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As the disturbance observer (DOB)-based controller has been widely applied

in practice, various aspects of the disturbance observer have been theoretically

studied. In particular, robust stability of the linear closed-loop system with single-

input single-output (SISO) Q-filter-based DOB has been rigorously analyzed, and

finally, a necessary and sufficient condition for robust stability was obtained under

the premise that the bandwidth of Q-filter is large. However, even the most recent

study about the design of Q-filter-based DOB for robust stability does not offer

a practical method for the determination of the Q-filter’s bandwidth.

In this thesis, we present several lemmas regarding the determination of the

bandwidth, from which a procedure is developed that can exactly compute the

threshold of the bandwidth, so that robust stability (against parametric variations

of the plant within a prescribed range) is lost if the bandwidth of the Q-filter
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becomes lower than that. The proposed procedure is implemented in a MATLAB

toolbox named DO-DAT, which is now available at https://do-dat.github.io.

Keywords: Disturbance observer, disturbance rejection, robust stability, nomi-

nal performance recovery, uncertain polynomials
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Chapter 1

Introduction

The Q-filter-based disturbance observer (DOB) has been a powerful robust control

scheme to reject disturbances and compensate plant uncertainties since it was first

introduced by [OOM83]. The DOB has been frequently employed in the industry

from the time when it was regarded as a rather heuristic method, and now several

theories are available about the robust stability of the DOB-based control systems.

Among others, [SJ07] and [BS08] introduced singular perturbation theory into the

analysis of DOB-based control systems, and this insight yielded a necessary and

sufficient condition for robust stability [SJ09]. This finding, in turn, enabled the

systematic design of DOBs for robust stability against arbitrarily large parameter

variations.

Based on the robust stability result, more insights about the DOB have been

discovered. For instance, it was found that a high-gain observer is already em-

bedded in the seemingly different structure of the Q-filter-based DOB and that

the zero-dynamics of the plant becomes decoupled when the DOB is installed in

the feedback loop [SPJ+16]. This finding provides an insightful explanation for

how the DOB works as a robust controller, by which both the benefits and the

limitations of DOB are clarified. It was also figured out how imprecise identifica-

tion of the relative degree of an uncertain plant affects stability [JJS14] and how

the classical measure of robustness, the gain/phase margin, is affected by a DOB

in the loop [KPSJ16].

Based on these analyses, a few modified DOBs are also proposed to overcome

the limitations of the classical DOB. For example, a way to modify the classical

1



2 Chap. 1. Introduction

DOB for robust transient performance was presented in [BS08], and a way to

embed an internal model that generates external disturbances so that the mod-

eled disturbances are rejected perfectly while the unmodeled disturbances are at-

tenuated at the desired level was presented in [JPBS15]. On top of those theo-

retical developments, the DOB is replacing traditional robust control methods.

Examples include flight control of drones [KCK+17], platooning of multi-vehicles

[NPT+20], load-frequency control of power-grid [HSN16], robustifying the rein-

forcement learning based controller [KSY19], and even generating stealthy attack-

ing signals for control systems [PLS+19].

However, most of these results are based on the premise that the bandwidth

of the Q-filter is sufficiently large. For example, the necessary and sufficient

condition for robust stability in [SJ09] is derived when the time constant τ of

the Q-filter is less than a threshold τ∗. While the threshold τ∗ is presented in

[SJ09], it is just a conservative value, and in practice, the selection of τ∗ should

be obtained by a repeated simulation or by trial and error.

In this dissertation, we study how to choose the minimum bandwidth of Q-

filter, i.e., the non-conservative value of τ∗, under which robust stability is guar-

anteed against parameter uncertainties within prescribed ranges. Having non-

conservative τ∗ is desirable because there might exist unavoidable physical con-

straints that limit the available bandwidth of the Q-filter. The existence of un-

modeled dynamics in the model of the plant is another reason why we need to

avoid unnecessarily large bandwidth of Q-filter. Moreover, succinct computation

of τ∗ is desired, which does not rely on an iterative method. In this dissertation,

a few lemmas are presented with which exact computation of τ∗ is enabled. This

work will pave a road to building a computer-aided toolbox for designing DOBs

that are robust against given uncertain variation of parameters.

Finally, it will be shown that the proposed procedure to find the minimum

bandwidth, or the value of τ∗, of the Q-filter, can also be used for finding suitable

bandwidths or the values τ even for non-minimum phase plants. No universal

design methods of DOB for non-minimum phase plants are available yet. How-

ever, since we are using a numerical method whatsoever, DOB can be designed

regardless of whether the plant is of minimum phase or not.
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Figure 1.1: Block diagram of the closed-loop system with Q-filter-based DOB
(blue dashed block).

This dissertation is organized as follows. The rest of this chapter begins with

Chapter 1.1, an overview of the Q-filter-based DOB. Chapter 1.2 describes a cou-

ple of assumptions and primary results of [SJ09] as preliminary. In Chapter 2,

we propose several necessary and sufficient conditions for the robust stability of

the DOB-based control system as lemmas. Based on the suggested lemmas, we

show a procedure to find an appropriate bandwidth of the Q-filter and give some

illustrative examples that demonstrate the usefulness of the procedure in Chap-

ter 3. Chapter 4 introduces a MATLAB toolbox named DO-DAT (Disturbance

Observer - Design and Analysis Toolbox) that contains the procedure to find an

appropriate bandwidth of the Q-filter. Finally, this thesis is summarized and con-

cluded in Chapter 5. In Appendix, details of theorems which are used in the body

of the thesis are provided.

1.1 Overview of Q-filter-based Disturbance Observer

The standard structure of the Q-filter-based DOB and the closed-loop system

are depicted in Figure 1.1. In the figure, P(s) and Pn(s) represent a single-input

single-output (SISO) real plant and its nominal model, respectively, C(s) is a

proper (implementable) controller which is usually designed a priori for Pn(s),

and Q(s; τ) is a stable low-pass filter called Q-filter with a parameter τ . This
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Figure 1.2: Block diagram of the nominal closed-loop system.

dissertation focuses on the design of the suitable value τ that decides the time

constant or the bandwidth of the Q-filter for robust stability of the closed-loop

system against a given variation of uncertain parameters. It is well-known that, if

the reference r and disturbance d consist of low-frequency components and if all

other parameters of Q-filter are properly set, then the Q-filter-based DOB with

a large bandwidth of the Q-filter (that is, a small magnitude of τ) enables the

system in Figure 1.1 to approximate the nominal closed-loop system in Figure 1.2

(see, e.g., [SPJ+16]). In other words, the following approximation

y(jω) ≈ Pn(jω)C(jω)

1 + Pn(jω)C(jω)
r(jω) = yn(jω)

holds with a sufficiently large bandwidth of the Q-filter, where y and yn are the

outputs of the DOB-based control system in Figure 1.1 and the nominal closed-

loop system in Figure 1.2, respectively. This capability of approximation is one of

the main features of the Q-filter-based DOB scheme, which is often called nominal

performance recovery.

1.2 Necessary and Sufficient Condition for Robust Sta-

bility

In this dissertation, parametric uncertainty of the plant P(s) is assumed to

satisfy the following.

Assumption 1.2.1. The real plant P(s) and its nominal model Pn(s) belong to
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the set of uncertain plants:

P :=

{
P(s) =

βn−νs
n−ν + βn−ν−1s

n−ν−1 + ...+ β0
αnsn + αn−1sn−1 + ...+ α0

: αi ∈ [αi, αi] , βi ∈ [β
i
, βi]

}
,

(1.2.1)

where n and ν are positive integers such that n ≥ ν and αi, αi, βi
, and βi are

known constants such that [αn, αn], [βn−ν
, βn−ν ] ⊂ (0,∞), where (0,∞) denotes

the positive real line. □

In the assumption, the condition [αn, αn], [βn−ν
, βn−ν ] ⊂ (0,∞) implies that

all the plants in the set have the same relative degree and have the same sign of

the high frequency gain (which is positive, without loss of generality). From the

assumption, it is clear that the set P incorporates arbitrarily large but bounded

uncertainties of the parameters. Note that the description of the set P in (1.2.1)

has redundancy. This redundancy disappears by letting, for example, αn = αn =

1, but for the general purpose, we let all the parameters are independent of one

another.

The stable low-pass filter Q(s; τ) is usually designed in the form

Q(s; τ) =
ck(τs)

k + ck−1(τs)
k−1 + · · ·+ c0

(τs)l + al−1(τs)l−1 + · · ·+ a1(τs) + a0

=:
NQ(s; τ)

DQ(s; τ)
,

(1.2.2)

where NQ and DQ are the numerator polynomial and the denominator polynomial

of Q(s; τ), respectively, and k and l are some non-negative integers such that

k ≤ l − ν, where ν is the relative degree of Pn(s). For the unity dc gain, we

set a0 = c0. Note that the real positive τ determines the time constant or the

bandwidth. Now we assume the following necessary condition (see [SJ09]), which

is relevant to Pn(s), C(s), and Q(s; 1), for robust stability under large bandwidth

of Q-filter.

Assumption 1.2.2. The nominal closed-loop system

Pn(s)C(s)

1 + Pn(s)C(s)
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is internally stable, and the polynomial

pf (s) := DQ(s; 1) +

(
lim
s→∞

P(s)

Pn(s)
− 1

)
NQ(s; 1)

is Hurwitz for all P(s) ∈ P in (1.2.1). □

Note that τ = 1 in the assumption, and thus, the assumption is independent

of the choice of τ . In fact, a systematic way to choose the parameters ai and ci of

the Q-filter in (1.2.2) such that the second condition of Assumption 1.2.2 holds

has been presented in [SJ09, Sec. 2.3].

The following theorem, taken from [SJ09], plays a crucial role to design Q-

filter-based DOB for robust stability of the closed-loop system in Figure 1.1.

Theorem 1.2.1. Suppose that Assumptions 1.2.1 and 1.2.2 hold. If all the plants

P(s) ∈ P are of minimum phase, then there exists a constant τ∗ such that, for

all 0 < τ < τ∗, the closed-loop system in Figure 1.1 is robustly internally stable

(against the uncertainty of P). On the contrary, if P contains a non-minimum

phase plant such that at least one zero has positive real parts, then there is τ∗

such that, for all 0 < τ < τ∗, the closed-loop system is not robustly internally

stable. □

While the former part of Theorem 1.2.1 guarantees the existence of the thresh-

old τ∗ (or, the minimum bandwidth of Q-filter), its proof in [SJ09] presents a con-

servative choice of τ∗. In fact, no method to find the exact and non-conservative

value of τ∗ has been reported in the literature yet. In the next chapter, some

useful lemmas are introduced which can be utilized to obtain the exact value of

τ∗ under Assumptions 1.2.1 and 1.2.2.



Chapter 2

Lemmas on Robust Stability of
Closed-loop System

In this chapter, we first observe some properties of the characteristic polynomial

of the closed-loop system in Figure 1.1, and then present a couple of equivalent

statements which are necessary and sufficient conditions for robust stability of the

DOB-based control system.

2.1 Observations on Characteristic Polynomial

In the configuration of Figure 1.1, the following equation[
ē

u

]
=

1

γ(s)

[
Q(P− Pn) + Pn (Q− 1)PPn

CPn (1−Q)Pn

][
r

d

]

holds, where

γ(s) = (1 + CP)Pn +Q(P− Pn).

Now, let P(s),Pn(s), and C(s) be represented by the ratios of coprime polynomials

such as P(s) = N(s)/D(s), Pn(s) = Nn(s)/Dn(s), and C(s) = NC(s)/DC(s).

Then we can express the characteristic polynomial of the closed-loop system in

Figure 1.1 in the following lemma which is the main concern throughout this

dissertation.

7



8 Chap. 2. Lemmas on Robust Stability of Closed-loop System

Lemma 2.1.1. The closed-loop system in Figure 1.1 is robustly internally stable

if and only if the characteristic polynomial

δ(s; τ) :=
(
D(s)DC(s) +N(s)NC(s)

)
Nn(s)DQ(s; τ)

+NQ(s; τ)DC(s)
(
N(s)Dn(s)−Nn(s)D(s)

) (2.1.1)

is Hurwitz for all P(s) ∈ P in (1.2.1). □

Now, we are going to define ‘polytope of polynomials’, ‘edge polynomial’, and

‘exposed edge polynomial’ with respect to the characteristic polynomial δ(s; τ)

in (2.1.1) to make use of the Edge theorem in [BHL88]. A set of polynomials T

is called polytope of polynomials if the set T is a convex hull of a finite number

of vertex polynomials. If T is a polytope of polynomials, we define an edge

polynomial of T as

{λt1 + (1− λ)t2 : λ ∈ [0, 1]}

for any vertices t1, t2 ∈ T . Finally, an exposed edge polynomial of T is defined

as the edge polynomial which is contained in a nontrivial supporting hyperplane

of the set T .

Under such terminologies, the characteristic polynomial δ(s; τ) can be rewrit-

ten with the uncertain polynomials D(s) and N(s) as

δ(s; τ) = pD(s; τ) ·D(s) + pN (s; τ) ·N(s),

= pD(s; τ) ·
n∑

i=0

αis
i + pN (s; τ) ·

n−ν∑
j=0

βjs
j ,

where

pD(s; τ) = DC(s)Nn(s)DQ(s; τ)−NQ(s; τ)DC(s)Nn(s)

and

pN (s; τ) = NC(s)Nn(s)DQ(s; τ) +NQ(s; τ)DC(s)Dn(s)

which are not uncertain. At this point, we define

Ω := {δ(s; τ) : P(s) ∈ P} (2.1.2)
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as the set of all characteristic polynomials corresponding to every possible plants

P(s) ∈ P in (1.2.1). Then for any α
(1)
i , α

(2)
i ∈ [αi, αi] and β

(1)
j , β

(2)
j ∈ [β

j
, βj ],

where i = 0, 1, . . . , n and j = 0, 1, . . . , n− ν, the polynomials

ω1 := pD(s; τ) ·
n∑

i=0

α
(1)
i si + pN (s; τ) ·

n−ν∑
j=0

β
(1)
j sj

and

ω2 := pD(s; τ) ·
n∑

i=0

α
(2)
i si + pN (s; τ) ·

n−ν∑
j=0

β
(2)
j sj

belong to Ω. Moreover, for any λ ∈ [0, 1], the convex combination of ω1 and ω2,

λω1 + (1− λ)ω2 = pD(s; τ) ·
n∑

i=0

(
λα

(1)
i + (1− λ)α

(2)
i

)
si

+ pN (s; τ) ·
n−ν∑
j=0

(
λβ

(1)
j + (1− λ)β

(2)
j

)
sj ,

is also in Ω because λα
(1)
i +(1−λ)α

(2)
i ∈ [αi, αi] and λβ

(1)
j +(1−λ)β

(2)
j ∈ [β

j
, βj ].

Thus, the set Ω in (2.1.2) is a polytope of polynomials, namely the convex hull of

a finite number of polynomials. Indeed, we have

m := 22n−ν+2

polynomials depending on αi, αi, β
j
, and βj , where i = 0, 1, . . . , n and j =

0, 1, . . . , n− ν, as

δ1(s; τ) := (αns
n + αn−1s

n−1 + · · ·+ α0) · pD(s; τ)

+ (β
n−ν

sn−ν + β
n−ν−1

sn−ν−1 + · · ·+ β
0
) · pN (s; τ),

δ2(s; τ) := (αns
n + αn−1s

n−1 + · · ·+ α0) · pD(s; τ)

+ (β
n−ν

sn−ν + β
n−ν−1

sn−ν−1 + · · ·+ β
0
) · pN (s; τ),

δ3(s; τ) := (αns
n + αn−1s

n−1 + · · ·+ α0) · pD(s; τ)

+ (β
n−ν

sn−ν + β
n−ν−1

sn−ν−1 + · · ·+ β
0
) · pN (s; τ),

...
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Figure 2.1: The vertex polynomials (black dots) and the exposed edge poly-
nomials (blue line segments) of the polytope Ω in the coefficient
space.

δm(s; τ) := (αns
n + αn−1s

n−1 + · · ·+ α0) · pD(s; τ)

+ (βn−νs
n−ν + βn−ν−1s

n−ν−1 + · · ·+ β0) · pN (s; τ)

which become vertex polynomials of the polytope Ω, and the polytope Ω is the

convex hull of them. Let the set of those vertex polynomials as

∆(s; τ) := {δi(s; τ) : i = 1, 2, . . . , m}.

Then an edge polynomial of the polytope Ω is

{λδi(s; τ) + (1− λ)δj(s; τ) : λ ∈ [0, 1]},

where δi(s; τ), δj(s; τ) ∈ ∆(s; τ), 1 ≤ i, j ≤ m and i ̸= j. The following example

clarifies the definition of ‘polytope of polynomials’, ‘edge polynomial’, and ‘ex-

posed edge polynomial’ with respect to a given uncertain polynomial.

Example 2.1.1. Consider an uncertain polynomial p(s) = α2s
2+α1s+α0, where
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uncertain coefficients α2 ∈ [1, 2], α1 ∈ [3, 4], and α0 ∈ [−1, 3]. In this case, the

polytope Ω can be expressed as

{p(s) = α2s
2 + α1s+ α0 : α2 ∈ [1, 2], α1 ∈ [3, 4], α0 ∈ [−1, 3]}.

There are 23 = 8 vertex polynomials for this example. If we represent each

polynomial in Ω as a point in the coefficient space, which is three-dimensional

space in this case, the vertex polynomials can be represented as black dots as

in Figure 2.1. There are
(
8
2

)
= 28 edge polynomials, which are line segments

connecting each pair of black dots in Figure 2.1. Out of 28 edge polynomials,

only 12 edge polynomials are drawn in blue color in Figure 2.1, which are called

exposed edge polynomials. □

2.2 Application of Edge theorem and Bialas’ theorem

In this chapter, a couple of equivalent statements of Lemma 2.1.1 are pre-

sented.

Lemma 2.2.1. The closed-loop system in Figure 1.1 is robustly internally stable

if and only if for each pair δi(s; τ), δj(s; τ) ∈ ∆(s; τ), 1 ≤ i, j ≤ m, i ̸= j, and for

each λ ∈ [0, 1], the edge polynomial λδi(s; τ) + (1− λ)δj(s; τ) is Hurwitz. □

Proof: The proof of the lemma follows from the Edge theorem [BHL88] (re-

viewed in A.1 for convenience). Let us take D as the open left-half complex plane.

If all the edge polynomials are Hurwitz, then all exposed edge polynomials are

Hurwitz as well, and the sufficiency follows. The necessity is trivial. ■

It is worthy to note that δi(s; τ) ∈ ∆(s; τ) in Lemma 2.2.1 is no longer an

uncertain polynomial. However, we still need to check infinitely many polynomials

in terms of λ ∈ [0, 1] to decide robust stability of the closed-loop system. The

following lemma eliminates the λ-dependency in Lemma 2.2.1. Before stating

the next lemma, let us define the Hurwitz matrix of a polynomial. For a given

polynomial

p(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0
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with real coefficients, the n× n matrix

H(p) =



an−1 an−3 an−5 · · · · · · · · · 0 0 0

an an−2 an−4
...

...
...

0 an−1 an−3
...

...
...

... an an−2
. . . 0

...
...

... 0 an−1
. . . a0

...
...

...
... an

. . . a1
...

...
...

... 0 a2 a0
...

...
...

... a3 a1
...

0 0 0 a4 a2 a0


is called Hurwitz matrix of the polynomial p(s). Moreover, when an > 0, the

polynomial p(s) is Hurwitz if and only if all the leading principal minors of the

matrix H(p) are positive [Kha02]. Therefore, if p(s) is Hurwitz, then |H(p)| > 0

so that H(p) is invertible.

Lemma 2.2.2. The closed-loop system in Figure 1.1 is robustly internally sta-

ble if and only if, for all δi(s; τ) ∈ ∆(s; τ), the polynomial δi(s; τ) is Hur-

witz, and for each pair δi(s; τ), δj(s; τ) ∈ ∆(s; τ), no eigenvalues of the ma-

trix H−1(δi(s; τ))H(δj(s; τ)) are located in the negative real axis (−∞, 0) in the

complex plane. □

Proof: The proof uses Bialas’ theorem [Bia04] (also reviewed in A.2). In our

case, the degree of each δi(s; τ) ∈ ∆(s; τ) is determined only by the term

D(s)DC(s)Nn(s)DQ(s; τ)

in (2.1.1), and thus, its leading coefficient is always nonzero. Therefore, the

degrees of all vertex polynomials in the set ∆(s; τ) are equal, and Bialas’ theorem

is ready to be applied to Lemma 2.2.1. ■

Lemma 2.2.2 gives a necessary and sufficient condition on the robust stability

of the DOB-based control system for a given τ , without the need to check infinitely

many polynomials. Now, with the help of Routh-Hurwitz stability criterion, one
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can compute the exact value of τ∗ and the detailed procedure is proposed in the

next chapter.





Chapter 3

Computation of Minimum Bandwidth
of Q-filter for Robust Stability

In this chapter, we present a procedure to compute the value of τ∗ in the former

part of Theorem 1.2.1 based on the given lemmas and discuss the case when

non-minimum phase systems belong to the set P. Also, we provide a couple of

numerical examples to describe the utility of the proposed computation procedure.

3.1 Procedure for Computing τ ∗

The following procedure is for computing a range for τ , on which the closed-

loop system is robustly stable against the parametric variations in Assumption

1.2.1. Once the range is computed, τ∗ is obtained straightforwardly for both cases

where the set of plant consists of only minimum phase systems or not.

Step 1. For each δi(s; τ) ∈ ∆(s; τ), i = 1, . . . , m, find the largest range Ri ⊂ (0,∞)

such that for all τ ∈ Ri, the polynomial δi(s; τ) is Hurwitz. □

In particular, if the plant set P consists of minimum phase systems only,

existence of the largest τ i1 (including the case when τ i1 = ∞) such that (0, τ i1) ⊂ Ri

is guaranteed by Theorem 1.2.1 for every 1 ≤ i ≤ m. For the computation of Ri

and τ i1, one can employ Routh-Hurwitz stability criterion (reviewed in A.3 for

convenience).

Step 2. For each pair δi(s; τ), δj(s; τ) ∈ ∆(s; τ), obtain the largest range Rij ⊂
(0,∞) such that for all τ ∈ Rij , no eigenvalues of H−1(δi(s; τ))H(δj(s; τ)) are in

15
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(−∞, 0). □

Similar to the previous step, existence of the largest τ ij2 such that (0, τ ij2 ) ⊂ Rij

is also guaranteed by Theorem 1.2.1 for every 1 ≤ i, j ≤ m when the plant set

P consists of only minimum phase systems. For the computation of Rij and τ ij2 ,

one can employ Sturm’s theorem, which is described in A.4.

Step 3. If the plant set P consists of only minimum phase systems, let

τ∗ = min
i,j

{τ i1, τ
ij
2 } ≤ ∞.

□

Remark 3.1.1. In fact, one can choose any τ ∈ R∗ in order that the Q-filter-

based DOB works for a given plant, where

R∗ :=
(⋂

i

Ri

)
∩
(⋂

i,j

Rij

)
(3.1.1)

regardless of whether the plant is of minimum phase or not. Therefore, if the

plant set P contains non-minimum phase systems, let τ∗ be the largest τ̄ ≤ ∞
such that (0, τ̄) ∩R∗ = ∅, where ∅ denotes the empty set. Again, the latter part

of Theorem 1.2.1 guarantees the existence of such τ̄ . Even though R∗ might be

the empty set so that the closed-loop system is not robustly internally stable for

all τ > 0 and τ̄ becomes ∞, one can at least demonstrate if a given real plant set

that contains non-minimum phase systems is suitable to employ the Q-filter-based

DOB or not. □

Remark 3.1.2. The above procedure has been implemented in MATLAB as a

toolbox named DO-DAT, whose first version was introduced in [CKPS18]. Up-

dated DO-DAT is available at https://do-dat.github.io. The operating prin-

ciples of DO-DAT are presented in Chapter 4. □

In the following chapter, illustrative examples that show the advantages of

the proposed computation procedure are given.

https://do-dat.github.io


3.2. Examples and Simulations 17

3.2 Examples and Simulations

In this chapter, two numerical examples are presented to describe the utility

of the proposed computation procedure.

Example 3.2.1. Suppose that the components in Figure 1.1 are given as:

• C(s) = 2/(s+ 4),

• Pn(s) = 5/(s− 2),

• P(s) = β0/(s+ α0), where 4 ≤ β0 ≤ 10, −10 ≤ α0 ≤ 10,

• Q(s; τ) = 1/(τs+ 1).

It is obvious that the given P consists of only minimum phase systems since there

is no zero-dynamics. Then, there are four vertex polynomials,

δ1(s; τ) = 5τs3 + (−30τ + 4)s2 + (−160τ + 8)s+ 8,

δ2(s; τ) = 5τs3 + (70τ + 4)s2 + (240τ + 8)s+ 8,

δ3(s; τ) = 5τs3 + (−30τ + 10)s2 + (−100τ + 20)s+ 20,

δ4(s; τ) = 5τs3 + (70τ + 10)s2 + (300τ + 20)s+ 20.

As the first step, the largest τ11 > 0 with which δ1(s; τ) is Hurwitz for all

τ ∈ (0, τ11 ) is computed as 0.0457 by Routh-Hurwitz stability criterion. Secondly,

the largest τ3,42 > 0 such that no eigenvalues of H−1(δ3(s; τ))H(δ4(s; τ)) are in

(−∞, 0) for all τ ∈ (0, τ3,42 ), is obtained as 0.1667 by Sturm’s theorem. Continuing

the computation, we get

τ∗ = min
i,j

{τ i1, τ
ij
2 } = 0.0457.

The result can be verified by wcgain function (that calculates the worst-case

peak gain of given uncertain system) in MATLAB and it is observed that for

τ = 0.0458, transfer functions of r to y and d to y can have infinite gain because

of the plant uncertainty. On the other hand, it is verified that gains of the same

transfer functions for τ = 0.0456 are bounded despite the plant uncertainty. □
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Figure 3.1: Nominal performance recovery with non-minimum phase plant
P(s) = (s2 − 0.2s+ 5)/(s3 + 3s2 + 3s+ 1) for τ = 0.21.

Example 3.2.2. Suppose that in Figure 1.1,

• C(s) = 1/(s+ 1),

• Pn(s) = (s2 + s+ 5)/(s3 + 3s2 + 3s+ 1),

• P(s) = (s2 + β1s+ 5)/(s3 + 3s2 + 3s+ 1),

where −0.2 ≤ β1 ≤ 2,

• Q(s; τ) = 1/(τs+ 1).

Although the given set P contains non-minimum phase systems such as

P(s) =
s2 − 0.2s+ 5

s3 + 3s2 + 3s+ 1
,

the procedure provides that the closed-loop system with Q-filter-based DOB is

robustly internally stable at least for

τ ∈ (0.206, 0.627) ⊂ R∗,

where R∗ is a set of τ defined in (3.1.1).

For r(t) = 1(t) (Heaviside step function) and d(t) = 2 sin(0.1t), Figs. 3.1

and 3.2 illustrate stability of the closed-loop system and nominal performance
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Figure 3.2: Nominal performance recovery with minimum phase plant P(s) =
(s2 + 2s+ 5)/(s3 + 3s2 + 3s+ 1) for τ = 0.21.

recovery with two different real plant models for τ = 0.21. It is observed that the

closed-loop system is robustly stable even if the plant is of non-minimum phase,

and the nominal performance recovery is achieved to some extent. On the other

hand, if we choose τ outside the range (0.206, 0.627), for example, τ = 0.16, then

the closed-loop system with a plant P(s) ∈ P shows unstable behavior, as seen in

Figure 3.3, as expected. □



20Chap. 3. Computation of Minimum Bandwidth of Q-filter for Robust Stability

Figure 3.3: Unstable closed-loop system with P(s) = (s2 − 0.2s + 5)/(s3 +
3s2 + 3s+ 1) for τ = 0.16.



Chapter 4

DO-DAT: MATLAB Toolbox for Design
and Analysis of Disturbance Observer

As mentioned in Remark 3.1.2, a MATLAB toolbox DO-DAT that contains the

procedure for computing a range for τ , on which the closed-loop system is robustly

stable, has been developed. The flowchart of DO-DAT is given in Figure 4.1. In

the figure, each block represents a function supported by DO-DAT. Users should

decide which function to use depending on whether there user-defined Q(s; 1) and

τ exist or not.

In this chapter, the operating principles of DO-DAT are presented including

the manual of each supported function. For convenience, it is supposed that the

components in Figure 1.1 are given by the same

• C(s) = 2/(s+ 4),

• Pn(s) = 5/(s− 2),

• P(s) = β0/(s+ α0), where 4 ≤ β0 ≤ 10, −10 ≤ α0 ≤ 10,

as in Example 3.2.1 in the rest of this chapter.

4.1 Setup

For a given nominal controller, plant and a set of uncertain real plants, setup

is needed before using the main functions of the toolbox.

21
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Figure 4.1: The flowchart of DO-DAT.

4.1.1 setup_sys.m

As input variables,

• N and D represent the numerator and denominator of a given uncertain

plant P(s), respectively, and they must be entered in the form of a cell that

contains both upper and lower bounds of all the coefficients as follows.

N = {[4, 10]};

D = {1, [-10, 10]};

• nominal plant P_n and controller C must be entered in the form of a transfer

function model as follows.

P_n = tf(5, [1, -2]);

C = tf(2, [1, 4]);

So the function

sysEnv= setup_sys(N, D, P_n, C)

returns a structure variable sysEnv that contains the information about the sys-

tem environment, such as the nominal controller C(s), nominal plant Pn(s), and
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Figure 4.2: The output of the function setup_sys.

the uncertain plant P(s), that will be used later in designing the DOB.

The output sysEnv also contains the information about the stability of the

nominal closed-loop system and minimum phaseness of a given set of uncertain

plants. The field nominalStab is 1 if the nominal closed-loop system is stable or

0 otherwise. The field minPhase is 1 if a given set of uncertain plants does not

contain any non-minimum phase systems or 0 otherwise. Figure 4.2 shows the

output of the function setup_sys.

4.2 Design of Coefficients of Q-filter

The coefficients ai and ci in (1.2.2), i.e., Q(s; 1), should be designed prior

to determining the bandwidth of the Q-filter. If there is no user-defined Q(s; 1)

available, the following function gen_Qcanon generates a transfer function model

Q(s; 1) that can be used.

4.2.1 gen_Qcanon.m

As input variables,

• sysEnv is expected to be the output of the function setup_sys.

• desired relative degree of Q(s; 1) (i.e., the degree of DQ(s; 1)) n must be

entered as a positive integer.
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• n−1 (≥ 1) number of stable roots (that lie on the left-half plane) must be

entered in the form of a row vector for the option rhoRoots. If the option

is not used, ρ(s) is set as (s+ 1)n−1.

As a result, the function

Qcanon = gen_Qcanon(sysEnv, n)

or

Qcanon = gen_Qcanon(sysEnv, n, ‘rhoRoots’, LHP roots)

returns a transfer function model Q(s; 1), Qcanon, with a constant numerator a0

that robustly stabilizes the fast dynamics of the closed-loop system. In other

words, the output of this function

Q(s; 1) =
NQ(s; 1)

DQ(s; 1)
=

a0
sρ(s) + a0

guarantees that the characteristic polynomial of the fast dynamics in Assumption

1.2.2

pf (s) = DQ(s; 1) +

(
lim
s→∞

P(s)

Pn(s)
− 1

)
NQ(s; 1)

= sρ(s) + a0 lim
s→∞

P(s)

Pn(s)

is Hurwitz for all P(s) ∈ P. Figure 4.3 shows the output of the function gen_Qcanon

for two different cases.

4.2.2 isFastDynamicsStable.m

If there is an available user-defined Q(s; 1) unlike the case in the previous

chapter, the following function isFastDynamicsStable decides whether the pf (s)

is Hurwitz for all P(s) ∈ P under the user-defined Q(s; 1).

As input variables,

• sysEnv is expected to be the output of the function setup_sys.
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Figure 4.3: The output of the function gen_Qcanon.

• user-defined Q(s; 1) udQcanon must be entered in the form of a transfer

function model and thus, it can be entered as the output of the function

gen_Qcanon (Obviously, the fast dynamics pf (s) is Hurwitz for all P(s) ∈ P
in that case.).

Consequently, the function

fastDynamicsStab = isFastDynamicsStable(sysEnv, udQcanon)

returns a logical output fastDynamicsStab that equals to 1 if the fast dynamics

of the closed-loop system is robustly stable, i.e., the latter part of Assumption

1.2.2 is satisfied, or 0 otherwise. Figure 4.4 shows the output of the function

isFastDynamicsStable for three different cases.

4.3 Determination of Bandwidth of Q-filter

As the final step in designing the Q-filter in disturbance observer, the band-

width of the Q-filter or the value of τ should be determined. The computation

procedure introduced in Chapter 3 is implemented in the following functions of



26Chap. 4. DO-DAT: MATLAB Toolbox for Design and Analysis of Disturbance Observer

Figure 4.4: The output of the function isFastDynamicsStable.

DO-DAT.

4.3.1 isValidTau.m

If there is a user-defined τ , the function isValidTau decides whether the given

τ is in R∗, where R∗ is defined as in (3.1.1).

As input variables,

• sysEnv is expected to be the output of the function setup_sys.

• user-defined Q(s; 1) udQcanon that robustly stabilizes the fast dynamics of

the closed-loop system (pf (s) in Assumption 1.2.2) must be entered in the

form of a transfer function model.

• tau must be entered as a positive real number.

So the function

validity = isValiudTau(sysEnv, udQcanon, tau)

returns a logical output validity that equals to 1 if the closed-loop system with

the DOB which is designed under given Q(s; 1) and τ is robustly stable or 0 oth-

erwise. Figure 4.5 shows the output of the function isValidTau for two different

cases.
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Figure 4.5: The output of the function isValidTau.

4.3.2 get_supTau.m

If Assumptions 1.2.2 and 1.2.1 hold, the former part of Theorem 1.2.1 guar-

antees the existence of τ∗. Then the function get_supTau computes the value of

τ∗ using the procedure proposed in Chapter 3.

As input variables,

• sysEnv is expected to be the output of the function setup_sys.

• user-defined Q(s; 1) udQcanon that robustly stabilizes the fast dynamics of

the closed-loop system (pf (s) in Assumption 1.2.2) must be entered in the

form of a transfer function model.

Then the output becomes

• the (almost, in the sense of minor numerical errors) exact value of the supre-

mum τ∗ for the option exact. At least 2018a and Symbolic Math Toolbox

are required for this option.

• an approximate value of the supremum τ∗ for the option approx. In this

case, the resolution res must be entered as a positive integer.

Finally, the function

supTau = get_supTau(sysEnv, udQcanon, ‘exact’)

or

supTau = get_supTau(sysEnv, udQcanon, ‘approx’, res)
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Figure 4.6: The output of the function get_supTau.

returns the supremum τ∗ supTau such that for all 0 < τ < τ∗, the closed-loop

system with the DOB designed under Q(s; 1) is robustly stable. Figure 4.6 shows

the output of the function get_supTau for each option.

In Figure 4.6, it is seen that τ∗ = 0.0232. However, it is observed that

τ∗ = 0.0457 in Example 3.2.1. This difference is caused by which Q(s; 1) is used.

Clearly, the range of available bandwidth of the Q-filter (or τ∗) varies depending

on how the coefficients of the Q-filter or Q(s; 1) is designed.



Chapter 5

Conclusion

In this dissertation, several lemmas regarding necessary and sufficient conditions

for robust stability of the DOB-based control system were presented, and the de-

sign of the Q-filter-based DOB including computation of the minimum bandwidth

of the Q-filter was proposed. We also demonstrated that the proposed procedure

can be used to find a suitable Q-filter for non-minimum phase uncertain plants by

numerical computation. Finally, a MATLAB toolbox DO-DAT was introduced

and the operating principles of the toolbox were presented.

29





APPENDIX

A.1 Edge theorem

Let D ∈ C be a simply connected domain in the complex plane C, and let Ω

be a polytope of polynomials. Then the set of the roots of Ω

R(Ω) := {s : f(s) = 0, f ∈ Ω} ⊂ C

is contained in D if and only if the collection of the roots of all the exposed edge

polynomials of Ω is contained in D.

A.2 Bialas’ theorem

Let two polynomials with real coefficients

f1(s) = a(1)n sn + a
(1)
n−1s

n−1 + · · ·+ a
(1)
0 ,

f2(s) = a(2)n sn + a
(2)
n−1s

n−1 + · · ·+ a
(2)
0 ,

where a
(1)
n , a

(2)
n ̸= 0, are Hurwitz. Then, the convex combination

λf1(s) + (1− λ)f2(s),

where λ ∈ [0, 1], is Hurwitz if and only if no eigenvalues of H−1(f1)H(f2) are

located in the negative real axis (−∞, 0), where H is the Hurwitz matrix.

31
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A.3 Routh-Hurwitz Stability Criterion

[Nis20] Let p(s) = ans
n+an−1s

n−1+ · · ·+a1s+a0 be a polynomial of degree

n. The Routh-Hurwitz table of p(s) can be made up as follows:

an an−2 an−4 . . .

an−1 an−3 an−5 . . .

b1 b2 b3 . . .

c1 c2 c3 . . .
...

...
...

. . .

where

bi =
an−1an−2i − anan−(2i+1)

an−1
, ci =

b1an−(2i+1) − an−1bi+1

b1
,

for i = 1, 2, · · · . Then, the number of sign changes in the first column of the

Routh-Hurwitz table of p(s) is equal to the number of roots with non-negative

real part of p(s).

A.4 Sturm’s theorem

[Yap00] p(s) be a polynomial with real coefficients and define

p0(s) := p(s),

p1(s) := p′(s),

pi+1(s) := − rem(pi−1(s), pi(s)), i = 1, 2, . . .

where p′(s) is the derivative of p(s) and rem(pi−1(s), pi(s)) represents the remain-

der of the division of pi−1(s) by pi(s). Then, the sequence of polynomials p0, p1, . . .

is called Sturm sequence of p(s), which is a finite sequence. Let #(ζ, p) be the

number of sign changes in the Sturm sequence of p(s) at s = ζ ∈ R. Then, the

number of distinct real roots of p(s) in the interval (a, b] of the real axis is equal

to

#(a, p)−#(b, p).

In order to apply Sturm’s theorem for the interval (−∞, 0), one has to compute
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#(−∞, p). The sign of a polynomial p(s) at s = −∞ is defined as the sign of the

leading coefficient, if p(s) has even degree, and the opposite sign of the leading

coefficient, if p(s) has odd degree.
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국문초록

Computation of minimum bandwidth of Q-filter for
robust stability of disturbance observer-based control

systems

외란 관측기 기반 제어 시스템의 강인 안정성을 위한 Q-필터의 최소 대역폭 계산

외란 관측기가 널리 활용됨에 따라 외란 관측기가 가지는 다양한 측면이 이론적으

로 연구되어 왔다. 특히, Q-필터를 기반으로 하는 단일 입출력 외란 관측기를 포함하

는 선형 폐루프 시스템의 강인 안정성에 대해 많은 연구가 이루어졌으며 결국 폐 루프

시스템의 강인 안정성에 대한 필요 충분 조건이 제안된 바 있다. 그러나 제안된 필요

충분 조건은 충분히 큰 Q-필터의 대역폭을 전제하는데, 폐 루프 시스템의 강인 안정성

을 보장하기 위해 필요한 Q-필터의 최소 대역폭을 정확히 알아내는 방법은 제시된 바

없다.

본 학위논문에서는 몇 가지 보조정리와 함께 Q-필터 기반 외란 관측기가 포함된

폐 루프 시스템의 강인 안정성을 보장하는 Q-필터의 최소 대역폭을 정확히 계산할 수

있는 방법론을 제안한다. 본 학위논문에서 제안하는 방법론은 DO-DAT이라는 이름의

MATLAB 툴박스로 구현되어 있으며 관련 내용은 https://do-dat.github.io에서

확인할 수 있다.

주요어: 외란 관측기, 외란 제거, 강인 안정성, 공칭 성능 회복, 불확실한 다항식

학 번: 2019–20672
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