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Abstract

Towards mastering complex reasoning with
Transformers: applications in visual,
conversational and mathematical reasoning

Jinwon An
Department of Industrial Engineering
The Graduate School

Seoul National University

As deep learning models advanced, research is focusing on sophisticated tasks that re-
quire complex reasoning, rather than simple classification tasks. These complex tasks
require multiple reasoning steps that resembles human intelligence. Architecture-
wise, recurrent neural networks and convolutional neural networks have long been
the main stream model for deep learning. However, both models suffer from short-
comings from their innate architecture. Nowadays, the attention-based Transformer
is replacing them due to its superior architecture and performance. Particularly,
the encoder of the Transformer has been extensively studied in the field of natu-
ral language processing. However, for the Transformer to be effective in data with
distinct structures and characteristics, appropriate adjustments to its structure is re-
quired. In this dissertation, we propose novel architectures based on the Transformer
encoder for various supervised learning tasks with different data types and charac-

teristics. The tasks that we consider are visual 1Q tests, dialogue state tracking and



mathematical question answering. For the visual I1Q test, the input is in a visual
format with hierarchy. To deal with this, we propose using a hierarchical Trans-
former encoder with structured representation that employs a novel neural network
architecture to improve both perception and reasoning. The hierarchical structure
of the Transformer encoders and the architecture of each individual Transformer
encoder all fit to the characteristics of the data of visual IQ tests. For dialogue
state tracking, value prediction for multiple domain-slot pairs is required. To ad-
dress this issue, we propose a dialogue state tracking model using a pre-trained
language model, which is a pre-trained Transformer encoder, for domain-slot rela-
tionship modeling. We introduced special tokens for each domain-slot pair which
enables effective dependency modeling among domain-slot pairs through the pre-
trained language encoder. Finally, for mathematical question answering, we propose
a method to pre-train a Transformer encoder on a mathematical question answer-
ing dataset for improved performance. Our pre-training method, Question-Answer
Masked Language Modeling, utilizes both the question and answer text, which is
suitable for the mathematical question answering dataset. Through experiments, we
show that each of our proposed methods is effective in their corresponding task and

data type.

Keywords: Deep learning, Transformer, Supervised learning, Structured represen-
tations, Pre-training, Visual I1Q test, Dialogue state tracking, Mathematical question
answering

Student Number: 2014-21811

ii



Contents

Contents

[List of Tables

|List of Figures|

|[Chapter 1 Introduction|

|[Chapter 2 Literature Review|

2.1 Related Works on Iransformer| . . . ... ... ... .........
2.2 Related Works on Visual IQQ Tests| . . . .. ... ... ... .....
221 RPM-related studiesf . . . . . ... ... ..o

[2.2.2  Object Detection related studies| . . . . . ... .. ... ...

2.3 Related works on Dialogue State Tracking| . . . . ... ... .. ...

2.4 Related Works on Mathematical Question Answering|. . . . . . . ..

[2.4.1 Pre-training ot Neural Networks| . . . . ... ... ... ...

[2.4.2 Language Model Pre-training| . . . . .. ... ... ......

[2.4.3  Mathematical Reasoning with Neural Networks|

iii

vi

viii

xii



|[Chapter 3 Hierarchical end-to-end architecture of Transformer en-

| coders for solving visual IQ tests | 19
3.1 Background| . . . . . ... .. 19
[3.1.1 Perception|. . . . . . . . . . ... 20

[3.1.2 Reasoning| . . . . . . . . .. .. ... 21

3.2 Proposed Model| . . . .. ... ... .. o oo 24
[3.2.1  Perception Module: Object Detection Modell . . . . . . ... 24

[3.2.2  Reasoning Module: Hierarchical Transtormer Encoder| . . . . 26

[3.2.3  Contrasting Module and Loss tunction| . . . . . . .. .. ... 29

3.3  Experimental results] . . . . .. ... o000 33
B.3.1 Datasetl . . . ... ... L 33

[3.3.2  Experimental Setup| . . . . ... ... 0oL 34

[3.3.3  Results for Perception Module| . . . . . ... ... ... ... 35

[3.3.4  Results for Reasoning Module|. . . . . . ... ... ... ... 36

B35 Ablation studied . . ... . ... ... oL 37

[3.4 Chapter Summary|] . . . . . . . . .. ... ... 39
|[Chapter 4 Domain-slot relationship modeling using Transformers |
| for dialogue state tracking] 40
4.1 Background| . . . . . ... .. 40
4.2 Proposed Method|. . . . . . . ... ... ... .. L. 43
-Slot-Context Fncoder] . . . . . ... .. .. ... .. 44

[4.2.2  Slot-gate classifier|] . . . . ... ... ... ... L. 48

4.2.3 Slot-value classifier| . . . . . .. ... ... ... ... 49

[4.2.4  Total objective function| . . . . . . . . .. ... ... ... .. 50

v
2 AT



431 Dataset] . . . ... ... 51
[4.3.2  Experimental Setup| . . . . ... ... oL ol
4.3.3  Results for the MultiWOZ-2.1 dataset! . . . . ... ... ... 52
4.3.4 Ablation Studiesl . . . . .. ..o oo 53
4.4 Chapter Summary| . . . . . . . . . . . .. 61

[Chapter 5 Pre-training of Transformers with Question-Answer Masked |

| Language Modeling for Mathematical Question Answer- |
| ng| 62
.1 Background . . . . ... ... oo 62
5.2 Proposed Method|. . . . . . ... ... .. ... .. ... . ... 65

[5.2.1  Pre-training: Question-Answer Masked Language Modeling] . 65

[5.2.2  Fine-tuning: Mathematical Question Answeringf. . . . . . . . 67

5.3  Experimental Results|. . . . . ... ... ... ... ... ... .. 69
B31 Dataset] . . . .. ... 69

[5.3.2  Experimental Setup| . . .. ... ... ... oL 70

[5.3.3  Experimental Results on the Mathematics dataset| . . . . . . 71

.4  Chapter Summary|l . . . . . .. . .. .. .. ... ... ... ..... 77
|[Chapter 6 Conclusion| 79
6.1 Contributions| . . . . . . . . .. . o 79
6.2 Future Workl . .. ... ... ... ... 81
IBibliography| 83

' s e 8 R R



101

R

103

HAS =]

vi



List of Tables

[Table 3.1

Attribute prediction accuracy of the object detection model

for detected entatiesl . . . . . . . .. ...

[Table 3.2

Test accuracy of RAVEN models. L-R stands for Left-Right,

U-D stands for Up-Down, O-1C stands for Out-InCenter, and

O-1G stands tor Out-InGrid, corresponding to Fig. [3.10] |. . .

[Table 3.3

Test accuracy of ablation studies. TE stands for Transformer

Encoder. O means that the structure is used and X means that

the structure is disabled) . . . . . . . . ... ... L.

| supervision information is from (Hosseini-Asl et all 2020).[. . 54
[Table 4.2 Results for ablation of domain-slot relationship modeling on |
| the test dataset of MultiWOZ 2.1 . . . . .. ... ... ... 55
[Table 4.3 Dialogue state prediction for example 1. The red bold text |
| indicates that the prediction is wrong.| . . . . . . . . . .. .. 56
[Table 4.4 Dialogue state prediction for example 2. The red bold text |
| indicates that the prediction is wrong.| . . . . . . . . . .. .. 59
[Table 4.5 Results for different ALBERT configurations on the evaluation |
[ test dataset of MultiWOZ 2.1.. . . . . ... .. ... .. ... 60

vii



[Table 5.1  Masked language model accuracy.|. . . . . .. ... ... ... 72

[Table 5.2 Average Exact-Match accuracy for the Mathematics Dataset.

ENC represents that only the encoder of the Transtormer is

initialized with pre-trained weights of QA-MLM. ENC, DEC

represents that the both components of the Transformer are

initialized with pre-trained weights of QA-MLM.| . . . . . .. 73

viii o ﬂ‘} _.,?_ E” B



List of Figures

[Figure 1.1

Overview of the Transformer. Figure from|Vaswani et al[(2017)] 3

[Figure 2.1

Overview of attention. Figure from Vaswani et al.| (2017)| . .

9

|[Figure 3.1

An example from the RAVEN dataset. The first column shows

an example of an RPM question from RAVEN. The rule here

1s the distribution ot the number of objects in each panel

within each row, which is (1, 2, 4) objects. Since the first and

second panel of the last row has (4, 2) objects, the answer

panel should have 1 object. Thus, the appropriate answer

would be the seventh candidate panel. Red boxes indicate

positions in the layout grid where entities exist, whereas yel-

low boxes indicate the absence of entities in such positions.

This applies to other panels as well. The second column shows

panel numbering. The candidate panel numbers indicate the

index order of the candidates, not class labels. The third col-

umn shows an example of entities in the second context panel.

Each entity has its own attributes and position information.

Should be viewed in color . . . . . . .. .. ... ... ...

1X



|[Figure 3.2

Grid features vs. salient object features. The first column

shows the panel image. The second column shows the unitorm

grid features from a CNN. The third column shows salient

object features from object detection models. Compared to

the grid features, salient object teatures correctly find the

entities in each layout.| . . . . ... ... .. ...

[Figure 3.3

Model overview| . . . . . . ... . oL

|[Figure 3.4

Perception module. For each entity, the object detection model

(Faster R-CNN) outputs a discrete prediction value for each

attribute. Position predictions are shared across different at-

tributes. Every context and candidate panel runs through the

perception module to obtain its entity teature. . . . . . . . .

25

[Figure 3.5

Entity feature extraction module. /N 1s the panel number for

context and candidate panels as shown 1n Fig.[3.1] This pro-

cess 1s repeated for each attribute separately with the same

entity Transformer encoder.| . . . . . .. .. ... ... ...

[Figure 3.6

Panel input representation of a single attribute. Blue indi-

cates context panels. Green indicates candidate panels. Co

and Ca indicates context and candidate panel embeddings

respectively. This panel input representation is repeated for

each attribute separately. Should be viewed in color.|

e,

30

4 Ao st



X1

|[Figure 3.7  Panel Transtormer encoder. x4 indicate that the Transtormer |
encoder 1s stacked tfor 4 layers. Only the features for the can- |

didate panels are used for the next step. Should be viewed in |

color . . . ... 31

[Figure 3.8  Panel feature extraction module. Each attribute is separately |
passed through the same panel Transtformer encoder and the |

candidate panel features are concatenated. . . . . . . . . .. 32

|[Figure 3.9  Contrast Module and Loss Function.| . . . . . ... .. ... 33
|[Figure 3.10 RAVEN Configurations. 4 panel examples shown for each |
configuration.| . . . . . . ... ... oL 35

|[Figure 3.11 Object detection prediction examples. This is an example for |
the prediction of the type attribute.|. . . . . . . . ... ... 36

|[Figure 4.1  An example of a dialogue and its dialogue state|. . . . . . . 41
[Figure 4.2 Model overview.| . . . . .. . ... o000 45
[Figure 4.3 Input representation for the DSC encoder. The example here |
shows a dialogue context for 2 turns of (S*,U", S U?). S' is |

omitted because the sequence starts with the user utterance |

and S' is just a placeholder: a blank sentence. In this figure, |

the special token layout for { DS} tokens is represented in |

DS-merge. e, represents the sequence ot word embeddings |

[ for each utterance after tokenizationl . . . . . .. .. .. .. 47
|[Figure 5.1  Pre-train and Fine-tune Framework., . .. ... ... .. .. 63



[Figure 5.2 Framework of Question-Answer Masked Language Modeling. |

The token “[M]|” represents the [MASK] token. The token |

represents a white space.| . . . . .. ... 67

|[Figure 5.3 Input Representation for Question-Answer Masked Language |

Modeling. Tokenization is done in word-level for simplicity. |

Lig and E 4 represent Question and Answer segment respec- [

tively. L, represents the positional embedding for index n.| 68

|[Figure 5.4  Transformer tor Mathematical Question Answering| . . . . . 69

|[Figure 5.5  Example of problems from the Mathematics Dataset. Figure |

from (Saxton et al.,[2019)[ . . . . . ... ... ... ... .. 70

|[Figure 5.6  Learning curve for fine-tuning for selected question types. |

'The orange, dashed line indicates the pre-trained model with |

encoder and decoder 1nitialization. The blue, straight line in- |

dicates the non-pretrained model. The x axis indicates train- |

ing steps. The y axis indicates exact-match accuracy| . . . . 75

54 2o et

e,



Chapter 1

Introduction

Early deep learning models focused on simple tasks such as image classification
(Krizhevsky et al., [2017)) and word relationship identification (Mikolov et al., 2013).
As deep learning models advanced, research is focusing on more complex reasoning
tasks that resemble human intelligence. Instead of merely recognizing images, com-
paring images and inferring rules and patterns requires much more sophisticated
reasoning. Another example can be tracking the state of the conversation between
two speakers with changing topics, instead of understanding text documents with
a single topic and single speaker. Also, solving mathematical problems that require
understanding axioms and deriving intermediate steps requires much more cognitive
ability than understanding plain text. To solve these complex tasks, more sophisti-
cated architectures are required.

Architecture-wise, the success of Deep learning models started with two major
neural network architectures: recurrent neural networks (RNNs) (Rumelhart et al.
1986)) and convolutional neural networks (CNNs) (LeCun et al.l 1989).

The RNN, with its recursive structures, was able to model sequential data with
variable length, allowing it to capture long-range dependencies. This allowed RNNs

to excel in sequence modeling tasks such as translation (Sutskever et al., 2014),



sequence labelling (Graves, 2012) and sequence generation (Graves, 2013). However,
due to its sequential structure, RNNs could not fully enjoy the parallel computing
power that modern Graphical Processing Units (GPUs) provide.

The CNN, on the other hand, was specialized for processing image data due
to its built-in structure of invariance towards spatial translation and locality. After
AlexNet (Krizhevsky et al., [2017)), various CNN architectures went on to make new
records on image classification tasks (Simonyan and Zisserman, [2014; He et al.
2016; Szegedy et al., [2015). Convolution operations were easy to implement in a
parallel manner, which enabled CNNs to take advantage of the parallel computation
of GPUs. However, their use in modeling sequential data was less effective.

The Transformer (Vaswani et al, 2017) proposed a new model architecture based
on the attention mechanism for solving sequence-to-sequence tasks, which turned out
to excel at sequential modeling as well as to be appropriate for parallel computation.
Attention was previously used in recurrent neural networks in sequence-to-sequence
tasks such as machine translation (Bahdanau et all |2014). Attention for RNNs
enabled focusing on targeted dependencies regardless of the distance between the
input and the output. However, the Transformer relies entirely on the attention
mechanism, rather than using it as a sub-component. The attention function used
in the Transformer is a mapping from a query and a set of key-value pairs. The
Transformer is composed of an encoder and a decoder. The encoder is based on
self-attention, where the query and key-value pairs are from the same source, the
encoder input. The decoder is based on encoder-decoder attention, where the query
is based on the decoder output and the key-value pairs are from the encoder output.

In practice, instead of a single attention, multi-head attention is used. Also, other



components such as residual connection and normalization as well as position-wise
feedforward networks are included in the Transformer. The technical details of the

Transformer are explained thoroughly in Chapter
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Figure 1.1: Overview of the Transformer. Figure from Vaswani et al. (2017)).

The encoder of the Transformer is of particular interest because its structure can
encode dependencies of sequential data effectively. Because of this characteristic,
the Transformer encoder was used as a language model which is pre-train with
unsupervised learning tasks such as masked language modeling and next sentence
prediction (Devlin et al.,; 2019). Most of research that followed the Transformer
was focused on natural language processing tasks (Dai et al., 2019; [Yang et al.,

2019b) or natural language with visual elements (Chen et al.,|2019b}; Tan and Bansal,



2019; Su et all [2019). However, we believe that the Transformer can be used in
various other tasks as well. In this dissertation, we propose models and methods to
effectively to deal with different types of data using the Transformer encoder. Each
task requires adjustments to the original Transformer architecture according to the
characteristics of the dataset. We propose to solve the following three tasks using
the Transformer encoder: Visual IQ tests, dialogue state tracking and mathematical
question answering.

Visual IQ tests involve understanding the structure or pattern among given im-
ages or panel figures. In Raven’s progressive matrices, a typical visual 1Q test, the
subjects are asked to complete the missing last entry of a 3 x 3 matrix of panel
figures by selecting the most appropriate panel figure from a set of candidates. The
images are usually given in abstract formats with particular shapes and sizes, which
are generated according to a predefined pattern. This means that shapes inside each
image has a structure. Also, the layout of the images as the panel figures also has
a pattern. To solve this task, we propose to use the Transformer encoder in a hier-
archical manner for both the shapes inside the image and image layout. This novel
hierarchical use of the Transformer encoder enabled our model to achieve state-of-
the-art performance on the RAVEN dataset (Zhang et al., 2019a)), which is one of
the benchmark dataset in Raven’s progressive matrices.

Dialogue state tracking is a core component of a task-oriented dialogue system.
It involves understanding the state of the dialogue between the user and the system,
which is typically given in a triplet of {domain, slot, value}. If a user wants a cheap
restaurant, the corresponding dialogue state is {restaurant, pricerange, cheap}. Pre-

trained language encoders, which are pre-trained Transformer encoders, have been



used for dialogue state tracking. However, we propose using the pre-trained language
encoder for modeling dependencies among domain-slot pairs by introducing multi-
ple special tokens that encodes information specific to their corresponding domain
and slot. This novel introduction of the special tokens with the Transformer encoder
enabled our model to achieve state-of-the-art performance on the MultiWOZ-2.1
dataset (Eric et al., 2019)) among models without extra supervision, which is one of
the benchmark datasets in dialogue state tracking.

Mathematical question answering is solving mathematical questions given in nat-
ural language. Pre-trained language models have achieved state-of-the-art results in
many natural language processing tasks. Understanding mathematical problems has
similarities with understanding natural language, in that it requires similar reason-
ing steps, such as recognizing words or symbols from a sequence of characters and
identifying the meaning of those words and symbols in the context of the whole
sequence. Thus, we propose a pre-training method for mathematical question an-
swering. Our pre-training method, Question-Answer Masked Language Modeling,
leverages both question and answer text by concatenating them into a single text.
Models initialized with the pre-trained model not only showed improved results over
the non-pretrained model, but also achieved the result with higher computational
efficiency on the Mathematics dataset (Saxton et al., 2019).

The reminder of this dissertation is organized as follows. In Chapter [2| we review
related works on the three types of tasks that we addressed using the Transformer
encoder. In Chapter [3| we propose using a hierarchical Transformer encoder with
structured representation that employs a novel neural network architecture to im-

prove both perception and reasoning in a visual IQ test. In Chapter |4, we propose



a dialogue state tracking model using a pre-trained language model, which is a
pre-trained Transformer encoder, for domain-slot relationship modeling. In Chap-
ter [5, we propose pre-training a Transformer encoder on a mathematical question
answering dataset for improved performance. Finally, in Chapter [6] we discuss the

contributions and future work of this dissertation.



Chapter 2

Literature Review

In this chapter, we start by reviewing the Transformer architecture in general, which
is the main theme of this dissertation. Next, we presented previous studies on each

of the three research topics we address.

2.1 Related Works on Transformer

The Transformer (Vaswani et al., |2017), which is based on multi-head attention,
achieved state-of-the-art results on machine translation tasks. We focus on the Trans-
former encoder which is mainly based on self-attention. Self-attention allows every
element to attend to all other elements, which enables each word to be considered in
its full context. Self-attention is from a more general function of scaled dot attention

which is formally defined as follows:

T

Attention(Q, K, V') = softmax( ¢

N (2.1)

where ), K,V are a set of queries, keys and values respectively and dy, is the hid-
den dimension of K. Self-attention is a special case of the attention where the query,
key and value are all the same: Attention(X, X, X), where X is the input. Multi-

head attention involves multiple linear projections of h times, which is intended to



extract different representations or aspects of the data. h is the number of heads.
This means that instead of performing a single attention with a dimension of d,;oqer
for the queries, keys and values, multi-head attention projects the queries, keys and
values h times with different weights to dimensions of di, di and d,, respectively.

Multi-head attention is formally defined as follows:

MHA(Q, K,V) = concat(heady, - - - , head,)W©9, (2.2)

head; = Attention(QWZ2, KW v, (2.3)

where WiQ € Rdmoderxdi WiK € Rdmoderxdi_ WiV € Rdmoderxdv Wio € RMvXdmoder
and dioder/h = di = d.

The outputs of multi-head attention is followed by residual connection and layer
normalization (Ba et al., 2016). This operation is abbreviated into Add&Norm in

descriptions. Fig. shows an overview of the attention.

Add&Norm(X) = LayerNorm(X + MHA(X, X, X)). (2.4)

Next, a position-wise feed-forward network is applied with a ReLU activation
function.

FFN(.CI}) = ReLU(le + bl)WQ + bo, (2.5)

where W, € Rmederdir b ¢ RUs Wy € RUFXImoder by € Rmodel, Lastly,
this is followed by another Add& Norm operation. These operations form a single

Transformer encoder block, which is stacked for L layers, where L is the number of

.-';r'\-\.-! -;.:I- 1_] ."‘.l'l
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Figure 2.1: Overview of attention. Figure from |[Vaswani et al.| (]2017[)

layers of the Transformer encoder.

After its development, other models based on the Transformer were introduced

(Dai et al.,2019; [Yang et al., 2019b)). Other characteristics of the Transformer include

position-wise feed-forward networks, positional encodings and residual connections.
The Transformer has an encoder—decoder structure where an encoder embeds the
source language and a decoder predicts the target language based on the encoder
output. Transformer encoders, in particular, have been used in solving natural lan-
guage problems such as question answering and language inference. BERT
used the Transformer encoder with various pre-training tasks, such as
masked language modeling and next sentence prediction. They also used segment
embeddings when jointly embedding tokens from different sentences. BERT-style

pre-training methods have also been used in visual question answering for multi-

modal pre-training of images and text (Chen et al., [2019b; Tan and Bansal, [2019;

s )8t
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Si et all, 2019)

2.2 Related Works on Visual 1Q Tests

In this section, we review the previous research related to neural network approaches
to visual IQ tests such as Raven’s Progressive Matrices as well as the object detection

models.

2.2.1 RPM-related studies

After the introduction of large-scale datasets on RPM (Santoro et al., 2018} Zhang

2019a)), recent studies used deep learning models to solve RPM. Most of them

use CNNs as the perception module (Santoro et al., 2018} Zhang et al., 2019b; |Zheng

et al., [2019)). (Steenbrugge et al., [2018)) takes a slightly different approach with unsu-

pervised representational learning with S-variational autoencoders (8-VAE) (Higgins
, 2017a)). f-VAE is known to create disentangled features in latent space. The
learned features from 3-VAE were used instead of the ordinary CNN feature maps

from the raw pixels. In terms of reasoning modules, each study proposes its own ar-

chitecture. Santoro et al. (2018)) proposed the Wild Relational Network, which was

developed as a variant of the Relation network (Santoro et al., [2017) with adapted

structures that enables explicit comparisons between different panels. [Zhang et al.
(2019b) proposed CoPINet which involves two core ideas: contrast effects and per-
ceptual inference. In terms of contrast effects, model-level and objective-level con-
trasting were implemented in the model. Also, an additional perceptual head was
used to infer the rules from the first two rows of the context panels. |Zheng et al.

(2019)) presented a different approach using curriculum learning by means of rein-
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forcement learning. A student-teacher architecture is proposed where the teacher
adaptively optimizes the appropriate proportion of data that is to be learned by the

student.

2.2.2 Object Detection related studies

Faster-RCNN (Ren et al., 2015) has become one of the standard models for ob-

ject detection, which has been developing ever since (Wu et al.l 2020a). Based on

Fast R-CNN (Wang et al.l |2017), this model adds a regional proposal network that

informs the network on where to look for objects in images. It enables a more ef-
ficient discovery of region proposals for object detection models because the main
bottleneck in Fast R-CNN has been computing region proposals. The advancement

in object detection has been extended to other vision-related tasks, most notably

in visual question answering (VQA) (Anderson et al 2018; Kim et al., [2018} [Jiang|

et al., [2018; [Hu et al., 2019; [Yi et al., 2018; [Gao et al., 2020} [Hong et al., [2020};
(Chen et all, [2020a} [Yang et al.l 20194} [Liu et al. 2018), referring expressions

et al., 2019a; [Zhang et al., 2018a) and caption generation (Anderson et al. 2018}

Zeng et al., |2020).

One of the major studies that introduced using object detection models in VQA

is|Anderson et al. (2018). It uses object detectors and their corresponding object de-

tection features for image features instead of pixel-level features from CNNs . After
the introduction of this method, it became mandatory for VQA models to incorpo-

rate such techniques to achieve state-of-the-art results on various VQA benchmark

datasets. While using object detection features as in [Anderson et al.|(2018)), numer-

ous studies have proceeded with different modes of fusion between the language and

’ ks kT



vision modalities (Kim et al., [2018; |Jiang et all 2018 Hu et al.,2019). A different

path of research adopted by (2018)) proposed to disentangle perception and

reasoning by using object detection models for recognition and rule-based methods

for reasoning.

2.3 Related works on Dialogue State Tracking

Recent work on dialogue state tracking can be largely divided into two groups accord-
ing to how the slot-values are predicted: fixed-vocabulary and open-vocabulary. The
fixed-vocabulary approach, also known as the picklisted-based approach, uses a clas-

sification module to predict the dialogue state for each slot from a pre-defined set of

candidate values (Zhong et al., 2018; Nouri and Hosseini-Asl, [2018; Ramadan et al.,

2018; [Eric et all 2019; [Lee et all 2019; |Chen et al.| 2020b). The open-vocabulary

approach generates the dialogue state for each domain-slot pair either by using a

generative decoder to generate text (Wu et al.l 2019a}; Hosseini-Asl et al, 2020) or

by extracting text spans from the dialogue history (Gao et al. 2019} |Goel et al.

2019; Heck et al. 2020)). There is also an approach to use both picklist-based and

span-based methods according to the slot type (Zhang et al., 2019¢).

For models that deal with multi-domain dialogue, how they deal with different
domain-slot pairs is another way to divide them. The first approach encodes the

dialogue context independent of the domain-slot pairs and uses separate modules

for each domain-slot pair (Eric et al., [2019; |Gao et al., 2019} |Goel et al., [2019; [Heck

, 2020). The second approach encodes the dialogue context using the domain-

slot pair information as the prefix and run the encoder multiple times (Nouri and

Hosseini-Asl, |2018; [Wu et al.,|2019al). Other approaches encode the dialogue context
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independently but merges it with domain-slot pair information later with a separate

fusion module (Zhong et al., 2018; Ramadan et al [2018; Lee et al., 2019). However,

none of these models are able to model the relationship among different domain-slot

pairs because there is no module that enables the interaction between them.

(Le et al 2019) and (Chen et al., 2020b) directly models the relationship among

different domain-slot pairs. (Le et all) |2019) uses a Fertility decoder to learn poten-

tial dependencies across domain-slot pairs, but without using a pre-trained language

model. Also, their model requires additional data such as system action and delex-

icalized system responses for its performance. (Chen et al., 2020b) also explicitly

models the relationship among different domain-slot pairs by using a Graph Atten-

tion Network (GAT) (Velickovi¢ et al., [2018). Schema graphs, which is the relation

graph between domains and slots, are utilized for connecting edges in the GAT. Our
work is different from these works in that we leverage the power of a pre-trained lan-
guage encoder for directly modeling the dependencies among different domain-slot

pairs.

(Hosseini-Asl et all 2020]) takes a different approach from the others by using

multi-task learning that encompasses DST as well as action and response generation

with a generative language model GPT-2 (Radford et al., 2019)). However, since our

work is focused on DST, we consider the model that is trained on DST only. In
the decoding process, dialogue states for different domain-slot pairs are sequentially

generated.
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2.4 Related Works on Mathematical Question Answering

In this section, we review studies on pre-training neural networks in general and pre-
trained models that are used in NLP. Next, we review previous studies on solving
mathematical reasoning with neural networks. Last, we review the Transformer,

which is the base model for our work.

2.4.1 Pre-training of Neural Networks

Pre-training of neural networks generally follow two phases. In the first phase, un-
supervised pre-training, an unsupervised learning objective is used to initialize the
weights of a neural network. This stage does not require any labeled data. In the
next phase, supervised fine-tuning, a supervised learning objective is used to learn
the weights of the neural network, which is pre-trained in the first phase. Deep Belief
Networks (Hinton et al., 2006) and Stacked Denoising Auto-encoders (Vincent et al.l
2010) are two models that represent this framework.

(Hinton et al., [2006]) proposed Deep Belief Networks (DBN), a probabilistic gen-
erative model of multiple layers of latent variables, and its training strategy, a two-
phase strategy of generative pre-training and discriminative fine-tuning. In the first
phase, only the inputs are used to learn the weights using unsupervised learning.
To be specific, the hidden layers are learned by greedy layer-wise pre-training us-
ing Restricted Boltzmann Machines (RBM). The weights of layers are learned in a
top-down, layer-by-layer manner using the input, which works as a feature detector.
After the hidden layer weights are pre-trained, discriminative fine-tuning follows
by adding an additional layer for predicting labels given the input. Discriminative

fine-tuning works much better if the hidden layers are initialized by the pre-training
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phase. DBN has been applied to precipitation forecast (Zhang et al., 2018b)), fu-
ture price prediction (Chen et al., [2019a), software defect prediction (Saifan and
Al Smadi, 2019).

(Vincent et al., 2010) proposed Stacked Denoising Auto-Encoder (SDAE), which
pre-trains the weights using a denoising auto-encoder, instead of using the RBM as
in DBN. The denoising auto-encoder is trained to reconstruct a corrupted input,
which is created by adding stochastic noise to the input. The layers are pre-trained
layer-by-layer, which is ’stacking’ pre-trained layers. Fine-tuning is proceeded in the
same way as in DBN.

(Erhan et al., |2010) researched about the reason why unsupervised pre-training
helps supervised learning tasks. Through experimentation, they show that pre-

training mainly works as a regularizer, rather than an aid to optimization.

2.4.2 Language Model Pre-training

After the pioneering work of (Bengio et al., 2003)), methods for representing words as
vectors using neural networks has been continuously researched. The development
of pre-trained language models can be largely divided into two phases (Qiu et al.,
2020). The first phase being pre-trained word embeddings. (Mikolov et al., 2013
developed the popular Word2vec method for building word representations using
shallow neural networks: Continuous Bag-of-Word (CBOW) and Skip-Gram models.
They were able to demonstrate that the learned word embeddings exhibit semantic
and syntactic regularities using vector arithmetic. A similar method for building
pre-trained word embeddings is GloVe (Pennington et al., 2014), which incorporates

the co-occurrence information of words.
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In the first phase of pre-trained language models, representation of words is
static. For example, the word “bank” is represented as the same vector in both
“bank deposit” and “river bank”. In order to build word embeddings that depend on
the context, in the second phase of language models, models are trained to produce
contextual word embeddings. (Dai and Lel [2015) used a sequence autoencoder using
LSTM (Hochreiter and Schmidhuber, [1997) in a sequence-to-sequence framework to
pre-train the model to reconstruct the input sequence. (Ramachandran et al., [2017)
used a pre-trained language models for translation tasks. The encoder and decoder
are trained with monolingual data using the source and target language respectively,
which showed improved performance compared to the models trained from scratch.

Modern Pre-trained language also produces contextualized embeddings of words.
However, the size of the models became much bigger as deeper neural networks
became more prevalent, which required a huge amount of data to be trained with.
Also, as the self-attention based Transformer (Vaswani et al. 2017)) set the new
standard for NLP tasks, most pre-trained language models adopted the Transformer
as their base model. BERT (Devlin et al., 2019) is one of first studies of modern pre-
trained models. BERT involves two pre-training tasks: masked language modeling
and next sentence prediction. In Masked language modeling (MLM), also known as
cloze tasks, a portion of the input tokens are masked at random with a special mask
token and the model is trained to predict the original id of the masked token. In Next
sentence prediction, two sentences are either chosen from consecutive text sequences
or not randomly. The model is trained to predict whether the two sentences are
consecutive or not. It uses the encoder of the Transformer (Vaswani et al., 2017) as

the base model.
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It is known that this pre-training method gives a better initialization point for
the Transformer encoder to better model contextualized representations of the input
tokens. After the introduction of BERT, many follow-up research were conducted

leading to various other models involving different pre-training tasks and Trans-

former architectures (Yang et al., 2019b; Dai et al., 2019; Lan et al.,|2019; Liu et al.,

2019D).

(Conneau and Lample, 2019)) shows pre-training methods extended to multi-

ple languages. Previous approaches focused on using monolingual text streams for

pre-training. (Conneau and Lamplel 2019)) proposes a new pre-training method for

translation data with paired sentences, which is called Translation Masked Language
Modeling (TLM). In TLM, the source and target sentences from parallel translation
data are concatenated into a single sentence. On this concatenated sentence, MLM
is performed. This enables the masked token to either attend to its surrounding to-
kens or to the translated counterpart for prediction. This helps the model to leverage

both languages for pre-training.

2.4.3 Mathematical Reasoning with Neural Networks

(Saxton et al.,2019) propose a dataset of various types of mathematics problems in

free-form text called the Mathematics Dataset. The dataset is structured in a ques-
tion answering format. Since the input and output are both sequences, a sequence-

to-sequence framework, also known as an encoder-decoder model, can be applied.

(Saxton et all 2019) reported the performance of LSTM based models (Hochre-

iter and Schmidhuber] [1997; Bahdanau et al |[2014) and the Transformer (Vaswani

2017)) on the dataset. The Transformer model showed better results compared
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to the LSTM based models. Input and output sequences are given in character-level

sequences.

(Lample and Charton, 2019)) introduces another mathematics dataset which con-

sists of two types of symbolic mathematics: function integration and ordinary dif-

ferential equations. Compared to (Saxton et al., [2019)), there is a limited variety of

problem types. Also, instead of free-form text, each problem or expression is repre-
sented in a fixed form of trees. The Transformer model is trained for the evaluation

of performance on the dataset.
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Chapter 3

Hierarchical end-to-end architecture of
Transformer encoders for solving visual IQ) tests

3.1 Background

Abstract reasoning is one of the defining characteristics of human intelligence. To
evaluate human capacity for abstract reasoning, visual I1Q tests are proven to be
surprisingly effective (Bilker et al., 2012; |Carpenter et al., 1990; Hofstadter) |1995;
Snow et al., 1984). Raven’s Progressive Matrices (RPM) (Raven et al., 1998; Raven,
1936)) is one such test. Given a 3 x 3 matrix of panel figures with the last figure
missing, the subjects are asked to complete the missing entry by inferring a common
rule from the first two rows and applying it to the third row. These panels are called
context panels and are formulated as multiple-choice questions with a number of
candidate panels to choose from. Within each panel, basic visual elements called
entities are laid out in predefined configurations. Fig. shows an example of an
RPM question from the RAVEN dataset (Zhang et al., 2019a).

There have recently been a number of studies on RPM with neural networks
(Santoro et al., [2018; Zhang et al., 2019b; Steenbrugge et al., |2018}; Zhang et al.,
2019a)). The structure of models for solving RPM can be largely broken into two

areas: perception and reasoning. The perception module reads the image input and
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Figure 3.1: An example from the RAVEN dataset. The first column shows an example
of an RPM question from RAVEN. The rule here is the distribution of the number
of objects in each panel within each row, which is (1, 2, 4) objects. Since the first
and second panel of the last row has (4, 2) objects, the answer panel should have
1 object. Thus, the appropriate answer would be the seventh candidate panel. Red
boxes indicate positions in the layout grid where entities exist, whereas yellow boxes
indicate the absence of entities in such positions. This applies to other panels as
well. The second column shows panel numbering. The candidate panel numbers
indicate the index order of the candidates, not class labels. The third column shows
an example of entities in the second context panel. Each entity has its own attributes
and position information. Should be viewed in color.

produces features. The reasoning module uses the features from the perception mod-
ule to model the relationships among those elements to solve the problem. We next
discuss the approaches undertaken by previous studies and how to improve them in

terms of these two modules.

3.1.1 Perception

The perception module of current models (Santoro et al., 2018} |Zhang et al., 2019b;

Steenbrugge et al., 2018; |Zhang et al., 2019a) are all based on convolutional neural

networks (CNNs). Each panel image is passed through a CNN to obtain feature
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maps. However, it can be difficult for the CNN to extract patterns from raw pixels
because the feature maps are produced in uniform grids. In RPM, however, there
are primitive visual elements of salient objects called entities. A comparison between
the CNN feature maps and salient object features is shown in Fig. By separately
extracting salient objects, we can acquire independent information for each entity.
In addition, by predicting each attribute of the entity, such as color, size, angle,
and type, we can acquire structured features for each entity. It is difficult for CNN
feature maps to encode such attributes in a disentangled manner. The perception
module can help the reasoning module work with quality features by providing
these structured features rather than feature maps of uniform grids. To provide such
features, we propose the use of object detection models (Ren et al.|2015; Wang et al.|
2017} \Girshick et al., [2015) that can extract salient objects from a given image and

represent them as structured features by predicting the value of each attribute.

3.1.2 Reasoning

After the perception module extracts features from each panel, the reasoning module
takes them as inputs to model the relationships or dependencies among the panels.
Previous studies used a variety of methods to model the relationship among panels.
Santoro et al. (2018]) used Relational Networks (Santoro et al., 2017) as the basic
structure of their model that supports direct comparison among elements. However,
only pairs of two panels are modeled, even though the rules of RPM are based in
terms of rows that consist of three panels. Zhang et al.| (2019b)) used contrast mod-
ules inspired by contrast effects (Bower, |1961) which encourages finding differences

among candidates that help choose the correct answer. However, when aggregating
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Figure 3.2: Grid features vs. salient object features. The first column shows the panel
image. The second column shows the uniform grid features from a CNN. The third
column shows salient object features from object detection models. Compared to
the grid features, salient object features correctly find the entities in each layout.

the information on the three panels that make up rows, a simple summation was
used without explicitly modeling the relationships between the panels within a row.
The inductive bias that the RPM calls for are as follows: 1) involve processing all
the panels at the same time 2) differentiate the panels in terms of row positions. To

incorporate this inductive bias in our model, we propose using the Transformer en-

coder (Vaswani et al. 2017)) that can model relationships among entities and among

panels. The Transformer encoder is mainly based on self-attention which allows ev-
ery input element to attend over all other elements at the same time. This structure,
which allows each element to directly interact with the other, is the critical reason
for selecting this structure. Within each panel, there exists one or more entities. For
example, when we use recurrent neural networks to model the relationship among

entities in each panel, the order in which the entity features of each panel are put
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into the model matters. However, if we use Transformer encoders because of their
permutation invariance, this problem is overcome. This also applies to the panels.
All panels should be able to interact with one another at once, rather than in pairs,
as in [Santoro et al.| (2018)). The Transformer encoder allows modeling all of the pan-
els together according to their corresponding dependencies. Entities make up panels,
and panels make up rows. To address this hierarchy, we first use the entity Trans-
former encoder to model the relationships among entities in each panel. After the
panel embeddings are extracted by merging the information of entities, we model
the relationships among panels using the panel Transformer encoder.

Our contribution is two-fold

e We introduce the use of object detection models for a perception module that
can extract structured features of entities from panels that a CNN cannot

provide

e We use a hierarchical Transformer encoder to obtain contextualized features of
entities and panels that enables modeling dependencies among elements more

effectively.

Our model extracts meaningful features by using the perception module and rea-
soning module. To further improve performance, we applied the idea of contrasting
from |Zhang et al. (2019b)), which proposes methods for dealing with multiple-choice
problems. We evaluate the performance of our model on the RAVEN dataset (Zhang

et al., [2019a)). Fig. shows an overview of our model.
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Figure 3.3: Model overview
3.2 Proposed Model

The key idea of our model is two-fold. The first idea is to extract structured rep-
resentations of entities by using object detection models as the perception module.

The second idea is to use a hierarchical Transformer encoder as the reasoning mod-

ule. We also incorporate the idea of contrasting introduced by [Zhang et al. (2019b).

We explain each model in detail in the following sections. The problem setting is

described in Fig.

3.2.1 Perception Module: Object Detection Model

For the perception module, we train an object detection model to acquire a struc-
tured representation of each entity in a panel that is disentangled in terms of at-
tribute types. Since most object detection models only predict the category of the
object, we include additional region of interest (ROI) heads to predict different at-
tributes. We use the type attribute as the category or class label for the object
detection model. Other attributes were predicted using additional ROI heads. Nor-
mally, object detection models find only existing objects in an image. However, in
terms of identifying patterns, the non-existence of an object in a given layout is
often of the same importance as the existence of an object. To provide the model

with such information, we added an ”"empty” category for ROI heads to predict
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Figure 3.4: Perception module. For each entity, the object detection model (Faster R-
CNN) outputs a discrete prediction value for each attribute. Position predictions are
shared across different attributes. Every context and candidate panel runs through
the perception module to obtain its entity feature.

regions of layouts without entities present. Fig. [3.I shows an example of this, where
yellow boxes indicate empty regions in a layout and red boxes indicate regions where
entities exist.

We use discrete prediction results of the object detection for each attribute, not
the intermediate features from the ROI pooling. Distinguishing each attribute has

the effect of obtaining structured features. This is different from the approaches used

in VQA (Anderson et al., 2018; Kim et al., [2018; Tan and Bansal, [2019; Su et al.,

2019)), which also involve using object detection models for input features but in the
form of ROI pooled features. For the positional information of each detected object,
we match the regression output of bounding box coordinates with the closest ground
truth bounding box position, which is defined according to the layout in each panel.
Positions in predefined layouts are treated as discrete labels; this is because we use
positional embedding vectors instead of bounding box coordinates to represent the
positional information of entities to provide better performance. Fig. shows how

the object detection model works.
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3.2.2 Reasoning Module: Hierarchical Transformer Encoder

The reasoning module takes the predictions of the perception module and learns the
relationships among entities and panels using a variant of the Transformer encoder,
which works in a hierarchical manner. First, the relationships among entities are
modeled using the entity Transformer encoder. After the entity features are encoded

as panel embeddings, panel Transformers encode the relationship among panels.

Entity Feature Extraction Module

The output of the object detection model contains the attribute and position pre-
diction values as entity features for each panel. Because the attribute predictions
from the object detection model are discrete variables, we embed each attribute
into a continuous space. We embed the position value as well, which is shared for
all attributes and added element-wise. The entity Transformer encoder learns the
relationship among the entities in each panel. After the entity features are modified
through the Transformer encoder, we aggregate the information on all the entities
by summing them up, resulting in a panel embedding. To maintain the separation
of attribute features from the object detection model, each attribute is separately
passed through the same entity Transformer encoder. In other words, the entity
Transformer encoder is shared for different attributes. Fig. shows this process.
The Entity feature extraction module for attribute a can be formally represented as

follows:
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Figure 3.5: Entity feature extraction module. N is the panel number for context and
candidate panels as shown in Fig. 3.1} This process is repeated for each attribute
separately with the same entity Transformer encoder.

—

[EL,- - EN] = Bntityenc([EL + EJ, - | EI + EL), (3.1)

a’

PN =El+ - +Ep, (3.2)

where Eff and E]’,f represents the attribute embedding and position embedding for
k™ entity, respectively. n is the number of entities for the N*' panel. E¥ represents
the the entity features for attribute a from the entity Transformer encoder. Pév is

the panel embedding for N** panel.

Panel Feature Extraction Module

The output of the entity feature extraction module for each attribute is panel em-
beddings for each panel, which is used as input for the panel Transformer encoder.

The panel Transformer encoder is used to model the relationships among the panels.
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As with the entity feature extraction module, each attribute is passed through the
same panel Transformer encoder, but in a separate manner to maintain the disentan-
glement of attribute features. The input representation of the panel feature for each
attribute is constructed by summing the panel embeddings with various segment
embeddings for each panel. A visual representation of our input representation is
shown in Fig. [3.6] The segment embeddings are used indicate row information, row
item sequence information within a row and context/candidate panel type embed-
ding. Row embedding is used to indicate which panels are in the same row. There
are three row embedding vectors, as there are three rows. The row-item sequence
embedding indicates the sequential information of panels in each row: first, second,
and third panels for each row. This embedding vector is shared across all rows. Fi-
nally, the context/candidate panel type embedding is used to distinguish the context
panels and candidate panels. A special [SEP] token embedding is used to differen-
tiate between the different rows. To ensure permutation invariance, we randomly
swap the first and second rows during training.

After the input representation is computed, it is passed through the panel Trans-
former encoder to model the dependencies among panels, as shown in Fig. We
use the candidate panels from the output of the panel Transformer encoder for each
attribute. As each attribute is separately passed through the panel Transformer en-
coder, we merge the attribute information of each candidate panel by concatenating
the candidate panels of each attribute. This concatenated feature for each candidate
panel, which we call the candidate feature, is used as the input to the contrast mod-
ule. Fig. [3.§ illustrates how the panel feature extraction module works. The panel

feature extraction module can be formally represented as follows:
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[ﬁgv‘ o 7]/35] = Panelenc([Pcontext7Pal?"' 7P§])7 (33)

a € {type, size, color,angle, position},

n Pn
C :I:Ptype;.--;

P

sosition)
positionl?

n=1,--,8, (3.4)

where PContet are the panel embeddings of the context panels with the special

[SEP] token embedding between rows. P, ---  PS are the panel embeddings of

a

the candidate panels. Pl --- P8 are the panel features for attribute a from the
panel Transformer encoder. ; indicates concatenation. C',--- ,C® are the candidate
features.

3.2.3 Contrasting Module and Loss function

We implement the idea of contrast effects as proposed in Zhang et al| (2019b).
It essentially finds the differences among candidates by comparing each candidate

against the aggregate. This contrast effect can be formally represented as:

Contrast(Feonteat,c) = Feontewt,c — h( Z F(context, c)) ,ceC (3.5)
ceC

where C represents all the candidates, and context refers to the context panels.
F represents the model that learns the dependencies among context and candi-

date panels, which is the output of panel feature extraction module in our model.

29



"IO[0D Ul pamala 9 PInoyg ‘Ajejyeredss ainqrilje yoea I10j pajyeadal sI
uorjejuassidor ndur pued sIy T, ‘A[@Aroadsor sgurppoquue [oued 9)RPIPURD pUR JXOJUOD S9IRIIPUL €)) pur o)) ‘spurd

9)epIPURD $9JRIIPUI UIDIX) "s[oured JX0JU0D S9YeITPUL aN[( "oINqLIjye d9[3uls ® Jjo uoryejuasardar yndur (oueJ :9'¢ oINS

Suippaqu3

+++ +++F+ o F A+
m.ucw:cmm
waj| moy

€ € € € € € € €

+ + + + + + + +

o]

4

+

J

+ o+
1 5
2]

Suippaqui3
Moy

T
|_|
v
+
Sulppaquw3
|aued

v
+
]

d3s

|
+
]

d3s

T €
+ +
2 9
+ +
8 L 9 S 14 € 4 T d3S . .

ainjead [aued

4 T € 4
+ + + +
| <] vV || V
+ + + +
EEEEE
EE-EE

30



EEE - EEE - EE- EEEEEEEE
I

Add & Norm

Feed Forward

Add & Norm

Multi-Head self attention

X 4

EEEHEEEHIEEIEEEEEIH

Figure 3.7: Panel Transformer encoder. x4 indicate that the Transformer encoder
is stacked for 4 layers. Only the features for the candidate panels are used for the
next step. Should be viewed in color.

h(3_.co F'(context, c) represents the aggregate information that summarizes the can-
didate features. Subtracting this information from each candidate helps the model
to distinguish each candidate from each other. Since our the panel Transformer
encoder involves self-attention, the candidate panel features already involves the
context panel features. Fig. illustrates the contrasting module. We use a 2-layer

multi-layer perceptron (MLP) for the aggregate function h. To further enforce the

contrast effects, |Zhang et al| (2019b) proposed to use a variant noise contrastive

estimation loss (Gutmann and Hyvarinen, [2010), rather than the cross-entropy loss.

The proposed loss, in terms of implementation, is basically binary cross entropy loss

for each candidate panel. Please refer to [Zhang et al| (2019b]) for further details

about the contrasting effects in RPM. We apply a final output MLP and use it as
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Figure 3.9: Contrast Module and Loss Function.

the logit value. Binary cross entropy is used for the loss function. For the prediction

of each problem, we chose the candidate panel with the highest logit score.

3.3 Experimental results

In this section, we explain the dataset we used to evaluate our model and show the

results.

3.3.1 Dataset

We train and evaluate our models on the RAVEN dataset (Zhang et al., 2019al), one

of the two major benchmark datasets for computational models based on Raven’s
Progressive Matrices. There are 70,000 problems in the RAVEN with 8 context pan-
els and 8 candidate panels. There are 7 different configurations of entities for the

images. Examples of each configuration are shown in Fig. [3.10] There are train, val-
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idation and test splits designated in the dataset that consists of 60%, 20%, and 20%
of the total data, respectively. RAVEN is accompanied by structural annotations,
including information on the entities in panels. Each entity has its size, type, color
and angle information as attributes and also position information. We would like to
point out that solving RAVEN is different from ordinary classification tasks. This
is because RAVEN involves selecting the answer from a given set of candidates, not
from predefined set of classes. The candidate panel numbers indicate the index order
of the candidates, not class labels. Procedurally Generated Matrices (PGM) (San-
toro et al.l [2018)) is another major dataset created to measure model performance on
RPM questions. However, PGM does not provide any structural annotations where
object detection models can be trained. Therefore, we could not run experiments on
this dataset.

There were studies that pointed out that the RAVEN dataset has a biased answer
set that modifies only one attribute for the answer candidate (Hu et all [2020; Wu
et al., 2020b). This defect of the RAVEN dataset enables the model to find the
answer from the candidate panels without looking into the context panel, exploiting
a shortcut solution. For a fairer evaluation of our model, we note that our model
can fully take advantage of this bias in the answer set, especially because we use the
perception module for acquiring disentangled values for all the attributes of each

entity.

3.3.2 Experimental Setup

We train a modified version of the Faster-RCNN (Ren et al., [2015) implemented in

Wu et al.| (2019b)) for the object detection model. We used a ResNet 50 (He et al.,
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Figure 3.10: RAVEN Configurations. 4 panel examples shown for each configuration.

2016) backbone version, which is pre-trained on ImageNet (Deng et al., 2009). For

training the reasoning module, we used an ADAM optimizer (Kingma and Ba, [2014)

with default options. Learning rates were decayed by half when the validation loss
did not decrease for more than 30 epochs. The embedding vector dimension is 32
for all attributes. The entity Transformer encoder has 2 heads and 2 layers and the
panel Transformer encoder has 4 heads and 4 layers. The hidden dimensions for both

Transformer encoders are 64. All models were run for 400 epochs.

3.3.3 Results for Perception Module

We used panels from the training split and did not use the test data for training the
object detection model. Our object detection model detects objects by their types.
Other attribute values are predicted based on those detected objects. Recall and
precision for the entities was 100% for all type attributes with a confidence threshold
set at 0.9. This can be expected since the entities in the figures are in a structured
format, which makes it easy for object detection models to find their locations. For
the additional prediction of attributes of those detected entities, Table shows the
attribute prediction accuracy of the object detection model on data that was not used
for training. Additionally, the average Ll-regression error of position regression is

also very low at 0.13 with an image size of 160 x 160. It also shows perfect prediction
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Size  Color Angle Position
Accuracy 100% 100% 85.2% 100%

Table 3.1: Attribute prediction accuracy of the object detection model for detected
entities

0 20 40 60 80 100 120 140 0 20 40 60 8 100 120 140 0 20 40 60 8 100 120 140

Figure 3.11: Object detection prediction examples. This is an example for the pre-
diction of the type attribute.

for attributes of type, size and color. The accuracy of the angle attribute is not as
high as that of the others, but this is expected because CNNs are not particularly
good at recognizing angles. Fig. shows the prediction examples of the object

detection model.

3.3.4 Results for Reasoning Module

Table [3.2] shows the overall results of our model compared with previous studies.
Our model shows the best performance compared to the previous best model by
more than 8% points overall. In addition, our model’s score beats the previous best
model’s for every configuration. Specifically, in the configurations of 2x2Grid and
3x3Grid, our model is better than the previous state of the art model by over

18% points. These two configurations have more complex structures than the other
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configurations. This suggests that structured features and a sophisticated reason-
ing module helped solve complex problems. In other simple structures such as the
Center, LeftRight, Up-Down, and Out-InCenter, our model achieves near-perfect
accuracy. We also tried cross entropy loss, which showed inferior performance. This
is in line with [Zhang et al. (2019b), where binary cross entropy loss showed better

performance than cross entropy loss.

3.3.5 Ablation studies

We conduct ablation studies on our model to evaluate which structures of our model
contribute to the enhancement in performance. Table shows the results. First,
we verify the performance of the perception module. We used the CNN instead of
the object detection model, which showed a considerable loss in performance. This
indicates that using a object detection model as the perception module is a major
source of improvement in our model. We disabled either the entity or panel Trans-
former Encoder. Without the entity Transformer encoder, the accuracy is below the
previous state-of-the art results although they are still above that of human-level.
This emphasize that it is important to use a model architecture that has an inductive
bias when treating disentangled structured representations. The panel Transformer
encoder enhances the gain in performance although the increase is relatively small.
For maximum performance we need to incorporate both the entity and panel Trans-

former encoder.

37 1



07°¢ 81,1 03 Surpuodser100 ‘PUHUT-IN() 0] SPURIS H[-() PUL ‘TOFUS)YUT-HL()
10J spuels DI-O ‘umo(-d() 10J spue)s (-} ‘WS- I0] Spur)s Y- ‘S[EpoW NHAVY JO Adeinooe 1897, :g°¢ 9[qR],

IST8 9£98 IS8 9£98  GC6L Z8TI8  S¥'S6 TIPS (q6T0g | Te % Sueyyz)) wewmy
00T 866 666 S6°66 666 6°L6 00T 2966 [PpoJN pesodoid
Ge'T6 686 G966 166  G8'SL Gv'LL  €0'%6  TY'16 (q610g| | T8 19 SueyZ) 19NIJOD
I1°09 6069 IT°29 T899  ¥0S €6°9F  80'8G  99°6¢ (e610¢| | T8 10 Sueyy) THA+IONSOYT
TUeS 61°€9 9109 LL'SS  6CTFF 68TV T8TG  ehes (e610g| | T8 10 Suery) 1oNs9Yg
veLe TP 9TTIP €F6E €9€E €'0¢ 8G'eE  L6'9¢ (e610¢| | T8 10 Sweyz) NND
¥6'eT €Tl 68L  69L  LOFE 206z 99°LT  T9LT  (9610g| | T8 10 Sueyy) Xny-SRLON-NOYM

9601 8¢'8  67L LTS T98C  60°CT 6971 (8107 |'Te 10 0109URG) NOYM
66CT SI'Cl GECl ¥8CL  69°€l eIPT 6T°CT  L0€T (e6107 | Te %0 Sueyy) INIST
D0 DI'0 dN Y1 PHHEXE PUHZXg IO  [[RIAQ POYIoIN

38



Perception Entity TE Panel TE Overall Accuracy

CNN O @) 85.86
Object Detection X X 86.19
Object Detection X 0 87.19
Object Detection (0] X 97.1
Object Detection 0O O 99.62

Table 3.3: Test accuracy of ablation studies. TE stands for Transformer Encoder. O
means that the structure is used and X means that the structure is disabled.

3.4 Chapter Summary

In this chapter, we propose a hierarchical Transformer encoder with structured repre-
sentation that achieves state of the art results on the RAVEN dataset that improves
both perception and reasoning. For perception, we used object detection models to
acquire structured representations. For reasoning, we used the Transformer encoder
in a hierarchical way to effectively model the dependencies among the entities and
panels. Our model outperforms the previous state-of-the-art model, CoPINet, by
more than 8% points in terms of overall accuracy, achieving a near perfect score.
However, it is reported that the RAVEN dataset has a bias answer set that can

exploit a shortcut solution. We will investigate into this matter in future research.
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Chapter 4

Domain-slot relationship modeling using
Transformers for dialogue state tracking

4.1 Background

A task-oriented dialogue system is designed to help humans solve tasks by under-
standing their needs and providing relevant information accordingly. For example,
such a system may assist its user with making a reservation at an appropriate restau-
rant by understanding the user’s needs for having a nice dinner. It can also recom-
mend an attraction site to a travelling user, accommodating the user’s specific pref-
erences. Dialogue State Tracking (DST) is a core component of these task-oriented
dialogue systems, which aims to identify the state of the dialogue between the user
and the system. DST represents the dialogue state with triplets of the following
items: a domain, a slot, a value. A set of {restaurant, price range, cheap}, or of
{train, arrive-by, 7:00 pm} are examples of such triplets. Fig. illustrates an ex-
ample case of the dialogue state during the course of the conversation between the
user and the system. Since a dialogue continues for multiple turns of utterances,
the DST model should successfully predict the dialogue state at each turn as the
conversation proceeds. For multi-domain conversations, the DST model should be

able to track dialogue states across different domains and slots.
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Past research on multi-domain conversations used a placeholder in the model to
represent domain-slot pairs. A domain-slot pair is inserted into the placeholder in
each run, and the model runs repeatedly until it covers all types of the domain-slot
pairs. (Wu et al., [2019a;|[Zhang et al., 2019¢; |Lee et al., 2019)). A DST model generally
uses an encoder to extract information from the dialogue context that is relevant
to the dialogue state. A typical input for a multi-domain DST model comprises a
sequence of the user’s and the system’s utterances up to the turn ¢, X;, and the
domain-slot information for domain ¢ and slot j, D;S;. In each run, the model feeds

the input for a given domain-slot pair through the encoder.

fencoder(XtvDiSj) for i = ]-a RN j = 17' s, m, (41)

where n and m is the number of domains and slots, respectively. However, be-
cause each domain-slot pair is modeled independently, the relationship among the
domain-slot pairs can not be learned. For example, if the user first asked for a hotel
in a certain place and later asked for a restaurant near that hotel, sharing the infor-
mation between {hotel, area} and {restaurant, area} would help the model recognize
that the restaurant should be in the same area as the hotel.

Recent approaches address these issues by modeling the dialogue state of every

Turns Utterances Dialogue State

System:

il User: | am looking for a place to stay that has a cheap price range and it should be in a type of hotel

{hotel, price range, cheap}, {hotel, type, hotel}

Tum 2 System: Okay, do you have a specific area you want to stay in? {hotel, price range, cheap}, {hotel, type, hotel},
User: No, I just need to make sure it’s cheap. Oh, and I need parking {hotel, parking, yes}

{hotel, price range, cheap}, {hotel, type, hotel},
{hotel, parking, yes}, {hotel, book day, Tuesday},
{hotel, book people, 6}, {hotel, book stay, 3}

System: | found 1 cheap hotel for you that includes parking. Do you like me to book it?

WIDE User: Yes please. 6 people 3 nights starting on Tuesday

Figure 4.1: An example of a dialogue and its dialogue state.
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domain-slot pair in a single run, given a dialogue context (Chen et al.; 2020b; |Le

et al.; [2019). This approach can be represented as follows:

fencoder(Xta Dlsla T ,DnSm)' (42)

Because the encoder receives all of the domain-slot pairs, the model can factor
in the relationship among the domain-slot pairs through the encoding process. For
the encoder, these studies used models that are trained from scratch, without pre-
training. However, since DST involves natural language text for the dialogue context,
using a pre-trained language model can help improve the encoding process. Several
studies used BERT (Devlin et al., 2019), a pre-trained bidirectional language model,
for encoding the dialogue context (Zhang et al., [2019c¢; [Lee et al., 2019; |(Chao and
Lane, 2019; |Gao et al., 2019), but did not model the dependencies among different
domain-slot pairs. Our approach fills the gap between these previous studies. In this
work, we propose a model for multi-domain dialogue state tracking that effectively
models the relationship among domain-slot pairs using a pre-trained language en-
coder. We modify the input structure of BERT, specifically the special token part
of it, to adjust it for multi-domain DST.

The [CLS] token of BERT (Devlin et al.| 2019)) is expected to encode the ag-
gregate sequence representation as it runs through BERT, which is used for various
downstream tasks such as sentence classification or question answering. This [C'LS]
token can also be used as an aggregate representation for a given dialogue context.
However, in a multi-domain dialogue, a single [C'LS| token has to store information
for different domain-slot pairs at the same time. In this respect, we propose to use

multiple special tokens, one for each domain-slot pair. Using a separate special to-
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ken for each domain-slot pair is more effective in storing information for different
domains and slots since each token can concentrate on its corresponding domain and
slot.

We consider two different ways to represent such tokens: DS-merge and DS-
split. DS-merge employs a single token to represent a single domain-slot pair. For
example, to represent a domain-slot pair of {restaurant, area}, we use a special
token DS (,cstqurant,area)- DS-split, on the other hand, employs tokens separately
for the domain and slot and then merges them into one to represent a domain-
slot pair. For {restaurant, area}, the domain token Dy estqurant and the slot token
Sarea- is computed separately and then merged. We use {DS}nerge and {DS} gyt
to represent the special tokens for DS-merge or DS-split, respectively. Unless it is
absolutely necessary to specify whether the tokens are from DS-merge or DS-split,
we'll refer to the DS-produced tokens as { DS} tokens, without special distinction, in
our descriptions forward. The { DS} tokens, after being encoded by the pre-trained
language encoder along with the dialogue context, is used to predict its corresponding

domain-slot value for a given dialogue context.

4.2 Proposed Method

Our model is composed of three parts. The first is the domain-slot-context (DSC)
encoder, which encodes the dialogue context along with the special tokens represent-
ing domain-slot pairs. Next is slot-gate classifier, which is a preliminary classifier
that predicts whether each domain-slot pair is relevant to the dialogue context. The
adopted the concept of the slot-gate classifier from (Wu et al., 2019a) and made

adjustments to apply to our model. The last is the slot value classifier for predicting
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the value for each domain-slot pair among the candidate values.

In the following descriptions, we assume a dialogue context with a total of T
turns. The task is to predict the dialogue state, which are {domain, slot, value}
triplets for all domain-slot pairs, for every turn ¢t = 1,---,7, using the dialogue

context until each turn. Section show the overview of our proposed model.

4.2.1 Domain-Slot-Context Encoder

The main structure of our model is the DSC encoder, which uses a pre-trained
language to encode the dialogue context along with { DS} tokens. For the pre-trained
language encoder, we used ALBERT (Lan et al., 2019) due to its strong performance
on numerous natural language understanding tasks while having fewer parameters
compared to other BERT-style encoders. {DS} tokens work like the [C'LS] token
for BERT, encoding information corresponding to its domain-slot pair (DS-merge)
or domain and slot (DS-split). The set of special tokens for each layout are shown
in Eq. and Eq. , respectively. In DS-merge, we used special tokens for
each individual domain-slot pair. If there are many domain-slot pairs, using this
layout can increase the number of special tokens as each domain-slot pair requires
a separate special token. In DS-split, we used separate tokens for the domain and
slot. To represent a domain-slot pair, we merged the corresponding tokens from each
domain and slot by concatenating them. This promotes modeling compositionality,
since the same slot token can be used for different domains. These { DS} tokens and
the dialogue context are processed through the DSC encoder, which results in each
token in {DS} being encoded with contextualized representations according to its

domain and slot.
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{Ds}merge = {DS(domain nssloty)r " " 7DS(domain ny>Slot )} (43)
(1) (1) (n) (m)
{DS}split = {Ddomain(l)v ) Ddomain(n>a Sslot(1)7 Ty Sslot(m)} (44)

Fig. [£:3]shows the input representation of the DSC encoder. The sequence begins
with { DS} tokens. The special token [C'LS] follows, which encodes the overall infor-
mation of the dialogue context. For the dialogue context, we added a special token
[SEP,] to separate each user or system utterance, which is added at the end of each
utterance from the user or system. The input ends with a special token [SEP] as
the end-of-sequence token.

4 types of embeddings are summed up to represent each token embedding. We
used the pre-trained word embedding of ALBERT, except for the {DS} tokens,
which are randomly initialized. We introduced the token type embedding to differ-
entiate the { DS} tokens, user utterances tokens, and system utterances tokens. For
DS-merge, we used a single token type embedding to represent a domain-slot pair,
whereas for DS-split, we used two token type embeddings, one for the domain and
the other for the slot. We did not apply this embedding for the [C'LS] token. Posi-
tion embeddings are also employed from ALBERT, but the index of the positional
embedding starts from the [CLS] token. We did not use the positional embedding
for the {DS} tokens as the order within those tokens is meaningless. Lastly, the
segment embedding from ALBERT was used to represent the whole sequence as a
single segment, which is the default segment embedding of ALBERT.

DSC encoder encodes contextualized embeddings for every input token. However,

for the slot-gate classifier and slot-value classifier, we only use the special token
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outputs of the DSC encoder ([C'LS] token and { DS} tokens). This is formally defined

as follows for DS-merge and DS-split, respectively, for turn ¢:

DS.1),-+ s DSty CLS = DSCencoder([{DS}merge, CLS, X', SEP]),  (4.5)

o~

l/)\l, e ,Dn,g’z--- ,g;“(ﬁ/\s = DSCencoder([{DS}spiit, CLS, X", SEP]), (4.6)

where X! represents the dialogue context of (S*, SEP,U', SEP,,---,S!, SEP,,
Ut,SEP,). U and S* represents the utterance for the ¢ turn for the user and system
respectively. The {DS} tokens and [C'LS] token with the hat notation ~ represents

the encoded output of the DSC encoder for those special tokens. They are vectors

of R%, where d is the hidden dimension of ALBERT.

4.2.2 Slot-gate classifier

For the slot-gate classifier, we use the DSC encoder output of the {DS} tokens
for each domain-slot pair to predict whether it is relevant to the dialogue or not.
In previous methods, gating used categories of {prediction,dontcare,none}, where
prediction means a slot value is not dontcare or none and dontcare means that the
predicted slot value is dontcare and none means that the domain-slot is non-relevant.
The label for slot-gates are made from the slot-values. However, the performance for
the dontcare category was far inferior to the other two categories, so we dismissed the
dontcare category and only used {prediction, none}. In our preliminary models with
ALBERT large-v2, the prediction and recall for dontcare was 48.87% and 17.21%,

respectively. The precision and recall for none showed 98.91%, 99.45% and prediction
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96.16%, 94.93%, respectively. In this setting, the dontcare category is included in
prediction. For DS-merge, the slot-gate classifier predicts the value using the domain-
slot pair special token. For the domain-slot pair of domain 7 and slot j, the slot-gate

classifier output for DS-merge is

Gatep,s; = sigmoid(WGDS( _)D/S(?j)), (4.7)

]
where Wg, o € R4, For DS-split, the slot-gate classifier uses the concatenated
]

output of the corresponding domain and slot token. Similarly, for the same domain-

slot pair, the slot-gate classifier output for DS-split is

Gatep,s; = sigmoid(WG(Di’Sﬁ [/D\ZL/S';]), (4.8)

where | represents concatenation of vectors and WG(D_ g € R1%24 The loss
AR

)

objective for the gate classification is as follows.set

Lgate = Z BinaryCrossEntropy (y%‘%j,GateDiSj), (4.9)
(i,5)€DS

where DS refers to the set of all domain-slot pairs and y%‘ztgj is the binary slot-
gate label for domain ¢ and slot j. If the domain-slot is predicted to none, the

corresponding output of the slot-value classifier is changed into none regardless of

the prediction of the slot-value classifier.

4.2.3 Slot-value classifier

We employ the fixed-vocabulary based classification method for predicting slot val-

ues. As in (Zhang et al., 2019c), the candidate-value list for each domain-slot pair
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was constructed by using the values from the training dataset, rather than using the
incomplete ontology from the dataset. The [C'LS] token is concatenated with each
token from {DS}, and used as the input to the slot-value classifier for each domain-
slot pair. The slot-value classifier output of domain 4 and slot j for DS-merge is as

follows:

Valuep,s; = softmaq:(WVDs(_ ) [D/S(Z\,])]C/ITS]), (4.10)
2,3

where WVDS(- € R"Pi% x 2d and n D;s; is the number of candidate values for
%)

)

domain ¢ and slot j. Similarly, for DS-split, the slot-value classifier output is
Valuep,s; = softmax(Wv(Di’Sj) [Z/):\:S’?\CLS]), (4.11)

where WV( b.s) € R"Pi%; x 3d. The loss objective for the slot-value classification is
AR

as follows:

Lyaive = Z CrossEntropy(y”D‘ilSqf,Valuepisj)7 (4.12)
(i.5)eDs

where y”Daig“f is the label for domain ¢ and slot j.

4.2.4 Total objective function

The DSC encoder, slot-gate classifier and slot-value classifier is jointly trained under

the total objective function below.

Etotal = £gate + Evalue (4'13)
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4.3 Experimental Results

We evaluate our model using the joint goal accuracy, which considers a model pre-
diction to be correct when the prediction jointly matches the ground truth values

for all domain-slot pairs, given a dialogue context.

4.3.1 Dataset

We use the MultiWOZ-2.1 (Eric et al., 2019)), which fixed noisy annotations and
dialogue utterances of the MultiWOZ 2.0 dataset (Budzianowski et al., |2018). The
dataset contains 7 domains and over 10,000 dialogues. We follow the previous studies
and use 5 domains (train, restaurant, hotel, taxi, attraction) with 30 domain-slot
pairs. The other two domains (police, hospital) have little data and do not appear in
the test dataset. For MultiWOZ-2.1, we follow the label cleaning and pre-processing
explained in (Wu et all 2019a) with a few amendments. Wu et al| (2019a) delexi-
calized domain names but we disabled it. Also, apostrophes were erased from (Wu
et al.; 2019a) but used it again. We applied these adjustments so that the tokenizers
of the pre-trained encoders should work as intended. We confirm that we did not

alter the label cleaning of (Wu et al., [2019a).

4.3.2 Experimental Setup

For the pre-trained language encoder, we used ALBERT (Lan et al., |2019) and
RoBERTa (Liu et all 2019b) from HuggingFace (Wolf et al., 2019) in Pytorch
(Paszke et al.|,[2019). We used the zlarge-v2 version of ALBERT and large version of
RoBERTa for the main experiment and compare other versions in the analysis sec-

tion. The optimizer was AdamW (Loshchilov and Hutter} [2018) with a learning rate
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of 1e7® for ALBERT-zlarge-v2 and RoBERTa-large and 5e=° for ALBERT-base-v2,
ALBERT-large-v2 and RoBERTa-base. We applied linear warm-up followed by lin-
ear decay for the learning rate. We trained all models with the effective batch size
of 32, using gradient accumulation for bigger models. Models were selected based
on their joint goal accuracy on the validation data split. Only the training data
was used to build the labels for each domain-slot pair. The original ALBERT was
pre-trained with a sequence length of up to 512 tokens. However, dialogues that are
longer than 512 tokens exists in the data. Usually, the standard procedure for this
situation is to truncate the sequence up to 512 tokens and discard the remaining
tokens. However, to cover dialogues longer than 512 tokens that are in the dataset,
we resized the positional embedding to cover a maximum length of the dialogue. We
preserved the original pre-trained position embedding for positions indices up to 512
and randomly initialized the remaining position indices. This method showed better

results than limiting the maximum sequence length to 512. We plan to release our

code on Github.

4.3.3 Results for the MultiW0OZ-2.1 dataset

Table shows the joint goal accuracy of our model compared to previous methods.
Our models show better performance among models without any additional super-
vision other than the dialogue context and domain-slot pair labels. Except for the
DS-split version of ALBERT, the other 3 models surpass the previous best joint goal
accuracy on the MultiWOZ-2.1 dataset without extra supervision. ConvBERT-DG
+ Multi (Mehri et al., 2020]) achieves a higher joint goal accuracy, but it involves

additional dialogue data. In terms of the layout of {DS} tokens, mixed results can
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be seen. For ALBERT, DS-merge shows better results than DS-split. However, for
RoBERTa, DS-split shows better results than DS-merge. This shows that in models

without enough capacity, the slot-sharing of DS-split is not much effective.

4.3.4 Ablation Studies

In this section, we show that relationship modeling among different domain-slot
pairs is indeed the key factor of our proposed model by running ablation studies.
Also, we compare the effect of the size and type of the pre-trained language encoder

in terms of performance.

Relationship modeling among different domain-slot pairs

First, we did not use any {DS} tokens and only used the C'LS token. Because there
are no dedicated special tokens for each domain-slot pair, the performance is very
poor as shown in 'None’ row in Table [£.2] This shows that our approach to introduce
{DS} is effective.

Next, to evaluate the effect of relationship modeling among different domain-slot
pairs, we blocked the attention among different {DS} tokens during the encoding
process, which restricts direct interaction among { DS} tokens. Table |4.2| shows that
without the relationship modeling, our model performance deteriorates. This vali-

dates our idea that relationship modeling is the important factor for our approach.
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Table 4.2: Results for ablation of domain-slot relationship modeling on the test
dataset of MultiwOZ 2.1.

pre-trained Language Encoder {DS} token layout Joint Goal Accuracy
None 46.43
ALBERT-large-v2 D-merge . . . 55.89
w/o relationship modeling 53.33
DS-split 54.37

w/o relationship modeling  53.56

Relationship modeling examples
Example 1

The dialogue below shows a dialog example and Table shows dialogue state
predictions. The value for {tazi, departure} and {taxi, arrive by} is not explicitly
mentioned in the dialogue context. However, our proposed model correctly predicts
the value of those domain-slots, which can be inferred from the dialogue context.
The model without relationship modeling fails to predict the correct value for {tazi,

departure} and {taxi, arrive by}.
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User: hi, can you please give me information on a restaurant called midsum-
mer house restaurant located in cambridge?

System: this is a british restaurant found in the center of town that is in the
expensive price range. what other information do you need?

User: can you book this restaurant for 3 people on wednesday at 15:457
System: i booked it for you the reference number is 5cwu2u98. is there any-
thing else?

User: i would like to do a little site seeing. do you have any good attractions
in the east?

System: there are many in the east,what type are you most interested in?
User: are there museums?

System: may i suggest cambridge artworks? it sounds like just what you are
looking for and is free to visit.

User: okay, that sounds great. can you also help me with a taxi in order to

get to the restaurant?

Table 4.3: Dialogue state prediction for example 1. The red bold text indicates that
the prediction is wrong.

Domain-slot Proposed method w /o relationship modeling

attraction-area east east

attraction-type museum museum

restaurant-book day wednesday wednesday

restaurant-book people 3 3

restaurant-book time 15:45 15:45

restaurant-name midsummer house restaurant midsummer house restaurant

taxi-arrive by 15:45 none

taxi-departure cambridge artworks none

taxi-destination midsummer house restaurant midsummer house restaurant
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Example 2

The dialogue below shows another dialog example and Table[4.4]shows dialogue state
predictions. The value for {tazxi, destiantion} has to be inferred from the dialogue
context that it is the same as the {hotel, name}. Our proposed model correctly

predicts the value while the model without relationship modeling fails.
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User: i need a hotel for tonight please.

System: i can help you with that. do you have a particular price point you
are looking for?

User: it does not matter but i do need free parking.

System: i have several hotels matching your request available. what part of
town would you prefer?

User: i have no preference on the part of town, but i do need free wifi as well.
System: ok, that narrows it down to 8 options for you. any other preferences?
User: i would like it to be a guesthouse.

System: well there are 21 of those spread across town so i recommend the
arbury lodge guesthouse on the north side. would you like me to book it?
User: yes can you please?

System: what day would you like me to book the hotel for?

User: i apologize for not mentioning it before, please book it starting sunday
for 1 person for 5 days?

System: you are all set for sunday. your reference number is nivmecdkl1. is
there anything else i can help with?

User: thanks. can you give me some information on all saints church?
System: sure. what sort of information do you require?

User: i just need the entrance fee and postcode, please.

System: admission is free and their post code is cbb 8bs. what else can i help
you with today?

User: i also need a taxi that will leave all saint’s church by 08:45

System: and where will the cab need to take you?

User: i need it to take me back to the hotel room i just reserved
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System: no problem. i have got a taxi booked for you.

User: i am not psychic, so i will need to know what kind of car to look for,
also the phone number please.

System: i apologize. the annual psychics convention is next week. they are
very particular about being allowed to sense the information. it is a yellow
skoda with contact number 07621484267.

User: thank you.

System: you are welcome. is there anything else we can help you with today?

User: thank you for helping me.

Table 4.4: Dialogue state prediction for example 2. The red bold text indicates that
the prediction is wrong.

Domain-slot Proposed method w /o relationship modeling

hotel-book day sunday sunday

hotel-book people 1 1

hotel-book stay 5 )

hotel-internet yes yes

hotel-name arbury lodge guesthouse arbury lodge guesthouse
hotel-parking yes yes

taxi-departure all saints church all saints church

taxi-destination arbury lodge guesthouse express by holiday inn cambridge
taxi-leave at 08:45 08:45

Size and type of the pre-trained language encoder

We compared ALBERT and RoBERTa (Liu et al., [2019b) and various model sizes
within those pre-trained language encoders. Table shows the result for different

versions of the pre-trained language encoders. For ALBERT, a bigger language model
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Table 4.5: Results for different ALBERT configurations on the evaluation test
dataset of MultiwOZ 2.1.

{DS} token layout pre-trained Language Encoder Joint Goal Accuracy

ALBERT-base-v2 54.38

ALBERT-large-v2 55.85

DS ALBERT-zlarge-v2 56.43
“merge RoBERTa-base 54.82
RoBERTu-large 55.94

ALBERT-base-v2 53.28

ALBERT-large-v2 54.37

‘ ALBERT-zlarge-v2 54.93
DS-split RoBERTu-base 55.86
RoBERTua-large 56.91

shows better results as is shown in various downstream tasks that ALBERT was
evaluated on (Lan et al.| 2019). Except for ALBERT-zx-large, all other configurations
show that DS-merge shows better performance than DS-split. Based on the drastic
increase in performance with zz-large, we presume that the high model complexity
of ALBERT-zz-large enabled {DS} ¢+ tokens to effectively encode information and
make slot-sharing to work. In smaller models, this slot-sharing might not have been
as effective due to their smaller encoding capacity. Also, concatenation, which was
used for merging domain and slot embeddings in DS-split, might not have been
enough for fully representing the information for the domain-slot pair in smaller
models. RoBERTa also shows similar results with bigger models showing stronger

performance.
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4.4 Chapter Summary

In this chapter, we propose a model for multi-domain dialogue state tracking that
effectively models the relationship among domain-slot pairs using a pre-trained lan-
guage encoder. We introduced two methods to represent special tokens for each
domain-slot pair: DS-merge and DS-split. These tokens work like the [C'LS| token
for BERT, encoding information corresponding to its domain-slot pair (DS-merge)
or domain and slot (DS-split). These special tokens are run together with the dia-
logue context through the pre-trained language encoder, which enables modeling the
relationship among different domain-slot pairs. Experimental results show that our
model achieves state-of-the-art performance on the MultiWOZ-2.1 dataset among
models without extra supervision. The ablation experiments show that the relation-
ship modeling among different domain-slot pairs is the key element of our model.

Also, we showed that larger pre-trained language encoders improves performance.
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Chapter 5

Pre-training of Transformers with
Question-Answer Masked Language Modeling for
Mathematical Question Answering

5.1 Background

Pre-trained language models (Devlin et al., |2019; Radford et al., 2018) based on
Transformers (Vaswani et al., 2017)) has achieved state of the art results in various
natural language processing (NLP) tasks. Instead of training the model from scratch
on a handful of labeled data for downstream tasks, these models are trained in
two phases. First, the models are pre-trained with various self-supervised learning
objectives on a large corpus of natural language text. Next, the model is initialized
with the pre-trained weights and fine-tuned on the labeled data. This process is
shown in Fig. It is important that the pre-training phase does not require
labeled data, which makes it possible to use a huge amount of raw text data collected
from various corpora. In the case of BERT (Devlin et al., 2019), masked language
modeling (MLM), also referred to as the cloze task (Taylor, [1953), is the main
self-supervised learning objective. MLM randomly masks words in a sentence and
trains the model to predict those masked tokens in the context of other words in the

sentence. Because masks can be made on the fly, data for MLM can be generated
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from any text available, which can be acquired by web-scraping documents. Models
with improvements on BERT has been studied extensively on various NLP tasks
(Liu et al.l 2019b; [Yang et al., |2019b; |(Conneau and Lample, [2019; [Lan et al., |2019;

Clark et al., [2019).

Large unlabeled corpus Task-specific labeled data Task-specific labeled data

g Q 2 w =

Pre-trained ‘ ‘ ( ) \ ‘ . N
Pre-trained Model -
| Language Model | mm)  Fine-tuned Model ‘—‘ —) ;M,

(a) Natural Language (b) Mathematical question answering

Figure 5.1: Pre-train and Fine-tune Framework.

Understanding natural language requires a series of reasoning steps. To under-
stand the meaning of a sentence, one has to begin with recognizing words from a
sequence of characters. Next, the meaning of each words has to be identified. Last,
the meaning of the words should be understood in the context of the whole sentence.
Understanding and solving mathematical problems also follow a similar reasoning
process.

For example, consider the following mathematical problem.

Q: What is g(f(a)), where f(a) =a+ 3,g(a) = 2a — 47

ANSWER: 2a + 2

To understand and solve such a problem, one has to parse the sequence of char-

acters into tokens of words, numbers, operators and variables. Next, the meaning of

9

each token has to be identified. Knowing that the symbol ”—" means subtraction

63 " ;
___;I:A _'-\.I.- 4 ]-.] | .:J
| = H]

S P |



would be an example. After that, the meaning of the tokens has to be understood in
context. That is, the relationship among the tokens has to be put into consideration
to know the meaning of each token. For example, even with the same token a, one
needs to understand that a of f(a) corresponds to the a in a + 3, and that a of
g(a) corresponds to the a in 2a — 4. Also, a could be used as a variable, as in the
case above, or be used as an indefinite article. After such context is expanded to the
whole question, one can understand the meaning of the problem and solve it.

Because of these similarities, we propose to apply the pre-training methods of
natural language to mathematical question answering. In this work, we assume the
questions and answers for mathematical question answering are given in free-form
texts, which are recognized as a sequence of characters.

MLM pre-training improves mere supervised learning because it helps the model
to learn the initial representations of words, which is the building block of natural
language sentences. Because the size of the vocabulary is so huge, using only super-
vised learning makes it easy for models to overfit. The vocabulary of math is much
smaller than that of natural language. However, we assumed that pre-training and
can still help solve mathematical question answering because it can help the model
recognize the syntax of how mathematical equations are formed. For example, by
pre-training, the model can learn that parentheses are always used in pairs, so that
an open parenthesis should have its corresponding close parenthesis. Another struc-
ture that could be learned is that numbers or variables should be placed between
math operators for the equation to form a legitimate mathematical equation.

However, the pre-training method used in natural language tasks cannot be di-

rectly applied to mathematical question answering. Pre-training of natural language

64



are based on a continuous stream of text from large documents. On the other hand,
data in mathematical question answering are given in pairs of questions and an-
swers. Pre-training natural language requires an abundant amount of unlabeled text
data that is much bigger in size than the labeled data of the downstream task. It
is much harder to acquire mathematical question answering data than acquiring
random texts from the web. Because of this, we need to use the same labeled data
for pre-training as also, as shown in Fig. These points call for adjustments
of the pre-training methods of NLP if it is to be applied to mathematical question

answering.

5.2 Proposed Method

In this section, we explain the proposed pre-training method for mathematical ques-
tion answering. Next, we explain the fine-tuning process. Note that different from
most NLP tasks, where word-level tokenization is used for text, we use character-
level tokenization, to compare our work with previous studies on the Mathematics

dataset.

5.2.1 Pre-training: Question-Answer Masked Language Modeling

In BERT (Devlin et all 2019), masked language modeling was used on consecutive
text streams from documents. However, our mathematical problem consists of a ques-
tion and answer pair. To leverage both question and answer texts, we concatenate
the question and answer as a single text. Masked language modeling is performed
on this concatenated text. The concatenated text is parsed using character-level to-

kenization. A portion of the question-answer tokens is masked with a special mask

65 1



token. The Transformer encoder is trained to predict the original id of the masked
token based on the context of other tokens. The Transformer encoder can refer to
neighboring tokens in the same segment to find syntactic rules such as a missing
letter in a word. If a masked token cannot find what the original token is by looking
at the question tokens, it can also refer to the answer tokens. The opposite is also
possible. We call this pre-training method Question-Answer Masked Language Mod-
eling (QA-MLM). Before concatenating the question and answer tokens, a special
Start-of-Sequence token ([SOS]) and End-of-Sequence ([FOS]) are attached to the
beginning and end of the answer tokens respectively. Fig. shows the framework
of QA-MLM.

Following BERT (Devlin et al., [2019), we mask 15% of the question-answer
concatenated tokens for each question-answer pair. The chosen tokens are replaced
with (1) the [MASK] token 80$ of the time (2) a random token 10% of the time (3)
the unchanged original token 10% of the time.

Next sentence prediction (NSP) is another self-supervised objective of BERT.
However, follow-up studies of BERT (Yang et al.,|2019b; Liu et al.,|2019b; Lan et al.,
2019; |Clark et al., [2019) removed NSP as it is shown to be ineffective. Following their
result, we drop NSP as our self-supervised objective.

The input representation for pre-training is given in Fig.[5.3] The input represen-
tation of each token consists of token embedding, segment embedding and positional
embedding. Segment embedding is used to differentiate the question tokens from the
answer tokens. Notice that the positional embeddings are reset when the answer seg-
ment begins. All embeddings are summed up to form the input representation for

each token, which is given as the input to the Transformer.
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Figure 5.2: Framework of Question-Answer Masked Language Modeling. The token
“[M]” represents the [MASK] token. The token “_” represents a white space.

5.2.2 Fine-tuning: Mathematical Question Answering

For the end task of mathematical question answering, the encoder and decoder of the
Transformer are both needed. However, the pre-training procedure only trains the
weight of the encoder part of the Transformer. For the initialization of the decoder,
we try xavier uniform initialization or copying the weights from the pre-trained
encoder. For the latter case, the encoder-decoder attention weights are randomly
initialized while other weights are copied from the pre-trained encoder. However,
this does not mean that the weights are tied between the encoder and decoder. Only
the initialization values for the weights are the same.

The same input representation of token, segment and position embeddings from
pre-training are used for fine-tuning. The different part is that the encoder now
only receives question tokens as input and that the decoder only receives answer
tokens as input. Simple greedy decoding was used for prediction. Fig. shows the

Transformer used for fine-tuning.

67



p |

o 8

)]
I

T

 —

“U XopUl J10J SUIPPaquId
reuonyisod oty syuesordor “di7 Apparyoodsor JuowSes Temsuy pue uorsong) juesardor Vi pue Oz -Ayordurs 10J [0Ad]
-pIoM UT SUOP ST UOIJRZIUSYNO], "SUI[PPOIN o8enduer] Poyse]y IoMsuy-uorisent) 1oy uonejussardey jnduy :¢°¢ oInsrq

m&.m Nn.m ﬁ&.m on.m- ﬁu.m oﬂn.m oa.m mn.m un.m o.m mn.m ¢.m~ mnm Nn.m E.m_ onm mmc_mw_oaﬂmﬁw

+ + + + + + + + + + + + + + + +

V. v V. % 0 ) o 0 ) o ) ) 0 ) 0 o sbuippaquiy

q q q q q q q q A q | A H Hq q q Wawbhas

+ + + + + + + + + + + + + + + +

[soalg|| Of || Tg |[lsoslg|| o || zg || =g || *g| *g| g | g og || ag 17 || og | sy sbuippaquwi3
us»ol

o3l 0 T |/[sosl O Z = x * 4 a 9 A ) S induj

68



Encoder initialization: Decoder initialization:
Pretrained from QA-MLM QA-MLM or Random

1 0 |[EOs]
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Figure 5.4: Transformer for Mathematical Question Answering
5.3 Experimental Results

In this section, we explain the dataset that is used to evaluate the effect of pre-

training and show the results on the dataset.

5.3.1 Dataset

The Mathematics Dataset (Saxton et al.,2019) is a dataset that consists of 56 differ-
ent types of mathematics problems such as algebra, calculus, arithmetic, probability,
and measurement. Each problem is structured as a free-form text of question and
answer as shown in Fig. 5.5l For the training data split, there are 2 x 10% problems
given for each problem type, which is split into equal amount of data according to
their difficulty of easy, medium and hard. The test data split also has the same num-
ber of problem types with 5 x 103 problems for each question type. The test data
is split into interpolation set and extrapolation set. The interpolation set has sim-
ilar characteristics with the training dataset. The extrapolation set contains larger
numbers and more complex compositions than the training data, which is used to

test generalization.
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Question: Solve —-42xr + 27+%c = —-1167 and 130xr + 4xc = 372 for r.
Answer: 4

Question: Calculate —841880142.544 + 411127.

Answer: -841469015.544

Question: Tet x(g) = 9xg + 1. Let g(c) = 2+c + 1. TLet f(i) = 3%1i -
39. Let w(j) = g(x(Jj)). Calculate f(w(a)).

Answer: 54+xa - 30

Question: Let e(1) =1 - 6. Is 2 a factor of both e(9) and 27

Answer: False

Question: Let u(n) = —-n*+*3 — nx+2. Let e(c) = —2+c++3 + c. Let 1(J)
= —-118+e(]j) + 54xu(j). What is the derivative of 1(a)?

Answer: 546xax*2 - 108xa - 118

Question: Three letters picked without replacement from gggkkklkgkkk.
Give prob of sequence qgl.

Answer: 1/110

Figure 5.5: Example of problems from the Mathematics Dataset. Figure from
ton et al., 2019)

5.3.2 Experimental Setup

For the input, character-level tokenization was used for the question and answer
text. For the model, a 4-layer, 8-head Transformer with an input dimension of 512
and feedforward dimension of 2048 was used. The Adam optimizer (Kingma and

2014) with a learning rate of 1le — 4 and batch size of 1024 was used. We chose

this configuration to follow the experimental setup of (Saxton et al. [2019) to com-

pare and assess the impact of pre-training with question-answer MLM. All other

configurations are the same of (Saxton et al.l [2019) except for the learning rate and

the way positional information is encoded. As for the learning rate, we could not

replicate the results of (Saxton et al., 2019) with the learning rate of 6e — 4, which

was used for their work. We were able to train the model with a learning rate of

le — 4, which was used for all training procedures. As for the positional informa-

tion, since the original Transformer (Vaswani et al.,2017) uses positional encodings

over positional embeddings, it is assumed that (Saxton et al., [2019) used positional
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encodings. However, our implementation showed that models with positional encod-
ings show slightly worse performance compared to their counterparts with positional
embeddings. Thus, we use positional embeddings for our experiments. Pre-training
was run for 500k steps before being reused for fine-tuning. For the models trained

from scratch, we used xavier uniform initialization.

5.3.3 Experimental Results on the Mathematics dataset

In this section, we first show the results for pre-training and then show the results

for fine-tuning.

Pre-training results

MLM accuracy for each token type is shown in table Section Alphabets are
mainly used in words or variables. Symbols refer to non-alphanumeric tokens. Al-
phabets and symbols are predicted with a very high accuracy. This indicates that
during pre-training, the model seems to be learning the semantic structure of math-
ematical equations. Number tokens show the least accuracy which is understandable
since it requires numerical reasoning. Also, if other tokens are masked as well, the
masked number token could be replaced with another token without harming the
plausibility of the question and answer. For example, in the case where the question
is SOLVE z + 3 = 2 and answer is —1, if the token 3 and 2 are all masked, any
number pairs that satisfy the answer can be replaced with the original tokens, like
4,3 or 5, 4. Because of this ambiguity that masked numbers generate, we also trained
the QA-MLM with only masking non-numeric tokens. However, this model showed

worse results for fine-tuning. Based on this finding, we argue that even though the
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prediction of masked number tokens raises some ambiguity in its effectiveness, there

exists some syntax information that it can provide for the model to learn from.

Dataset Number Alphabet Symbols
Interpolate  59.88 98.14 98.04
Extrapolate 55.22 94.62 97.96

Table 5.1: Masked language model accuracy.

Finetuning results

In this section, we assess the effect of pre-training on the Mathematics Dataset.
We report average exact-match accuracy following (Saxton et all [2019). Exact-
match accuracy is scored by checking if the predicted answer matches the correct
answer character-for-character. Section [5.3.3] shows the result of fine-tuning on the
Mathematics Dataset.

We could not reproduce the results of (Saxton et al., 2019), using the training
details that they provided. We could not run the exact code as (Saxton et al.l
2019) since they did not provide the code. As an alternative, we implemented the
Transformer using the configuration from (Saxton et al.l |2019).

It is clear that pre-training the Transformer with QA-MLM shows better results
than the model trained from scratch. In the same number of steps, pre-trained models
achieve higher performance in both Interpolation and Extrapolation test datasets.
Running QA-MLM takes roughly 60% of the computation cost of fine-tuning for
the same number of steps. Even putting this into account, the model trained from
scratch for 1M steps shows worse performance than the pre-trained models trained

for 500k steps, which is roughly the same computation cost of fine-tuning for 850k
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steps. Also, to train the model from scratch until achieving the accuracy of the pre-
trained model, it needs to be trained for 1.6M steps, which is computationally less
efficient. Thus, it can be said that pre-training with QA-MLM is not only better in
performance, but computationally efficient than training the model from scratch.
For decoder initialization, a randomly initialized decoder performed almost the
same as the the decoder initialized from QA-MLM. This may be due to the fact that
discrepancy between pre-training of the decoder and the fine-tuning of the decoder.
The pre-trained weights of the encoder that are used to initialize the decoder was

trained in a bidirectional manner, while the decoder works in an auto-regressive

manner.
Train steps Interpolation Extrapolation
Transformer (Reported from (Saxton et al.|[2019)) 500k 76.00 50.00
Transformer (Our implementation of (Saxton et al.|[2019)) 500k 69.16 39.43
1M 73.26 46.25
1.6M 77.32 49.42
Transformer w/ QA-MLM ENC 500k 73.28 46.32
1M 77.21 50.60
1.6M 78.28 51.23
Transformer w/ QA-MLM ENC, DEC 500k 73.98 46.49
1M 77.34 50.66
1.6M 78.31 51.26

Table 5.2: Average Exact-Match accuracy for the Mathematics Dataset. ENC repre-
sents that only the encoder of the Transformer is initialized with pre-trained weights
of QA-MLM. ENC, DEC represents that the both components of the Transformer
are initialized with pre-trained weights of QA-MLM.

Effect of Pre-training in terms of Problem Types

To further investigate the effect of pre-training, we show the learning curves for the

course of training for different question types in Fig. The pre-trained model that
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we compare with the model trained from scratch is the model with both the encoder
and decoder initialized from the pre-trained weights. The first row of Fig. shows
problem types, which are simple compared to other problem types, where both mod-
els learn fast. In the second row, examples of problem types where the pre-trained
model shows better accuracy in the early stage than the model trained from scratch,
but is caught up during the course of learning. These question types have more
structure than the simple ones mentioned above. Lastly, the third row show exam-
ples of problem types where the pre-trained model consistently shows but However,
the pre-trained model learns faster than the non-pretrained model for more complex
arithmetic problems with different types of operations. For harder questions involv-
ing algebra, the pre-trained model shows better performance throughout the course

of learning. Further examples of each question types are show in the Appendix.

Examples of the Mathematics dataset

We show examples for the problem types of the Mathematics dataset that are men-
tioned above. For each question type, three examples of question-answer pairs are

shown.
comparison__closest

Q: Which is the closest to -1/3? (a) -8/7 (b) 5 (c) -1.3

A: a

Q: Which is the nearest to 27/57 (a) 0.4 (b) 0.2 (c) -0.5 (d) -0.1
A: a

Q: Which is the closest to -4/177 (a) 4/7 (b) -42/11 (c) 2

A: a

arithmetic__add_or_sub

Q: What is -5 - 1109117

A: -110916

Q: What is -0.188 + -0.8147
A: -1.002
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Q: Sum 259 and -46.

A: 213

calculus__differentiate

Q: Find the first derivative of 2*d**x4 - 3b5*xd**x2 - 695 wrt d.

A: 8%dx*3 - 70xd

Q: Find the third derivative of -a**3*xgxx3*t**3 +
BA2kax*k3kgrtkk3 + 16kakk3kgrtkx2 — Dkakxk2ktk*2 + axgkx3 wrt t.

A: —6xax*3xgxx3 + 3852%ax*3*g

Q: What is the second derivative of 12518*xf**3 + 3760*f?

A: 75108%*f

comparison__closest_composed

Q: Let g = -54.3 + 54. Suppose 0 = -5%xz - 8 - 7. Which is the
nearest to -1/57 (a) 5 (b) z (c) q

A: ¢

Q: Let d(j) = —j**3 - b5*j**2 - 4xj + 1. Let n be d(-4). Suppose
-5%h = 2%i - 2¥h + n, 0 = i + 5xh - 10. What is the nearest to O in
1/3, i, -27

A: 1/3

Q: Let £ = -2.31 + 0.31. What is the nearest to f in 0.3, -2, 0.27

A: -2

calculus__differentiate_composed

Q: Let h(t) = t**3 + t**2 + 1. Let v(d) = 6xd**3 + 24x*xd**2 + 4.
Let w(j) = 4xh(j) - v(j). What is the third derivative of w(x) wrt x7?

A: -12

Q: Let v = -7 - -12. Suppose 0 = 2%h - 3%x - 16 - 5, 0 = -vxh +
3*x + 30. What is the first derivative of 5%t - h - t + 0 - 2%t wrt t7?

A: 2

Q: Let b(y) be the second derivative of -3*y**8/56 - y*x4/6 - y.
What is the third derivative of b(o) wrt o?

A: -360%0%%*3

arithmetic__add_sub_multiple

Q: What is 1 + -9 - -5 - -17
A: -2

Q: -2 +0+ (3-1)

A: O

Q: Calculate 8 - (0 + 7 + -4).
A: 5

algebra__polynomial _roots
Q: Solve -3xh**x2/2 - 24xh - 45/2 = 0 for h.
A: -15, -1
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Factor -n**2/3 - 25xn - 536/3.
-(n + 8)*(n + 67)/3
Let c**3/9 - 11xc**2/3 + 3b6*c
: 3, 15
algebra__sequence_nth_term
What is the k’th term of 485, 472, 459, 4467
-13*¥k + 498
What is the c’th term of 362, 746, 1144, 1562, 2006, 2482, 29967
c**3 + cx*x2 + 374*c - 14
What is the b’th term of 178, 367, 566, 775, 9947
5¥b**x2 + 174*xb - 1

probability __swr_p_sequence

Q: What is prob of sequence ccbc when four letters picked without
replacement from nnscspb?

A: O

Q: Three letters picked without replacement from
{g: 3, w: 1, t: 7, u: 3}. Give prob of sequence tuw.

A: 1/104

Q: Three letters picked without replacement from dxaxxaaxxxaax.

75 = 0. What is c?

= 0 = 0

=0 = 0 = 0

What is prob of sequence aad?
A: 5/429

5.4 Chapter Summary

In this chapter, we proposed a pre-training method for mathematical question an-
swering that shows better results and efficiency than mere fine-tuning. We believe
that this is the first approach to use pre-training methods of Transformers for math-
ematical reasoning. Our pre-training method, Question-Answer Masked Language
Modeling (QA-MLM) uses both question and answer text for masked language mod-
eling. In QA-MLM, masked tokens in the question can be inferred by referring to
the neighboring tokens in the same segment or to the tokens in the answer. The

opposite is also possible.
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Models initialized with the pre-trained model not only showed improved results
on the Mathematics dataset (Saxton et al.,2019)) over the non-pretrained model, but
achieved the result with higher computational efficiency. The improvement mainly
came from pre-training the encoder.

To analyze the type of problems in which pre-training impacted the most, we
compared the learning curve of the pre-trained model with that of the model trained
from scratch. For simple question types, both models learn fast, while the pre-trained
model started with a higher starting point. For some harder question types, the
pre-trained model showed higher performance in the early stage of learning, but
both models later converged. For other harder question types, the pre-trained model

consistently outperformed the non-pretrained model throughout the learning curve.
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Chapter 6

Conclusion

6.1 Contributions

To achieve human-like intelligence, it is important to solve tasks that require complex
reasoning. These complex reasoning tasks typically require multiple and hierarchical
reasoning steps. In an attempt to solve complex reasoning tasks that require such
capacities, we solved tasks in visual, conversational, and mathematical reasoning.
The Transformer architecture, which is used mainly in the natural language pro-
cessing field, was chosen as the main frame to be applied to these various tasks.
In this dissertation, we proposed three types of novel architectures based on the
Transformer encoder for visual IQ tests, dialogue state tracking and mathemati-
cal question answering. Each data type has its own characteristics, which demands
appropriate adjustments to the original Transformer encoder structure.

First, we propose using a hierarchical Transformer encoder with structured rep-
resentation that employs a novel neural network architecture to improve both per-
ception and reasoning in a visual IQ test. For perception, we used object detection
models to extract the structured features. For reasoning, we used the Transformer
encoder in a hierarchical manner that fits the structure of Raven’s Progressive Ma-

trices. Experimental results on the RAVEN dataset, which is one of the major large-
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scale datasets on Raven’s Progressive Matrices, show that our proposed architecture
achieved state-of-the-art performance.

Next, we propose a dialogue state tracking model using a pre-trained language
model, which is a pre-trained Transformer encoder, for domain-slot relationship
modeling. Dialogue state tracking for multi-domain dialogues is challenging because
the model should be able to track dialogue states across multiple domains and slots.
Past studies had its limitations in that they did not factor in the relationship among
different domain-slot pairs. Although recent approaches did support relationship
modeling among the domain-slot pairs, they did not leverage a pre-trained language
model, which has improved the performance of numerous natural language tasks, in
the encoding process. Our approach fills the gap between these previous studies. We
propose a model for multi-domain dialogue state tracking that effectively models the
relationship among domain-slot pairs using a pre-trained language encoder. Inspired
by the way the special [C'LS] token in BERT is used to aggregate the information
of the whole sequence, we use multiple special tokens for each domain-slot pair that
encodes information corresponding to its domain and slot. The special tokens are
run together with the dialogue context through the pre-trained language encoder,
which effectively models the relationship among different domain-slot pairs. Our
experimental results show that our model achieves state-of-the-art performance on
the MultiWwOZ-2.1 dataset among models without extra supervision.

Finally, we propose a method to pre-train a Transformer encoder on a mathe-
matical question answering dataset for improved performance. Pre-trained language
models have achieved state-of-the-art results in many natural language processing

tasks. Understanding mathematical problems has similarities with understanding

80



natural language, in that it requires similar reasoning steps, such as recognizing
words or symbols from a sequence of characters and identifying the meaning of
those words and symbols in the context of the whole sequence. Thus, we propose
a pre-training method for mathematical question answering. We believe that this
is the first approach to use pre-training methods of Transformers for mathematical
question answering. Our pre-training method, Question-Answer Masked Language
Modeling, leverages both question and answer text by concatenating them into a
single text. Models initialized with the pre-trained model not only showed improved
results over the non-pretrained model, but also achieved the result with higher com-

putational efficiency.

6.2 Future Work

Our work is focused on the Transformer encoder. However, the original Transformer
is composed of two parts: encoder and decoder. As we have developed new architec-
tures of the Transformer encoder, enhancements to the Transformer decoders can
also be applied. As generative models are becoming more popular these days, re-
search on the development of novel architectures for the Transformer decoder is a
promising research topic.

Also, our work also involves pre-trained language encoders such as BERT, AL-
BERT and RoBERTa. It is reported that BERT shows social, racial and gender
bias present in human-generated data (Tan and Celis, [2019; [Bhardwaj et al., [2020;
Kurita et al.l 2019). This is an important in terms of legal issues when implement-
ing services with BERT, which can be damaging if the model showed any kind of

discrimination regarding social, racial and gender issues. It is also a humanitarian
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issue since advanced deep learning models are spreading and aggravating this bias.
In our second work, we use pre-trained language models to detect dialogue states
between a system and a user. In our future work, we will find methods to overcome
this bias to improve quality of our model and ensure that our model is unbiased in
terms of social, racial and gender issues. This will involve filtering the dataset as
well as finding training methods that can avoid the model to learn such biases.

Now, we provide future work with respect to our main research of the disserta-
tion.

For the visual 1Q test, we can use the PGM dataset (Santoro et al., [2018) to
test the generalizability of our model. Because PGM does not have annotations for
training the object detection model, how to obtain structured representations is an
issue to be addressed. In addition, we can adapt our reasoning module to cover other
reasoning problems that do not involve visual elements but still deals with reasoning
among different elements.

For dialogue state tracking, we hope to advance our current apporach by finding
ways to effectively apply our model towards the open-vocabulary approach, which
will enable better generalization for candidate values that are outside of the training
data.

Lastly, for mathematical question answering, our model is limited in that only
the masked language modeling task is used for the pre-training task. Training the
model with a sophisticated pre-training task that are made to incorporate explicit

mathematical reasoning would be a promising research subject for the future.
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