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Abstract 

Temporary Capacity Expansion Policy in 

Semiconductor FAB using Reinforcement Learning 

 

Hee Jae Lee 

Department of Industrial Engineering 

The Graduate School 

Seoul National University 

 

Due to the instability of the capacity of the semiconductor process, there are cases in 

which the production capacity temporarily becomes insufficient compared to the capacity 

allocated by the initial plan. To respond, production managers require capacity to other 

lines with compatible equipment. This decision can have an adverse effect on the entire 

line because the processes are connected in a sequence. In particular, it becomes more 

problematic when the machine group is a bottleneck process group. Therefore, this study 

proposes a capacity expansion policy learned by reinforcement learning algorithms in this 

environment using a FAB simulator built upon a WIP balancing scheduler and a machine 

disruption model. These policies performed better than policies imitating human decision 

in terms of throughput and machine efficiency. 

 

Keywords: Capacity Management, Reinforcement Learning, Industrial engineering 

Student Number: 2019-23474 



 

 

 

ii 

 

Contents 

 

Abstract  i 

 

Contents ii 

 

List of Tables iv 

 

List of Figures v 

 

Chapter 1  Introduction 1 

1.1  Problem Description ··································································  3 

1.2  Research Motivation and Contribution ·············································  5 

1.3  Organization of the Thesis ···························································  5 

 

Chapter 2  Literature Review 6 

2.1  Review on FAB scheduling ··························································  6 

2.2  Review on Dynamic production control ············································  7 

 

Chapter 3  Proposed Approach and Methodology 8 

3.1  Proposed Approach ···································································  8 

3.2  FAB Simulator ········································································  17 

3.3  Reinforcement Learning Approach  ···············································  26 

 

Chapter 4  Computational Experiments 30 

4.1  Experiment settings ··································································  30 

4.2  Test Instances ·········································································  31 

4.3  Test Results ···········································································  33 



 

 

 

iii 

 

Chapter 5  Conclusions 37 

 

Bibliography 38 

 

국문초록 39 

 

 

  



 

 

 

iv 

 

List of Tables 

 

 

 

Table 3.1   𝜆1, 𝜆2, MTBF, MTTR for corresponding 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  values ························  24 

Table 3.2   Average running rate 𝑟𝑘𝑡 observed for 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  values ·························  25 

Table 3.2   Probability of next shift being ‘Up’ for 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  values··························  25 

Table 4.1   Policy of RL and HIP ·······································································  30 

Table 4.2   Description of test instances ································································  32 

Table 4.3   Average throughput comparison by different machine disruption scenarios ·········  33 

Table 4.4   Average efficiency comparison between RL and HIP ···································  34 

Table 4.5   Average efficiency comparison between RL and No Send FAB ·······················  34 

 

  



 

 

 

v 

List of Figures 

 

 

 

Figure 1.1   An illustration of how Send FAB works ···················································  3 

Figure 3.1   An illustration of layers ······································································  9 

Figure 3.2   An illustration of Send FAB action changing FAB aggregate ·························  12 

Figure 3.3   An illustration of how transition probabilities are calculated ·························  14 

Figure 3.4   An illustration of learning the Send FAB policy ········································  16 

Figure 3.5   An illustration of our Deep Q Network ··················································  17 

Figure 3.6   An illustration of transition diagram of machine status ································  21 

Figure 3.7   An illustration of transition how CTMC provides disruption scenarios ·············  22 

Figure 4.1   Performance by 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  ····························································  35 

Figure 4.2   Throughput improvement by different levels of 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  ·······················  36 

Figure 4.3   Throughput against No Send FAB by different levels of machine utilization ·······  36 

 

 

 



 

 

 

1 

 

Chapter 1 

 

Introduction 

 

Semiconductor factories are consisted of several lines which are classified by the product 

type it manages to produce. Each line is assigned its own Work In Process (WIP) and 

machines to manage. When a monthly production target is given at the company-wide 

production planning stage, the production target for each line is determined based on the 

target amount for each product. If it is difficult to achieve the production target, the 

affiliation of the machines may be changed on a weekly and monthly basis through 

discussions between lines. Reallocation of production capacity is done by reassigning the 

managing line of each machine. It is possible because most machines are compatible for 

different product types and the total FAB is connected by Over Head Transports (OHT) and 

trucks.  

Even after such capacity redistribution, cases of insufficient capacity occur. This is because 

semiconductor facilities frequently experience unexpected disruptions that are difficult to 

predict. When such disruption occurs in the bottleneck process, additional capacity 

expansion is required because waiting WIP can be maintained at a high level for a long time. 

To cope with this, production managers make a decision to temporarily expand production 

capacity in shift units. 

In this thesis, we consider the problem of temporarily sharing capacity of other lines which 

is called Send FAB. Send FAB is a major task that is required and requested frequently for 

production managers in semiconductor FABs. The decision, however, is made by the 

managers’ experiences on the WIP status. They seek to request as much capacity as possible 

to the amount they think they need. They struggle to release waiting WIP as fast as possible. 

The more they experienced a tight production schedule, their belief on maximizing the 

quantity is stronger.  
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Send FAB decisions should be made very carefully. It is because semiconductor FABs has 

properties such as complicated sequence of re-entrant process, multi-objective system, and 

highly unpredictable machine status. The best way to make a careful decision is to consider 

all status regarding to the production objective. It is why our thesis introduces a Markov 

Decision Process. The fact that managers cannot see WIP status, machine status, and 

machine dedication all together made us think of creating a policy that considers all these 

states as an input. The stochastic nature of FAB aggregates limits our model to be solved by 

deterministic optimization models. 

The environment of our Send FAB problem is built on a FAB simulator. Since the real FAB 

data is not available, we try to conform a FAB environment containing the most important 

features of Send FAB problem. The simulator consists of a scheduler that decides production 

schedule every shift, and a disruption model of machines to model machine uncertainty. The 

simulator reads the beginning WIP and machine status of each shift and returns the ending 

WIP and machine status. 

We use Reinforcement Learning to solve MDP on our FAB environment. Since the problem 

with continuous state variables make the state space dimension infinite, and the transition 

probability is not deterministic, we cannot use tabular methods. Instead, we use a function 

approximation approach, Deep Q Network. We train the Deep Q Network in several FAB 

settings that are distinguished by different machine disruption scenarios and machine 

dedication scenarios. 

We compare the performance of our trained policy and the policy that imitates the 

production managers. Since there are no officially known rule for a the Send FAB decision 

of the production manager, we make a policy that best describes the manager’s decision. 

The results prove that our policy improves the performance in a big scale and that the policy 

imitating the human decision can harm the performance in some occasions. We start by 

describing the details of the problem in Section 1.1. 
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1.1 Problem Description 

Send FAB is a contract between two lines of sharing one’s capacity for a promised period 

and quantity. It is triggered by the production manager of the line with insufficient capacity 

on a process group, which is a group of machines that operate similar processes. The contract 

is agreed when both lines achieve benefits. For the requiring line, they get to deal with issues 

coming from capacity shortage. The offering line, on the other hand, can benefit by 

increasing their machine efficiency.  

The actual operation is done by enrolling the contract to the Automatic Material Handling 

System (AMHS). Every lot and machine in the FAB have owning line tags. AMHS prevents 

track-in events of lots to machines with different owning line tags. When the Send FAB 

contract is enrolled, however, the AMHS allows the requiring line’s lot to track-in to 

machines of the offering line. The lots of the requiring line is then recognized as lots of the 

offering line and competes with the offering line’s lots by the dispatching score. This tag 

returns to its original status when the promised period or amount is reached.  

 

Figure 1.1: An illustration of how Send FAB works 

The period of a Send FAB contract is usually one to three shifts. It is because decision 

makers are not sure of their decisions and to be able to deal with uncertainties of the future 

capacity status. The number of processes in a Send FAB contract is usually one. It is because 

the more different steps a machine processes, the higher the setup time would be. Therefore, 

the requiring line’s manager usually selects one process step of the process group for Send 

FAB. 
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The selection of the process step is done by selecting the most delayed layer. In reality there 

are no Standard Operation Procedure (SOP) for the decision. It is mostly chosen by the 

manager’s instinct based on years of experience. Still, for comparison of our RL policy, we 

used a rule-based policy that selects the most delayed layer which is the best out of just 

using the WIP information. The manager calculates the lateness of each layer of the 

problematic process group and selects the process step with the largest late quantity. 

The manager of the requiring line asks as much as possible of the late quantity of the 

problematic layer’s process. The final amount is decided after negotiation with the offering 

line’s manager. If the late quantity is 𝑥𝑙𝑎𝑡𝑒 and the affordable quantity of the offering line 

is 𝑥𝑎𝑓𝑓𝑜𝑟𝑑𝑎𝑏𝑙𝑒, the quantity is decided as min(𝑥𝑙𝑎𝑡𝑒 , 𝑥𝑎𝑓𝑓𝑜𝑟𝑑𝑎𝑏𝑙𝑒). 

For a better explanation let’s suppose line 𝐴 is the line with insufficient capacity and line 

𝐵, 𝐶 are the lines requested for some capacity sharing and the process group in capacity 

shortage is 𝑃. A scenario for a Send FAB is presented below. 

1) Production manager of line 𝐴 checks the WIP status of every layer 𝑃1, 𝑃2, … , 𝑃𝑁 in 

process group 𝑃. 

2) The manager calculates the late quantity 𝑙1, 𝑙2, … , 𝑙𝑁 of each layer and decides the 

layer to require a Send FAB by 𝑝 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑙𝑖. 

3) The manager requires usage of compatible machines of line 𝐵, 𝐶 with layer 𝑝 for 

𝑙𝑝 wafers per shift. 

4) Managers of line 𝐵, 𝐶 check the status of their own WIP status on 𝑃 and calculates 

the amount of capacity 𝑜𝐵, 𝑜𝐶  they can provide.  

5) 𝑜𝐵  appears to be zero, which means support is unavailable from line B, and 𝑜𝐶 

appears to be non-zero but smaller than 𝑙𝑝. 

6) The manager of line 𝐶 enrolls a Send FAB contract of min(𝑙𝑝, 𝑜𝐶) per shift in the 

system. 
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Deciding the process step, quantity of Send FAB based on the manager’s instinct can cause 

future adverse effects. It is because the FAB is a multi-objective system having objectives 

such as throughput, cycle time, efficiency etc. Some have a trade-off relation. Even if the 

quantity of Send FAB is relatively low, it changes the aggregate of the FAB and could some 

time bring a massive damage to the whole system.  

 

1.2 Research Motivation and Contribution 

In order to deal with emergent situations on bottleneck process groups, Send FAB request 

come and go frequently between lines. The managers, however, are unavailable to grasp the 

FAB aggregate and the future effect of the decision. Even if by asking the most of the late 

quantity may seem to benefit by releasing waiting WIP, the cumulative performance may 

decrease due to problems that may occur at a future point.  

We believe a Send FAB policy should be built on considering the FAB aggregate and its 

stochastic dynamics on machine uncertainty. Therefore, we develop a Markov Decision 

Process for Send FAB policy and derive a policy that can replace the manager’s decision.  

The thesis contributes by suggesting a better solution for the Send FAB problem. By 

showing results of human imitated policy damaging the production performance after all, 

we claim that a new policy is needed. The results show that our policy performs better in 

terms of throughput and machine efficiency which are the key performance measure for 

production management.  

1.3 Organization of the Thesis 

The thesis is composed of 5 chapters. In Chapter 2, we review literatures related to the 

problem. In Chapter 3, we introduce our proposed approach and methodology. In Chapter 

4, results of computational experiments are presented. Finally, in Chapter 5, we give 

concluding remarks and possible future research directions of this thesis.  
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Chapter 2 

 

Literature Review  

 

To the best of my knowledge, there are no previous research on the Send FAB problem dealt 

in our research. Therefore, in this section we review researches on FAB scheduling and 

dynamic production control that we referred while developing our thesis. 

2.1 Review on FAB Scheduling 

Early research on FAB scheduling, which deal with lot releasing, due-date scheduling, and 

WIP balancing were focused on each single operational issue. There were researches on lot 

releasing methods attempting to avoid starvation of bottleneck machines by using the flow 

rate of a layer. The research of Lin and Lee [1] introduces an appropriate total WIP level in 

order to achieve better throughput rate while keeping the corresponding cycle time relatively 

low. They introduced a queueing network based algorithm to develop a FAB environment 

with a fixed-WIP control policy.  

Researches that integrated approaches to focus on multiple performance measures are based 

on the flow rate control procedure. The Two Boundary algorithm was introduced by Lou 

and Kager [2]. The algorithm determines the Target Production Quantity (TPQ) by trying to 

make the difference between planned and actual production zero. Our scheduler was based 

on the research of Chung and Jang [3] which applies the concept of TPQ in order to solve 

the scheduling problem that can deal with WIP balancing on process layers, machines 

together. They introduced a new WIP balancing method called Toolset Available WIP 

Balancing (TAWB). By adding the concept of Average Available WIP for each machine to 

the WIP Balancing objective, they showed that it can prevent machine starvation of 

bottleneck machines. 



 

 

 

7 

2.2 Review on Dynamic Production Control 

In order to deal with varying production requirements of various products, the FAB operates 

with multifunctional machines. This additional flexibility helps dealing with demand 

uncertainty of various products. Ever since its appearance, researchers have started to 

developed dynamic production controlling methods. Simulation approaches and Markov 

Decision Process approaches have been widely applied in solving the dynamic capacity 

allocation problem.  

Toba [4] has proposed a load balancing method among multiple FAB lines using predictive 

scheduling results. It assumes the capacity sharable situation among multiple lines and tries 

to minimize the transportation cost between two process steps. Urayama, Fu and Marcus [5] 

adopts a hierarchical control model: long-term and capacity model and short-term job 

release control model to deal with the dynamic job release control. It applies simulation 

methods for estimating the parameters for each control model. Kim, Ko and Shin [6] applied 

a semi-Markov Decision Process and proposed a reinforcement learning method together 

with the fab simulator to obtain near optimal dispatching policy. They introduced a policy 

that learns the appropriate weight for selecting multiple dispatching policies together. Kim, 

Lim and Lee [7] introduced a dynamic scheduling system based on Deep Learning that can 

consider the Automated Material Handling System (AMHS) constraints. They suggested a 

new frame of applying trained Neural Networks replaceable of rule based dispatching 

policies. 
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Chapter 3 

 

Proposed Approach and Methodology 

 

This section describes how we develop our RL policy on the Send FAB problem. Then, we 

introduce the FAB simulator we used as our RL environment. Finally, we introduce the 

methodology on RL. 

3.1 Proposed Approach 

Our model is built upon the fact that production managers cannot see the whole FAB status. 

Therefore, we build a Markov Decision Process (MDP) that uses the FAB aggregate as the 

state and Send FAB decision as the action. In order to solve the MDP with RL, we use a 

FAB simulator based on preceding WIP Balancing Scheduler along with a disruption model 

as the RL environment.  

We train the RL agent having a goal to meet the production target for the upcoming week. 

The time period is set as one week since production target usually varies by a week. Along 

with the fact that Send FAB is negotiated in a shift unit period, we consider every 21 shifts 

of one week to be the time horizon. The goal of the RL agent is to benefit the FAB aggregate 

using Send FAB contracts. We start by introducing the concepts of layers which we use to 

represent our problem. 

 

3.1.1 Layer 

The FAB environment is represented by layers of the bottleneck process group. Although 

there are dozens of process groups in semiconductor production FABs, this study focuses 

only on the bottleneck process group. It is because most of the Send FAB decisions are made 

on the bottleneck process group and whenever it causes an adverse effect in the future, it 

will be on the group itself. Based on the fact that the bottleneck process group controls the 



 

 

 

9 

throughput rate [1], many researches ([2],[3]) on FAB bottleneck processes have modeled 

the entire FAB process as a series of loops re-entering the bottleneck process group. We 

define all processes between these loops as a layer. The processes starting from the process 

right after the bottleneck process to the next bottleneck group process forms a layer. This is 

illustrated as in Figure 3.1. 

 

 

Figure 3.1: An illustration of layers 

 

If the bottleneck process group has 𝑛 processes, the model will have 𝑛 layers. The flow 

time of a layer will be defined as the approximated turnaround time for all processes in the 

layer. The WIP level of a layer is be the total WIP in a layer. Also, each layer will be 

designated a demand proportional to their flow times starting from the last layer.  

 

3.1.2 FAB Aggregate  

The FAB aggregate represents the whole WIP status of each layer, machine status of each 

machine and the lateness of production for each layer. For every layer 𝑗 ∈ 𝐽𝑖 for product 

𝑖 ∈ 𝐼, we define the beginning WIP as 𝑏𝑖𝑗 as the WIP waiting in all process steps in product 

𝑖  and layer 𝑗 . The machine status for machine 𝑘 ∈ 𝐾  at the beginning of the shift is 

defined as 𝑚𝑘 ∈ {0,1} where 0,1 indicates ‘Down’, ‘Up’ status. 

The lateness of scheduled production target for each product and layer is defined as 𝑙𝑖𝑗. In 

order to calculate the lateness of production, we compare the rolling demand with the rolling 

beginning WIP. The demand 𝑑𝑖𝑗 for product 𝑖 and layer 𝑗 represents the needed WIP for 

the layer. Using the weekly production target 𝑤𝑛  and flow time 𝑐𝑖𝑗  we calculate the 
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demand for product 𝑖 and layer 𝑗 as in (3.1) and (3.2). If the flow time of the layer is 

covered by one weekly target, we use (3.1). If the flow time of a layer is covered by two 

weekly target production volumes, we use (3.2). 𝑐𝑖𝑗1  and 𝑐𝑖𝑗2 each indicated the parts of 

𝑐𝑖𝑗 in the first and second weeks, respectively. 

𝑑𝑖𝑗 =
𝑤𝑛𝑐𝑖𝑗

7
 , 𝑖𝑓 7(𝑛 − 1) < 𝑐𝑖𝑗 ≤ 7𝑛 (3.1) 

𝑑𝑖𝑗 =
𝑤𝑛𝑐𝑖𝑗1

7
+

𝑤𝑛+1𝑐𝑖𝑗2

7
  , 𝑖𝑓 7(𝑛 − 1) ≥ 𝑐𝑖𝑗  𝑜𝑟 𝑐𝑖𝑗 ≤ 7𝑛 (3.2) 

The demand indicates the wanted amount of WIP in order to meet the weekly production 

target. Since layers are sequentially connected, we roll the demand and WIP to compare the 

lateness. We define the lateness 𝑙𝑖𝑗 for product 𝑖, layer 𝑗 as (3.3). We roll the demand and 

beginning WIP from the last layer to the next layer. This means difference between the 

amount that was supposed to be produced and sent to next layers, and the amount that has 

been produced and sent to next layers. 

𝑙𝑖𝑗 = ∑ 𝑑𝑖𝑘

|𝐽𝑖|

𝑘=𝑗+1
− ∑ 𝑏𝑖𝑘

|𝐽𝑖|

𝑘=𝑗+1
 (3.3) 

 

 

3.1.3 MDP Modeling of Send FAB 

In this section we introduce how the Send FAB problem was formulated into a MDP. Our 

MDP model is designed to consider the important factors and settings of the Send FAB 

problem. By reflecting the components of the FAB situation related to production KPIs such 

as WIP status of every layer, machine status of every machine, and the lateness of production 

by layers, we make it able to consider the FAB aggregate. We also set an appropriate time 

horizon that can embrace the settings of the Send FAB problem. 

Since the production of semiconductors are nearly all time operating, the selection of the 

time horizon can be a major issue. Unlike MDP models having a terminal state that ends the 

episode, our problem does not have a specific goal that it heads for. With the no-break 

production and no-terminal state situation, we need to set a time horizon that appropriately 

leads the solution to fulfill the production manager’s needs. In our model, considering the 
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fact that Send FAB decisions are made to deal with a short-period (few shifts) capacity 

shortage, and that production target usually fluctuate on a weekly basis, we set the time 

horizon to 21 shifts, 𝑇 = {1,2,… ,21}. Therefore, we terminate the episode when it reaches 

the 21th shift (one week). This way, the solution of the MDP can provide a good Send FAB 

decision for the production manager considering the weekly production target. 

The state space of our MDP is a set of vectors that represent the FAB aggregate. The vector 

is shown in following equations: 

𝑆 = [𝑊⃗⃗⃗ , 𝐿⃗ , 𝑀⃗⃗ ] (3.4) 

𝑊⃗⃗⃗ = [𝑊⃗⃗⃗ 
1, 𝑊⃗⃗⃗ 

2, … , 𝑊⃗⃗⃗ 
|𝐼|], 𝑊⃗⃗⃗ 

𝑖 = [𝑏𝑖1, 𝑏𝑖2, … , 𝑏𝑖|𝐽𝑖|] (3.5) 

𝐿⃗ = [𝐿⃗ 1, 𝐿⃗ 2, … , 𝐿⃗ |𝐼|], 𝐿⃗ 𝑖 = [𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖|𝐽𝑖|] (3.6) 

𝑀⃗⃗ = [𝑚1,𝑚2, …𝑚|𝐾|] (3.7) 

𝑙𝑖𝑗 = ∑ 𝑑𝑖(|𝐽𝑖|−𝑘)
|𝐽𝑖|−𝑗−1
𝑘=0 −  ∑ 𝑏𝑖(|𝐽𝑖|−𝑘)

|𝐽𝑖|−𝑗−1
𝑘=0   (3.8) 

𝑊⃗⃗⃗  is the state vector of beginning WIPs for all products. Each vector 𝑊𝑖
⃗⃗⃗⃗  consists of initial 

WIP for each |𝐽𝑖| layers. 𝐿⃗  is the state vector of late production quantities for each product. 

Each vector 𝐿𝑖
⃗⃗  ⃗  consists of late quantities for all |𝐽𝑖|  layers. They are calculated by 

subtracting rolling WIP from rolling demand as shown in (3.8). The rolling demand 

indicates the amount that should have been produced and the rolling WIP is the amount that 

was produced. 𝑀⃗⃗  is the state vector of machine status for |𝐾| machines. 

The action space is a consisted of vectors of all possible Send FAB decision. Each Send 

FAB decision vector (𝑖, 𝑗, 𝑞)  is consisted of the product type 𝑖 , layer number 𝑗  and 

quantity 𝑞. Since Send FAB wafers are carried in a lot which has a size of 25 wafers, we 

discretized the possible range of sending quantity. The range is chosen to be smaller than 

20% of the average layer demand to apply the fact that Send FAB quantities are small 

relative to regular production quantities. For example, if the average layer demand is 20,000 

wafers we limit the maximum Send FAB quantity to be 400 wafers and the possible 

collection of Send FAB quantities would be {0,25,50,… ,375,400} . In this case, the 

dimension of the action vector space is 17|𝐼||𝐽| where |𝐼| is the number of products, |𝐽| 

is the number of layers, and 17 is the number of Send FAB quantity selections. 
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The action for Send FAB on product 𝑖, layer 𝑗, with quantity 𝑞 is applied by changing the 

WIP of and demand status of each layer. The beginning WIP 𝑏𝑖𝑗 and the demand for the 

next layer 𝑑𝑖(𝑗+1) is decreased by 𝑞. Figure 3.2 shows how the FAB aggregate changes. 

 

 

Figure 3.2: An illustration of Send FAB action changing FAB aggregate 

 

 

The reward is defined by whether there was improvement of the WIP Balancing Scheduler’s 

objective value. Reward for choosing action 𝐴 at current FAB aggregate 𝑆𝑡 is defined as 

in (3.9) and (3.10). 𝑝 is the penalty variable that prevents choosing more quantity than the 

beginning WIP. We give -5 as the penalty value for these cases, and 0 for the cases that does 

not violates this condition. Improvement and deterioration regard the change in the objective 

value of the WIP Balancing Scheduler. It checks how helpful the action was with respect to 

WIP balancing. The condition ‘improvement’ indicates that 𝑂(𝑆𝑡+1
′ ) − 𝑂(𝑆𝑡+1) > 0 , 

where 𝑂(𝑆) is the objective value of the WIP Balancing Scheduler and 𝑆𝑡+1
′  is the next 

state effected by Send FAB action. ‘deterioration’ means negative effects on the objective 

value, and ‘large improvement’ indicates to times when the improvement quantity is the 

largest among previous shifts.  
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𝑅(𝑆𝑡 , 𝑎) = {

10 + 𝑝               𝑖𝑓 large improvement
1 + 𝑝                          𝑖𝑓 improvement
0 + 𝑝                   𝑖𝑓 no improvement
−10 + 𝑝                     𝑖𝑓 deterioration

  (3.9) 

𝑝 =  {
−5                          𝑖𝑓 𝑞 ≥ 𝑏𝑖𝑗

0                            𝑖𝑓 𝑞 < 𝑏𝑖𝑗
 (3.10) 

 

The objective of our MDP is to find a policy 𝜋 that maximizes cumulative sum of rewards 

as shown in (3.11). The cumulative reward can be represented as the bellman optimality 

equation of action value function 𝑄(𝑠, 𝑎) as shown in (3.12).  

 𝐸[∑𝛾𝑡𝑅(𝑆𝑡 , 𝜋(𝑆𝑡))

20

𝑡=0

] (3.11) 

𝑄𝜋∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′∈𝐴

𝑄𝜋∗(𝑠′, 𝑎′) (3.12) 

 

In order to solve the bellman optimality equation, we need to know the transition probability 

from prevision state 𝑆𝑡 = [𝑊𝑡
⃗⃗⃗⃗  ⃗, 𝐿𝑡

⃗⃗  ⃗,𝑀𝑡
⃗⃗⃗⃗  ⃗]   to next state 𝑆𝑡+1 = [𝑊⃗⃗⃗ 

𝑡+1, 𝐿⃗ 𝑡+1, 𝑀⃗⃗ 𝑡+1]  for 

choosing action 𝐴𝑡 = [𝑖, 𝑗, 𝑞] . The process, however, requires a large amount of 

computation to cover all possible transitions.  

Figure 3.3 shows the process of transition when chosen an action. When initial state 𝑆𝑡 is 

given and action 𝐴𝑡  is chosen, the WIP status and lateness status changes as shown in 

Figure 3.2. The changed FAB aggregate 𝑆𝑡′ then goes through a scheduling process that 

decides the production quantity 𝑋𝑡 which is a matrix consisted of the production variables 

𝑥𝑖𝑗𝑘 assigned for each product 𝑖, layer 𝑗, machine 𝑘. Then the initial machine status 𝑀𝑡
⃗⃗⃗⃗  ⃗ 

goes through a machine disruption scenario which is based upon a Continuous Markov 

Chain model (3.2.2 describes details). It returns 𝑅⃗ 𝑡 which is a vector consisted of running 

rates of each machine throughout the shift. 𝑅⃗ 𝑡 is then applied to the planned production 

𝑋𝑡 to acquire the actual production 𝑋𝑡
′. Then 𝑋𝑡

′ is used to calculate the next WIP status 

𝑊⃗⃗⃗ 
𝑡+1 and lateness 𝐿⃗ 𝑡+1 . The initial machine status 𝑀⃗⃗ 𝑡+1  is directly acquired from the 

machine disruption model.   
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Figure 3.3: An illustration of how transition probabilities are calculated 

 

In order to calculate the transition probability, we discriminate deterministic processes and 

random processes. The deterministic processes do not influence the probability. The 

transition probability is only affected by the random processes (dotted box area in Figure 

3.3). 𝑊⃗⃗⃗ 
𝑡+1, 𝐿⃗ 𝑡+1 is obtained using the actual production 𝑋𝑡

′ which is determined by the 

random vector 𝑅⃗ 𝑡, and 𝑀⃗⃗ 𝑡+1 is the next machine status given the previous initial status 

𝑀⃗⃗ 𝑡 .  Therefore, we only consider the probability 𝑃{𝑅⃗ 𝑡, 𝑀⃗⃗ 𝑡+1|𝑀⃗⃗ 𝑡} . In other words, 

𝑃{𝑆𝑡+1|𝑆𝑡, 𝐴𝑡} =  𝑃{(𝑅⃗ 𝑡, 𝑀⃗⃗ 𝑡+1)|𝑆𝑡
′} . 𝑃{(𝑅⃗ 𝑡, 𝑀⃗⃗ 𝑡+1)|𝑆𝑡

′}  can be calculated from the 

Continuous Time Markov Chain we define as the machine disruption model (3.2.2).  

The values of  𝑅⃗ 𝑡, however, requires to solve a Mixed Integer Programming (MIP) problem 

and a Linear Programming (LP) problem each time for a pair of state and action. The MIP 

problem is needed to get the scheduled production amount 𝑋𝑡 and LP is used to solve the 

corresponding 𝑟𝑖𝑗 values that generates 𝑋𝑡
′ which eventually leads to the final state 𝑆𝑡+1.  

In order to solve our MDP with Dynamic Programming, we need to obtain all possible 

transition probabilities between states. Also, the states have continuous values that makes it 

impossible to approach the problem in a tabular method. Even we go through discretization 

on state values, the two required optimization in calculating a single transition probability 

would lead to a large amount of computation time. Therefore, we instead use a model-free 

Reinforcement Learning Approach. 
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3.1.4 Learning Send FAB policy 

Our MDP is defined in a state space with infinite dimension. Therefore, we use a Q function 

approximating approach instead of a tabular method which save all Q values. Among the 

function approximating approach, we use Deep Q Network (DQN) [8]. The DQN algorithm 

works by selecting the greatest estimated Q value for a given state and action. The neural 

network uses the state of our MDP model as the input variable and returns the Q value for 

every possible action for the given state. In order to fit the neural network, we train the 

model as in Algorithm 1. 

 

Algorithm 1 Learning DQN for Send FAB  

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 FAB environment  
𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 action value function 𝑄𝑜𝑛𝑙𝑖𝑛𝑒 with random weights  
𝐂𝐨𝐩𝐲 𝑄𝑜𝑛𝑙𝑖𝑛𝑒 as Qtarget  

𝐂𝐫𝐞𝐚𝐭𝐞 dequeing structure 𝐷 for memory   
𝐅𝐨𝐫 episode = 1,𝑀:  
    𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 weekly demand and allocate layer demand  
    𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 FAB aggregate 𝑠1 𝑎𝑛𝑑 preprocess into  𝜙1 = 𝜙(𝑠1)     
   𝐅𝐨𝐫 𝑡 = 1,21:  
            With probability 𝜖 select a random action 𝑎𝑡  
            otherwise select 𝑎𝑡 = max

𝑎
𝑄𝑜𝑛𝑙𝑖𝑛𝑒

∗ (𝜙(𝑠𝑡), 𝑎; 𝜃)  

            increase 𝜖 𝑏𝑦 10−5 𝑎𝑛𝑑 𝜖 ← max (0.01, 𝜖)  

            𝐢𝐟 𝑎𝑡  is no Send FAB 𝐭𝐡𝐞𝐧:  

               𝑟𝑡 = 0  

            𝐞𝐥𝐬𝐞:  

               𝐂𝐫𝐞𝐚𝐭𝐞 𝑠𝑡
′ which is the updated FAB aggregate after 𝑎𝑡  

               𝐒𝐨𝐥𝐯𝐞  WIP Balancing MIP for 𝑠𝑡, 𝑠𝑡
′  and get 𝑥𝑡+1, 𝑂(𝑠𝑡

′), 𝑂(𝑠𝑡), 𝐸(𝑠𝑡
′), 𝐸(𝑠𝑡)  

               𝑟𝑡 = 𝑂(𝑠𝑡
′) − 𝑂(𝑠𝑡) + 𝑒 (𝐸(𝑠𝑡

′) − 𝐸(𝑠𝑡)).    
            Set st+1 = 𝑠𝑡 , 𝑎𝑡 , 𝑥𝑡+1 and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1)   
            Store transition (𝜙𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝜙𝑡+1) in 𝐷  

            𝐢𝐟 |𝐷| > minibatch size 𝐭𝐡𝐞𝐧:  

                Sample random minibatch of transitions (𝜙𝑗, 𝑎𝑗 , 𝑟𝑗, 𝜙𝑗+1) from D  

                Set 𝑦𝑗 = 𝑟𝑗 + 𝛾 max
𝑎′

𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝜙𝑗+1, 𝑎
′; 𝜃)     

                Perform a gradient descent step on (𝑦𝑗 − 𝑄𝑜𝑛𝑙𝑖𝑛𝑒(𝜙𝑗, 𝑎𝑗; 𝜃))
2
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Figure 3.4: An illustration of learning the Send FAB policy 

 

 

DQN is fitted by numerous episodes that is performed as shown in Figure 3.3. The RL agent 

chooses the action with the largest estimated Q value from the current DQN. The action is 

performed to change the FAB aggregate for the current shift. The changed FAB aggregate 

along with the original FAB aggregate are used as the initial FAB status for production 

scheduling. After applying a machine disruption scenario, the next FAB aggregate is 

obtained. For reward assignment we compare the WIP Balancing scheduler’s objective of 

the next shift’s aggregate with and without the action. Then the state, action and reward are 

then saved in an experience memory which has a LIFO structure with a given memory size. 

The DQN is fitted with a batch of experiences extracted from the experience memory and 

repeats the process until the end of episode. We used an architecture for the Neural Network 

as shown in Figure 3.4. The learning rate was set 0.001, and epsilon increases by 10−5 for 

every shift. 
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Figure 3.5: An illustration of our Deep Q Network 

 

 

 

 

3.2 FAB simulator 

The FAB simulator is composed of a WIP Balancing Scheduler and a Machine Disruption 

Model. Since real production data is not available for this study, we make a simulator that 

can represent the key elements of the Send FAB problem. We use a WIP Balancing 

Scheduler of Chung and Jang [4]. It decides the production quantities and machine usage 

on bottleneck layers. To deal with machine status on making a Send FAB decision, we made 

a Machine Disruption Model that models the status of the machine and its running time 

during a shift. 
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3.2.1 WIP Balancing Scheduler 

In this section we introduce the Mixed Integer Program (MIP) problem of Chung and Jang 

[4]. The scheduler decides how much to produce for each product and layer. It seeks to 

minimize lateness of production and starvation of machines. It considers constraints 

regarding to machine dedication and production capacity. It uses WIP status and machine 

status of the previous shift along with machine dedication, process time, and setup time as 

input data.  

Unlike the original MIP of Chung and Jang, we remove the constraints related to 

lithographic process groups. It is a constraint that prevents the number of assigned machines 

exceeding the number of masks for each layer. Unlike Chung and Jang, we do not assume 

the bottleneck process group is always a lithographic process group. We intend our model 

to be applied to any process group that currently is the bottleneck. Therefore, we remove 

the mask constraints from the original MIP. The following notations are used in this model. 

1) Data sets 

𝐼: Set of products. 

𝐽𝑖: Set of layers of product 𝑖, 𝑖 ∈ 𝐼. 

𝐾: Set of machines. 

𝑁: Set of weeks for demands. 

 

2) Input Data  

𝑆: Setup time of machine. 

𝑐𝑖𝑗: Flow time of product 𝑖, layer 𝑗. 

𝐶𝑖𝑗: Sum of flow time of product 𝑖 from layer 𝑗 to final layer. 

𝑝𝑖𝑗𝑘: Wafer processing time of product 𝑖, layer 𝑗 on machine 𝑘. 

𝑟𝑖𝑗𝑘: Initial processing layer index. If machine 𝑘 is processing product 𝑖, layer 

𝑗 at the beginning of the current shift, 𝑟𝑖𝑗𝑘 = 1; otherwise 𝑟𝑖𝑗𝑘 = 0. 

𝑏𝑖𝑗: WIP level of product 𝑖, layer 𝑗 at the beginning of the current shift. 

𝑒𝑖𝑗: WIP level of product 𝑖, layer 𝑗 at the end of the current shift. 



 

 

 

19 

𝑤𝑛: Target production volume for week 𝑛. 

𝑑𝑖𝑗: Layer demand for product 𝑖, layer 𝑗. 

ℎ𝑖𝑗𝑘: Toolset dedication. If product 𝑖 , layer 𝑗  can be processed at machine 𝑘 , 

ℎ𝑖𝑗𝑘 = 0. 

𝑢𝑖𝑗: Upper-limit production quantity (UPQ) for product 𝑖, layer 𝑗. 

𝑙𝑖𝑗: Current lateness(days) of WIP of product 𝑖, layer 𝑗  

 

3) Decision Variables 

𝑥𝑖𝑗𝑘: Production quantity for product 𝑖, layer 𝑗 from machine 𝑘 during current 

shift. 

𝑦𝑖𝑗𝑘: Production assignment. If 𝑥𝑖𝑗𝑘 > 0, 𝑦𝑖𝑗𝑘 = 1; otherwise 𝑦𝑖𝑗𝑘 = 0. 

 

The WIP Balancing problem is as follows. 

minimize 
 

∑∑(𝑢𝑖𝑗 − ∑ 𝑥𝑖𝑗𝑘

𝑘∈𝐾

)

𝑗∈𝐽𝑖∈𝐼

+ 𝐺 ∑ |𝑀𝐴𝑊𝑘 − 𝐴𝐴𝑊|

𝑘∈𝐾

  (3.13) 

subject to 
 

WPMij =
𝑒𝑖𝑗

∑ ℎ𝑖𝑗𝑘𝑘∈𝐾
 𝑖 ∈ 𝛪, 𝑗 ∈ 𝐽𝑖 (3.14) 

 
 

𝑀𝐴𝑊𝑘 = ∑∑𝑀𝑃𝑇𝑖𝑗ℎ𝑖𝑗𝑘

𝑗∈𝐽𝑖∈𝐼

 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾  (3.15) 

 
 

AAW =
∑ 𝑀𝐴𝑊𝑘𝑘∈𝐾

|𝐾|
  𝑘 ∈ 𝐾  (3.16) 

  ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 ≤ 𝑏𝑖𝑗  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  (3.17) 

  𝑥𝑖𝑗𝑘 ≤ 𝑀𝑦𝑖𝑗𝑘  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  (3.18) 

  ∑ ∑ 𝑥𝑖𝑗𝑘  𝑝𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝐼 + 𝑆(∑ ∑ 𝑦𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝐼 − 1) ≤ 𝐻  𝑘 ∈ 𝐾   (3.19) 

  𝑒𝑖𝑗 = 𝑏𝑖𝑗 + ∑ 𝑥𝑖(𝑗−1)𝑘𝑘∈𝐾 − ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾   𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 − {0}  (3.20) 

  𝑒𝑖0 = 𝑏𝑖0 + ∑ 𝑥𝑖|𝐽|𝑘𝑘∈𝐾 − ∑ 𝑥𝑖0𝑘𝑘∈𝐾   𝑖 ∈ 𝐼  (3.21) 

  ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 ≤ 𝑢𝑖𝑗  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖  (3.22) 

  𝑦𝑖𝑗𝑘 = 0    𝑖𝑓   ℎ𝑖𝑗𝑘 = 0   𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾  (3.23) 
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  𝑦𝑖𝑗𝑘 = 1    𝑖𝑓   𝑟𝑖𝑗𝑘 = 1   𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾  (3.24) 

  𝑥𝑖𝑗𝑘 ≥ 0  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾  (3.25) 

  𝑦𝑖𝑗𝑘 ∈ {0,1}  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾  (3.26) 

     

(3.13) is the objective function for the problem. It is consisted of two parts: 

∑ ∑ (𝑢𝑖𝑗 − ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 )𝑗∈𝐽𝑖∈𝐼  is the part to assure production on product 𝑖, layer 𝑗 be close 

to the Upper Production Quantity (UPQ) 𝑢𝑖𝑗 and 𝐺 ∑ |𝑇𝐴𝑊𝑘 − 𝐴𝐴𝑊|𝑘∈𝐾  is to minimize 

the variation on WIP per machine which can help prevent machine starvation for unbalanced 

WIP distribution. UPQ is defined as in Equation (3.27). ∑ 𝑑𝑖𝑙
|𝐽|
𝑙=𝑗  is the rolling demand, 

∑ 𝑏𝑖𝑙
|𝐽|
𝑙=𝑗+1  is the rolling WIP, and 𝑄𝑖𝑗 is the pulling demand which is the upcoming layer’s 

demand for 3 days. Therefore, UPQ is the WIP amount that is behind schedule plus the WIP 

that are soon coming into the buffer.   

𝑢𝑖𝑗 = ∑ 𝑑𝑖𝑙
|𝐽|
𝑙=𝑗 − ∑ 𝑏𝑖𝑙

|𝐽|
𝑙=𝑗+1 + 𝑄𝑖𝑗    (3.27) 

For the WIP balancing among machines, the objective minimizes the difference between the 

average available WIP (𝐴𝐴𝑊) and each machine’s average WIP (𝑀𝐴𝑊𝑘). Equations (3.14), 

(3.15), and (3.16) shows how the ending inventory (𝑒𝑖𝑗) and machine dedication (ℎ𝑖𝑗𝑘) is 

used to define these concepts. 

Equation (3.17) is the production quantity constraint that makes production quantity not to 

exceed the available beginning WIP. Equation (3.18) is the machine setup constraint that 

makes 𝑦𝑖𝑗𝑘 > 0  if there is production during a scheduled shift. Where 𝑀  is a large 

number. Equation (3.19) is the machine time constraint that makes total process time and 

setup time not exceed a shift. Equation (3.20), (3.21) are the balance equation constraints. 

The ending inventory of a layer is the sum of beginning inventory and incoming WIP minus 

the WIP produced in the layer this shift. The final layer production is released back into the 

first layer and makes the relation as in Equation (3.21). The model assumes a fixed total 

WIP release policy and therefore releases the same amount produced at the last layer. 

Equation (3.22) is the UPQ constraint that prevents production exceeding UPQ. Equation 

(3.23) is the machine dedication constraint that blocks unavailable layer-machine 
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production. Equation (3.24) is the current processing layer constraint that makes the running 

status continue from the previous shift. If a machine was running in the previous state, the 

machine starts in a usage status for the current shift. Equation (3.25), (3.26) are the 

constraints on the decision variables.  

 

3.2.2 Machine Disruption Model  

The scheduler itself, cannot work as a simulator. The solution of the scheduler is a scheduled 

quantity, to get the actual production results we need a disruption scenario. In order to adapt 

a disruption scenario, we need to generate the next status and the running rate during the 

period when given the initial status. We assume the machine status follows a Continuous 

Time Markov Chain (CTMC) with two states ‘Up’ and ‘Down’. We define the machine 

status at shift t as 𝑋(𝑡) . The transition rate of ‘Up’ becoming ‘Down’ is defined 

as  𝑃{𝑋(𝑡 + 𝑑𝑡) = 𝐷𝑜𝑤𝑛|𝑋(𝑡) = 𝑈𝑝} = 𝜆1𝑑𝑡 . The transition rate of ‘Down’ becoming 

‘Up’ is defined as 𝑃{𝑋(𝑡 + 𝑑𝑡) = 𝑈𝑝|𝑋(𝑡) = 𝐷𝑜𝑤𝑛} = 𝜆2𝑑𝑡. The transition diagram is 

shown in Figure 3.5. 

 

 

Figure 3.6: An illustration of transition diagram of machine status 
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Figure 3.7: An illustration of how the CTMC provides disruption scenarios 

 

 

The purpose of the disruption model is to generate the machine status of the next shift and 

the running rate during the shift. Since all machines follow a CTMC we use the initial 

machine status for each shift 𝑡 and sample interarrival times to generate the next initial 

status 𝑚𝑘(𝑡+1)  and the running rate 𝑟𝑘𝑡. Figure 3.6 shows how the CTMC provides the 

disruption scenarios on a shift time basis. Here, 𝑚𝑘𝑡  is the status of machine 𝑘  at the 

beginning of shift 𝑡,   and 𝑟𝑘𝑡 is the running rate during shift 𝑡.  

We can acquire 𝑚𝑘(𝑡+1), 𝑟𝑘𝑡 by sampling interarrival times for given current status of the 

machine. The upper part of Figure 3.6 shows that every start of a shift, we sample the 
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corresponding interarrival random variable 𝑈~exp(𝜆1) 𝑜𝑟 𝐷~exp (𝜆2)  and seize the 

machine status when it reaches the next shift. The following algorithm shows the process of 

sampling running time and recovery time according to the given initial status. It keeps 

sampling until the remaining time of the current shift becomes zero. The last status reaching 

the next shift becomes the initial shift for the next shift. Running rate 𝑟𝑘𝑡  which is the 

cumulated running time during a shift, can be given by the sum of running time throughout 

the repeated process. The Pseudo code is as follows. 

Algorithm 2 Sampling from CTMC  

𝐒𝐀𝐌𝐏𝐋𝐄𝐂𝐓𝐌𝐂(𝑆, 𝑟, 𝑐)  
    𝐢𝐟 𝑆 = 𝑈𝑃 𝐭𝐡𝐞𝐧   
        𝑢𝑝𝑡𝑖𝑚𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑒𝑥𝑝 (𝜆1)     
        𝐢𝐟 𝑢𝑝𝑡𝑖𝑚𝑒 < 𝑟 𝐭𝐡𝐞𝐧  
            𝑐 ← 𝑐 + 𝑢𝑝𝑡𝑖𝑚𝑒   
            𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑒𝑥𝑝(𝜆2)  
            𝐢𝐟 𝑢𝑝𝑡𝑖𝑚𝑒 +  𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 > 𝑟 𝐭𝐡𝐞𝐧  
                𝑟𝑒𝑡𝑢𝑟𝑛 [𝐷𝑂𝑊𝑁, 𝑐]  
            𝐞𝐥𝐬𝐞   
                𝑟𝑒𝑡𝑢𝑟𝑛 𝐒𝐀𝐌𝐏𝐋𝐄𝐂𝐓𝐌𝐂(𝑈𝑃, 𝑟 − 𝑢𝑝𝑡𝑖𝑚𝑒 − 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒, 𝑐)  
        𝐞𝐥𝐬𝐞    
            𝑐 ← 𝑐 + 𝑟  
            𝑟𝑒𝑡𝑢𝑟𝑛 [UP, c]  
    𝐞𝐥𝐬𝐞   
        𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑒𝑥𝑝 (𝜆2)     
        𝐢𝐟 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 > 𝑟 𝐭𝐡𝐞𝐧  
            𝑟𝑒𝑡𝑢𝑟𝑛 [𝐷𝑜𝑤𝑛, 𝑐]  
        𝐞𝐥𝐬𝐞  
            𝑢𝑝𝑡𝑖𝑚𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑒𝑥𝑝 (𝜆1)     
            𝐢𝐟 𝑢𝑝𝑡𝑖𝑚𝑒 + 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 > 𝑟 𝐭𝐡𝐞𝐧  
                𝑐 ← 𝑐 + 𝑟 − 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒   
                𝑟𝑒𝑡𝑢𝑟𝑛 [𝑈𝑃, 𝑐]  
            𝐞𝐥𝐬𝐞  
                𝑟𝑒𝑡𝑢𝑟𝑛 𝐒𝐀𝐌𝐏𝐋𝐄𝐂𝐓𝐌𝐂(𝑈𝑃, 𝑟 − 𝑢𝑝𝑡𝑖𝑚𝑒 − 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒, 𝑐)   

 

𝑚𝑘(𝑡+1), 𝑟𝑘𝑡 = 𝐒𝐀𝐌𝐏𝐋𝐄𝐂𝐓𝐌𝐂(𝑚𝑘𝑡, 1, 0)  
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Instead of controlling transition rate values, we decided to use a combination of probabilities 

(𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟). It is because our model requires the running rate for the current shift and 

the ending status at the end of the shift. We wanted to assign a probability of machine 

running more than 1 shift given the initial status ‘Up’, along with the probability of machine 

taking less than 1 shift to recover from the initial ‘Down’ status. Equations bellow explain 

the relation between 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 and 𝜆1, 𝜆2. 𝑈,𝐷 are the interarrival times of ‘Up’ to 

‘Down’ and ‘Down’ to ‘Up’ respectively. By our defined CTMC each follows an exponential 

distribution with 𝜆1, 𝜆2 respectively.  

𝑡𝑟𝑢𝑛 = 𝑃{𝑈 ≥ 1} =  ∫ 𝜆1𝑒
−𝜆1𝑡𝑑𝑡

∞

1

 (3.27) 

𝜆1 = − ln  (𝑡𝑟𝑢𝑛) (3.28) 

𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 = 𝑃{𝐷 ≤ 1} =  ∫ 𝜆2𝑒
−𝜆2𝑡𝑑𝑡

1

0

 (3.29) 

𝜆2 = −ln (1 − 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟) (3.30) 

 

We have composed total 9 combinations of (𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟)  to experiment on various 

machine stability conditions. The combination is the product set of {0.5,0.7,0.9} and 

{0.5,0.7,0.9}. Table 3.1 shows the corresponding 𝜆1, 𝜆2,  Mean Time Between Failures 

(MTBF), Mean Time To Recovery (MTTR) of corresponding values of 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 . 

Some cases such as 𝑡𝑟𝑢𝑛  having value 0.5 might be unrealistic, however, we tried to 

compare the performance of RL from the human imitating policy in various machine 

stability conditions. 

 

Table 3.1: 𝜆1, 𝜆2, MTBF, MTTR for corresponding 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 values 

 

𝑡𝑟𝑢𝑛 𝜆1 MTBF  𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  𝜆2  MTTR 

0.5 0.69 1.44  0.5 0.69 1.44 

0.7 0.36 2.80  0.7 1.20 0.83 

0.9 0.11 9.49  0.9 2.30 0.43 
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In order to check the effect of various 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 combinations on the simulator, we 

have sampled the average running rate 𝑟𝑘𝑡 given the initial state 𝑚𝑘𝑡 (Up or Down) using 

Algorithm2. The results are shown in Table 3.2. We also approximated the probability of 

the next shift being ‘Up’ given the initial machine status. The results were calculated by 

calculating the proportion of ‘Up’ among the 10,000 samples for each case.  

 

Table 3.2: Average running rate 𝑟𝑘𝑡 observed for corresponding 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 values 

 

𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  

Average Running Rate 

𝐸[𝑟𝑘𝑡|𝑚𝑘𝑡] 

𝑚𝑘𝑡 = 𝑈𝑝  𝑚𝑘𝑡 = 𝐷𝑜𝑤𝑛    

0.5 

0.5 0.66 0.21 

0.7 0.74 0.29 

0.9 0.88 0.44 

0.7 

0.5 0.78 0.29 

0.7 0.84 0.4 

0.9 0.93 0.58 
 0.5 0.87 0.36 

0.9 0.7 0.91 0.52 

  0.9 0.96 0.71 

 

Table 3.3: Probability of next shift being ‘Up’ for corresponding 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 values 

 

𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  

Probability of next shift being ‘Up’ 

𝑃[𝑚𝑘(𝑡+1) = 𝑈𝑝 |𝑚𝑘𝑡] 

𝑚𝑘𝑡 = 𝑈𝑝  𝑚𝑘𝑡 = 𝐷𝑜𝑤𝑛    

0.5 

0.5 0.52 0.47 

0.7 0.66 0.66 

0.9 0.87 0.87 

0.7 

0.5 0.68 0.57 

0.7 0.78 0.76 

0.9 0.92 0.92 
 0.5 0.81 0.65 

0.9 0.7 0.87 0.83 

  0.9 0.96 0.95 
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3.3 Reinforcement Learning Approach 

3.3.1 Markov Decision Process and Reinforcement Learning 

In Reinforcement Learning (RL), the problem to resolve is described as a Markov Decision 

Process (MDP). Since the theoretical results of RL rely on the MDP description, the more 

the problem is acceptable as a MDP problem, the better RL would work as a good solution. 

A MDP is composed of objects < 𝑇, 𝑆, 𝐴, 𝑃(∙ |𝑠, 𝑎), 𝑅(𝑠, 𝑎) > where 𝑇 is a discrete time 

horizon, 𝑆  is a state space, 𝐴  is an action space, 𝑃(∙ |𝑠, 𝑎)  are the state transition 

probabilities and 𝑅(𝑠, 𝑎) is a reward function. For our problem to be suitable for a MDP 

problem, we must assume the Markov property in Equation (3.31) applies to the transition 

probabilities. This means the transition to the next period state only depends on the previous 

state and action.  

𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 , 𝑎𝑡) = 𝑃(𝑠𝑡+1 = 𝑠′| 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … 𝑠0, 𝑎0)  (3.31) 

The goal of a MDP is to find a good policy, which is a function 𝜋 ∶ 𝑆 → 𝐴 that specifies 

the action 𝜋(𝑠) to choose given state 𝑠. A good policy is to maximize the expected sum of 

random future rewards. With a discount factor satisfying 0 ≤ 𝛾 ≤ 1, the goal would be to 

maximize 𝑉𝜋(𝑠) =  𝐸𝜋[∑ 𝛾𝑡  𝑅𝑡+𝑗+1| 𝑆𝑡 = 𝑠)∞
𝑗=0 ]. The policy that maximizes this function 

is called the optimal policy for the MDP and is denoted as 𝜋∗. 

When we know the transition probabilities 𝑃(𝑠′|𝑠, 𝑎)  𝑓𝑜𝑟  ∀𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴 , we solve it 

through Dynamic Programming. Finding the optimal policy goes under policy evaluation 

and policy iteration. Policy evaluation evaluates all state values represented as the state 

value function 𝑉𝜋(𝑠) and policy iteration improves the policy by updating the policy 𝜋 →

 𝜋′, 𝑤ℎ𝑒𝑟𝑒 𝜋′(𝑠) = 𝑔𝑟𝑒𝑒𝑑𝑦(𝑣𝜋). This process is called value iteration and it is known to 

converge to an optimal policy. By Richard E. Bellman, this relation was shown as an 

equation called Bellman Optimality Equation. The Bellman Optimality Equation for value 

function and action value function is represented in Equation (3.32), (3.33) respectively.  

𝑉𝜋∗(𝑠) =  ∑ 𝑃(𝑠′|𝑠, 𝑎) (𝑅(𝑠, 𝑎) +  𝛾𝑉𝜋∗(𝑠′))𝑠′∈𝑆   (3.32) 

𝑄𝜋∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′∈𝐴

𝑄𝜋∗(𝑠′, 𝑎′)  (3.33) 

On the other hand, if we do not know the dynamics of the environment, we use RL. RL 
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algorithms are based on the fact that we do not know the transition probabilities. Therefore, 

it updates the policy based on sampled experiences. The Monte Carlo (MC) method samples 

the whole return for each episode and uses it to evaluate the value function. In other words, 

it replaces the expectation on 𝑉𝜋(𝑠) or 𝑄𝜋(𝑠, 𝑎) to an empirical mean return. Temporal 

Difference method does not sample every reward to the end of an episode. Instead, it 

samples few steps ahead and updates the value function 𝑉𝜋(𝑆𝑡) or action value function 

𝑄𝜋(𝑆𝑡 , 𝐴𝑡) towards an estimated return 𝑅𝑡+1 + 𝛾𝑉𝜋(𝑆𝑡+1)  or 𝑅𝑡+1 +  𝛾𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1) . 

This method has benefit on the fact that it can learn while experiencing. One well known 

example for TD method is 𝑆𝐴𝑅𝑆𝐴. The algorithm works by sampling rewards one step 

ahead and uses the estimated return to evaluate and improve the policy. For policy iteration, 

it uses epsilon greedy method. The algorithm is as follows.  

Algorithm 3 SARSA 

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝑄(𝑠, 𝑎) arbitrarily  
𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐞𝐩𝐢𝐬𝐨𝐝𝐞:  
    𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝑆  
    𝐂𝐡𝐨𝐨𝐬𝐞 𝐴 from 𝑆 using policy from Q(ϵ − greedy)  
       𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐞𝐩𝐢𝐬𝐨𝐝𝐞: 
            𝐓𝐚𝐤𝐞 action 𝐴, 𝐨𝐛𝐬𝐞𝐫𝐯𝐞 𝑅, 𝑆′  
            𝐂𝐡𝐨𝐨𝐬𝐞 𝐴′ from 𝑆′ using policy derived from 𝑄(𝜖 − greedy)  
            𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼(𝑅 + 𝛾 𝑄(𝑆′, 𝐴′) − 𝑄(𝑆, 𝐴))  
            𝑆 ← 𝑆′; 𝐴 ← 𝐴′;  
            until 𝑆 is terminal   

 

In 𝑆𝐴𝑅𝑆𝐴, the maximum reward for the next state is not necessarily used for updating the 

Q values. Instead, a new action is selected using the same policy that determined the original 

action. This makes the policy exploit more the greedy selections. Algorithms that set the 

behavior policy and target policy same are called On-policy algorithms. The opposite 

concept is Off-policy. It overcomes the low exploration level and can learn about the optimal 

policy while following an exploratory policy. By separating the behavior policy and the 

target policy the agent can explore more trajectories. 𝑄 learning is the representative Off-

policy algorithms and the pseudo code is as follows. 
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Algorithm 4 Q-Learning 

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝑄(𝑠, 𝑎) arbitrarily  
𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐞𝐩𝐢𝐬𝐨𝐝𝐞:  
    𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝑆  
       𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐞𝐩𝐢𝐬𝐨𝐝𝐞:  
            𝐂𝐡𝐨𝐨𝐬𝐞 𝐴 from 𝑆 using policy derived from 𝑄(𝜖 − greedy)  
            𝐓𝐚𝐤𝐞 action 𝐴, 𝐨𝐛𝐬𝐞𝐫𝐯𝐞 𝑅, 𝑆′  
            𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼(𝑅 + 𝛾 max

𝐴′
𝑄(𝑆′, 𝐴′) − 𝑄(𝑆, 𝐴))  

            𝑆 ← 𝑆′  
            until 𝑆 is terminal   

 

Both 𝑆𝐴𝑅𝑆𝐴 and 𝑄-learning are tabular methods and the curse of dimension can happen 

with large problems. It is because we need to save and read all updating Q values in a table. 

Therefore, for large environments such as FAB environment, requires a method called Value 

Function Approximation. 

𝑉𝜋̂(𝑠, 𝑤)  ≈ 𝑉𝜋(𝑠)  (3.34) 

𝑄𝜋̂(𝑠, 𝑎, 𝑤)  ≈ 𝑄𝜋(𝑠, 𝑎) (3.35) 

∇𝑤𝐽(𝑤) = (
𝜕𝐽(𝑤)

𝜕𝑤1
,
𝜕𝐽(𝑤)

𝜕𝑤2
, … ,

𝜕𝐽(𝑤)

𝜕𝑤𝑛
)     𝑓𝑜𝑟  |𝑤| = 𝑛 (3.36) 

∇w = −
1

2
𝛼∇𝑤𝐽(𝑤) (3.37) 

𝐽(𝑤) = 𝐸𝜋 [(𝑉𝜋(𝑠) − 𝑉𝜋̂(𝑠, 𝑤))
2
] (3.38) 

∇𝑤 = 𝛼𝐸𝜋[(𝐺𝑡 − 𝑉𝜋̂(𝑠, 𝑤)) ∇𝑤𝑉𝜋̂(𝑠, 𝑤)] (3.39) 

∇𝑤 = 𝛼𝐸𝜋[(𝑅𝑡+1 + 𝛾𝑉𝜋̂(𝑆𝑡+1, 𝑤) − 𝑉𝜋̂(𝑠, 𝑤))∇𝑤𝑉𝜋̂(𝑠, 𝑤)] (3.40) 

Approximating the value function is done by parameterizing the value function as in 

Equation (3.34) and (3.35). The function can be in any regression form such as linear 

regression, Random Forests, Neural Networks etc. The parameter vector 𝑤  is updated 

through gradient descent on the loss function 𝐽(𝑤) . The gradient of the loss function, 

∇𝑤𝐽(𝑤) is shown in Equation (3.21). The gradient for the parameter vector ∇𝑤 is defined 

as in Equation (3.22). The loss function is defined as in Equation (3.38) which leads to 

parameter update of MC, TD to be done as in Equation (3.39), (3.40) respectively.  
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3.3.2 Deep Q Network (DQN) 

DQN is a Deep RL algorithm that uses Neural Networks as the Q value approximation 

function. This study refers to Minh et al (2013), which introduced Deep Neural Networks 

as a Q value approximation function for learning policies of playing Atari games. Since the 

state of game environments are in forms of image frames, using Convolution Neural 

Networks helped to understand the state of the player at some specific moment. The 

algorithm is based on 𝑄-learning except the fact that they use an approximation function. 

The pseudo code is as follows. 

Algorithm 5 Deep Q Network with Experience Replay 

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 replay memory 𝐷 to capacity 𝑁  
𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 action value function 𝑄 with random weights  
𝐅𝐨𝐫 episode = 1,𝑀:  
    𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 sequence 𝑠1 = {𝑥1} and preprocessed sequence 𝜙

1
= 𝜙(𝑠1)  

   𝐅𝐨𝐫 𝑡 = 1, 𝑇:  
            With probability 𝜖 select a random action 𝑎𝑡  
            otherwise select 𝑎𝑡 = max

𝑎
𝑄∗(𝜙(𝑠𝑡), 𝑎; 𝜃)  

            𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡  𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒  𝑟𝑡  , 𝑥𝑡+1  
            Set st+1 = 𝑠𝑡 , 𝑎𝑡 , 𝑥𝑡+1 and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1)  
            Store transition (𝜙𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝜙𝑡+1) in 𝐷  

            Sample random minibatch of transitions (𝜙𝑗, 𝑎𝑗, 𝑟𝑗, 𝜙𝑗+1) from 𝐷  

            Set 𝑦𝑗 = {
𝑟𝑗                                                          for terminal 𝜙𝑗+1

𝑟𝑗 + 𝛾 max
𝑎′

𝑄(𝜙𝑗+1, 𝑎
′; 𝜃)       for nonterminal 𝜙𝑗+1

  

            Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝜙𝑗, 𝑎𝑗; 𝜃))
2
   

 

They introduced a method called Experience Replay that stores experiences in a memory 

and sample batches to update the target policy. This was to make sure that the training data 

is independent and identically distributed, which is a fundamental requirement for 

Stochastic Gradient Descent optimization. Since sequentially learning from a sequence of 

an experience causes correlation among training data, by creating a large buffer of 

experience and randomly sampling a subset of these experiences help keep samples 

independent. 
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Chapter 4 

 

Computational Experiments 

 

We compared the performance of our RL policy and human imitated policy (HIP). Average 

throughput and machine efficiency were used as the performance measures. The two 

policies are described in Table 4.1. 𝑄̂  is the trained Deep Q Network and 𝑙𝑖𝑗𝑡  is the 

lateness for product 𝑖, layer 𝑗 at shift 𝑡. 

 

Table 4.1: Policy of RL and HIP 

 

Policy Product, Layer Quantity 

RL product, layer of 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄̂(𝑠𝑡, 𝑎) quantity of 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄̂(𝑠𝑡, 𝑎) 

HIP 𝑎𝑟𝑔𝑚𝑎𝑥𝑖,𝑗𝑙𝑖𝑗𝑡 𝑚𝑖𝑛(𝑙𝑖𝑗𝑡, 𝑀) 

 

4.1 Experimental Settings  

The virtual FAB to be used in the experiment is a small FAB with two products, five layers, 

and ten machines. The size of the virtual FAB was chosen to be small since the WIP 

Balancing Scheduler takes a long time (15 minutes per shift for a FAB with four products, 

25 layers, and 50 machines) for solving an optimal solution for one shift. Considering the 

required number of shifts to learn the Q function approximator and that the purpose of our 

research is to show the existence of a better policy than human decision concluded us that 

it will be better to experiment in a small FAB environment.  
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The weekly demand was sampled from a normal distribution with mean 4,000 wafers/week 

and standard deviation 500. The process time for each product and layer was set equal as 

300 seconds per wafer. The setup time was set 10 minutes/setup. The initial WIP at the 

beginning of every experiment was set 𝑅𝑑𝑙  where 𝑑𝑙  is the layer demand and 

𝑅~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0.5,0.7). The machine running status 𝑟𝑖𝑗𝑘 for the initial shift was set zero. 

The machine dedication ℎ𝑖𝑗𝑘 was generated by randomly assigning layers to have 5 or 6 

machines available to process. 

We used the Python-MIP package to solve the WIP Balancing Scheduling problem and 

Pytorch package to build and train DQN. Experiments were performed on a computer with 

Ubuntu 18.04 as operating system, processor Intel(R) Core(TM) i7-7700, GeForce gtx 1080 

and 16G of RAM. 

  

4.2 Test Instances 

The experiment was done in the following test instance sets shown in Table 4.2. They were 

generated to compare the results in different disruption scenarios and different machine 

dedication scenarios. The disruption scenarios were generated by using the product of 

{0.5, 0.7, 0.9} itself as the space for (𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟). Here we fixed the Machine Numbers 

Per Layer (MNPL) to {5,6}. For comparing various machine dedication scenarios, we 

selected MNPL from {2 𝑜𝑟 3, 5 𝑜𝑟 6, 8 𝑜𝑟 9} and (𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟)  from 

{(0.5,0.5), (0.7,0.7)}. 
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Table 4.2: Description of test instances 

 

 

  

Set 𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  𝑀𝑁𝑃𝐿 

1 0.5 0.5 5 or 6 

2 0.5 0.7 5 or 6 

3 0.5 0.9 5 or 6 

4 0.7 0.5 5 or 6 

5 0.7 0.7 5 or 6 

6 0.7 0.9 5 or 6 

7 0.9 0.5 5 or 6 

8 0.9 0.7 5 or 6 

9 0.9 0.9 5 or 6 

10 0.9 0.9 5 or 6 

11 0.9 0.9 5 or 6 

12 0.9 0.9 5 or 6 

13 0.5 0.5 2 or 3 

14 0.7 0.7 2 or 3 

15 0.5 0.5 5 or 6 

16 0.7 0.7 5 or 6 

17 0.5 0.5 8 or 9 

18 0.7 0.7 8 or 9 
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4.3 Test Results 

We performed two tests for our thesis. First was to show that our policy can perform better 

than human imitated policy (HIP). This was performed in various machine disruption 

scenarios. Secondly, by applying various machine utilization levels we showed that the more 

complicated the layer-machine relation is makes HIP perform worse than not applying it. 

Each performance test was done by running 1,000 tests for each test instances. 

Test results for different machine scenarios are shown in Table 4.1, Table 4.2. We compared 

the average throughput and average machine efficiency for each policy. This verifies that 

the proposed method RL is more effective than HIP.  

 

Table 4.3: Average Throughput comparison by different machine disruption scenarios 

 

 

 

 

 

 

The result shows that RL policy performs better than HIP in terms of average throughput 

and machine efficiency both. The throughput of RL was in average 30% better than HIP and 

the efficiency was better in average by 1.02%. We performed a two-sided independent 

samples t-test in order to see the mean difference of efficiency between each policy. Table 

4.4 and Table 4.5 compare RL with HIP and No SendFAB in respect to machine efficiency. 

The result tells RL and HIP have statistically significant mean difference of machine 

efficiency. RL and No SendFAB, however, had similar machine efficiency results. 

Considering the fact that Send FAB deteriorates its own machine efficiency by using other 

𝑡𝑟𝑢𝑛  𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  
Throughput (wf/shift) 

RL HIP RL↔HIP(%) No SendFAB 

0.5 

0.5 83.59 48.96 70.7 52.78 

0.7 92.87 67.54 37.5 68.31 

0.9 113.70 91.23 24.6 87.77 

0.7 

0.5 92.97 68.50 35.7 69.62 

0.7 106.74 82.57 29.3 80.18 

0.9 117.09 99.50 17.7 93.01 

 0.5 115.87 84.92 36.4 83.02 

0.9 0.7 119.83 93.8 27.7 88.86 

 0.9 121.63 105.37 15.4 98.4 
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lines’ machines, it appeared that RL policy prevents this effect by improving WIP balancing 

among machines. 

 

Table 4.4: Average Efficiency comparison between RL and HIP  

by different machine disruption scenarios 

 

𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  
Efficiency(%) 

RL HIP Diff t p  

0.5 

0.5 45.36 44.56 0.8 6.56 0.000 

0.7 60.69 59.73 0.96 4.01 0.000 

0.9 82.95 81.87 1.08 6.46 0.000 

0.7 

0.5 61.98 60.77 1.21 4.42 0.000 

0.7 75.15 73.9 1.25 11.59 0.000 

0.9 89.98 89.16 0.82 6.01 0.000 
 0.5 77.07 75.95 1.12 4.12 0.000 

0.9 0.7 86.11 84.83 1.28 7.06 0.000 

  0.9 94.57 93.88 0.69 18.07 0.000 

 

 

Table 4.5: Average Efficiency comparison between RL and No Send FAB 

by different machine disruption scenarios 

 

𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟  
Efficiency(%) 

RL No SendFAB Diff t p  

0.5 

0.5 45.36 45.27 0.09 -0.07 0.950 

0.7 60.69 60.72 -0.03 -0.14 0.890 

0.9 82.95 82.99 -0.04 -0.28 0.780 

0.7 

0.5 61.98 62.15 -0.17 -0.66 0.510 

0.7 75.15 75.03 0.12 -0.45 0.650 

0.9 89.98 90.39 -0.41 -9.87 0.000 
 0.5 77.07 77.07 0 0.008 0.990 

0.9 0.7 86.11 86.16 -0.05 -0.32 0.750 

  0.9 94.57 94.95 -0.38 -6.84 0.000 
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It showed that the throughput improvement was higher when the machine was more unstable 

(lower values of 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟).  The average throughput by different 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 

groups are shown in Figure 4.1. 

 

 Figure 4.1: Performance by 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 

 

We have also discovered that the performance improvement gets bigger when the machine 

is in a more unstable configuration. The average performance improvement of throughput 

is show in Figure 4.2. RL was more beneficial as the machine became more unstable. 
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Figure 4.2: Throughput improvement by different levels of 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 

The results for applying different machine utilization is shown in Figure 4.3. The result 

shows that when machine utilization increases the performance relative to policy without 

Send FAB increases. This indicates that HIP harms the performance and our policy improves 

the performance when the layer-machine relation gets more complicated. 

 

Figure 4.3: Throughput against No Send FAB by different levels of machine utilization 
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Chapter 5 

 

Conclusions 

 

Through experiments upon different test instances, we have seen that a new policy rather 

than a decision policy based on human experience is needed. We also checked that the more 

complex the system is, and the more unstable the machines are leads to a greater 

performance improvement when using our policy. This indicates that in a real FAB 

environment which is much more complex with more components to consider, would be 

able to benefit from applying our framework.  

Our thesis provides a guideline for applying Reinforcement Learning to the Send FAB 

problem. It can be easily applied for any FAB environment. A FAB production manager can 

apply their own FAB scheduler and machine disruption model and build their own FAB 

environment.  

Our FAB environment, however, assumes that the offering line receives all the required 

quantity unless it exceeds a limit. The research on the Send FAB problem can be expanded 

by modeling several lines. Our thesis assumes that the offering line of Send FAB accepts 

the whole requested amount unless it is below the maximum quantity available. In reality, 

however, the managers of each line negotiate the amount that can be processed. In other 

words, the offering line checks the capacity status of their own line and decides an amount 

that would benefit in machine efficiency while not harming their other production 

performances. Therefore, modeling several lines together with their own bottleneck layers   

could help develop a full automation on Send FAB contracts without any negotiation 

between line managers. 
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국문초록 

 

 
반도체공장은 설비 용량의 불안정성 때문에 초기 계획하여 할당된 설비 

용량에 비해 일시적으로 생산 용량이 부족해지는 경우가 발생한다. 이를 

대응하기 위해 생산 담당자들은 다른 라인에 호환가능한 설비를 공유하는 

것을 요청하는데, 가능한 많은 양의 WIP에 대한 요청을 한다. 이러한 

의사결정은 공정이 순차적으로 연결된 점 때문에 라인 전체 측면에서는 

오히려 WIP Balancing을 악화시킬 수 있다. 특히 해당 공정군이 병목공정군인 

경우 더 문제가 된다. 따라서 본 연구에서는 병목공정군을 중심으로 한 WIP 

Balancing scheduler를 이용하여 FAB simulator를 만든 뒤 이러한 환경속에서 

강화학습 알고리즘으로 학습한 생산 용량 확장 정책을 제안한다. 이러한 

정책은 throughput, machine efficiency 측면에서 사람의 의사결정을 모방한 

정책보다 좋은 성과를 보였다. 
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