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ABSTRACT

COMPUTATION OF MINIMUM BANDWIDTH OF
Q-FILTER FOR ROBUST STABILITY OF
DISTURBANCE OBSERVER-BASED CONTROL SYSTEMS

BY

HaMmIiN CHANG

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

FEBRUARY 2021

As the disturbance observer (DOB)-based controller has been widely applied
in practice, various aspects of the disturbance observer have been theoretically
studied. In particular, robust stability of the linear closed-loop system with single-
input single-output (SISO) Q-filter-based DOB has been rigorously analyzed, and
finally, a necessary and sufficient condition for robust stability was obtained under
the premise that the bandwidth of Q-filter is large. However, even the most recent
study about the design of Q-filter-based DOB for robust stability does not offer
a practical method for the determination of the Q-filter’s bandwidth.

In this thesis, we present several lemmas regarding the determination of the
bandwidth, from which a procedure is developed that can exactly compute the
threshold of the bandwidth, so that robust stability (against parametric variations

of the plant within a prescribed range) is lost if the bandwidth of the Q-filter



becomes lower than that. The proposed procedure is implemented in a MATLAB
toolbox named DO-DAT, which is now available at https://do-dat.github.io.

Keywords: Disturbance observer, disturbance rejection, robust stability, nomi-
nal performance recovery, uncertain polynomials
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Chapter 1

Introduction

The Q-filter-based disturbance observer (DOB) has been a powerful robust control
scheme to reject disturbances and compensate plant uncertainties since it was first
introduced by [OOMS3|. The DOB has been frequently employed in the industry
from the time when it was regarded as a rather heuristic method, and now several
theories are available about the robust stability of the DOB-based control systems.
Among others, [SJ07] and [BS0§| introduced singular perturbation theory into the
analysis of DOB-based control systems, and this insight yielded a necessary and
sufficient condition for robust stability [SJ09]. This finding, in turn, enabled the
systematic design of DOBs for robust stability against arbitrarily large parameter
variations.

Based on the robust stability result, more insights about the DOB have been
discovered. For instance, it was found that a high-gain observer is already em-
bedded in the seemingly different structure of the Q-filter-based DOB and that
the zero-dynamics of the plant becomes decoupled when the DOB is installed in
the feedback loop |[SPJT16]. This finding provides an insightful explanation for
how the DOB works as a robust controller, by which both the benefits and the
limitations of DOB are clarified. It was also figured out how imprecise identifica-
tion of the relative degree of an uncertain plant affects stability [JJS14] and how
the classical measure of robustness, the gain/phase margin, is affected by a DOB
in the loop [KPSJI16].

Based on these analyses, a few modified DOBs are also proposed to overcome

the limitations of the classical DOB. For example, a way to modify the classical
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DOB for robust transient performance was presented in [BS08|, and a way to
embed an internal model that generates external disturbances so that the mod-
eled disturbances are rejected perfectly while the unmodeled disturbances are at-
tenuated at the desired level was presented in [JPBS15]. On top of those theo-
retical developments, the DOB is replacing traditional robust control methods.
Examples include flight control of drones [KCK™17], platooning of multi-vehicles
INPT™20|, load-frequency control of power-grid [HSN16], robustifying the rein-
forcement learning based controller [KSY19|, and even generating stealthy attack-

ing signals for control systems [PLST19).

However, most of these results are based on the premise that the bandwidth
of the Q-filter is sufficiently large. For example, the necessary and sufficient
condition for robust stability in [SJ09] is derived when the time constant 7 of
the Q-filter is less than a threshold 7*. While the threshold 7* is presented in
[SJ09], it is just a conservative value, and in practice, the selection of 7* should

be obtained by a repeated simulation or by trial and error.

In this dissertation, we study how to choose the minimum bandwidth of Q-
filter, i.e., the non-conservative value of 7%, under which robust stability is guar-
anteed against parameter uncertainties within prescribed ranges. Having non-
conservative 7* is desirable because there might exist unavoidable physical con-
straints that limit the available bandwidth of the Q-filter. The existence of un-
modeled dynamics in the model of the plant is another reason why we need to
avoid unnecessarily large bandwidth of Q-filter. Moreover, succinct computation
of 7* is desired, which does not rely on an iterative method. In this dissertation,
a few lemmas are presented with which exact computation of 7% is enabled. This
work will pave a road to building a computer-aided toolbox for designing DOBs

that are robust against given uncertain variation of parameters.

Finally, it will be shown that the proposed procedure to find the minimum
bandwidth, or the value of 7, of the Q-filter, can also be used for finding suitable
bandwidths or the values 7 even for non-minimum phase plants. No universal
design methods of DOB for non-minimum phase plants are available yet. How-
ever, since we are using a numerical method whatsoever, DOB can be designed

regardless of whether the plant is of minimum phase or not.
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Figure 1.1: Block diagram of the closed-loop system with Q-filter-based DOB
(blue dashed block).

This dissertation is organized as follows. The rest of this chapter begins with
Chapter [I.1] an overview of the Q-filter-based DOB. Chapter describes a cou-
ple of assumptions and primary results of [SJ09] as preliminary. In Chapter ,
we propose several necessary and sufficient conditions for the robust stability of
the DOB-based control system as lemmas. Based on the suggested lemmas, we
show a procedure to find an appropriate bandwidth of the Q-filter and give some
illustrative examples that demonstrate the usefulness of the procedure in Chap-
ter [3 Chapter [4] introduces a MATLAB toolbox named DO-DAT (Disturbance
Observer - Design and Analysis Toolbox) that contains the procedure to find an
appropriate bandwidth of the Q-filter. Finally, this thesis is summarized and con-
cluded in Chapter [l In Appendix, details of theorems which are used in the body

of the thesis are provided.

1.1 Overview of Q-filter-based Disturbance Observer

The standard structure of the Q-filter-based DOB and the closed-loop system
are depicted in Figure [1.1} In the figure, P(s) and Py(s) represent a single-input
single-output (SISO) real plant and its nominal model, respectively, C(s) is a
proper (implementable) controller which is usually designed a priori for Py (s),

and Q(s;7) is a stable low-pass filter called Q-filter with a parameter 7. This
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C(s) Pa(s) ;

\ 4

Figure 1.2: Block diagram of the nominal closed-loop system.

dissertation focuses on the design of the suitable value 7 that decides the time
constant or the bandwidth of the Q-filter for robust stability of the closed-loop
system against a given variation of uncertain parameters. It is well-known that, if
the reference r and disturbance d consist of low-frequency components and if all
other parameters of Q-filter are properly set, then the Q-filter-based DOB with
a large bandwidth of the Q-filter (that is, a small magnitude of 7) enables the
system in Figure to approximate the nominal closed-loop system in Figure (1.2

(see, e.g., [SPJT16]). In other words, the following approximation

) Plw)Cl)
Y N

)T(jw) = yn(jw)

holds with a sufficiently large bandwidth of the Q-filter, where y and y, are the
outputs of the DOB-based control system in Figure and the nominal closed-
loop system in Figure respectively. This capability of approximation is one of
the main features of the Q-filter-based DOB scheme, which is often called nominal

performance recovery.

1.2 Necessary and Sufficient Condition for Robust Sta-
bility

In this dissertation, parametric uncertainty of the plant P(s) is assumed to

satisfy the following.

Assumption 1.2.1. The real plant P(s) and its nominal model P (s) belong to
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the set of uncertain plants:

_ Br—vs" ™" + anuflsniyil + ...+ fBo
pS"™ + 018"+ .+ g

oy € [Qi;ai} ,Bi € [617/81}}7

P =< P(s)
{ (1.2.1)

where n and v are positive integers such that n > v and o, @;, @i, and B, are
known constants such that [a,,, @p], [@nﬂ/,ﬁn_y] C (0,00), where (0, 00) denotes

the positive real line. O

In the assumption, the condition |a,, @], [ﬁn_y,ﬁn_y] C (0,00) implies that
all the plants in the set have the same relative degree and have the same sign of
the high frequency gain (which is positive, without loss of generality). From the
assumption, it is clear that the set P incorporates arbitrarily large but bounded
uncertainties of the parameters. Note that the description of the set P in
has redundancy. This redundancy disappears by letting, for example, o, = @, =
1, but for the general purpose, we let all the parameters are independent of one
another.

The stable low-pass filter Q(s;7) is usually designed in the form

k k=1, ...
Qls; ) = Cf(TS) + Ck_li(lTS) +--4cp
()t 4+ a1 (18)=1 4+ -+ -+ ay(7s) + ag
_ Na(si7)
" Dg(s;T)’

(1.2.2)

where Ng and D¢ are the numerator polynomial and the denominator polynomial
of Q(s;7), respectively, and k and [ are some non-negative integers such that
k <l — v, where v is the relative degree of P,(s). For the unity dc gain, we
set ag = cp. Note that the real positive 7 determines the time constant or the
bandwidth. Now we assume the following necessary condition (see [SJ09]), which
is relevant to Py(s), C(s), and Q(s; 1), for robust stability under large bandwidth
of Q-filter.

Assumption 1.2.2. The nominal closed-loop system

P, (s)C(s)
1+ Py(s)C(s)

SERL
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is internally stable, and the polynomial

p
py(s) i= Dalsi 1) + (1}010 s 1) No(s:1)
is Hurwitz for all P(s) € P in (1.2.1). O

Note that 7 = 1 in the assumption, and thus, the assumption is independent
of the choice of 7. In fact, a systematic way to choose the parameters a; and ¢; of
the Q-filter in such that the second condition of Assumption holds
has been presented in [SJ09, Sec. 2.3].

The following theorem, taken from [SJ09|, plays a crucial role to design Q-
filter-based DOB for robust stability of the closed-loop system in Figure [I.1]

Theorem 1.2.1. Suppose that Assumptions and[I.2.2/hold. If all the plants
P(s) € P are of minimum phase, then there exists a constant 7* such that, for
all 0 < 7 < 7%, the closed-loop system in Figure is robustly internally stable
(against the uncertainty of P). On the contrary, if P contains a non-minimum
phase plant such that at least one zero has positive real parts, then there is 7*
such that, for all 0 < 7 < 7%, the closed-loop system is not robustly internally
stable. 0

While the former part of Theorem [I.2.1]guarantees the existence of the thresh-
old 7* (or, the minimum bandwidth of Q-filter), its proof in [SJ09| presents a con-
servative choice of 7*. In fact, no method to find the exact and non-conservative
value of 7% has been reported in the literature yet. In the next chapter, some

useful lemmas are introduced which can be utilized to obtain the exact value of

7* under Assumptions and



Chapter 2

Lemmas on Robust Stability of
Closed-loop System

In this chapter, we first observe some properties of the characteristic polynomial
of the closed-loop system in Figure [I.T| and then present a couple of equivalent
statements which are necessary and sufficient conditions for robust stability of the

DOB-based control system.

2.1 Observations on Characteristic Polynomial

In the configuration of Figure [I.1] the following equation

U v(s)

el 1 [QP-Py)+P. (@-1)PPy] [r
CP, (1-Q)Py | |d

holds, where
v(s) = (14 CP)P, + Q(P — Py).

Now, let P(s), Pn(s), and C(s) be represented by the ratios of coprime polynomials
such as P(s) = N(s)/D(s), Pn(s) = Nu(s)/Dx(s), and C(s) = Nc(s)/Dc(s).
Then we can express the characteristic polynomial of the closed-loop system in
Figure in the following lemma which is the main concern throughout this

dissertation.
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Lemma 2.1.1. The closed-loop system in Figure[1.1]is robustly internally stable

if and only if the characteristic polynomial

6(s;7) i= (D(s)Dc(s) + N(s)Ne(s) ) Nu(s) Do (s: 7)

(2.1.1)
+ No(s;7) Do (s) (N (5) Da(s) = Nu(s) D(s) )
is Hurwitz for all P(s) € P in (L.2.1). O

Now, we are going to define ‘polytope of polynomials’, ‘edge polynomial’, and
‘exposed edge polynomial’ with respect to the characteristic polynomial d(s;7)
in to make use of the Edge theorem in [BHL88]. A set of polynomials T
is called polytope of polynomials if the set T' is a convex hull of a finite number
of vertex polynomials. If T is a polytope of polynomials, we define an edge
polynomial of T" as

M1+ (1 =Nta: A€o, 1]}

for any vertices t1, to € T. Finally, an exposed edge polynomial of T is defined
as the edge polynomial which is contained in a nontrivial supporting hyperplane

of the set T

Under such terminologies, the characteristic polynomial §(s;7) can be rewrit-

ten with the uncertain polynomials D(s) and N(s) as
3(s;7) =pp(s;7) - D(s) +pn(s;7) - N(s),
n ) n—v )
=pp(siT) - D is' +pn(siT) - D Bys,
i=0 Jj=0

where

pp(s;7) = Da(s)Na(s) Da(s;7) — No(s;7)De(s)Nn(s)

and
pN(s;7) = Nc(s)Nn(s)Dg(s; 7) + Ng(s; 7)Dc(s)Dn(s)

which are not uncertain. At this point, we define

Q:={0(s;7) : P(s) € P} (2.1.2)
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as the set of all characteristic polynomials corresponding to every possible plants

P(s) € P in (1.2.1). Then for any 0451), P e [a;, @;] and ﬁj(.l), BJ(»Z) € [éj’Bj]’

7

where i =0, 1, ..., nand j =0, 1, ..., n — v, the polynomials
n—v
w1 :=pp(s;7) Za( )s’—i-pN (s;7) - ﬂj(l)sj
j=0
and
n—v
(s;7) Za s'+pn(s;T) - ﬁj@s?
=0

belong to Q. Moreover, for any A € [0, 1], the convex combination of w; and wo,

Awi + (1 — Nwa = pp(s;7) - Z(x\al(»l) +(1- )\)az(?))si

+pn(s;T) - ()\ﬂj(-l) +(1— )\)Bj@))s]
j=0
is also in € because Aa(I) +(1 —)\)a(z) € oy, o) and )\,6’(-1) +(1- )5(2) [ﬁ B,]-
Thus, the set 2 in is a polytope of polynomials, namely the convex hull of

a finite number of polynomials. Indeed, we have

m = 22nfu+2

polynomials depending on ¢, o, éj’ and Bj, where : = 0, 1, ..., nand j =

0,1,..., n—v, as

81(5;7) i= (8" + 15"+ +ap) - pp(s;7)
+ (é sV +én,1,,15n_y_l S go) -pN(8;T),
02(s;7) := (aps™ +gn,1s"’1 + - +ay) - pp(s;T)
+ (B, _ TV HB ST 4 B) o (s 7),
1

03(s;7) := (Qps" + Qp_15""" +

+(8

n—v

n—v
-+ ag) pp(s;7)
Snfl/ + éniuilsnfl/*1 _|_ . + EO) . p]\/v(s7 7-)7

n—v
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(04] 3 1

Figure 2.1: The vertex polynomials (black dots) and the exposed edge poly-
nomials (blue line segments) of the polytope €2 in the coefficient
space.

S (8;7) i= (@ns™ + Q18" + -+ + @) - pp(s;T)
+ (Bn—usn_y + Bn—u—lsn_y_l et BO) ) pN(S; T)

which become vertex polynomials of the polytope 2, and the polytope €2 is the

convex hull of them. Let the set of those vertex polynomials as
A(s;7):={0i(s;7):i=1,2, ..., m}.
Then an edge polynomial of the polytope €2 is
{Xi(s;7) + (1 = N)dj(s;7) : A€ [0, 1]},

where 0;(s;7), 6;(s;7) € A(s;7), 1 < 4,5 <m and i # j. The following example
clarifies the definition of ‘polytope of polynomials’, ‘edge polynomial’, and ‘ex-

posed edge polynomial’ with respect to a given uncertain polynomial.

Example 2.1.1. Consider an uncertain polynomial p(s) = a2s?+a15+ag, where

Ralke AT
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uncertain coefficients ap € [1, 2], aq € [3, 4], and g € [—1, 3]. In this case, the

polytope €2 can be expressed as
{p(s) =ass®* +ais+ap:as €1, 2], oy €[3, 4], o € [-1, 3]}.

There are 23 = 8 vertex polynomials for this example. If we represent each
polynomial in  as a point in the coefficient space, which is three-dimensional
space in this case, the vertex polynomials can be represented as black dots as
in Figure . There are (g) = 28 edge polynomials, which are line segments
connecting each pair of black dots in Figure Out of 28 edge polynomials,
only 12 edge polynomials are drawn in blue color in Figure 2.1 which are called

exposed edge polynomials. O

2.2 Application of Edge theorem and Bialas’ theorem

In this chapter, a couple of equivalent statements of Lemma are pre-

sented.

Lemma 2.2.1. The closed-loop system in Figure is robustly internally stable
if and only if for each pair 6;(s;7), 0;(s;7) € A(s;7), 1 <i,j <m, i # j, and for
each X € [0,1], the edge polynomial \d;(s;7) + (1 — X)d;(s; 7) is Hurwitz. O

Proof: The proof of the lemma follows from the Edge theorem [BHLSS| (re-
viewed in for convenience). Let us take D as the open left-half complex plane.
If all the edge polynomials are Hurwitz, then all exposed edge polynomials are
Hurwitz as well, and the sufficiency follows. The necessity is trivial. |

It is worthy to note that d;(s;7) € A(s;7) in Lemma is no longer an
uncertain polynomial. However, we still need to check infinitely many polynomials
in terms of A\ € [0,1] to decide robust stability of the closed-loop system. The
following lemma eliminates the A-dependency in Lemma [2.2.1] Before stating
the next lemma, let us define the Hurwitz matrix of a polynomial. For a given
polynomial

1

p(s) =ans" +apn—18"" "+ +a1s+ap
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with real coefficients, the n x n matrix

Un1 Gp-3 Gn5 -+ -+ -~ 0 0 0
Gnp an—2 Aan—4
0 Gp—1 0an-3
Qn  Qp_o - 0
H(p) = 0 an—1 . agp
an RN}
0 as Qo
as ai
| 0 0 0 a4 Gz ag |

is called Hurwitz matriz of the polynomial p(s). Moreover, when a, > 0, the
polynomial p(s) is Hurwitz if and only if all the leading principal minors of the
matrix H(p) are positive [Kha02]. Therefore, if p(s) is Hurwitz, then |H(p)| > 0
so that H(p) is invertible.

Lemma 2.2.2. The closed-loop system in Figure [1.1]| is robustly internally sta-
ble if and only if, for all §;(s;7) € A(s;7), the polynomial §;(s;7) is Hur-
witz, and for each pair d;(s;7), d;(s;7) € A(s;7), no eigenvalues of the ma-
trix H~1(8;(s;7))H(0;(s;7)) are located in the negative real axis (—o0,0) in the

complex plane. O

Proof: The proof uses Bialas’ theorem [Bia04] (also reviewed in [A.2)). In our
case, the degree of each §;(s;7) € A(s;7) is determined only by the term

D(s)Dc(s)Nu(s)Dq(s; 7)

in , and thus, its leading coefficient is always nonzero. Therefore, the
degrees of all vertex polynomials in the set A(s;7) are equal, and Bialas’ theorem
is ready to be applied to Lemma [2.2.1 [ |

Lemma [2:2.2] gives a necessary and sufficient condition on the robust stability
of the DOB-based control system for a given 7, without the need to check infinitely

many polynomials. Now, with the help of Routh-Hurwitz stability criterion, one

] 2- 1_l|
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can compute the exact value of 7" and the detailed procedure is proposed in the

next chapter.

- A2ty
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Chapter 3

Computation of Minimum Bandwidth
of Q-filter for Robust Stability

In this chapter, we present a procedure to compute the value of 7* in the former
part of Theorem based on the given lemmas and discuss the case when
non-minimum phase systems belong to the set P. Also, we provide a couple of

numerical examples to describe the utility of the proposed computation procedure.

3.1 Procedure for Computing 7*

The following procedure is for computing a range for 7, on which the closed-
loop system is robustly stable against the parametric variations in Assumption
[1.2.1} Once the range is computed, 7* is obtained straightforwardly for both cases

where the set of plant consists of only minimum phase systems or not.

Step 1. For each 0;(s;7) € A(s;7),i=1,...,m, find the largest range R; C (0, c0)
such that for all 7 € R;, the polynomial §;(s; 7) is Hurwitz. O

In particular, if the plant set P consists of minimum phase systems only,
existence of the largest 7 (including the case when 7% = co) such that (0,7{) C R;
is guaranteed by Theorem for every 1 < i < m. For the computation of R;
and 71, one can employ Routh-Hurwitz stability criterion (reviewed in for

convenience).

Step 2. For each pair ;(s;7),d;(s;7) € A(s;7), obtain the largest range R;; C
(0, 00) such that for all 7 € R;j, no eigenvalues of H1(8;(s;7))H(5;(s; 7)) are in

15 A 21 s
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(—00,0). O

Similar to the previous step, existence of the largest T;j such that (0, T;j ) C Ryj
is also guaranteed by Theorem [I.2.1] for every 1 < 4, j < m when the plant set
P consists of only minimum phase systems. For the computation of R;; and TQij ,

one can employ Sturm’s theorem, which is described in[A.4]

Step 3. If the plant set P consists of only minimum phase systems, let

7 = min{r{, 75/} < cc.
l’]

Remark 3.1.1. In fact, one can choose any 7 € R* in order that the Q-filter-
based DOB works for a given plant, where

R%:(ﬂRQm(ﬂR@ (3.1.1)

regardless of whether the plant is of minimum phase or not. Therefore, if the
plant set P contains non-minimum phase systems, let 7 be the largest 7 < oo
such that (0, 7) N R* = ), where () denotes the empty set. Again, the latter part
of Theorem [1.2.1] guarantees the existence of such 7. Even though R* might be
the empty set so that the closed-loop system is not robustly internally stable for
all 7 > 0 and 7 becomes oo, one can at least demonstrate if a given real plant set
that contains non-minimum phase systems is suitable to employ the Q-filter-based

DOB or not. O

Remark 3.1.2. The above procedure has been implemented in MATLAB as a
toolbox named DO-DAT, whose first version was introduced in [CKPS18|. Up-
dated DO-DAT is available at https://do-dat.github.iol The operating prin-
ciples of DO-DAT are presented in Chapter [4 O

In the following chapter, illustrative examples that show the advantages of

the proposed computation procedure are given.

2] &-t]] 8
i ] 1
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3.2 Examples and Simulations

In this chapter, two numerical examples are presented to describe the utility

of the proposed computation procedure.
Example 3.2.1. Suppose that the components in Figure [I.T] are given as:
o C(s) = 2/(s +4),
e P.(s)=5/(s—2),
e P(s) = po/(s+ ap), where 4 < By < 10, —10 < g < 10,
e Q(s;7)=1/(ts+1).

It is obvious that the given P consists of only minimum phase systems since there

is no zero-dynamics. Then, there are four vertex polynomials,

61(s;7) = 578> + (=307 + 4)s? + (—1607 + 8)s + 8,

(5;7) (
So(s;7) = 5783 + (707 + 4)s® + (2407 + 8)s + 8,
(s;57) (=307 +10)s% + (—1007 + 20)s + 20,
(5:7) (

63(s;7) = 518 +

64(s;7) = 578> + (707 + 10)s + (3007 + 20)s + 20.

As the first step, the largest 7 > 0 with which &;(s;7) is Hurwitz for all
7 € (0,7{) is computed as 0.0457 by Routh-Hurwitz stability criterion. Secondly,
the largest 75" > 0 such that no eigenvalues of H~1(83(s;7))H (64(s; 7)) are in
(—00,0) for all 7 € (0, 75”4), is obtained as 0.1667 by Sturm’s theorem. Continuing

the computation, we get
7 = min{r{, Téj} = 0.0457.
0]

The result can be verified by wegain function (that calculates the worst-case
peak gain of given uncertain system) in MATLAB and it is observed that for
7 = 0.0458, transfer functions of r to y and d to y can have infinite gain because
of the plant uncertainty. On the other hand, it is verified that gains of the same

transfer functions for 7 = 0.0456 are bounded despite the plant uncertainty. [

] 2- 1_l|
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Figure 3.1: Nominal performance recovery with non-minimum phase plant
P(s) = (s> — 0.2s + 5)/(s® + 352 + 35 + 1) for 7 = 0.21.
Example 3.2.2. Suppose that in Figure
o Cls)=1/(s+1),
e Py(s) = (s>+s5+5)/(s3+3s2+3s+ 1),

o P(s) = (s*+ P1s+5)/(s3+ 352 +3s+ 1),
where —0.2 < 1 < 2,

e Q(s;7)=1/(1s+1).
Although the given set P contains non-minimum phase systems such as

2

s —02s+5
P(s) =
(5) s34+ 3s24+3s+1°

the procedure provides that the closed-loop system with Q-filter-based DOB is

robustly internally stable at least for

7 € (0.206,0.627) C R*,

where R* is a set of 7 defined in (3.1.1)).
For r(t) = 1(t) (Heaviside step function) and d(t) = 2sin(0.1¢), Figs.
and illustrate stability of the closed-loop system and nominal performance

A& gk
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Figure 3.2: Nominal performance recovery with minimum phase plant P(s) =

(2 +25+5)/(s®+ 352+ 35+ 1) for 7 = 0.21.

recovery with two different real plant models for 7 = 0.21. It is observed that the

closed-loop system is robustly stable even if the plant is of non-minimum phase,

and the nominal performance recovery is achieved to some extent. On the other

hand, if we choose 7 outside the range (0.206, 0.627), for example, 7 = 0.16, then

the closed-loop system with a plant P(s) € P shows unstable behavior, as seen in

Figure [3.3] as expected.

g



20Chap. 3. Computation of Minimum Bandwidth of Q-filter for Robust Stability

Signal value
o
(
‘)
1
{
4
4

| | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 3.3: Unstable closed-loop system with P(s) = (s2 — 0.2s + 5)/(s% +
352 +3s+1) for 7 = 0.16.



Chapter 4

DO-DAT: MATLAB Toolbox for Design
and Analysis of Disturbance Observer

As mentioned in Remark a MATLAB toolbox DO-DAT that contains the
procedure for computing a range for 7, on which the closed-loop system is robustly
stable, has been developed. The flowchart of DO-DAT is given in Figure In
the figure, each block represents a function supported by DO-DAT. Users should
decide which function to use depending on whether there user-defined Q(s; 1) and
T exist or not.

In this chapter, the operating principles of DO-DAT are presented including
the manual of each supported function. For convenience, it is supposed that the

components in Figure[l.1] are given by the same
o C(s) = 2/(s +4),
e Puls) =5/(s —2),
e P(s) = po/(s+ ap), where 4 < By <10, —10 < g < 10,

as in Example in the rest of this chapter.

4.1 Setup

For a given nominal controller, plant and a set of uncertain real plants, setup

is needed before using the main functions of the toolbox.

21 -':l'\-\._i - ;:' 1..5
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| setup_sys |
| Is there a user-defined Q(s;1)?

| [ o]

Try another Q(s;1) | isFastDynamicsStable | | gen_Qcanon |

fail | pass |

Is there a user-defined 77

| [+ o]

Try another 7 | isValidTau | | get_supTau

fail | pass |

Design
complete

Figure 4.1: The flowchart of DO-DAT.

4.1.1 setup sys.m
As input variables,

e N and D represent the numerator and denominator of a given uncertain
plant P(s), respectively, and they must be entered in the form of a cell that

contains both upper and lower bounds of all the coefficients as follows.
{[4, 10]};

{1, [-10, 101};

N

D

e nominal plant P_n and controller C must be entered in the form of a transfer

function model as follows.
P.n = t£f(5, [1, -21);
C =tf(2, [1, 41);

So the function

sysEnv= setup_sys(N, D, P_n, C)

returns a structure variable sysEnv that contains the information about the sys-

tem environment, such as the nominal controller C(s), nominal plant Py(s), and
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>> sysEnv = setup_sys(N, D, P_n, C)
sysEnv =
struct with fields:

P

: [1x1 tf]
: [1x1 tf]
: [2x1 double]
D: [2x2 double]
nominalStab: 1
minPhase: 1

= O S

Figure 4.2: The output of the function setup _sys.

the uncertain plant P(s), that will be used later in designing the DOB.

The output sysEnv also contains the information about the stability of the
nominal closed-loop system and minimum phaseness of a given set of uncertain
plants. The field nominalStab is 1 if the nominal closed-loop system is stable or
0 otherwise. The field minPhase is 1 if a given set of uncertain plants does not
contain any non-minimum phase systems or 0 otherwise. Figure [£.2] shows the

output of the function setup_sys.

4.2 Design of Coefficients of Q-filter

The coefficients a; and ¢; in (1.2.2), i.e., Q(s;1), should be designed prior
to determining the bandwidth of the Q-filter. If there is no user-defined Q(s;1)
available, the following function gen_Qcanon generates a transfer function model

Q(s;1) that can be used.

4.2.1 gen Qcanon.m

As input variables,
e sysEnv is expected to be the output of the function setup_sys.

e desired relative degree of Q(s;1) (i.e., the degree of Dg(s;1)) n must be

entered as a positive integer.
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e n—1 (> 1) number of stable roots (that lie on the left-half plane) must be
entered in the form of a row vector for the option rhoRoots. If the option

is not used, p(s) is set as (s + 1)*7L.
As a result, the function
Qcanon = gen_Qcanon(sysEnv, n)

or

Qcanon = gen_Qcanon(sysEnv, n, ‘rhoRoots’, LHP roots)

returns a transfer function model Q(s;1), Qcanon, with a constant numerator ag
that robustly stabilizes the fast dynamics of the closed-loop system. In other

words, the output of this function

1 No(s;l) ao
Q) = Dol )~ wol) T ao

guarantees that the characteristic polynomial of the fast dynamics in Assumption

L.2.2)

5—00 Pn(s)

_ . P(s)
= sp(s) + ag Slggo Bo(s)

pf(s) = Dg(s; 1) + (lim Pls) _ 1) No(s;1)

is Hurwitz for all P(s) € P. Figure[4.3|shows the output of the function gen_Qcanon

for two different cases.

4.2.2 isFastDynamicsStable.m

If there is an available user-defined Q(s;1) unlike the case in the previous
chapter, the following function isFastDynamicsStable decides whether the ps(s)
is Hurwitz for all P(s) € P under the user-defined Q(s;1).

As input variables,

e sysEnv is expected to be the output of the function setup_sys.
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>> Qcanon_1 = gen_Qcanon(sysEnv, 3)
Qcanon_1 =
s 3+25s5"2 +s + 0.5
Continuous-time transfer function.
>> Qcanon_2 = gen_Qcanon(sysEnv, 3, 'rhoRoots', [-2, -4]1)
Qcanon_2 =
s 3+6s™2 +8s+1
Continuous-time transfer function.

Figure 4.3: The output of the function gen Qcanon.

e user-defined Q(s;1) udQcanon must be entered in the form of a transfer
function model and thus, it can be entered as the output of the function
gen_Qcanon (Obviously, the fast dynamics ps(s) is Hurwitz for all P(s) € P

in that case.).

Consequently, the function
fastDynamicsStab = isFastDynamicsStable(sysEnv, udQcanon)

returns a logical output fastDynamicsStab that equals to 1 if the fast dynamics
of the closed-loop system is robustly stable, i.e., the latter part of Assumption
is satisfied, or 0 otherwise. Figure shows the output of the function

isFastDynamicsStable for three different cases.

4.3 Determination of Bandwidth of Q-filter

As the final step in designing the Q-filter in disturbance observer, the band-
width of the Q-filter or the value of 7 should be determined. The computation

procedure introduced in Chapter [3] is implemented in the following functions of
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>> fastDynamicsStab_1 = isFastDynamicsStable(sysEnv, tf(1, [1, 1]))
fastDynamicsStab_1 =
1
>> fastDynamicsStab_2 = isFastDynamicsStable(sysEnv, Qcanon_1)
fastDynamicsStab_2 =
1
>> fastDynamicsStab_3 = isFastDynamicsStable(sysEnv, tf([0.25, 0.25], [1, 4, 6, 4, 9, 0.25]))
fastDynamicsStab_3 =

0

Figure 4.4: The output of the function isFastDynamicsStable.
DO-DAT.

4.3.1 isValidTau.m

If there is a user-defined 7, the function isValidTau decides whether the given
T is in R*, where R* is defined as in (3.1.1)).

As input variables,
e sysEnv is expected to be the output of the function setup_sys.

e user-defined Q(s;1) udQcanon that robustly stabilizes the fast dynamics of
the closed-loop system (py(s) in Assumption [1.2.2]) must be entered in the

form of a transfer function model.
e tau must be entered as a positive real number.

So the function
validity = isValiudTau(sysEnv, udQcanon, tau)

returns a logical output validity that equals to 1 if the closed-loop system with
the DOB which is designed under given Q(s;1) and 7 is robustly stable or 0 oth-
erwise. Figure [£.5] shows the output of the function isValidTau for two different

cases.
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>> validity_1 = isValidTau(sysEnv, Qcanon_1, 0.005)
validity_1 =

1

>> validity_2 = isValidTau(sysEnv, Qcanon_1, 9.05)
validity_2 =
0

Figure 4.5: The output of the function isValidTau.

4.3.2 get supTau.m

If Assumptions and hold, the former part of Theorem guar-

antees the existence of 7*. Then the function get_supTau computes the value of

7* using the procedure proposed in Chapter

or

As input variables,

e sysEnv is expected to be the output of the function setup_sys.

e user-defined @(s;1) udQcanon that robustly stabilizes the fast dynamics of
the closed-loop system (py(s) in Assumption [1.2.2) must be entered in the

form of a transfer function model.
Then the output becomes

e the (almost, in the sense of minor numerical errors) exact value of the supre-
mum 7* for the option exact. At least 2018a and Symbolic Math Toolbox

are required for this option.

e an approximate value of the supremum 7* for the option approx. In this

case, the resolution res must be entered as a positive integer.

Finally, the function

supTau = get_supTau(sysEnv, udQcanon, ‘exact’)

supTau = get_supTau(sysEnv, udQcanon, ‘approx’, res)

2] &-t]] 8
i ] 1
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>> supTau_exact = get_supTau(sysEnv, Qcanon_1, ‘exact')
supTau_exact =

0.0232
>> supTau_approx = get_supTau(sysEnv, Qcanon_1, ‘approx', 10)
supTau_approx =

0.0232

Figure 4.6: The output of the function get supTau.

returns the supremum 7* supTau such that for all 0 < 7 < 7%, the closed-loop
system with the DOB designed under Q(s; 1) is robustly stable. Figure shows
the output of the function get_supTau for each option.

In Figure [4.6] it is seen that 7 = 0.0232. However, it is observed that
7% = 0.0457 in Example This difference is caused by which Q(s;1) is used.
Clearly, the range of available bandwidth of the Q-filter (or 7*) varies depending
on how the coefficients of the Q-filter or Q(s; 1) is designed.



Chapter 5

Conclusion

In this dissertation, several lemmas regarding necessary and sufficient conditions
for robust stability of the DOB-based control system were presented, and the de-
sign of the Q-filter-based DOB including computation of the minimum bandwidth
of the Q-filter was proposed. We also demonstrated that the proposed procedure
can be used to find a suitable Q-filter for non-minimum phase uncertain plants by
numerical computation. Finally, a MATLAB toolbox DO-DAT was introduced

and the operating principles of the toolbox were presented.

29 -":lx_i "";: -T i
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APPENDIX

A.1 Edge theorem

Let D € C be a simply connected domain in the complex plane C, and let (2
be a polytope of polynomials. Then the set of the roots of €2

R(Q):={s: f(s)=0, feQ}CcC

is contained in D if and only if the collection of the roots of all the exposed edge

polynomials of €2 is contained in D.

A.2 Bialas’ theorem

Let two polynomials with real coefficients

fi(s) = ag)sn + a,(llf)lsnfl +- 4+ a(gl),
fa(s) = ag)s” + ag_)lsn_l + aéQ),

where a%l), ag) # 0, are Hurwitz. Then, the convex combination

Afi(s) + (1= A) fa(s),

where A € [0,1], is Hurwitz if and only if no eigenvalues of H~1(f1)H(f2) are

located in the negative real axis (—o00,0), where H is the Hurwitz matrix.

31 M =-TH et 3
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A.3 Routh-Hurwitz Stability Criterion

[Nis20] Let p(s) = ans™ +an_15""' +---+a1s+ag be a polynomial of degree
n. The Routh-Hurwitz table of p(s) can be made up as follows:

an Gn—2 | An—4

Gp—1 | Gn—3 | An—5

b1 b bs
C1 (6] C3
where
by — Ap—10p—2; — anan—(2i+1)’ ¢ — b1, —(2i41) — an—lbi+1,
an—1 by
for ¢ = 1,2,---. Then, the number of sign changes in the first column of the

Routh-Hurwitz table of p(s) is equal to the number of roots with non-negative

real part of p(s).

A.4 Sturm’s theorem

[Yap00] p(s) be a polynomial with real coefficients and define

po(s) == p(s),
pi(s) :==1'(s),
pit1(s) := —rem(p;i—1(s), pi(s)), i=1,2,...

where p/(s) is the derivative of p(s) and rem(p;—1(s), p;i(s)) represents the remain-
der of the division of p;_1(s) by p;(s). Then, the sequence of polynomials pg, p1, . ..
is called Sturm sequence of p(s), which is a finite sequence. Let #((,p) be the
number of sign changes in the Sturm sequence of p(s) at s = ¢ € R. Then, the
number of distinct real roots of p(s) in the interval (a, b] of the real axis is equal

to

#(avp) - #(bap)
In order to apply Sturm’s theorem for the interval (—oo,0), one has to compute

.__:Ix_c L, '|'|i

-
=]
1

L
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#(—o00,p). The sign of a polynomial p(s) at s = —oo is defined as the sign of the
leading coefficient, if p(s) has even degree, and the opposite sign of the leading
coefficient, if p(s) has odd degree.
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COMPUTATION OF MINIMUM BANDWIDTH OF Q—FILTER FOR
ROBUST STABILITY OF DISTURBANCE OBSERVER-BASED CONTROL

SYSTEMS
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