with lower threshold

(0.9), we can achieve 68.2% computation reduction with 8.9% of accuracy loss.

Skewness-minimized Dynamic Scheduler Zero skipping and V-Gen skipping are

beneficial to computation reduction; however, they incur a new problem: execution

time skewness. This is because the amount of skipped computation is different accord-

ing to each independent chunk. In this case, as a synchronization point exists at the last

part of attention components, the overall execution time is delayed by the worst-case

latency.

To quantify the impact of the time skewness problem, we measure the resource

53

utilization when we statically distribute chunks among threads. In this evaluation, we

assume that 1024 chunks (64 chunks per head × 16 heads) are statically allocated

across 32 threads, and each thread executes 32 chunks. We evaluate three different

static schedulers: head-first, chunk-first, and random. The head-first and chunk-first

schedulers preferentially allocate different heads and chunks to the same thread, re-

spectively. The random scheduler randomly assigns 32 chunks to each thread. The re-

sults show that all static schedulers incur low resource utilization: head-first (41.6%),

chunk-first (41.9%), and random (66.2%).

To maximize resource utilization, we propose a dynamic scheduler that assigns

a chunk to an idle thread dynamically. By doing so, we can achieve high resource

utilization (91.2%). Here, our dynamic scheduler needs an additional queue to hold

chunk indices; however, the queue size overhead is negligible as the queue only needs

to store index values of chunks, not the actual data.

4.2.4 Adaptive Hardware Reconfiguration

To further improve the performance by reconfiguring the architecture to the target

model, we propose adaptive hardware reconfiguration, applicable to FPGA. We find

an optimal design point by taking into account the change of performance bottlenecks

depending on models and their configurations,

Algorithm 2 shows how our proposed scheme finds the optimal design point. For

the given model and its configuration (modelcon f ig), we extract the number of key op-

erations (k) and resource usage (LUTi,FFi,DSPi) of a basic compute unit (e.g, MAC,

Adder) for each operation. Then, we conduct a performance simulation which calcu-

lates expected latencies of each operation based on our static analysis in Section 4.2.1.

With the extracted latencies, we solve a nonlinear programming for the objective func-

tion (line 2) with three constraints (line 3–5) by using sequential quadratic program-

ming (SQP) methods. Here, the objective function is set to minimize an expected ex-

ecution latency while meeting the resource constraints in FPGA. We assume that the

54

Algorithm 2: Adaptive design space exploration.
input : A model configuration, modelcon f ig (i.e., model structure & parameter configurations).

input : The number of operations in a target model, k.

input : A list of tuples of resource usage of basic units for each operation, [< LUTi,FFi,DSPi >].

output : A tuple of the degree of parallelism for each operation, < n1,n2, ...,nk >.

/* Conduct a performance simulation to get expected latencies of each

operation. */

1 < lat1, lat2, ..., latk > = per f simulation(modelcon f ig)

/* Find optimized degrees of parallelism for each

operation:< n1,n2, ...,nk >. */

2 minimize
k
∑

i=0

lati
ni

subject to

3 (constraint-1) ∑
k
i=0 LUTi×ni < LUTtotal

4 (constraint-2) ∑
k
i=0 FFi×ni < FFtotal

5 (constraint-3) ∑
k
i=0 DSPi×ni < DSPtotal

/* Do iterative rebalancing between memory & compute to find the

optimal ni minimizing performance gap. */

6 while true do

7 p f res = FPGA pro f iling(modelcon f ig, < n1, ...,nk >)

8 < n′1, ...,n
′
k > = resource rebalancing(p f res)

9 if < n1, ...,nk >6=< n′1, ...,n
′
k > then

10 < n1, ...,nk >=< n′1, ...,n
′
k >

11 else

12 break

13 end

14 end

15 return < n1, ...,nk >

latency of each operation is inversely proportionate to the amount of resources. By

solving the problem, we can find the optimized degrees of parallelism for each opera-

tion (ni).

Next, we apply an iterative resource rebalancing technique to minimize the pro-

cessing stall time caused by waiting for long memory access latency (line 6–14). We

synthesize the current design and conduct performance profiling to quantify the pro-

cessing stall time (line 7). Then we conduct the resource redistribution to minimize the

stall overhead (line 8). This resource redistribution rebalances computations in stall

minimized manner, as shown in Figure 4.6. First, we find an operation that has ex-

55

C-1
M-2 M-3

C-2

M-2 M-3

Resource redistribution (C1  C2)

C-1 C-2

Time

Computation

Memory

Computation

Memory

Time

(a) Baseline

C-1
M-2 M-3

C-2

M-2 M-3

Resource redistribution (C1  C2)

C-1 C-2

Time

Computation
Memory

Computation
Memory

Time
(b) Stall-minimized Rebalancing

Figure 4.6: Stall-minimized resource rebalancing. C-n and M-n represent the execution

time of compute and memory parts in nth operation, respectively.

cessive computing resources (C-1 in Figure 4.6a). Next, we deallocate some resources

from this operation by reducing the degree of parallelism and allocate the extracted re-

sources to other operations (C-2 in Figure 4.6b). We iteratively perform this resource

rebalancing until there is no further optimization opportunity. Finally, we return the

optimal design point (line 15).

Note that adaptive hardware reconfiguration optimization can be only applicable

to FPGA as typical hardware architecture (e.g., CPU, GPU, ASIC) have fixed designs

for a certain purpose.

4.3 NLP-Fast Toolkit

We make the NLP-Fast toolkit that consists of the proposed three optimizations as well

as our performance analysis tools. With the NLP-Fast toolkit, we can apply our opti-

mization methodology to various NLP models with different parameter configurations.

In this section, we highlight the usefulness and effectiveness of our NLP-Fast toolkit

by explaining how to use the NLP-Fast toolkit for each NLP model.

Fig. 4.7 shows the high-level overview of the NLP-Fast toolkit. The NLP-Fast

56

exampleOp(...)
// original func.

exampleOp(...,
isZS, isMP, params)
// optimized func.

(a) The pre-implemented NLP-

Fast libraries.

Value
Calibrator

Performance
Monitor

Perf.
Stats

Analysis
Tools

P
ro
fi
lin
g

Se
tu
p

AnalysisPerf. profilingInitialization

NLP
Model

Config

(b) The overview of our analysis tool (i.e., NLP-Perf) for analyz-

ing various NLP models/configs.

Figure 4.7: The overview of our NLP-Fast toolkit. The left figure shows an example of

applying NLP-Fast’s optimizations by using the pre-implemented NLP-Fast libraries.

The right figure presents the overview of bottleneck analysis for given NLP models

with various configurations.

toolkit mainly consists of two parts: pre-implemented libraries (Fig. 4.7a) and perfor-

mance analysis tools (Fig. 4.7b).

First, we provide the pre-implemented NLP-Fast libraries with the proposed op-

timizations applied (i.e., holistic model partitioning, cross-operation zero skipping).

With these pre-implemented libraries, the users can easily apply the proposed opti-

mizations to their target NLP models by simply replacing original libraries with the

NLP-Fast libraries.

Fig. 4.7a shows an example of applying NLP-Fast’s optimizations. For each opera-

tion, we add three additional parameters to original functions: isZS, isMP, and params.

The boolean type isZS and isMP parameters determine whether the corresponding op-

timizations (e.g., isZS: cross-operation zero skipping, isMP: holistic model partition-

ing) turn on/off. The last parameter, params, is a tuple of various thresholds (e.g.,

score threshold, zero-ratio threshold, the degree of parallelism) used by the proposed

optimizations.

By using the three parameters, the users can easily turn on/off each optimization

with different thresholds. Note that, to apply NLP-Fast’s optimizations, the users do

not need to modify their target NLP models, but simply set the three parameters (good

57

usability). We believe that our approach, preparing the pre-implemented NLP-Fast li-

braries, is easily applicable to other ML frameworks (e.g., PyTorch).

Second, we provide NLP-Perf, the performance analysis tool, to profile and analyze

NLP models with various configurations. With NLP-Perf, the users can easily obtain

various types of performance analysis results (e.g., performance breakdown in Fig. 4.2,

cache hit/miss statistics in Fig. 4.12).

Fig. 4.7b illustrates how NLP-Perf profiles various NLP models with different con-

figurations. NLP-Perf consists of three phases: initialization, profiling, and analysis.

In the initialization phase, the users provide specific NLP models with target config-

urations to NLP-Perf. Based on the given NLP models/configs, NLP-Perf initializes

inputs and weights with random values. The users can also set the profiling mode:

default, cachestat, and custom. The default and cachestat modes measure each opera-

tion’s latency and LLC misses, respectively. For the custom mode, the users can select

hardware performance events (e.g., core cycles, TLB-related events, I/D cache-related

events) for their own purpose.

In the profiling phase, NLP-Perf executes every combination of given NLP models

and corresponding configurations. At the runtime, a value calibrator dynamically ad-

justs the intermediate values to avoid operations on denormalized floating-point which

are hundreds of times slower than on normalized floating-point on CPUs2. In addi-

tion to the value calibrator, a performance monitor collects the hardware performance

events according to the profiling mode (i.e., default, cachestat, custom) configured in

the initialization phase.

In the analysis phase, NLP-Perf collects the performance statistics from the pro-

filing phase. The users can utilize pre-defined analysis tools (e.g., latency breakdown,

cache analysis). With NLP-Perf, we believe that the researchers can gain insights for

further optimizations.

2This performance degradation issue does not exist on GPUs as they can support denoramls at full

speed [138]

58

4.4 Implementation

To show the effectiveness of our NLP-Fast across various platforms, we implement

the three representative models (i.e., memory networks, Transformer, BERT) in two

versions (Baseline and NLP-Fast) on CPU, GPU, and FPGA. We first validate

our idea on CPU and GPU, then we elaborate on the specialized hardware design based

on the analysis of the general-purpose architecture.

4.4.1 General-Purpose Architecture – CPU

We implement both baseline and NLP-Fast on CPU for each model: memory networks,

Transformer, and BERT). In the evaluation, we show the performance improvement

of NLP-Fast and detail analysis by using CPU hardware performance counters (Sec-

tion 4.5.2).

Baseline CPU implementation. We use C++ to implement each computational

component and their sub-operations (described in Section 2.2) as a separate module.

Then, we build each NLP model by combining these modules. In addition to these key

components, we also implement other parts (e.g., final answer labeling in memory net-

works and residual connection, masking, and layer normalization in Transformer and

BERT) according to the papers [125, 128, 32]. We verify our three different baseline

models by comparing the final outputs of the baseline with the results of open-source

projects provided by Facebook and Google [3, 8].

Now we explain the implementation details of each operation. Most operations

(i.e., Q/K/V-Gen, dot product, weighted sum, attention FC, linear trans-1/2) are gen-

eral matrix-matrix multiplication (GEMM). For the efficient GEMM computation, we

use Intel Math Kernel Library (Intel MKL) [131] to fully utilize CPU resources. In

addition to GEMM-based operations, we also implement other operations (i.e., soft-

max, activation function). For softmax, we apply the natural exponential function on

the elements of a vector and normalize the exponential results with the summation.

59

For the activation function, we implement ReLU and GELU according to the BERT

model [32].

We parallelize each operation as follows. For the GEMM-based operations, we

exploit the multi-threading feature of MKL library. For other operations, we exploit

data-level parallelization of each step with Pthreads.

Holistic model partitioning. As described in Section 4.2.2, we implement three

model partitioning techniques: partial-head update, column-based algorithm, and feed-

forward splitting. First, we partition the multi-head attention into separate heads by

exploiting inherent parallelism and partial attention FC. Note that the dimension of in-

ternal states in each head is fixed; therefore, this partial-head update can significantly

reduce the working set size of multi-head attention. Second, we split the attention

mechanism into multiple sub-chunks by applying the column-based algorithm. This

chunking also can be applied to K/V-Gen operations. Here, we can set the chunk size

with no restrictions. Lastly, we partition the feed-forward network into multiple sub-

chunks by applying the column-based weight splitting. Note that we can freely choose

the size of each sub-chunk in both attention and feed-forward components. To hide

memory accessing overhead, we use the built-in prefetch function provided by GCC

7.4.0.

Cross-operation zero skipping. As described in Section 4.2.3, we implement two

zero-skipping optimizations in NLP-Fast: zero skipping and V-Gen skipping. First, we

apply zero skipping for the attention mechanism. We perform a sensitivity analysis

to find a proper score threshold for each model (e.g., we use 1 on BERT). Next, we

implement V-Gen skipping to reduce the computation overhead of V-Gen operation.

Here, the zero-ratio threshold is 0.9. In addition to these zero-skipping optimizations,

we implement a software-version dynamic scheduler to minimize the execution time

skewness.

60

1

Time
1

H2D Engine

1

1

2

2

1

1

2

2

Comp Engine

Latency Reduction

1

1

H2D Engine

Comp Engine

Time

(a) Baseline

1

Time
1

H2D Engine

1

1

2

2

1

1

2

2

Comp Engine

Latency Reduction

1

1

H2D Engine

Comp Engine

Time

(b) NLP-Fast

Figure 4.8: Performance improvement on a single GPU with multiple CUDA streams.

NLP-Fast’s model partitioning enables GPU to exploit CUDA streams.

4.4.2 General-Purpose Architecture – GPU

We also implement GPU-version baseline and NLP-Fast for each NLP workload sup-

porting various configurations. In the evaluation, we present single-GPU performance

improvement as well as multi-GPU scalability (Section 4.5.3).

Baseline GPU kernel implementation. Similar to the CPU-version baseline, we

implement each operation as separate GPU kernels and combine these operations into a

specific NLP model. We verify our three different GPU baseline models by comparing

their results to the corresponding CPU-version baseline results.

We use cuBLAS [1] provided with CUDA Toolkit 10.2 to perform GEMM-based

operations. By using the state-of-the-art GPU BLAS library, we aim to avoid any ineffi-

ciency incurred by unoptimized kernel implementation. Different from GEMM-based

operations, we implement custom kernels for other operations (e.g., softmax, activa-

tion function).

Holistic model partitioning. We implement three model partitioning techniques

for GPU-version NLP-Fast. For partial-head update and feed-forward splitting, we

add a custom GPU kernel (called reduce sum) to reduce the results within each parti-

tioned block (e.g., heads, chunks). For column-based algorithm, we split the softmax

61

kernel into two kernels: partial exponentiation and lazy division. By doing so, we can

holistically partition all NLP models into small-chunk granularity.

This data chunking capability of NLP-Fast enables GPU to exploit CUDA streams

to overlap kernel executions by data transfers between the host and GPU. Figure 4.8

illustrates how NLP-Fast hides the data transfer overhead with CUDA streams. With

CUDA streams, NLP-Fast can successfully improve a single-GPU performance by

minimizing the data transfer overhead.

Also, we implement a multi-GPU version of NLP-Fast capable of running an ex-

tremely large NLP model which cannot be executed on the single-GPU environment.

As NLP-Fast requires only a few synchronization points, our multi-GPU version of

NLP-Fast achieves scalable performance.

Cross-operation zero skipping. Zero skipping is ineffective or even harmful for

GPUs [91, 56, 62]. As GPU executes groups of threads known as warps (32 threads per

warp), zero skipping is effective only if all threads in the warp are zero skipped, which

is very unlikely. To eliminate this poor utilization problem, we can transform a dense

matrix into a sparse matrix, but the transforming overhead is too high. We implement

the transformation by following an example of the official cuSPARSE document [2],

but the transforming overhead is even comparable to weighted sum. Therefore, we do

not apply zero skipping to GPU-version NLP-Fast.

4.4.3 Custom Hardware (FPGA)

We design and implement each NLP model using Vivado High-Level Synthesis (HLS).

Figure 4.9 shows the high-level architecture of FPGA-version NLP-Fast for BERT.

We omit the baseline design as it is too straightforward. Note that other models (e.g.,

Transformer, Memory networks) can be implemented by removing unnecessary oper-

ations.

Baseline FPGA implementation. We first implement all basic compute units re-

quired by operations in NLP models. Basic compute units are listed as follows: MAC,

62

Query Gen

Dynamic Scheduler

Feed-Forward

Multi-Head Self Attention

h0, c0Queue h0, c1 h0, c2 h0, c3 …

completed Idxhead

hi, cj

FFn

n3
n10

HEADi

HEADi COLj

n2 n5

n6n4 n9n8

n13

thzskipWi
k

Sij

Pij

Vij

Kij

Ij

Wi
O

thvskip

Qi

Wi
q

I Qin1

Wi
v

×××

×××

×××

××< ×××

××<

RS ××/

×××

Re
du

ce
 S

um

×××
×××

×××

Re
du

ce
 S

um

expexpexp

factfactfact n12

O
FPGA

Reconfig. Algorithm

n7

n11

W1n
FF

W2n
FF

Z

T2n

T1n

& FPGA Profiling Result
Opt. parallelism <n1 ,…, nk>

Figure 4.9: The architecture of FPGA-based NLP-Fast.

comparator, exponentiator, divider, adder, multiplier, and square root. We use exp and

sqrt function of HLS math library for exponentiator and square root. In addition, we

implement other non-performance critical parts (i.e. layernorm, residual sum).

Holistic model partitioning. Our FPGA-version NLP-Fast consists of three ex-

ecution units (i.e., query generator, multi-head self-attention, feed-forward), and the

dataflow of each execution unit follows Figure 4.3c and Figure 4.3e. For each opera-

tion, NLP-Fast fetches required data from DRAM to BRAM. We use AXI4 for data

transfer. To overlap memory prefetching and computation, we explicitly remove de-

pendencies of each BRAM block by using HLS directives.

Cross-operation zero skipping. We set each threshold value through AXI port

at the beginning of execution. We choose the same threshold values as CPU (1 for

score threshold, thzskip and 0.9 for zero-ratio threshold, thvskip). For zero skipping, we

use comparator units to compare a score value with thzskip. For V-Gen skipping, we

use comparator and adder units to count the number of zeros. In this case, we need an

extra counter (log2(sequence length) bits) and check bit (1 bit) per each column, which

63

Table 4.2: Base configurations of each NLP model.

Entry
CPU GPU FPGA

MemNet TF BERT MemNet TF BERT MemNet TF BERT

s(ns) 100M 256 256 100M 256 256 1000 256 256

dH 64 1024 1024 64 1024 1024 64 1024 1024

dFF - 4096 4096 - 4096 4096 - 4096 4096

is under 1KB overhead in total. Overall, the logic overhead is negligible, as it is just a

simple adder logic.

Dynamic scheduler. We implement the dynamic scheduler with a FIFO queue.

When Q-Gen is finished for any head, the index of the head is delivered to the dy-

namic scheduler. Then, the dynamic scheduler pushes all ¡Idxhead , Idxchunk¿ pairs of

the corresponding head to the queue. If there is any idle execution unit, the scheduler

assigns an index pair to the unit. We choose the queue size as twice the number of

multi-head self-attention units. Note that the queue size is negligible as the queue only

stores index pairs which are ¡log2(#head) bits, log2(#chunk) bits¿.

Adaptive Hardware Reconfiguration. We use a scipy python module with the

SLSQP method to resolve the objective function described in Section 4.2.4. We apply

the degrees of parallelism to the FPGA by setting the number of each basic compute

unit in FPGA (e.g., MAC, comparator) using HLS directives. For the resource rebal-

ancing function described in Section 4.2.4, we find the target operations for resource

reallocation by the sequential search.

4.5 Evaluation

We achieve the high model coverage by accelerating three representative models that

existing proposals cannot support.

64

4.5.1 Experimental Setup

We implement the three representative models (i.e., memory networks, Transformer,

BERT) in several versions (i.e., baseline, baseline with each optimization, NLP-Fast)

on various hardware platforms: CPU, GPU, and FPGA.

CPU eval. We compare baseline with NLP-Fast on two Xeon CPUs (Intel Xeon

Gold 5220 18C/36T) system with DDR4-2400MHz 256GB memory. We run NLP

models on Ubuntu 16.04 LTS and use Intel MKL [131] for GEMM.

GPU eval. We use a Supermicro SuperServer 4028GR-TRT with two Intel Xeon

CPU E5-2650 v4 and four Nvidia TITAN Xp GPUs attached via PCIe Gen 3. We

measure the performance of GPU-based NLP-Fast with Linux kernel version (4.4.0-

142-generic) and CUDA Toolkit version 10.2.

FPGA eval. We use Xilinx Virtex Ultrascale+ FPGA VCU118 and DDR4 mem-

ory. The programmable logic (PL) runs at 100MHz. The memory has 32-bit effective

width. To control NLP-Fast, we build a monitoring program executed on MicroBlaze.

NLP model config. Table 4.2 shows the types of NLP models and their base pa-

rameter configurations for the evaluation. For base configurations, we get the parame-

ters from the Transformer and BERT paper for a fair evaluation [128, 32]. For S/H/F-4x

configurations, we increase each parameter (i.e., s, dH , dFF) in four times, respectively.

4.5.2 CPU

Performance. Figure 4.10 shows the performance of NLP-Fast on various NLP mod-

els and different configurations. For each model, we measure latencies of three im-

plementations: baseline, baseline+MP (i.e., baseline with optimization called

holistic model partitioning), and NLP-Fast. Our model partitioning achieves 1.73×

average speedup on various NLP models. With all optimizations, NLP-Fast achieves

2.15× average speedup. Memory networks gets huge performance improvement from

cross-operation zero skipping because zero skipping significantly reduces the compu-

tation overhead in attention-related operations (Note that attention mechanism is dom-

65

0

1

2

3

base H-4x base base S-4x H-4x F-4x

MemNet TF BERT

S
p
e
e
d
u
p

Baseline Baseline+MP NLP-Fast

Figure 4.10: Performance improvement of CPU-based NLP-Fast on various NLP mod-

els and configurations. MP means model partitioning.

0

8

16

24

32

0 8 16 24 32

S
p
e
e
d
u
p

of threads

1-channel
2-channel
4-channel
Ideal

Baseline Saturation Point

Figure 4.11: Scalability on different memory bandwidth.

inant in memory networks as early illustrated in Figure 4.2). In this case, NLP-Fast

achieves performance improvement by up to 2.92×.

Scalability: Cache efficiency. We measure the performance improvement of par-

allelization at different memory bandwidth configurations (# of memory channels) to

evaluate the scalability of NLP-Fast on CPU. Figure 4.11 shows speedup normalized

to the 1-thread case on each memory configuration. Ideally, the performance should be

linearly proportionate to the number of threads. Different from the baseline whose per-

formance is saturated at 8-thread, our NLP-Fast shows highly-scalable performance on

66

0 0.2 0.4 0.6 0.8 1

Base+P+C+F

Base+P+C

Base+P

Baseline

Normalized LLC MPKI

Figure 4.12: Normalized LLC MPKI for each partitioning optimization. P/C/F means

partial-head update, column-based algorithm, and feed-forward splitting.

various memory bandwidth configurations. This is because NLP-Fast’s holistic model

partitioning significantly reduces the working set size, which aids CPU in using cache

more efficiently.

To quantify the impacts of our model partitioning techniques (i.e., partial-head

update, column-based algorithm, feed-forward splitting), we measure LLC misses per

kilo instructions while applying each model partitioning optimization step-by-step.

We use the Linux performance monitoring library [37] to get LLC misses. Figure 4.12

shows the LLC MPKI normalized to the baseline. Partial-head update and column-

based algorithm reduce off-chip DRAM accesses by 20% and 18%, respectively. With

all three model partitioning techniques, we eliminate almost all off-chip DRAM ac-

cesses.

4.5.3 GPU

Performance. We evaluate the performance improvement of NLP-Fast on the single-

GPU environment. As explained in Section 4.4.2, we do not apply the zero skipping

optimization to GPU-version NLP-Fast. Figure 4.13 shows the performance improve-

ment of NLP-Fast on various NLP models. As described in Section 4.4.2, our holistic

model partitioning technique enables NLP-Fast to exploit CUDA streams to overlap

kernel executions by data transfers between host and device. By doing so, NLP-Fast

67

0

0.8

1.6

2.4

base H-4x base base S-4x H-4x F-4x

MemNet TF BERT

S
p
e
e
d
u
p Baseline NLP-Fast

Figure 4.13: Single-GPU performance improvement of GPU-based NLP-Fast on vari-

ous NLP models.

0

0.5

1

1 2 4

of GPUs

Compute Memory

N
o
rm

a
liz

e
d

L
a
te

n
cy

(a) Latency breakdown.

0

1

2

3

1 2 4

S
p
e
e
d
u
p

of GPUs

NF (base)
NF (BW 10x)

(b) Expected speedup.

Figure 4.14: The overhead analysis of multi-GPU version of NLP-Fast (NE) and the

expected speedup of NLP-Fast with high bandwidth (e.g., NVLink 2.0).

achieves 1.63× average speedup on various NLP models. In addition to optimizing

data transfers, CUDA streams aid in increasing the computational efficiency of GPU;

therefore, BERT with H-4x configuration achieves more performance improvement

than other cases (2.16× speedup).

Scalability: scale-out multi-GPU. NLP-Fast utilizes multiple GPUs more effi-

ciently than the baseline system because our holistic model partitioning optimization

reduces the working set size. Note that our extra communication overhead for sup-

porting multi-GPU version NLP-Fast is negligible as NLP-Fast does not require many

synchronization points.

68

0

1

2

3

MemNet TF BERT

S
p
e
e
d
u
p

Baseline Baseline+MP NLP-Fast

Figure 4.15: Performance of FPGA-based NLP-Fast on various models. MP means

model partitioning.

By exploiting multiple GPUs, NLP-Fast can run an extremely large NLP model

which cannot be executed on the single-GPU environment. Figure 4.14 shows the

results of the multi-GPU evaluation. Figure 4.14a shows the normalized latency of

NLP-Fast on different numbers of GPUs (normalized to the single-GPU case) and the

overhead breakdown (compute vs. memory). In this case, NLP-Fast achieves 1.44×

and 1.63× speedup on two GPUs and four GPUs, respectively.

Currently, NLP-Fast cannot achieve scalable performance due to high memory ac-

cessing overhead. The latency breakdown (Figure 4.14a) shows that the memory over-

head takes 16.9%, 34.3%, and 51.0% on 1, 2, and 4 GPUs, respectively. Fortunately,

this high memory accessing overhead is continuously alleviated as interconnect tech-

nology scales. For example, NVIDIA NVLink 2.0 [4] achieves 10× more bandwidth

than PCIe Gen 3. Figure 4.14b shows the expected speedup of NLP-Fast with high-

bandwidth interconnect technology. Here, we assume NVLink 2.0 (10× more band-

width). In this case, NLP-Fast can achieve 1.76× and 2.55× speedup on two and four

GPUs, respectively.

4.5.4 FPGA

Performance. Figure 4.15 shows the performance of NLP-Fast on various NLP mod-

els. The results illustrate that NLP-Fast achieves gradual speedup as we apply the

holistic partitioning and cross-operation skipping. First, our holistic model partitioning

69

0.0 0.2 0.4 0.6 0.8 1.0

NLP-Fast
Base+P+C+Z

Base+P+C
Base+P
Baseline

Normalized Latency

Compute
Memory

(a) Multi-head self-attention.

0.0 0.2 0.4 0.6 0.8 1.0

Base+F

Baseline

Normalized Latency

Compute Memory

(b) Feed-forward network.

Figure 4.16: Latency reduction of FPGA-based NLP-Fast on BERT. Each latency is

normalized to baseline. P/C/Z/F represents partial-head update/column-based algorith-

m/zero skipping/feed-forward splitting, respectively.

provides 2.72× speedup by minimizing the data spilling and enabling data prefetch-

ing. Also, cross-operation zero skipping with dynamic scheduler achieves an additional

1.20× speedup by skipping unnecessary computations and removing skewness. With

all schemes applied, NLP-Fast accomplishes total speedup by up to 2.81×.

We quantify the impacts of each optimization on BERT. We implement five ver-

sions on multi-head attention (i.e., baseline, partial-head update, column-based algo-

rithm, zero skipping, V-Gen skipping), and two versions on feed-forward (i.e., base-

line, feed-forward splitting). Figure 4.16a shows the latency breakdown of the multi-

head self-attention part, which is normalized to the baseline. First, partial-head update

(P) and column-based algorithm (C) gradually reduce the execution latency by remov-

ing memory overhead. Next, our zero skipping (Z) reduces computation overhead.

Lastly, with V-Gen skipping, NLP-Fast achieves latency reduction by 57.0% compared

70

0

1

2

3

 base S-4x H-4x F-4x

S
p
e
e
d
u
p Baseline Reconfig. Algorithm

Figure 4.17: Effectiveness of adaptive hardware reconfiguration on various configu-

rations of BERT. S/H/F-4x are parameter configurations with a fourfold increase of s,

dH , and dFF , respectively.

to the baseline. Figure 4.16b is the latency breakdown of the feed-forward part. Each

Latency is normalized to the baseline. The results show that feed-forward splitting (F)

achieves latency reduction by 68.5%.

Adaptive hardware reconfiguration. To show the effectiveness of our adap-

tive hardware reconfiguration, we implement NLP-Fast with various configurations

of BERT on FPGA. Figure 4.17 is the speedup results of each configuration with an

optimized design point. The speedup is normalized to the execution latency of each

configuration with the baseline design point. As the latency of each operation signifi-

cantly varies with parameters, we assume the baseline design point that all operations

have a similar amount of resources. The results show that our scheme achieves more

than 1.5× speedup on every configuration. This improvement occurs as our scheme

redistributes resources from non-performance critical operations to other operations.

Especially, for F-4x configuration, linear trans operations take 74.7% of latency while

other operations take 25.3% in total. Therefore, F-4x configuration achieves a higher

speedup than other cases (2.25×).

We observe that adaptive hardware reconfiguration is essential because the spe-

cific design point, optimized for certain configuration, works poorly on other config-

urations. For example, if we run BERT with H-4x configuration on the FPGA accel-

erator designed for F-4x configuration, we can only get 76.2% of the performance we

get from an optimal design for H-4x configuration. Moreover, this performance loss is

71

aggravated as the model size increases (e.g., 46.7% in an eightfold increase, 29.7% in

a sixteen-fold increase).

4.6 Conclusion

We propose NLP-Fast, a novel system solution for heterogeneous NLP models to

achieve fast and scalable performance. We identify performance-critical operations

in various NLP models and their performance problems. To resolve the problems, we

propose three techniques to optimize various NLP models on any hardware platforms:

CPU, GPU, and FPGA.

72

Chapter 5

Related Work

5.1 Various DNN Accelerators

A DNN is basically composed of a series of linear algebra operations. Variants of ex-

isting DNNs usually have different requirements including new operations, which can

motivate researchers to develop new types of DNN accelerators. For example, Lin et

al. [78] investigate various neural networks used in autonomous driving systems, iden-

tify key computational bottlenecks, and provide acceleration techniques applicable to

different hardware platforms: GPU, FPGA, and ASIC. Kung et al. [70] provide opti-

mization techniques for specific neural networks (e.g., multi-layer cellular nonlinear

network) to improve GPU’s energy efficiency. Some prior work proposes both soft-

ware and hardware optimizations for low-precision SGD [31]. Also, there are several

attempts to optimize GAN-based deep learning [118, 142].

In addition to the software optimizations, some prior work proposes hardware-

specific techniques for different types of DNNs and CNNs [20, 40, 112, 117]. Some

studies try to accelerate DNNs with respect to memory [26, 44], while others present

acceleration with low power [25].

As these model-specific optimizations are challenging, some researchers propose

systematic accelerator performance analysis and optimization methodology [13, 104,

73

113, 105, 123, 82, 122, 41]. In the dissertation, I focus on addressing the performance

problems of various NLP models (e.g., Memory networks, Transformer, BERT). Dif-

ferent from typical prior NN acceleration work, our approach is a generic solution

applicable to various NLP models, thanks to our in-depth model analysis and general

software optimizations.

5.2 Various NLP Accelerators

Recently, neural networks have risen as new information processing paradigms in nat-

ural language processing (NLP) as they break records on many NLP tasks. Recurrent

neural networks (RNNs), designed to work on sequence prediction problems, derive

an answer to a question from the previous reasonings [86, 57]. There are some stud-

ies with different accelerating approaches for reconfigurable hardware to accelerate

RNNs [22, 50, 74, 43] and LSTMs [133].

However, RNNs and LSTMs cannot memorize the previous history for a long

time [15] nor handle a large amount of history due to their small memory [136].

Therefore, they cannot perform sophisticated tasks requiring a large amount of mem-

ory, such as a task which comprehends a series of books to provide useful informa-

tion to users. To resolve these limitations, big technology companies (e.g., Google,

Facebook, Microsoft) and open-source research communities (e.g., OpenAI) actively

propose new types of complex NLP models (e.g., memory-augmented neural net-

works [136, 125], attention-based neural networks [128, 32]). Nowadays, these com-

plex emerging NLP models are widely used in various NLP tasks from simple dialog

comprehension to large-scale question & answering systems using a large-scale dataset

(e.g., Wikipedia) [134, 55, 34, 87].

Unfortunately, there are only a few proposals aiming to accelerate these new types

of complex NLP models. Ham et al. [52] propose a specific architecture conducting

approximation on the attention mechanism. They exploit the inherent sparsity in the

74

attention mechanism to reduce a large portion of computations with near-zero val-

ues. Also, they provide the hardware architecture specialized for those approximation-

enabled attention networks. Jang et al. [62] present three general optimizations to re-

duce working set size in the attention mechanism, minimize the overall computations,

and avoid a cache conflict between inference and embedding operations. Then, they

apply the three optimizations on different hardware platforms (i.e., CPU, GPU, FPGA)

to show the effectiveness of the proposed techniques.

However, these studies cannot always be effective due to the limited range of accel-

eration (only for the attention mechanism). As described in the dissertation, the state-

of-the-art NLP models (e.g., Transformer, BERT) consist of various combinations of

complex operations, and the attention mechanism is not a major performance bottle-

neck in most models/configurations. Therefore, those attention-specific optimizations

are not highly efficient for the emerging NLP models. In the dissertation, I focus on

accelerating the whole types of NLP models as well as upcoming new types of models

to cover various NLP models.

Stevens et al. [124] present a memory-centric hardware architecture for attention-

based networks, which is also beneficial for NLP-Fast. TensorRT [6] and ONNX Run-

time [5] propose sub-graph fusion to reduce memory accesses and more self-attention

heads to enhance parallelism, which is orthogonal to our optimizations: holistic model

partitioning and cross-operation zero skipping.

5.3 Model Partitioning

To achieve higher accuracy, neural networks are becoming bigger and more complex.

Not only DNNs and CNNs [45, 59, 118], but also various large-scale NLP models are

actively proposed in both industry and academia [116, 17, 72]. This large-scale NLP

models increase the working set size, which incurs extremely low cache efficiency and

increases high off-chip memory bandwidth requirements.

75

To resolve this memory accessing overhead, some studies propose model parti-

tioning techniques to handle the growing size of DNNs, CNNs, and NLP models. Gao

et al. [45] propose dataflow optimizations exploiting both intra-layer parallelism and

inter-layer pipelining. Lu et al. [80] introduce a flexible dataflow architecture for var-

ious CNN workloads. Jia et al. [65] use a deep learning engine to find a customized

parallelization strategy. For NLP models, Jang et al. [62] propose model partitioning

for the attention mechanism. With their novel column-based algorithm, they success-

fully reduce the working set size and achieve high cache efficiency in each hardware

platform: CPU, GPU, and FPGA. Some groups exploit the inherent parallelism in the

multi-head attention to reduce the working set size in Transformer-based models [116].

Note that these proposals cannot support a wide spectrum of NLP models as each

work only focuses on a specific operation or NLP model. In recent large-scale NLP

models, the most critical characteristic is that different parts can be scaled-up individ-

ually. For example, each parameter in Transformer-based models can be scaled-up to

enhance the model accuracy, which results in high model/config diversity. In the disser-

tation, our holistic model partitioning provides a high model coverage by optimizing

all types of operations used in recent NLP models.

5.4 Approximation

Fault-tolerance of NNs [127, 126] allows NNs to adopt approximation with small accu-

racy loss while improving energy efficiency [110]. Fault-tolerance varies by NNs [103].

Some studies help architects properly use the approximation [11, 19, 42]. The exces-

sive approximation can threaten our safety [151], and also degrade performance and

energy if subsequent tasks are inefficient on inaccurate data [129, 145, 146].

Network pruning is an effective optimization, especially for constrained environ-

ments [47, 96, 27]. Static pruning is usually independent of hardware, while dynamic

pruning relies on software-hardware co-designs. Static pruning can greatly reduce NN

76

size with little loss of accuracy [60] and domain adaptation ability [139]. Song et

al. [120] improve the accuracy of overly-pruned NNs by incremental updates. Dynamic

pruning can reduce the working set size [120, 144] using runtime information. Value

prediction [95, 85, 143] can increase pruning candidates [10, 119]. Dynamic pruning

can produce a sparse matrix whose irregular data access patterns can negate the prun-

ing benefits; thus, accelerators specialized for sparse matrices [148, 53, 93, 54, 63, 75]

are proposed. Generative adversarial networks (GANs) populate zeros as opposed to

pruning, but require sparse DNN accelerators [118, 142].

Some studies propose effective pruning techniques for Transformer-based NLP

models [84, 48]. They focus on pruning Query/Key/Value generation parts, attention

FC, and linear transformations in the feed-forward network. In addition to network

pruning, there are different approaches to compress BERT by leveraging knowledge

distillation [111]. Note that these network pruning approaches are orthogonal to our

zero skipping optimizations as the zero skipping optimizations are used in attention-

related operations. I believe combining these pruning techniques with the zero skip-

ping optimizations can significantly reduce both memory bandwidth and computation

requirements.

Precision can also be adjusted. Low-voltage SRAM [16] is universally appli-

cable to accelerators. Brandon et al. [102] propose a novel lossy weight encoding

scheme. Processing in memory (PIM) performs read and computation simultaneously

while losing reliability [39], which is appealing features for DNN accelerators [36].

The PIM reliability issue is handled by [39, 38, 77]. Quantization decreases overall

bitwidths [81, 51, 96]. Park et al. [94] use two different bitwidths to handle outliers.

Ding et al. [33] replace expensive multipliers with cheaper shifters and adders.

Note that the above various approximation techniques (e.g., network pruning, low

precision, quantization) can be independently applied with the proposed zero-skipping

optimizations in this dissertation.

77

5.5 Improving Flexibility

In neural networks, the strong binding of fast-evolving software and optimized hard-

ware discourages actual chip development [71]; therefore, some accelerators try to ex-

ploit the reconfigurable hardware to satisfy this rapid advancement in recent neural net-

works. For example, some studies utilize FPGA’s flexibility by reconfiguring intercon-

nects or rebalancing the hardware resources in the most efficient way for DNNs [71,

97] and CNNs [115]. Some prior work exploits the flexibility by concentrating on most

compute-intensive code regions to maximize resource utilization [90, 88].

The FPGA’s flexibility is highly beneficial for neural networks; however, users

cannot easily adopt FPGA for a target accelerator because of its programming diffi-

culty (e.g., Verilog). To ease the programming difficulty, some studies use high-level

synthesis to design their accelerator rather than using a hardware description lan-

guage [46, 23, 24]. Others propose ISA-driven spatial accelerators, using autonomous

fixed-ISA processing elements [106]. In addition to the programming language, some

studies aim to automate the design space exploration by exploiting compiler tech-

niques [64, 121]. Virtual memory [89] eliminates the limit on runnable NNs but also

degrades performance unless carefully designed [107, 61].

5.6 Resource Optimization

In addition to exploiting the FPGA’s flexibility by proposing a target-specific design,

finding an optimal design point is also critical in FPGA-based accelerators. For this

purpose, some studies provide frameworks to automatically explore various design

points for various NN models [14, 83, 21, 108, 58, 67, 114]. In resource optimization,

there are different goals (e.g., performance, power, throughput, resource utilization).

Among these goals, some groups aim to maximize resource utilization [99, 150, 147].

Palesi et al. [92] propose a technique for Pareto-optimal configurations on parame-

terized system-on-a-chip architecture. Krishnan et al. [69] introduce a framework for

78

efficient design space exploration using a genetic algorithm.

In the dissertation, NLP-Fast leverages the FPGA’s flexibility to find optimal de-

sign points for each NLP model and configuration by dynamically rebalancing the

hardware resources. NLP-Fast allocates more resources on compute-intensive opera-

tions identified by our in-depth performance analysis while minimizing stalls due to

memory overheads.

79

Chapter 6

Conclusion

Emerging natural language processing (NLP) models have become more complex

and bigger to provide more sophisticated NLP services. Accordingly, there is also a

strong demand for scalable and flexible computer infrastructure to support these large-

scale, complex, and diverse NLP models. However, existing proposals cannot provide

enough scalability and flexibility as they neither identify nor optimize a wide spectrum

of performance-critical operations appearing in recent NLP models and only focus on

optimizing specific operations.

The dissertation proposes two novel projects for large-scale heterogeneous NLP

models to achieve fast and scalable reasoning performance. The first project is Mn-

nFast that accelerates large-scale memory-augmented neural networks (e.g., mem-

ory networks). In this project, the attention mechanism (commonly used operation

in recent NLP models) is the major performance bottleneck of the target memory-

augmented neural networks. MnnFast conducts extensive performance bottleneck anal-

ysis and identifies that the current architecture suffers from three major performance

problems in the large-scale attention mechanism: high memory bandwidth consump-

tion, heavy computation, and cache contention. To overcome these performance prob-

lems, MnnFast proposes three novel optimizations.

First, to minimize the off-chip memory accessing overhead, MnnFast presents a

80

new column-based algorithm with streaming which minimizes the size of data spills

and hides most of the off-chip memory accessing overhead. Second, to reduce the com-

putational overhead, MnnFast proposes a zero-skipping optimization to bypass a large

amount of output computation by exploiting high sparsity in the attention mechanism.

Lastly, to eliminate the cache contention, we propose an embedding cache dedicated

for the embedding operations.

Evaluation results show that MnnFast is significantly effective in various hardware

platforms: CPU, GPU, and FPGA. MnnFast improves the overall throughput by up to

5.38×, 4.34×, and 2.01× on CPU, GPU, and FPGA respectively.

The second project is NLP-Fast that aims to design a fast, scalable, and flexible

system architecture for heterogeneous NLP models. As aforementioned, the state-of-

the-art NLP models are becoming diversified, which results in huge performance vari-

ation. For example, the attention mechanism is not a major performance bottleneck in

recent NLP models anymore. To support a wide spectrum of NLP models, NLP-Fast

builds the performance analysis tool for heterogeneous NLP models (e.g., memory

networks, Transformer, BERT) and conducts extensive profiling on different configu-

rations. By doing so, NLP-Fast identifies the performance-critical operations and their

performance bottlenecks in the NLP models.

Then, to remove the identified performance bottlenecks, NLP-Fast proposes two

general-purpose optimizations applicable to any hardware platforms and one hardware-

specific optimization for the reconfigurable hardware platform. For the general-purpose

optimizations, one optimization is holistic model partitioning which combines three

model partitioning techniques (i.e., partial-head update, column-based algorithm, feed-

forward splitting) to enable end-to-end model partitioning. Another optimization is

cross-operation zero skipping which skips computations with zero/near-zero values

over multiple operations. With these optimizations, NLP-Fast can holistically reduce

both memory and computation overheads in various NLP models on any hardware

platforms. To further improve the performance by reconfiguring the architecture to the

81

target model, we apply a workload-specific method, model/config adaptive hardware

reconfiguration, applicable to FPGA. By taking into account the change of perfor-

mance bottlenecks depending on models and their configurations, the proposed opti-

mization reallocates the FPGA’s resources to prioritize the most critical bottlenecks.

For the evaluation, we apply two general-purpose optimizations to TensorFlow-

based NLP models for CPU and GPU platforms. We also implement our baseline mod-

els for FPGA and apply three optimizations: two general-purpose and one hardware-

specific optimization. The evaluation results show that CPU-based NLP-Fast achieves

up to 2.92× speedup (2.00× on average) and shows scalable performance using more

cores. GPU-based NLPFast achieves up to 1.59× speedup (1.44× on average) in the

single-GPU environment and shows scalable performance using more GPUs. FPGA-

based NLP-Fast achieves up to 2.89× speedup (2.59× on average), and up to 4.47×

speed up with its adaptive hardware reconfiguration enabled.

In summary, the dissertation shows that the proposed optimizations and system

design methodology successfully support a wide spectrum of emerging NLP models

on various hardware platforms.

82

Bibliography

[1] “cuBLAS,” Available online at https://docs.nvidia.com/cuda/cublas/index.html,

accessed: 2020-04.

[2] “cuSPARSE,” Available online at https://docs.nvidia.com/cuda/cusparse/index.

html, accessed: 2020-04.

[3] “Memory-augmented neural networks. facebook open-source projects,” Avail-

able online at https://github.com/facebook/MemNN, accessed: 2020-04.

[4] “Nvidia nvlink and nvswitch,” Available online at https://www.nvidia.com/en-

us/data-center/nvlink/, accessed: 2020-04.

[5] “Onnx runtime: Microsoft open sources breakthrough optimizations for trans-

former inference on gpu and cpu,” Available online at https://github.com/

microsoft/onnxruntime, accessed: 2020-08.

[6] “Real-time natural language understanding with bert using tensorrt,” Available

online at https://developer.nvidia.com/blog/nlu-with-tensorrt-bert/, accessed:

2020-08.

[7] “The size of wikipedia,” Available online at https://en.wikipedia.org/wiki/

Wikipedia:Size in volumes, accessed: 2018-12.

[8] “Tensor2tensor. google open-source projects,” Available online at https://github.

com/tensorflow/tensor2tensor, accessed: 2020-04.

83

[9] Intel 64 and IA-32 Architectures Software Developer’s Manual Vol. 3A. Intel,

2018, ch. Memory Cache Control.

[10] V. Aklaghi, A. Yazdanbakhsh, K. Samadi, H. Esmaeilzadeh, and R. Gupta,

“SnaPEA: Predictive early activation for reducing computation in deep convo-

lutional neural networks,” in 2018 ACM/IEEE 45th Annual International Sym-

posium on Computer Architecture (ISCA), June 2018, pp. 662–673.

[11] R. Akram and A. Muzahid, “Approximeter: Automatically finding and quanti-

fying code sections for approximation,” in 2017 IEEE International Symposium

on Workload Characterization (IISWC), Oct 2017, pp. 116–117.

[12] R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones, “Character-level lan-

guage modeling with deeper self-attention,” 2018.

[13] M. S. B. Altaf and D. A. Wood, “LogCA: A high-level performance

model for hardware accelerators,” in Proceedings of the 44th Annual

International Symposium on Computer Architecture, ser. ISCA ’17. New

York, NY, USA: ACM, 2017, pp. 375–388. [Online]. Available: http:

//doi.acm.org/10.1145/3079856.3080216

[14] G. Ascia, V. Catania, and M. Palesi, “A ga-based design space exploration

framework for parameterized system-on-a-chip platforms,” IEEE Transactions

on Evolutionary Computation, vol. 8, no. 4, pp. 329–346, 2004.

[15] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5,

no. 2, pp. 157–166, March 1994.

[16] R. Bertran, P. Bose, D. Brooks, J. Burns, A. Buyuktosunoglu, N. Chandramoor-

thy, E. Cheng, M. Cochet, S. Eldridge, D. Friedman, H. Jacobson, R. Joshi,

S. Mitra, R. Montoye, A. Paidimarri, P. Parida, K. Skadron, M. Stan, K. Swami-

nathan, A. Vega, S. Venkataramani, C. Vezyrtzis, G.-Y. Wei, J.-D. Wellman,

84

and M. Ziegler, “Very low voltage (VLV) design,” in 2017 IEEE International

Conference on Computer Design (ICCD), Nov 2017, pp. 601–604.

[17] A. Bordes, N. Usunier, S. Chopra, and J. Weston, “Large-scale simple question

answering with memory networks,” arXiv preprint arXiv:1506.02075, 2015.

[18] A. Bordes and J. Weston, “Learning end-to-end goal-oriented dialog,” in 7th

International Conference on Learning Representations, ser. ICLR ’17, 2017.

[19] B. Boston, A. Sampson, D. Grossman, and L. Ceze, “Probability type

inference for flexible approximate programming,” in Proceedings of the 2015

ACM SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, ser. OOPSLA 2015. New York, NY,

USA: ACM, 2015, pp. 470–487. [Online]. Available: http://doi.acm.org/10.

1145/2814270.2814301

[20] R. Cai, A. Ren, N. Liu, C. Ding, L. Wang, X. Qian, M. Pedram, and Y. Wang,

“Vibnn: Hardware acceleration of bayesian neural networks,” ACM SIGPLAN

Notices, vol. 53, no. 2, pp. 476–488, 2018.

[21] H. Calborean and L. Vinţan, “An automatic design space exploration framework

for multicore architecture optimizations,” in 9th RoEduNet IEEE International

Conference. IEEE, 2010, pp. 202–207.

[22] A. X. M. Chang and E. Culurciello, “Hardware accelerators for recurrent neu-

ral networks on fpga,” in 2017 IEEE International Symposium on Circuits and

Systems (ISCAS). IEEE, 2017, pp. 1–4.

[23] G. Charitopoulos, C. Vatsolakis, G. Chrysos, and D. N. Pnevmatikatos,

“A decoupled access-execute architecture for reconfigurable accelerators,”

in Proceedings of the 15th ACM International Conference on Computing

Frontiers, ser. CF ’18. New York, NY, USA: ACM, 2018, pp. 244–247.

[Online]. Available: http://doi.acm.org/10.1145/3203217.3203267

85

[24] T. Chen and G. E. Suh, “Efficient data supply for hardware accelerators with

prefetching and access/execute decoupling,” in 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), Oct 2016, pp. 1–12.

[25] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: A

small-footprint high-throughput accelerator for ubiquitous machine-learning,”

ACM SIGARCH Computer Architecture News, vol. 42, no. 1, pp. 269–284,

2014.

[26] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime:

A novel processing-in-memory architecture for neural network computation

in reram-based main memory,” ACM SIGARCH Computer Architecture News,

vol. 44, no. 3, pp. 27–39, 2016.

[27] T.-W. Chin, C. Zhang, and D. Marculescu, “Layer-compensated prun-

ing for resource-constrained convolutional neural networks,” arXiv preprint

arXiv:1810.00518, 2018.

[28] A. Conneau and G. Lample, “Cross-lingual language model pretraining,” in Ad-

vances in Neural Information Processing Systems, 2019, pp. 7057–7067.

[29] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov,

“Transformer-XL: Attentive language models beyond a fixed-length context,”

in Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics. Florence, Italy: Association for Computational Linguistics, Jul.

2019, pp. 2978–2988. [Online]. Available: https://www.aclweb.org/anthology/

P19-1285

[30] M. Davies, “The Corpus of Contemporary American English (COCA): 560

million words, 1990-present,” Available online at https://corpus.byu.edu/coca/,

2008-.

86

[31] C. De Sa, M. Feldman, C. Ré, and K. Olukotun, “Understanding and optimizing

asynchronous low-precision stochastic gradient descent,” in Proceedings of the

44th Annual International Symposium on Computer Architecture, ser. ISCA

’17. New York, NY, USA: ACM, 2017, pp. 561–574. [Online]. Available:

http://doi.acm.org/10.1145/3079856.3080248

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[33] R. Ding, Z. Liu, R. Shi, D. Marculescu, and R. S. Blanton, “LightNN: Filling

the gap between conventional deep neural networks and binarized networks,”

in Proceedings of the on Great Lakes Symposium on VLSI 2017, ser. GLSVLSI

’17. New York, NY, USA: ACM, 2017, pp. 35–40. [Online]. Available:

http://doi.acm.org/10.1145/3060403.3060465

[34] J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Chopra, A. H. Miller, A. Szlam, and

J. Weston, “Evaluating prerequisite qualities for learning end-to-end dialog sys-

tems,” in 6th International Conference on Learning Representations, ser. ICLR

’16, 2016.

[35] M. Donato, B. Reagen, L. Pentecost, U. Gupta, D. Brooks, and G.-Y.

Wei, “On-chip deep neural network storage with multi-level eNVM,” in

Proceedings of the 55th Annual Design Automation Conference, ser. DAC

’18. New York, NY, USA: ACM, 2018, pp. 169:1–169:6. [Online]. Available:

http://doi.acm.org/10.1145/3195970.3196083

[36] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,

D. Blaauw, and R. Das, “Neural Cache: Bit-serial in-cache acceleration of deep

neural networks,” in Proceedings of the 45th Annual International Symposium

on Computer Architecture, ser. ISCA ’18. Piscataway, NJ, USA: IEEE Press,

87

2018, pp. 383–396. [Online]. Available: https://doi.org/10.1109/ISCA.2018.

00040

[37] S. Eranian, “Perfmon2: a flexible performance monitoring interface for linux,”

in Proc. of the 2006 Ottawa Linux Symposium. Citeseer, 2006, pp. 269–288.

[38] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and E. Ipek, “Enabling

scientific computing on memristive accelerators,” in 2018 ACM/IEEE 45th An-

nual International Symposium on Computer Architecture (ISCA), June 2018,

pp. 367–382.

[39] B. Feinberg, S. Wang, and E. Ipek, “Making memristive neural network

accelerators reliable,” in 2018 IEEE International Symposium on High

Performance Computer Architecture (HPCA), Feb 2018, pp. 52–65. [Online].

Available: doi.ieeecomputersociety.org/10.1109/HPCA.2018.00015

[40] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,

S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek,

G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung,

and D. Burger, “A configurable cloud-scale dnn processor for real-time ai,” in

2018 ACM/IEEE 45th Annual International Symposium on Computer Architec-

ture (ISCA). IEEE, 2018, pp. 1–14.

[41] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R.

Johnson, M. Püschel, J. C. Hoe, and J. M. Moura, “SPIRAL: Extreme perfor-

mance portability,” Proceedings of the IEEE, vol. 106, no. 11, pp. 1935–1968,

Nov 2018.

[42] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “mARGOt: a dynamic auto-

tuning framework for self-aware approximate computing,” IEEE Transactions

on Computers, pp. 1–1, 2018.

88

[43] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “Deltarnn: A power-

efficient recurrent neural network accelerator,” in Proceedings of the 2018

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

2018, pp. 21–30.

[44] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable

and efficient neural network acceleration with 3d memory,” in Proceedings of

the Twenty-Second International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, 2017, pp. 751–764.

[45] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram: Optimized

coarse-grained dataflow for scalable nn accelerators,” in Proceedings of the

Twenty-Fourth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, 2019, pp. 807–820.

[46] R. Garibotti, B. Reagen, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Assisting high-

level synthesis improve SpMV benchmark through dynamic dependence anal-

ysis,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65,

no. 10, pp. 1440–1444, Oct 2018.

[47] G. Gobieski, N. Beckmann, and B. Lucia, “Intelligence Beyond the Edge: Infer-

ence on Intermittent Embedded Systems,” ArXiv e-prints, p. arXiv:1810.07751,

Sep. 2018.

[48] M. A. Gordon, K. Duh, and N. Andrews, “Compressing bert: Studying the ef-

fects of weight pruning on transfer learning,” arXiv preprint arXiv:2002.08307,

2020.

[49] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance matrix

multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, pp. 12:1–12:25, May

2008. [Online]. Available: http://doi.acm.org/10.1145/1356052.1356053

89

[50] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelerator for long short-

term memory recurrent neural networks,” in 2017 22nd Asia and South Pacific

Design Automation Conference (ASP-DAC). IEEE, 2017, pp. 629–634.

[51] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approximation of

convolutional neural networks,” arXiv preprint arXiv:1604.03168, 2016.

[52] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J. Park, S.-H. Lee,

K. M. Park, J. W. Lee, and D.-K. Jeong, “A3: Accelerating attention mech-

anisms in neural networks with approximation,” in 2020 IEEE International

Symposium on High Performance Computer Architecture (HPCA), 2020.

[53] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,

“EIE: Efficient inference engine on compressed deep neural network,” in 2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture

(ISCA), June 2016, pp. 243–254.

[54] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. W. Fletcher, “UCNN:

Exploiting computational reuse in deep neural networks via weight repetition,”

in 2018 ACM/IEEE 45th Annual International Symposium on Computer Archi-

tecture (ISCA), June 2018, pp. 674–687.

[55] F. Hill, A. Bordes, S. Chopra, and J. Weston, “The goldilocks principle: Reading

children’s books with explicit memory representations,” in 6th International

Conference on Learning Representations, ser. ICLR ’16, 2016.

[56] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A. Laurenzano, S. Mahlke,

L. Tang, and J. Mars, “DeftNN: Addressing bottlenecks for DNN execution

on GPUs via synapse vector elimination and near-compute data fission,”

in Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp.

786–799. [Online]. Available: http://doi.acm.org/10.1145/3123939.3123970

90

[57] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:

http://dx.doi.org/10.1162/neco.1997.9.8.1735

[58] P.-A. Hsiung, C.-S. Lin, and C.-F. Liao, “Perfecto: A systemc-based design-

space exploration framework for dynamically reconfigurable architectures,”

ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 1,

no. 3, pp. 1–30, 2008.

[59] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee, J. Ngiam,

Q. V. Le, Y. Wu, and Z. Chen, “Gpipe: Efficient training of giant neural networks

using pipeline parallelism,” in Advances in Neural Information Processing Sys-

tems, 2019, pp. 103–112.

[60] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and

K. Keutzer, “SqueezeNet: Alexnet-level accuracy with 50x fewer parameters

and <1mb model size,” CoRR, vol. abs/1602.07360, 2016. [Online]. Available:

http://arxiv.org/abs/1602.07360

[61] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko, “Gist: Efficient

data encoding for deep neural network training,” in 2018 ACM/IEEE 45th An-

nual International Symposium on Computer Architecture (ISCA), June 2018,

pp. 776–789.

[62] H. Jang, J. Kim, J.-E. Jo, J. Lee, and J. Kim, “Mnnfast: a fast and scalable

system architecture for memory-augmented neural networks,” in Proceedings

of the 46th International Symposium on Computer Architecture, 2019, pp. 250–

263.

[63] H. Ji, L. Song, L. Jiang, H. H. Li, and Y. Chen, “ReCom: An efficient resistive

accelerator for compressed deep neural networks,” in 2018 Design, Automation

Test in Europe Conference Exhibition (DATE), March 2018, pp. 237–240.

91

[64] Y. Ji, Y. Zhang, W. Chen, and Y. Xie, “Bridge the gap between neural

networks and neuromorphic hardware with a neural network compiler,” in

Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems, ser. ASPLOS

’18. New York, NY, USA: ACM, 2018, pp. 448–460. [Online]. Available:

http://doi.acm.org/10.1145/3173162.3173205

[65] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism for deep

neural networks,” 2018.

[66] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “Spanbert:

Improving pre-training by representing and predicting spans,” Transactions of

the Association for Computational Linguistics, vol. 8, pp. 64–77, 2020.

[67] K. Keutzer, K. Ravindran, N. Satish, and Y. Jin, “An automated explo-

ration framework for fpga-based soft multiprocessor systems,” in 2005 Third

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign

and System Synthesis (CODES+ ISSS’05). IEEE, 2005, pp. 273–278.

[68] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,”

arXiv preprint arXiv:2001.04451, 2020.

[69] V. Krishnan and S. Katkoori, “A genetic algorithm for the design space explo-

ration of datapaths during high-level synthesis,” IEEE Transactions on Evolu-

tionary Computation, vol. 10, no. 3, pp. 213–229, 2006.

[70] J. Kung, Y. Long, D. Kim, and S. Mukhopadhyay, “A programmable hardware

accelerator for simulating dynamical systems,” in 2017 ACM/IEEE 44th An-

nual International Symposium on Computer Architecture (ISCA), June 2017,

pp. 403–415.

[71] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible

dataflow mapping over DNN accelerators via reconfigurable interconnects,”

92

in Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems, ser. ASPLOS

’18. New York, NY, USA: ACM, 2018, pp. 461–475. [Online]. Available:

http://doi.acm.org/10.1145/3173162.3173176

[72] G. Lample, A. Sablayrolles, M. Ranzato, L. Denoyer, and H. Jégou, “Large

memory layers with product keys,” in Advances in Neural Information Process-

ing Systems, 2019, pp. 8546–8557.

[73] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,

“Albert: A lite bert for self-supervised learning of language representations,”

in International Conference on Learning Representations, 2020. [Online].

Available: https://openreview.net/forum?id=H1eA7AEtvS

[74] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “Unpu: A 50.6 tops/w

unified deep neural network accelerator with 1b-to-16b fully-variable weight

bit-precision,” in 2018 IEEE International Solid-State Circuits Conference-

(ISSCC). IEEE, 2018, pp. 218–220.

[75] J. H. Lee and H. Kim, “StaleLearn: Learning acceleration with asynchronous

synchronization between model replicas on PIM,” IEEE Transactions on Com-

puters, vol. 67, no. 6, pp. 861–873, June 2018.

[76] J. Li, A. H. Miller, S. Chopra, M. Ranzato, and J. Weston, “Dialogue

learning with human-in-the-loop,” CoRR, vol. abs/1611.09823, 2016. [Online].

Available: http://arxiv.org/abs/1611.09823

[77] M.-Y. Lin, H.-Y. Cheng, W.-T. Lin, T.-H. Yang, I.-C. Tseng, C.-L. Yang,

H.-W. Hu, H.-S. Chang, H.-P. Li, and M.-F. Chang, “DL-RSIM: A simulation

framework to enable reliable ReRAM-based accelerators for deep learning,”

in Proceedings of the International Conference on Computer-Aided Design,

93

ser. ICCAD ’18. New York, NY, USA: ACM, 2018, pp. 31:1–31:8. [Online].

Available: http://doi.acm.org/10.1145/3240765.3240800

[78] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and

J. Mars, “The architectural implications of autonomous driving: Constraints

and acceleration,” in Proceedings of the Twenty-Third International Conference

on Architectural Support for Programming Languages and Operating Systems,

ser. ASPLOS ’18. New York, NY, USA: ACM, 2018, pp. 751–766. [Online].

Available: http://doi.acm.org/10.1145/3173162.3173191

[79] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-

moyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining ap-

proach,” arXiv preprint arXiv:1907.11692, 2019.

[80] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible dataflow

accelerator architecture for convolutional neural networks,” in 2017 IEEE In-

ternational Symposium on High Performance Computer Architecture (HPCA).

IEEE, 2017, pp. 553–564.

[81] Y. Ma, N. Suda, Y. Cao, J.-s. Seo, and S. Vrudhula, “Scalable and modular-

ized RTL compilation of convolutional neural networks onto FPGA,” in 2016

26th International Conference on Field Programmable Logic and Applications

(FPL), Aug 2016, pp. 1–8.

[82] D. Marculescu, D. Stamoulis, and E. Cai, “Hardware-aware machine learning:

Modeling and optimization,” in Proceedings of the International Conference on

Computer-Aided Design, ser. ICCAD ’18. New York, NY, USA: ACM, 2018,

pp. 137:1–137:8. [Online]. Available: http://doi.acm.org/10.1145/3240765.

3243479

[83] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur, G. Palermo,

C. Silvano, and V. Zaccaria, “An industrial design space exploration framework

94

for supporting run-time resource management on multi-core systems,” in 2010

Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

IEEE, 2010, pp. 196–201.

[84] J. McCarley, R. Chakravarti, and A. Sil, “Structured pruning of a bert-based

question answering model,” arXiv preprint arXiv:1910.06360, 2019.

[85] J. S. Miguel, M. Badr, and N. E. Jerger, “Load value approximation,” in

Proceedings of the 47th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO-47. Washington, DC, USA: IEEE Computer

Society, 2014, pp. 127–139. [Online]. Available: http://dx.doi.org/10.1109/

MICRO.2014.22

[86] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, “Recurrent

neural network based language model,” vol. 2, 01 2010, pp. 1045–1048.

[87] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston,

“Key-value memory networks for directly reading documents,” in Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing.

Association for Computational Linguistics, 2016, pp. 1400–1409. [Online].

Available: http://aclweb.org/anthology/D16-1147

[88] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and

M. Oskin, “SNNAP: Approximate computing on programmable SoCs via neu-

ral acceleration,” in 2015 IEEE 21st International Symposium on High Perfor-

mance Computer Architecture (HPCA), Feb 2015, pp. 603–614.

[89] M. J. Nielsen and Z. S. Hussain, “Unified memory computer architecture with

dynamic graphics memory allocation,” Aug. 15 2000, uS Patent 6,104,417.

[90] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-

dataflow acceleration,” in 2017 ACM/IEEE 44th Annual International Sympo-

sium on Computer Architecture (ISCA), June 2017, pp. 416–429.

95

[91] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock,

Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and G. Boudoukh, “Can

FPGAs beat GPUs in accelerating next-generation deep neural networks?”

in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, ser. FPGA ’17. New York, NY, USA: ACM, 2017,

pp. 5–14. [Online]. Available: http://doi.acm.org/10.1145/3020078.3021740

[92] M. Palesi and T. Givargis, “Multi-objective design space exploration using ge-

netic algorithms,” in Proceedings of the tenth international symposium on Hard-

ware/software codesign, 2002, pp. 67–72.

[93] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,

J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An accelerator for

compressed-sparse convolutional neural networks,” in Proceedings of the

44th Annual International Symposium on Computer Architecture, ser. ISCA

’17. New York, NY, USA: ACM, 2017, pp. 27–40. [Online]. Available:

http://doi.acm.org/10.1145/3079856.3080254

[94] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network accelerator based

on outlier-aware low-precision computation,” in 2018 ACM/IEEE 45th Annual

International Symposium on Computer Architecture (ISCA), June 2018, pp.

688–698.

[95] A. Perais and A. Seznec, “Practical data value speculation for future high-end

processors,” in 2014 IEEE 20th International Symposium on High Performance

Computer Architecture (HPCA), Feb 2014, pp. 428–439.

[96] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation

and quantization,” CoRR, vol. abs/1802.05668, 2018. [Online]. Available:

http://arxiv.org/abs/1802.05668

96

[97] M. Putic, A. Buyuktosunoglu, S. Venkataramani, P. Bose, S. Eldridge, and

M. Stan, “DyHard-DNN: Even more DNN acceleration with dynamic hardware

reconfiguration,” in 2018 55th ACM/ESDA/IEEE Design Automation Confer-

ence (DAC), June 2018, pp. 1–6.

[98] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language

models are unsupervised multitask learners,” OpenAI Blog, vol. 1, no. 8, p. 9,

2019.

[99] A. Rahman, S. Oh, J. Lee, and K. Choi, “Design space exploration of fpga

accelerators for convolutional neural networks,” in Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017, pp. 1147–

1152.

[100] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable

questions for squad,” CoRR, vol. abs/1806.03822, 2018. [Online]. Available:

http://arxiv.org/abs/1806.03822

[101] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100, 000+ questions

for machine comprehension of text,” CoRR, vol. abs/1606.05250, 2016.

[Online]. Available: http://arxiv.org/abs/1606.05250

[102] B. Reagen, U. Gupta, R. Adolf, M. M. Mitzenmacher, A. M. Rush, G.-Y. Wei,

and D. Brooks, “Weightless: Lossy weight encoding for deep neural network

compression,” arXiv preprint arXiv:1711.04686, 2017.

[103] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mulholland,

D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying the resilience of

deep neural networks,” in Proceedings of the 55th Annual Design Automation

Conference, ser. DAC ’18. New York, NY, USA: ACM, 2018, pp. 17:1–17:6.

[Online]. Available: http://doi.acm.org/10.1145/3195970.3195997

97

[104] B. Reagen, J. M. Hernández-Lobato, R. Adolf, M. Gelbart, P. Whatmough, G.-

Y. Wei, and D. Brooks, “A case for efficient accelerator design space exploration

via bayesian optimization,” in 2017 IEEE/ACM International Symposium on

Low Power Electronics and Design (ISLPED), July 2017, pp. 1–6.

[105] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.

Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power,

highly-accurate deep neural network accelerators,” in Proceedings of the

43rd International Symposium on Computer Architecture, ser. ISCA ’16.

Piscataway, NJ, USA: IEEE Press, 2016, pp. 267–278. [Online]. Available:

https://doi.org/10.1109/ISCA.2016.32

[106] T. J. Repetti, J. a. P. Cerqueira, M. A. Kim, and M. Seok, “Pipelining

a triggered processing element,” in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-50

’17. New York, NY, USA: ACM, 2017, pp. 96–108. [Online]. Available:

http://doi.acm.org/10.1145/3123939.3124551

[107] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler, “vDNN:

Virtualized deep neural networks for scalable, memory-efficient neural

network design,” in The 49th Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO-49. Piscataway, NJ, USA: IEEE Press,

2016, pp. 18:1–18:13. [Online]. Available: http://dl.acm.org/citation.cfm?id=

3195638.3195660

[108] K. Rosvall and I. Sander, “A constraint-based design space exploration frame-

work for real-time applications on mpsocs,” in 2014 Design, Automation & Test

in Europe Conference & Exhibition (DATE). IEEE, 2014, pp. 1–6.

[109] Z. S. Harris, “Distributional structure,” Word, vol. 10, pp. 146–162, 08 1954.

98

[110] A. Sampson, J. Bornholt, and L. Ceze, “Hardware-Software Co-Design: Not

Just a Cliché,” in 1st Summit on Advances in Programming Languages (SNAPL

2015), ser. Leibniz International Proceedings in Informatics (LIPIcs), T. Ball,

R. Bodik, S. Krishnamurthi, B. S. Lerner, and G. Morrisett, Eds., vol. 32.

Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015,

pp. 262–273. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2015/

5030

[111] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version

of bert: smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108,

2019.

[112] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,

M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural net-

work accelerator with in-situ analog arithmetic in crossbars,” ACM SIGARCH

Computer Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

[113] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “The aladdin approach to

accelerator design and modeling,” IEEE Micro, vol. 35, no. 3, pp. 58–70, May

2015.

[114] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and

H. Esmaeilzadeh, “From high-level deep neural models to fpgas,” in 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

IEEE, 2016, pp. 1–12.

[115] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator efficiency

through resource partitioning,” in 2017 ACM/IEEE 44th Annual International

Symposium on Computer Architecture (ISCA), June 2017, pp. 535–547.

99

[116] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,

“Megatron-lm: Training multi-billion parameter language models using gpu

model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[117] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based

accelerator for deep learning,” in 2017 IEEE International Symposium on High

Performance Computer Architecture (HPCA). IEEE, 2017, pp. 541–552.

[118] M. Song, J. Zhang, H. Chen, and T. Li, “Towards efficient microarchitectural de-

sign for accelerating unsupervised gan-based deep learning,” in 2018 IEEE In-

ternational Symposium on High Performance Computer Architecture (HPCA),

Feb 2018, pp. 66–77.

[119] M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li, “Prediction based execution on

deep neural networks,” in 2018 ACM/IEEE 45th Annual International Sympo-

sium on Computer Architecture (ISCA), June 2018, pp. 752–763.

[120] M. Song, K. Zhong, J. Zhang, Y. Hu, D. Liu, W. Zhang, J. Wang, and

T. Li, “In-Situ AI: Towards autonomous and incremental deep learning for

IoT systems,” in 2018 IEEE International Symposium on High Performance

Computer Architecture (HPCA), Feb 2018, pp. 92–103. [Online]. Available:

doi.ieeecomputersociety.org/10.1109/HPCA.2018.00018

[121] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve, N. S.

Kim, and N. Shanbhag, “PROMISE: An end-to-end design of a programmable

mixed-signal accelerator for machine-learning algorithms,” in Proceedings of

the 45th Annual International Symposium on Computer Architecture, ser. ISCA

’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 43–56. [Online]. Available:

https://doi.org/10.1109/ISCA.2018.00015

[122] D. Stamoulis, E. Cai, D.-C. Juan, and D. Marculescu, “HyperPower: Power-

and memory-constrained hyper-parameter optimization for neural networks,” in

100

2018 Design, Automation Test in Europe Conference Exhibition (DATE), March

2018, pp. 19–24.

[123] D. Stamoulis, T.-W. R. Chin, A. K. Prakash, H. Fang, S. Sajja, M. Bognar, and

D. Marculescu, “Designing adaptive neural networks for energy-constrained

image classification,” in Proceedings of the International Conference on

Computer-Aided Design, ser. ICCAD ’18. New York, NY, USA: ACM,

2018, pp. 23:1–23:8. [Online]. Available: http://doi.acm.org/10.1145/3240765.

3240796

[124] J. R. Stevens, A. Ranjan, D. Das, B. Kaul, and A. Raghunathan, “Manna: An ac-

celerator for memory-augmented neural networks,” in Proceedings of the 52nd

Annual IEEE/ACM International Symposium on Microarchitecture, 2019, pp.

794–806.

[125] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory

networks,” CoRR, vol. abs/1503.08895, 2015. [Online]. Available: http:

//arxiv.org/abs/1503.08895

[126] H. Tang, C. Yu, C. Renggli, S. Kassing, A. Singla, D. Alistarh, J. Liu, and

C. Zhang, “Distributed learning over unreliable networks,” arXiv preprint

arXiv:1810.07766, 2018.

[127] O. Temam, “A defect-tolerant accelerator for emerging high-performance

applications,” in Proceedings of the 39th Annual International Symposium

on Computer Architecture, ser. ISCA ’12. Washington, DC, USA:

IEEE Computer Society, 2012, pp. 356–367. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2337159.2337200

[128] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural

information processing systems, 2017, pp. 5998–6008.

101

[129] R. Venkatagiri, K. Swaminathan, C.-C. Lin, L. Wang, A. Buyuktosunoglu,

P. Bose, and S. Adve, “Impact of software approximations on the resiliency

of a video summarization system,” in 2018 48th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN), June 2018, pp.

598–609.

[130] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Glue: A

multi-task benchmark and analysis platform for natural language understand-

ing,” arXiv preprint arXiv:1804.07461, 2018.

[131] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang, “In-

tel math kernel library,” in High-Performance Computing on the Intel® Xeon

Phi™. Springer, 2014, pp. 167–188.

[132] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, “AUGEM: Automatically generate

high performance dense linear algebra kernels on x86 CPUs,” in Proceedings

of the International Conference on High Performance Computing, Networking,

Storage and Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013, pp.

25:1–25:12. [Online]. Available: http://doi.acm.org/10.1145/2503210.2503219

[133] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang, “C-lstm:

Enabling efficient lstm using structured compression techniques on fpgas,”

in Proceedings of the 2018 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2018, pp. 11–20.

[134] J. Weston, “Dialog-based language learning,” CoRR, vol. abs/1604.06045,

2016. [Online]. Available: http://arxiv.org/abs/1604.06045

[135] J. Weston, A. Bordes, S. Chopra, and T. Mikolov, “Towards AI-complete ques-

tion answering: A set of prerequisite toy tasks,” CoRR, vol. abs/1502.05698,

2015. [Online]. Available: http://arxiv.org/abs/1502.05698

102

[136] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” CoRR, vol.

abs/1410.3916, 2014. [Online]. Available: http://arxiv.org/abs/1410.3916

[137] V. V. Williams, “Breaking the coppersmith-winograd barrier,” 2011.

[138] N. Wilt, The cuda handbook: A comprehensive guide to gpu programming.

Pearson Education, 2013.

[139] C. Wu, W. Wen, T. Afzal, Y. Zhang, Y. Chen, and H. Li, “A compact DNN:

Approaching GoogLeNet-level accuracy of classification and domain adapta-

tion,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), July 2017, pp. 761–770.

[140] Z. Xianyi, W. Qian, and Z. Yunquan, “Model-driven level 3 BLAS performance

optimization on loongson 3A processor,” in Proceedings of the 2012 IEEE 18th

International Conference on Parallel and Distributed Systems, ser. ICPADS

’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 684–691.

[Online]. Available: http://dx.doi.org/10.1109/ICPADS.2012.97

[141] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le,

“Xlnet: Generalized autoregressive pretraining for language understanding,” in

Advances in neural information processing systems, 2019, pp. 5754–5764.

[142] A. Yazdanbakhsh, H. Falahati, P. J. Wolfe, K. Samadi, N. S. Kim, and H. Es-

maeilzadeh, “GANAX: A unified mimd-simd acceleration for generative adver-

sarial networks,” in 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA), June 2018, pp. 650–661.

[143] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu,

and T. C. Mowry, “RFVP: Rollback-free value prediction with safe-to-

approximate loads,” vol. 12, no. 4. New York, NY, USA: ACM, Jan. 2016,

pp. 62:1–62:26. [Online]. Available: http://doi.acm.org/10.1145/2836168

103

[144] R. Yazdani, J.-M. Arnau, and A. González, “UNFOLD: A memory-efficient

speech recognizer using on-the-fly WFST composition,” in Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 69–81. [Online].

Available: http://doi.acm.org/10.1145/3123939.3124542

[145] R. Yazdani, M. Riera, J.-M. Arnau, and A. González, “The dark side of DNN

pruning,” in 2018 ACM/IEEE 45th Annual International Symposium on Com-

puter Architecture (ISCA), June 2018, pp. 790–801.

[146] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,

“Scalpel: Customizing DNN pruning to the underlying hardware parallelism,”

in Proceedings of the 44th Annual International Symposium on Computer

Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 548–560.

[Online]. Available: http://doi.acm.org/10.1145/3079856.3080215

[147] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based

accelerator design for deep convolutional neural networks,” in Proceedings of

the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, 2015, pp. 161–170.

[148] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,

“Cambricon-x: An accelerator for sparse neural networks,” in The 49th Annual

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-49.

Piscataway, NJ, USA: IEEE Press, 2016, pp. 20:1–20:12. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3195638.3195662

[149] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “ERNIE: Enhanced

language representation with informative entities,” in Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics. Florence,

104

Italy: Association for Computational Linguistics, Jul. 2019, pp. 1441–1451.

[Online]. Available: https://www.aclweb.org/anthology/P19-1139

[150] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar, “Design space

exploration of fpga-based accelerators with multi-level parallelism,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE,

2017, pp. 1141–1146.

[151] Y. Zhu, V. J. Reddi, R. Adolf, S. Rama, B. Reagen, G.-Y. Wei,

and D. Brooks, “Cognitive computing safety: The new horizon for

reliability / the design and evolution of deep learning workloads,” IEEE

Micro, vol. 37, no. 1, pp. 15–21, Jan.-Feb. 2017. [Online]. Available:

doi.ieeecomputersociety.org/10.1109/MM.2017.2

105

초록

자연어 처리의 중요성이 대두됨에 따라 여러 기업 및 연구진들은 다양하고 복

잡한종류의자연어처리모델들을제시하고있다.즉자연어처리모델들은형태가

복잡해지고,로규모가 커지며, 종류가 다양해지는 양상을 보여준다. 본 학위논문은

이러한 자연어 처리 모델의 복잡성, 확장성, 다양성을 해결하기 위해 여러 핵심 아

이디어를 제시하였다. 각각의 핵심 아이디어들은 다음과 같다. (1) 다양한 종류의

자연어처리모델의성능오버헤드분포도를알아내기위한정적/동적분석을수행

한다. (2) 성능 분석을 통해 알아낸 주된 성능 병목 요소들의 메모리 사용을 최적화

하기위한전체론적모델병렬화기술을제시한다. (3)여러연산들의연산량을감소

하는기술과연산량감소로인한 skewness문제를해결하기위한 dynamic scheduler

기술을제시한다. (4)현자연어처리모델의성능다양성을해결하기위해각모델에

최적화된 디자인을 제시하는 기술을 제시한다. 이러한 핵심 기술들은 여러 종류의

하드웨어 가속기 (예: CPU, GPU, FPGA, ASIC) 에도 범용적으로 사용될 수 있기

때문에매우효과적이므로,제시된기술들은자연어처리모델을위한컴퓨터시스

템설계분야에광범위하게적용될수있다.본논문에서는해당기술들을적용하여

CPU, GPU, FPGA 각각의 환경에서, 제시된 기술들이 모두 유의미한 성능향상을

달성함을보여준다.처처

주요어: 인공지능 가속기 설계/디자인, 자연어 처리 모델, 머신러닝, 하드웨어

아키텍처

학번: 2017-36250

106

	1 INTRODUCTION
	2 Background
	2.1 Memory Networks
	2.2 Deep Learning for NLP

	3 A Fast and Scalable System Architecture for Memory-Augmented Neural Networks
	3.1 Motivation & Design Goals
	3.1.1 Performance Problems in MemNN - High Off-chip Memory Bandwidth Requirements
	3.1.2 Performance Problems in MemNN - High Computation
	3.1.3 Performance Problems in MemNN - Shared Cache Contention
	3.1.4 Design Goals

	3.2 MnnFast
	3.2.1 Column-Based Algorithm
	3.2.2 Zero Skipping
	3.2.3 Embedding Cache

	3.3 Implementation
	3.3.1 General-Purpose Architecture - CPU
	3.3.2 General-Purpose Architecture - GPU
	3.3.3 Custom Hardware (FPGA)

	3.4 Evaluation
	3.4.1 Experimental Setup
	3.4.2 CPU
	3.4.3 GPU
	3.4.4 FPGA
	3.4.5 Comparison Between CPU and FPGA

	3.5 Conclusion

	4 A Fast, Scalable, and Flexible System for Large-Scale Heterogeneous NLP Models
	4.1 Motivation & Design Goals
	4.1.1 High Model Complexity
	4.1.2 High Memory Bandwidth
	4.1.3 Heavy Computation
	4.1.4 Huge Performance Variation
	4.1.5 Design Goals

	4.2 NLP-Fast
	4.2.1 Bottleneck Analysis of NLP Models
	4.2.2 Holistic Model Partitioning
	4.2.3 Cross-operation Zero Skipping
	4.2.4 Adaptive Hardware Reconfiguration

	4.3 NLP-Fast Toolkit
	4.4 Implementation
	4.4.1 General-Purpose Architecture - CPU
	4.4.2 General-Purpose Architecture - GPU
	4.4.3 Custom Hardware (FPGA)

	4.5 Evaluation
	4.5.1 Experimental Setup
	4.5.2 CPU
	4.5.3 GPU
	4.5.4 FPGA

	4.6 Conclusion

	5 Related Work
	5.1 Various DNN Accelerators
	5.2 Various NLP Accelerators
	5.3 Model Partitioning
	5.4 Approximation
	5.5 Improving Flexibility
	5.6 Resource Optimization

	6 Conclusion
	Abstract (In Korean)

<startpage>15
1 INTRODUCTION 1
2 Background 6
 2.1 Memory Networks 6
 2.2 Deep Learning for NLP 9
3 A Fast and Scalable System Architecture for Memory-Augmented Neural Networks 14
 3.1 Motivation & Design Goals 14
 3.1.1 Performance Problems in MemNN - High Off-chip Memory Bandwidth Requirements 15
 3.1.2 Performance Problems in MemNN - High Computation 16
 3.1.3 Performance Problems in MemNN - Shared Cache Contention 17
 3.1.4 Design Goals 18
 3.2 MnnFast 19
 3.2.1 Column-Based Algorithm 19
 3.2.2 Zero Skipping 22
 3.2.3 Embedding Cache 25
 3.3 Implementation 26
 3.3.1 General-Purpose Architecture - CPU 26
 3.3.2 General-Purpose Architecture - GPU 28
 3.3.3 Custom Hardware (FPGA) 29
 3.4 Evaluation 31
 3.4.1 Experimental Setup 31
 3.4.2 CPU 33
 3.4.3 GPU 35
 3.4.4 FPGA 37
 3.4.5 Comparison Between CPU and FPGA 39
 3.5 Conclusion 39
4 A Fast, Scalable, and Flexible System for Large-Scale Heterogeneous NLP Models 40
 4.1 Motivation & Design Goals 40
 4.1.1 High Model Complexity 40
 4.1.2 High Memory Bandwidth 41
 4.1.3 Heavy Computation 42
 4.1.4 Huge Performance Variation 43
 4.1.5 Design Goals 43
 4.2 NLP-Fast 44
 4.2.1 Bottleneck Analysis of NLP Models 44
 4.2.2 Holistic Model Partitioning 47
 4.2.3 Cross-operation Zero Skipping 51
 4.2.4 Adaptive Hardware Reconfiguration 54
 4.3 NLP-Fast Toolkit 56
 4.4 Implementation 59
 4.4.1 General-Purpose Architecture - CPU 59
 4.4.2 General-Purpose Architecture - GPU 61
 4.4.3 Custom Hardware (FPGA) 62
 4.5 Evaluation 64
 4.5.1 Experimental Setup 65
 4.5.2 CPU 65
 4.5.3 GPU 67
 4.5.4 FPGA 69
 4.6 Conclusion 72
5 Related Work 73
 5.1 Various DNN Accelerators 73
 5.2 Various NLP Accelerators 74
 5.3 Model Partitioning 75
 5.4 Approximation 76
 5.5 Improving Flexibility 78
 5.6 Resource Optimization 78
6 Conclusion 80
Abstract (In Korean) 106
</body>

