

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Temporary Capacity Expansion Policy in

Semiconductor FAB using Reinforcement Learning

반도체 공장 내 일시적인 생산 용량 확장 정책 제안

2020 년 12 월

서울대학교 대학원

산업공학과

이 희 재

i

Abstract

Temporary Capacity Expansion Policy in

Semiconductor FAB using Reinforcement Learning

Hee Jae Lee

Department of Industrial Engineering

The Graduate School

Seoul National University

Due to the instability of the capacity of the semiconductor process, there are cases in

which the production capacity temporarily becomes insufficient compared to the capacity

allocated by the initial plan. To respond, production managers require capacity to other

lines with compatible equipment. This decision can have an adverse effect on the entire

line because the processes are connected in a sequence. In particular, it becomes more

problematic when the machine group is a bottleneck process group. Therefore, this study

proposes a capacity expansion policy learned by reinforcement learning algorithms in this

environment using a FAB simulator built upon a WIP balancing scheduler and a machine

disruption model. These policies performed better than policies imitating human decision

in terms of throughput and machine efficiency.

Keywords: Capacity Management, Reinforcement Learning, Industrial engineering

Student Number: 2019-23474

ii

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

Chapter 1 Introduction 1

1.1 Problem Description ·· 3

1.2 Research Motivation and Contribution ··· 5

1.3 Organization of the Thesis ··· 5

Chapter 2 Literature Review 6

2.1 Review on FAB scheduling ·· 6

2.2 Review on Dynamic production control ·· 7

Chapter 3 Proposed Approach and Methodology 8

3.1 Proposed Approach ··· 8

3.2 FAB Simulator ·· 17

3.3 Reinforcement Learning Approach ··· 26

Chapter 4 Computational Experiments 30

4.1 Experiment settings ·· 30

4.2 Test Instances ··· 31

4.3 Test Results ··· 33

iii

Chapter 5 Conclusions 37

Bibliography 38

국문초록 39

iv

List of Tables

Table 3.1 𝜆1, 𝜆2, MTBF, MTTR for corresponding 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 values ························ 24

Table 3.2 Average running rate 𝑟𝑘𝑡 observed for 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 values ························· 25

Table 3.2 Probability of next shift being ‘Up’ for 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 values·························· 25

Table 4.1 Policy of RL and HIP ··· 30

Table 4.2 Description of test instances ·· 32

Table 4.3 Average throughput comparison by different machine disruption scenarios ········· 33

Table 4.4 Average efficiency comparison between RL and HIP ··································· 34

Table 4.5 Average efficiency comparison between RL and No Send FAB ······················· 34

v

List of Figures

Figure 1.1 An illustration of how Send FAB works ··· 3

Figure 3.1 An illustration of layers ·· 9

Figure 3.2 An illustration of Send FAB action changing FAB aggregate ························· 12

Figure 3.3 An illustration of how transition probabilities are calculated ························· 14

Figure 3.4 An illustration of learning the Send FAB policy ·· 16

Figure 3.5 An illustration of our Deep Q Network ·· 17

Figure 3.6 An illustration of transition diagram of machine status ································ 21

Figure 3.7 An illustration of transition how CTMC provides disruption scenarios ············· 22

Figure 4.1 Performance by 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 ·· 35

Figure 4.2 Throughput improvement by different levels of 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 ······················· 36

Figure 4.3 Throughput against No Send FAB by different levels of machine utilization ······· 36

1

Chapter 1

Introduction

Semiconductor factories are consisted of several lines which are classified by the product

type it manages to produce. Each line is assigned its own Work In Process (WIP) and

machines to manage. When a monthly production target is given at the company-wide

production planning stage, the production target for each line is determined based on the

target amount for each product. If it is difficult to achieve the production target, the

affiliation of the machines may be changed on a weekly and monthly basis through

discussions between lines. Reallocation of production capacity is done by reassigning the

managing line of each machine. It is possible because most machines are compatible for

different product types and the total FAB is connected by Over Head Transports (OHT) and

trucks.

Even after such capacity redistribution, cases of insufficient capacity occur. This is because

semiconductor facilities frequently experience unexpected disruptions that are difficult to

predict. When such disruption occurs in the bottleneck process, additional capacity

expansion is required because waiting WIP can be maintained at a high level for a long time.

To cope with this, production managers make a decision to temporarily expand production

capacity in shift units.

In this thesis, we consider the problem of temporarily sharing capacity of other lines which

is called Send FAB. Send FAB is a major task that is required and requested frequently for

production managers in semiconductor FABs. The decision, however, is made by the

managers’ experiences on the WIP status. They seek to request as much capacity as possible

to the amount they think they need. They struggle to release waiting WIP as fast as possible.

The more they experienced a tight production schedule, their belief on maximizing the

quantity is stronger.

2

Send FAB decisions should be made very carefully. It is because semiconductor FABs has

properties such as complicated sequence of re-entrant process, multi-objective system, and

highly unpredictable machine status. The best way to make a careful decision is to consider

all status regarding to the production objective. It is why our thesis introduces a Markov

Decision Process. The fact that managers cannot see WIP status, machine status, and

machine dedication all together made us think of creating a policy that considers all these

states as an input. The stochastic nature of FAB aggregates limits our model to be solved by

deterministic optimization models.

The environment of our Send FAB problem is built on a FAB simulator. Since the real FAB

data is not available, we try to conform a FAB environment containing the most important

features of Send FAB problem. The simulator consists of a scheduler that decides production

schedule every shift, and a disruption model of machines to model machine uncertainty. The

simulator reads the beginning WIP and machine status of each shift and returns the ending

WIP and machine status.

We use Reinforcement Learning to solve MDP on our FAB environment. Since the problem

with continuous state variables make the state space dimension infinite, and the transition

probability is not deterministic, we cannot use tabular methods. Instead, we use a function

approximation approach, Deep Q Network. We train the Deep Q Network in several FAB

settings that are distinguished by different machine disruption scenarios and machine

dedication scenarios.

We compare the performance of our trained policy and the policy that imitates the

production managers. Since there are no officially known rule for a the Send FAB decision

of the production manager, we make a policy that best describes the manager’s decision.

The results prove that our policy improves the performance in a big scale and that the policy

imitating the human decision can harm the performance in some occasions. We start by

describing the details of the problem in Section 1.1.

3

1.1 Problem Description

Send FAB is a contract between two lines of sharing one’s capacity for a promised period

and quantity. It is triggered by the production manager of the line with insufficient capacity

on a process group, which is a group of machines that operate similar processes. The contract

is agreed when both lines achieve benefits. For the requiring line, they get to deal with issues

coming from capacity shortage. The offering line, on the other hand, can benefit by

increasing their machine efficiency.

The actual operation is done by enrolling the contract to the Automatic Material Handling

System (AMHS). Every lot and machine in the FAB have owning line tags. AMHS prevents

track-in events of lots to machines with different owning line tags. When the Send FAB

contract is enrolled, however, the AMHS allows the requiring line’s lot to track-in to

machines of the offering line. The lots of the requiring line is then recognized as lots of the

offering line and competes with the offering line’s lots by the dispatching score. This tag

returns to its original status when the promised period or amount is reached.

Figure 1.1: An illustration of how Send FAB works

The period of a Send FAB contract is usually one to three shifts. It is because decision

makers are not sure of their decisions and to be able to deal with uncertainties of the future

capacity status. The number of processes in a Send FAB contract is usually one. It is because

the more different steps a machine processes, the higher the setup time would be. Therefore,

the requiring line’s manager usually selects one process step of the process group for Send

FAB.

4

The selection of the process step is done by selecting the most delayed layer. In reality there

are no Standard Operation Procedure (SOP) for the decision. It is mostly chosen by the

manager’s instinct based on years of experience. Still, for comparison of our RL policy, we

used a rule-based policy that selects the most delayed layer which is the best out of just

using the WIP information. The manager calculates the lateness of each layer of the

problematic process group and selects the process step with the largest late quantity.

The manager of the requiring line asks as much as possible of the late quantity of the

problematic layer’s process. The final amount is decided after negotiation with the offering

line’s manager. If the late quantity is 𝑥𝑙𝑎𝑡𝑒 and the affordable quantity of the offering line

is 𝑥𝑎𝑓𝑓𝑜𝑟𝑑𝑎𝑏𝑙𝑒, the quantity is decided as min(𝑥𝑙𝑎𝑡𝑒 , 𝑥𝑎𝑓𝑓𝑜𝑟𝑑𝑎𝑏𝑙𝑒).

For a better explanation let’s suppose line 𝐴 is the line with insufficient capacity and line

𝐵, 𝐶 are the lines requested for some capacity sharing and the process group in capacity

shortage is 𝑃. A scenario for a Send FAB is presented below.

1) Production manager of line 𝐴 checks the WIP status of every layer 𝑃1, 𝑃2, … , 𝑃𝑁 in

process group 𝑃.

2) The manager calculates the late quantity 𝑙1, 𝑙2, … , 𝑙𝑁 of each layer and decides the

layer to require a Send FAB by 𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑙𝑖.

3) The manager requires usage of compatible machines of line 𝐵, 𝐶 with layer 𝑝 for

𝑙𝑝 wafers per shift.

4) Managers of line 𝐵, 𝐶 check the status of their own WIP status on 𝑃 and calculates

the amount of capacity 𝑜𝐵, 𝑜𝐶 they can provide.

5) 𝑜𝐵 appears to be zero, which means support is unavailable from line B, and 𝑜𝐶

appears to be non-zero but smaller than 𝑙𝑝.

6) The manager of line 𝐶 enrolls a Send FAB contract of min(𝑙𝑝, 𝑜𝐶) per shift in the

system.

5

Deciding the process step, quantity of Send FAB based on the manager’s instinct can cause

future adverse effects. It is because the FAB is a multi-objective system having objectives

such as throughput, cycle time, efficiency etc. Some have a trade-off relation. Even if the

quantity of Send FAB is relatively low, it changes the aggregate of the FAB and could some

time bring a massive damage to the whole system.

1.2 Research Motivation and Contribution

In order to deal with emergent situations on bottleneck process groups, Send FAB request

come and go frequently between lines. The managers, however, are unavailable to grasp the

FAB aggregate and the future effect of the decision. Even if by asking the most of the late

quantity may seem to benefit by releasing waiting WIP, the cumulative performance may

decrease due to problems that may occur at a future point.

We believe a Send FAB policy should be built on considering the FAB aggregate and its

stochastic dynamics on machine uncertainty. Therefore, we develop a Markov Decision

Process for Send FAB policy and derive a policy that can replace the manager’s decision.

The thesis contributes by suggesting a better solution for the Send FAB problem. By

showing results of human imitated policy damaging the production performance after all,

we claim that a new policy is needed. The results show that our policy performs better in

terms of throughput and machine efficiency which are the key performance measure for

production management.

1.3 Organization of the Thesis

The thesis is composed of 5 chapters. In Chapter 2, we review literatures related to the

problem. In Chapter 3, we introduce our proposed approach and methodology. In Chapter

4, results of computational experiments are presented. Finally, in Chapter 5, we give

concluding remarks and possible future research directions of this thesis.

6

Chapter 2

Literature Review

To the best of my knowledge, there are no previous research on the Send FAB problem dealt

in our research. Therefore, in this section we review researches on FAB scheduling and

dynamic production control that we referred while developing our thesis.

2.1 Review on FAB Scheduling

Early research on FAB scheduling, which deal with lot releasing, due-date scheduling, and

WIP balancing were focused on each single operational issue. There were researches on lot

releasing methods attempting to avoid starvation of bottleneck machines by using the flow

rate of a layer. The research of Lin and Lee [1] introduces an appropriate total WIP level in

order to achieve better throughput rate while keeping the corresponding cycle time relatively

low. They introduced a queueing network based algorithm to develop a FAB environment

with a fixed-WIP control policy.

Researches that integrated approaches to focus on multiple performance measures are based

on the flow rate control procedure. The Two Boundary algorithm was introduced by Lou

and Kager [2]. The algorithm determines the Target Production Quantity (TPQ) by trying to

make the difference between planned and actual production zero. Our scheduler was based

on the research of Chung and Jang [3] which applies the concept of TPQ in order to solve

the scheduling problem that can deal with WIP balancing on process layers, machines

together. They introduced a new WIP balancing method called Toolset Available WIP

Balancing (TAWB). By adding the concept of Average Available WIP for each machine to

the WIP Balancing objective, they showed that it can prevent machine starvation of

bottleneck machines.

7

2.2 Review on Dynamic Production Control

In order to deal with varying production requirements of various products, the FAB operates

with multifunctional machines. This additional flexibility helps dealing with demand

uncertainty of various products. Ever since its appearance, researchers have started to

developed dynamic production controlling methods. Simulation approaches and Markov

Decision Process approaches have been widely applied in solving the dynamic capacity

allocation problem.

Toba [4] has proposed a load balancing method among multiple FAB lines using predictive

scheduling results. It assumes the capacity sharable situation among multiple lines and tries

to minimize the transportation cost between two process steps. Urayama, Fu and Marcus [5]

adopts a hierarchical control model: long-term and capacity model and short-term job

release control model to deal with the dynamic job release control. It applies simulation

methods for estimating the parameters for each control model. Kim, Ko and Shin [6] applied

a semi-Markov Decision Process and proposed a reinforcement learning method together

with the fab simulator to obtain near optimal dispatching policy. They introduced a policy

that learns the appropriate weight for selecting multiple dispatching policies together. Kim,

Lim and Lee [7] introduced a dynamic scheduling system based on Deep Learning that can

consider the Automated Material Handling System (AMHS) constraints. They suggested a

new frame of applying trained Neural Networks replaceable of rule based dispatching

policies.

8

Chapter 3

Proposed Approach and Methodology

This section describes how we develop our RL policy on the Send FAB problem. Then, we

introduce the FAB simulator we used as our RL environment. Finally, we introduce the

methodology on RL.

3.1 Proposed Approach

Our model is built upon the fact that production managers cannot see the whole FAB status.

Therefore, we build a Markov Decision Process (MDP) that uses the FAB aggregate as the

state and Send FAB decision as the action. In order to solve the MDP with RL, we use a

FAB simulator based on preceding WIP Balancing Scheduler along with a disruption model

as the RL environment.

We train the RL agent having a goal to meet the production target for the upcoming week.

The time period is set as one week since production target usually varies by a week. Along

with the fact that Send FAB is negotiated in a shift unit period, we consider every 21 shifts

of one week to be the time horizon. The goal of the RL agent is to benefit the FAB aggregate

using Send FAB contracts. We start by introducing the concepts of layers which we use to

represent our problem.

3.1.1 Layer

The FAB environment is represented by layers of the bottleneck process group. Although

there are dozens of process groups in semiconductor production FABs, this study focuses

only on the bottleneck process group. It is because most of the Send FAB decisions are made

on the bottleneck process group and whenever it causes an adverse effect in the future, it

will be on the group itself. Based on the fact that the bottleneck process group controls the

9

throughput rate [1], many researches ([2],[3]) on FAB bottleneck processes have modeled

the entire FAB process as a series of loops re-entering the bottleneck process group. We

define all processes between these loops as a layer. The processes starting from the process

right after the bottleneck process to the next bottleneck group process forms a layer. This is

illustrated as in Figure 3.1.

Figure 3.1: An illustration of layers

If the bottleneck process group has 𝑛 processes, the model will have 𝑛 layers. The flow

time of a layer will be defined as the approximated turnaround time for all processes in the

layer. The WIP level of a layer is be the total WIP in a layer. Also, each layer will be

designated a demand proportional to their flow times starting from the last layer.

3.1.2 FAB Aggregate

The FAB aggregate represents the whole WIP status of each layer, machine status of each

machine and the lateness of production for each layer. For every layer 𝑗 ∈ 𝐽𝑖 for product

𝑖 ∈ 𝐼, we define the beginning WIP as 𝑏𝑖𝑗 as the WIP waiting in all process steps in product

𝑖 and layer 𝑗 . The machine status for machine 𝑘 ∈ 𝐾 at the beginning of the shift is

defined as 𝑚𝑘 ∈ {0,1} where 0,1 indicates ‘Down’, ‘Up’ status.

The lateness of scheduled production target for each product and layer is defined as 𝑙𝑖𝑗. In

order to calculate the lateness of production, we compare the rolling demand with the rolling

beginning WIP. The demand 𝑑𝑖𝑗 for product 𝑖 and layer 𝑗 represents the needed WIP for

the layer. Using the weekly production target 𝑤𝑛 and flow time 𝑐𝑖𝑗 we calculate the

10

demand for product 𝑖 and layer 𝑗 as in (3.1) and (3.2). If the flow time of the layer is

covered by one weekly target, we use (3.1). If the flow time of a layer is covered by two

weekly target production volumes, we use (3.2). 𝑐𝑖𝑗1 and 𝑐𝑖𝑗2 each indicated the parts of

𝑐𝑖𝑗 in the first and second weeks, respectively.

𝑑𝑖𝑗 =
𝑤𝑛𝑐𝑖𝑗

7
 , 𝑖𝑓 7(𝑛 − 1) < 𝑐𝑖𝑗 ≤ 7𝑛 (3.1)

𝑑𝑖𝑗 =
𝑤𝑛𝑐𝑖𝑗1

7
+

𝑤𝑛+1𝑐𝑖𝑗2

7
 , 𝑖𝑓 7(𝑛 − 1) ≥ 𝑐𝑖𝑗 𝑜𝑟 𝑐𝑖𝑗 ≤ 7𝑛 (3.2)

The demand indicates the wanted amount of WIP in order to meet the weekly production

target. Since layers are sequentially connected, we roll the demand and WIP to compare the

lateness. We define the lateness 𝑙𝑖𝑗 for product 𝑖, layer 𝑗 as (3.3). We roll the demand and

beginning WIP from the last layer to the next layer. This means difference between the

amount that was supposed to be produced and sent to next layers, and the amount that has

been produced and sent to next layers.

𝑙𝑖𝑗 = ∑ 𝑑𝑖𝑘

|𝐽𝑖|

𝑘=𝑗+1
− ∑ 𝑏𝑖𝑘

|𝐽𝑖|

𝑘=𝑗+1
 (3.3)

3.1.3 MDP Modeling of Send FAB

In this section we introduce how the Send FAB problem was formulated into a MDP. Our

MDP model is designed to consider the important factors and settings of the Send FAB

problem. By reflecting the components of the FAB situation related to production KPIs such

as WIP status of every layer, machine status of every machine, and the lateness of production

by layers, we make it able to consider the FAB aggregate. We also set an appropriate time

horizon that can embrace the settings of the Send FAB problem.

Since the production of semiconductors are nearly all time operating, the selection of the

time horizon can be a major issue. Unlike MDP models having a terminal state that ends the

episode, our problem does not have a specific goal that it heads for. With the no-break

production and no-terminal state situation, we need to set a time horizon that appropriately

leads the solution to fulfill the production manager’s needs. In our model, considering the

11

fact that Send FAB decisions are made to deal with a short-period (few shifts) capacity

shortage, and that production target usually fluctuate on a weekly basis, we set the time

horizon to 21 shifts, 𝑇 = {1,2,… ,21}. Therefore, we terminate the episode when it reaches

the 21th shift (one week). This way, the solution of the MDP can provide a good Send FAB

decision for the production manager considering the weekly production target.

The state space of our MDP is a set of vectors that represent the FAB aggregate. The vector

is shown in following equations:

𝑆 = [𝑊⃗⃗⃗ , 𝐿⃗ , 𝑀⃗⃗] (3.4)

𝑊⃗⃗⃗ = [𝑊⃗⃗⃗
1, 𝑊⃗⃗⃗

2, … , 𝑊⃗⃗⃗
|𝐼|], 𝑊⃗⃗⃗

𝑖 = [𝑏𝑖1, 𝑏𝑖2, … , 𝑏𝑖|𝐽𝑖|] (3.5)

𝐿⃗ = [𝐿⃗ 1, 𝐿⃗ 2, … , 𝐿⃗ |𝐼|], 𝐿⃗ 𝑖 = [𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖|𝐽𝑖|] (3.6)

𝑀⃗⃗ = [𝑚1,𝑚2, …𝑚|𝐾|] (3.7)

𝑙𝑖𝑗 = ∑ 𝑑𝑖(|𝐽𝑖|−𝑘)
|𝐽𝑖|−𝑗−1
𝑘=0 − ∑ 𝑏𝑖(|𝐽𝑖|−𝑘)

|𝐽𝑖|−𝑗−1
𝑘=0 (3.8)

𝑊⃗⃗⃗ is the state vector of beginning WIPs for all products. Each vector 𝑊𝑖
⃗⃗⃗⃗ consists of initial

WIP for each |𝐽𝑖| layers. 𝐿⃗ is the state vector of late production quantities for each product.

Each vector 𝐿𝑖
⃗⃗ ⃗ consists of late quantities for all |𝐽𝑖| layers. They are calculated by

subtracting rolling WIP from rolling demand as shown in (3.8). The rolling demand

indicates the amount that should have been produced and the rolling WIP is the amount that

was produced. 𝑀⃗⃗ is the state vector of machine status for |𝐾| machines.

The action space is a consisted of vectors of all possible Send FAB decision. Each Send

FAB decision vector (𝑖, 𝑗, 𝑞) is consisted of the product type 𝑖 , layer number 𝑗 and

quantity 𝑞. Since Send FAB wafers are carried in a lot which has a size of 25 wafers, we

discretized the possible range of sending quantity. The range is chosen to be smaller than

20% of the average layer demand to apply the fact that Send FAB quantities are small

relative to regular production quantities. For example, if the average layer demand is 20,000

wafers we limit the maximum Send FAB quantity to be 400 wafers and the possible

collection of Send FAB quantities would be {0,25,50,… ,375,400} . In this case, the

dimension of the action vector space is 17|𝐼||𝐽| where |𝐼| is the number of products, |𝐽|

is the number of layers, and 17 is the number of Send FAB quantity selections.

12

The action for Send FAB on product 𝑖, layer 𝑗, with quantity 𝑞 is applied by changing the

WIP of and demand status of each layer. The beginning WIP 𝑏𝑖𝑗 and the demand for the

next layer 𝑑𝑖(𝑗+1) is decreased by 𝑞. Figure 3.2 shows how the FAB aggregate changes.

Figure 3.2: An illustration of Send FAB action changing FAB aggregate

The reward is defined by whether there was improvement of the WIP Balancing Scheduler’s

objective value. Reward for choosing action 𝐴 at current FAB aggregate 𝑆𝑡 is defined as

in (3.9) and (3.10). 𝑝 is the penalty variable that prevents choosing more quantity than the

beginning WIP. We give -5 as the penalty value for these cases, and 0 for the cases that does

not violates this condition. Improvement and deterioration regard the change in the objective

value of the WIP Balancing Scheduler. It checks how helpful the action was with respect to

WIP balancing. The condition ‘improvement’ indicates that 𝑂(𝑆𝑡+1
′) − 𝑂(𝑆𝑡+1) > 0 ,

where 𝑂(𝑆) is the objective value of the WIP Balancing Scheduler and 𝑆𝑡+1
′ is the next

state effected by Send FAB action. ‘deterioration’ means negative effects on the objective

value, and ‘large improvement’ indicates to times when the improvement quantity is the

largest among previous shifts.

13

𝑅(𝑆𝑡 , 𝑎) = {

10 + 𝑝 𝑖𝑓 large improvement
1 + 𝑝 𝑖𝑓 improvement
0 + 𝑝 𝑖𝑓 no improvement
−10 + 𝑝 𝑖𝑓 deterioration

 (3.9)

𝑝 = {
−5 𝑖𝑓 𝑞 ≥ 𝑏𝑖𝑗

0 𝑖𝑓 𝑞 < 𝑏𝑖𝑗
 (3.10)

The objective of our MDP is to find a policy 𝜋 that maximizes cumulative sum of rewards

as shown in (3.11). The cumulative reward can be represented as the bellman optimality

equation of action value function 𝑄(𝑠, 𝑎) as shown in (3.12).

 𝐸[∑𝛾𝑡𝑅(𝑆𝑡 , 𝜋(𝑆𝑡))

20

𝑡=0

] (3.11)

𝑄𝜋∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′∈𝐴

𝑄𝜋∗(𝑠′, 𝑎′) (3.12)

In order to solve the bellman optimality equation, we need to know the transition probability

from prevision state 𝑆𝑡 = [𝑊𝑡
⃗⃗⃗⃗ ⃗, 𝐿𝑡

⃗⃗ ⃗,𝑀𝑡
⃗⃗⃗⃗ ⃗] to next state 𝑆𝑡+1 = [𝑊⃗⃗⃗

𝑡+1, 𝐿⃗ 𝑡+1, 𝑀⃗⃗ 𝑡+1] for

choosing action 𝐴𝑡 = [𝑖, 𝑗, 𝑞] . The process, however, requires a large amount of

computation to cover all possible transitions.

Figure 3.3 shows the process of transition when chosen an action. When initial state 𝑆𝑡 is

given and action 𝐴𝑡 is chosen, the WIP status and lateness status changes as shown in

Figure 3.2. The changed FAB aggregate 𝑆𝑡′ then goes through a scheduling process that

decides the production quantity 𝑋𝑡 which is a matrix consisted of the production variables

𝑥𝑖𝑗𝑘 assigned for each product 𝑖, layer 𝑗, machine 𝑘. Then the initial machine status 𝑀𝑡
⃗⃗⃗⃗ ⃗

goes through a machine disruption scenario which is based upon a Continuous Markov

Chain model (3.2.2 describes details). It returns 𝑅⃗ 𝑡 which is a vector consisted of running

rates of each machine throughout the shift. 𝑅⃗ 𝑡 is then applied to the planned production

𝑋𝑡 to acquire the actual production 𝑋𝑡
′. Then 𝑋𝑡

′ is used to calculate the next WIP status

𝑊⃗⃗⃗
𝑡+1 and lateness 𝐿⃗ 𝑡+1 . The initial machine status 𝑀⃗⃗ 𝑡+1 is directly acquired from the

machine disruption model.

14

Figure 3.3: An illustration of how transition probabilities are calculated

In order to calculate the transition probability, we discriminate deterministic processes and

random processes. The deterministic processes do not influence the probability. The

transition probability is only affected by the random processes (dotted box area in Figure

3.3). 𝑊⃗⃗⃗
𝑡+1, 𝐿⃗ 𝑡+1 is obtained using the actual production 𝑋𝑡

′ which is determined by the

random vector 𝑅⃗ 𝑡, and 𝑀⃗⃗ 𝑡+1 is the next machine status given the previous initial status

𝑀⃗⃗ 𝑡 . Therefore, we only consider the probability 𝑃{𝑅⃗ 𝑡, 𝑀⃗⃗ 𝑡+1|𝑀⃗⃗ 𝑡} . In other words,

𝑃{𝑆𝑡+1|𝑆𝑡, 𝐴𝑡} = 𝑃{(𝑅⃗ 𝑡, 𝑀⃗⃗ 𝑡+1)|𝑆𝑡
′} . 𝑃{(𝑅⃗ 𝑡, 𝑀⃗⃗ 𝑡+1)|𝑆𝑡

′} can be calculated from the

Continuous Time Markov Chain we define as the machine disruption model (3.2.2).

The values of 𝑅⃗ 𝑡, however, requires to solve a Mixed Integer Programming (MIP) problem

and a Linear Programming (LP) problem each time for a pair of state and action. The MIP

problem is needed to get the scheduled production amount 𝑋𝑡 and LP is used to solve the

corresponding 𝑟𝑖𝑗 values that generates 𝑋𝑡
′ which eventually leads to the final state 𝑆𝑡+1.

In order to solve our MDP with Dynamic Programming, we need to obtain all possible

transition probabilities between states. Also, the states have continuous values that makes it

impossible to approach the problem in a tabular method. Even we go through discretization

on state values, the two required optimization in calculating a single transition probability

would lead to a large amount of computation time. Therefore, we instead use a model-free

Reinforcement Learning Approach.

15

3.1.4 Learning Send FAB policy

Our MDP is defined in a state space with infinite dimension. Therefore, we use a Q function

approximating approach instead of a tabular method which save all Q values. Among the

function approximating approach, we use Deep Q Network (DQN) [8]. The DQN algorithm

works by selecting the greatest estimated Q value for a given state and action. The neural

network uses the state of our MDP model as the input variable and returns the Q value for

every possible action for the given state. In order to fit the neural network, we train the

model as in Algorithm 1.

Algorithm 1 Learning DQN for Send FAB

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 FAB environment
𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 action value function 𝑄𝑜𝑛𝑙𝑖𝑛𝑒 with random weights
𝐂𝐨𝐩𝐲 𝑄𝑜𝑛𝑙𝑖𝑛𝑒 as Qtarget

𝐂𝐫𝐞𝐚𝐭𝐞 dequeing structure 𝐷 for memory
𝐅𝐨𝐫 episode = 1,𝑀:
 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 weekly demand and allocate layer demand
 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 FAB aggregate 𝑠1 𝑎𝑛𝑑 preprocess into 𝜙1 = 𝜙(𝑠1)
 𝐅𝐨𝐫 𝑡 = 1,21:
 With probability 𝜖 select a random action 𝑎𝑡
 otherwise select 𝑎𝑡 = max

𝑎
𝑄𝑜𝑛𝑙𝑖𝑛𝑒

∗ (𝜙(𝑠𝑡), 𝑎; 𝜃)

 increase 𝜖 𝑏𝑦 10−5 𝑎𝑛𝑑 𝜖 ← max (0.01, 𝜖)

 𝐢𝐟 𝑎𝑡 is no Send FAB 𝐭𝐡𝐞𝐧:

 𝑟𝑡 = 0

 𝐞𝐥𝐬𝐞:

 𝐂𝐫𝐞𝐚𝐭𝐞 𝑠𝑡
′ which is the updated FAB aggregate after 𝑎𝑡

 𝐒𝐨𝐥𝐯𝐞 WIP Balancing MIP for 𝑠𝑡, 𝑠𝑡
′ and get 𝑥𝑡+1, 𝑂(𝑠𝑡

′), 𝑂(𝑠𝑡), 𝐸(𝑠𝑡
′), 𝐸(𝑠𝑡)

 𝑟𝑡 = 𝑂(𝑠𝑡
′) − 𝑂(𝑠𝑡) + 𝑒 (𝐸(𝑠𝑡

′) − 𝐸(𝑠𝑡)).
 Set st+1 = 𝑠𝑡 , 𝑎𝑡 , 𝑥𝑡+1 and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1)
 Store transition (𝜙𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝜙𝑡+1) in 𝐷

 𝐢𝐟 |𝐷| > minibatch size 𝐭𝐡𝐞𝐧:

 Sample random minibatch of transitions (𝜙𝑗, 𝑎𝑗 , 𝑟𝑗, 𝜙𝑗+1) from D

 Set 𝑦𝑗 = 𝑟𝑗 + 𝛾 max
𝑎′

𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝜙𝑗+1, 𝑎
′; 𝜃)

 Perform a gradient descent step on (𝑦𝑗 − 𝑄𝑜𝑛𝑙𝑖𝑛𝑒(𝜙𝑗, 𝑎𝑗; 𝜃))
2

16

Figure 3.4: An illustration of learning the Send FAB policy

DQN is fitted by numerous episodes that is performed as shown in Figure 3.3. The RL agent

chooses the action with the largest estimated Q value from the current DQN. The action is

performed to change the FAB aggregate for the current shift. The changed FAB aggregate

along with the original FAB aggregate are used as the initial FAB status for production

scheduling. After applying a machine disruption scenario, the next FAB aggregate is

obtained. For reward assignment we compare the WIP Balancing scheduler’s objective of

the next shift’s aggregate with and without the action. Then the state, action and reward are

then saved in an experience memory which has a LIFO structure with a given memory size.

The DQN is fitted with a batch of experiences extracted from the experience memory and

repeats the process until the end of episode. We used an architecture for the Neural Network

as shown in Figure 3.4. The learning rate was set 0.001, and epsilon increases by 10−5 for

every shift.

17

Figure 3.5: An illustration of our Deep Q Network

3.2 FAB simulator

The FAB simulator is composed of a WIP Balancing Scheduler and a Machine Disruption

Model. Since real production data is not available for this study, we make a simulator that

can represent the key elements of the Send FAB problem. We use a WIP Balancing

Scheduler of Chung and Jang [4]. It decides the production quantities and machine usage

on bottleneck layers. To deal with machine status on making a Send FAB decision, we made

a Machine Disruption Model that models the status of the machine and its running time

during a shift.

18

3.2.1 WIP Balancing Scheduler

In this section we introduce the Mixed Integer Program (MIP) problem of Chung and Jang

[4]. The scheduler decides how much to produce for each product and layer. It seeks to

minimize lateness of production and starvation of machines. It considers constraints

regarding to machine dedication and production capacity. It uses WIP status and machine

status of the previous shift along with machine dedication, process time, and setup time as

input data.

Unlike the original MIP of Chung and Jang, we remove the constraints related to

lithographic process groups. It is a constraint that prevents the number of assigned machines

exceeding the number of masks for each layer. Unlike Chung and Jang, we do not assume

the bottleneck process group is always a lithographic process group. We intend our model

to be applied to any process group that currently is the bottleneck. Therefore, we remove

the mask constraints from the original MIP. The following notations are used in this model.

1) Data sets

𝐼: Set of products.

𝐽𝑖: Set of layers of product 𝑖, 𝑖 ∈ 𝐼.

𝐾: Set of machines.

𝑁: Set of weeks for demands.

2) Input Data

𝑆: Setup time of machine.

𝑐𝑖𝑗: Flow time of product 𝑖, layer 𝑗.

𝐶𝑖𝑗: Sum of flow time of product 𝑖 from layer 𝑗 to final layer.

𝑝𝑖𝑗𝑘: Wafer processing time of product 𝑖, layer 𝑗 on machine 𝑘.

𝑟𝑖𝑗𝑘: Initial processing layer index. If machine 𝑘 is processing product 𝑖, layer

𝑗 at the beginning of the current shift, 𝑟𝑖𝑗𝑘 = 1; otherwise 𝑟𝑖𝑗𝑘 = 0.

𝑏𝑖𝑗: WIP level of product 𝑖, layer 𝑗 at the beginning of the current shift.

𝑒𝑖𝑗: WIP level of product 𝑖, layer 𝑗 at the end of the current shift.

19

𝑤𝑛: Target production volume for week 𝑛.

𝑑𝑖𝑗: Layer demand for product 𝑖, layer 𝑗.

ℎ𝑖𝑗𝑘: Toolset dedication. If product 𝑖 , layer 𝑗 can be processed at machine 𝑘 ,

ℎ𝑖𝑗𝑘 = 0.

𝑢𝑖𝑗: Upper-limit production quantity (UPQ) for product 𝑖, layer 𝑗.

𝑙𝑖𝑗: Current lateness(days) of WIP of product 𝑖, layer 𝑗

3) Decision Variables

𝑥𝑖𝑗𝑘: Production quantity for product 𝑖, layer 𝑗 from machine 𝑘 during current

shift.

𝑦𝑖𝑗𝑘: Production assignment. If 𝑥𝑖𝑗𝑘 > 0, 𝑦𝑖𝑗𝑘 = 1; otherwise 𝑦𝑖𝑗𝑘 = 0.

The WIP Balancing problem is as follows.

minimize

∑∑(𝑢𝑖𝑗 − ∑ 𝑥𝑖𝑗𝑘

𝑘∈𝐾

)

𝑗∈𝐽𝑖∈𝐼

+ 𝐺 ∑ |𝑀𝐴𝑊𝑘 − 𝐴𝐴𝑊|

𝑘∈𝐾

 (3.13)

subject to

WPMij =
𝑒𝑖𝑗

∑ ℎ𝑖𝑗𝑘𝑘∈𝐾
 𝑖 ∈ 𝛪, 𝑗 ∈ 𝐽𝑖 (3.14)

𝑀𝐴𝑊𝑘 = ∑∑𝑀𝑃𝑇𝑖𝑗ℎ𝑖𝑗𝑘

𝑗∈𝐽𝑖∈𝐼

 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (3.15)

AAW =
∑ 𝑀𝐴𝑊𝑘𝑘∈𝐾

|𝐾|
 𝑘 ∈ 𝐾 (3.16)

 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 ≤ 𝑏𝑖𝑗 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 (3.17)

 𝑥𝑖𝑗𝑘 ≤ 𝑀𝑦𝑖𝑗𝑘 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 (3.18)

 ∑ ∑ 𝑥𝑖𝑗𝑘 𝑝𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝐼 + 𝑆(∑ ∑ 𝑦𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝐼 − 1) ≤ 𝐻 𝑘 ∈ 𝐾 (3.19)

 𝑒𝑖𝑗 = 𝑏𝑖𝑗 + ∑ 𝑥𝑖(𝑗−1)𝑘𝑘∈𝐾 − ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 − {0} (3.20)

 𝑒𝑖0 = 𝑏𝑖0 + ∑ 𝑥𝑖|𝐽|𝑘𝑘∈𝐾 − ∑ 𝑥𝑖0𝑘𝑘∈𝐾 𝑖 ∈ 𝐼 (3.21)

 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 ≤ 𝑢𝑖𝑗 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 (3.22)

 𝑦𝑖𝑗𝑘 = 0 𝑖𝑓 ℎ𝑖𝑗𝑘 = 0 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (3.23)

20

 𝑦𝑖𝑗𝑘 = 1 𝑖𝑓 𝑟𝑖𝑗𝑘 = 1 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (3.24)

 𝑥𝑖𝑗𝑘 ≥ 0 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (3.25)

 𝑦𝑖𝑗𝑘 ∈ {0,1} 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (3.26)

(3.13) is the objective function for the problem. It is consisted of two parts:

∑ ∑ (𝑢𝑖𝑗 − ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾)𝑗∈𝐽𝑖∈𝐼 is the part to assure production on product 𝑖, layer 𝑗 be close

to the Upper Production Quantity (UPQ) 𝑢𝑖𝑗 and 𝐺 ∑ |𝑇𝐴𝑊𝑘 − 𝐴𝐴𝑊|𝑘∈𝐾 is to minimize

the variation on WIP per machine which can help prevent machine starvation for unbalanced

WIP distribution. UPQ is defined as in Equation (3.27). ∑ 𝑑𝑖𝑙
|𝐽|
𝑙=𝑗 is the rolling demand,

∑ 𝑏𝑖𝑙
|𝐽|
𝑙=𝑗+1 is the rolling WIP, and 𝑄𝑖𝑗 is the pulling demand which is the upcoming layer’s

demand for 3 days. Therefore, UPQ is the WIP amount that is behind schedule plus the WIP

that are soon coming into the buffer.

𝑢𝑖𝑗 = ∑ 𝑑𝑖𝑙
|𝐽|
𝑙=𝑗 − ∑ 𝑏𝑖𝑙

|𝐽|
𝑙=𝑗+1 + 𝑄𝑖𝑗 (3.27)

For the WIP balancing among machines, the objective minimizes the difference between the

average available WIP (𝐴𝐴𝑊) and each machine’s average WIP (𝑀𝐴𝑊𝑘). Equations (3.14),

(3.15), and (3.16) shows how the ending inventory (𝑒𝑖𝑗) and machine dedication (ℎ𝑖𝑗𝑘) is

used to define these concepts.

Equation (3.17) is the production quantity constraint that makes production quantity not to

exceed the available beginning WIP. Equation (3.18) is the machine setup constraint that

makes 𝑦𝑖𝑗𝑘 > 0 if there is production during a scheduled shift. Where 𝑀 is a large

number. Equation (3.19) is the machine time constraint that makes total process time and

setup time not exceed a shift. Equation (3.20), (3.21) are the balance equation constraints.

The ending inventory of a layer is the sum of beginning inventory and incoming WIP minus

the WIP produced in the layer this shift. The final layer production is released back into the

first layer and makes the relation as in Equation (3.21). The model assumes a fixed total

WIP release policy and therefore releases the same amount produced at the last layer.

Equation (3.22) is the UPQ constraint that prevents production exceeding UPQ. Equation

(3.23) is the machine dedication constraint that blocks unavailable layer-machine

21

production. Equation (3.24) is the current processing layer constraint that makes the running

status continue from the previous shift. If a machine was running in the previous state, the

machine starts in a usage status for the current shift. Equation (3.25), (3.26) are the

constraints on the decision variables.

3.2.2 Machine Disruption Model

The scheduler itself, cannot work as a simulator. The solution of the scheduler is a scheduled

quantity, to get the actual production results we need a disruption scenario. In order to adapt

a disruption scenario, we need to generate the next status and the running rate during the

period when given the initial status. We assume the machine status follows a Continuous

Time Markov Chain (CTMC) with two states ‘Up’ and ‘Down’. We define the machine

status at shift t as 𝑋(𝑡) . The transition rate of ‘Up’ becoming ‘Down’ is defined

as 𝑃{𝑋(𝑡 + 𝑑𝑡) = 𝐷𝑜𝑤𝑛|𝑋(𝑡) = 𝑈𝑝} = 𝜆1𝑑𝑡 . The transition rate of ‘Down’ becoming

‘Up’ is defined as 𝑃{𝑋(𝑡 + 𝑑𝑡) = 𝑈𝑝|𝑋(𝑡) = 𝐷𝑜𝑤𝑛} = 𝜆2𝑑𝑡. The transition diagram is

shown in Figure 3.5.

Figure 3.6: An illustration of transition diagram of machine status

22

Figure 3.7: An illustration of how the CTMC provides disruption scenarios

The purpose of the disruption model is to generate the machine status of the next shift and

the running rate during the shift. Since all machines follow a CTMC we use the initial

machine status for each shift 𝑡 and sample interarrival times to generate the next initial

status 𝑚𝑘(𝑡+1) and the running rate 𝑟𝑘𝑡. Figure 3.6 shows how the CTMC provides the

disruption scenarios on a shift time basis. Here, 𝑚𝑘𝑡 is the status of machine 𝑘 at the

beginning of shift 𝑡, and 𝑟𝑘𝑡 is the running rate during shift 𝑡.

We can acquire 𝑚𝑘(𝑡+1), 𝑟𝑘𝑡 by sampling interarrival times for given current status of the

machine. The upper part of Figure 3.6 shows that every start of a shift, we sample the

23

corresponding interarrival random variable 𝑈~exp(𝜆1) 𝑜𝑟 𝐷~exp (𝜆2) and seize the

machine status when it reaches the next shift. The following algorithm shows the process of

sampling running time and recovery time according to the given initial status. It keeps

sampling until the remaining time of the current shift becomes zero. The last status reaching

the next shift becomes the initial shift for the next shift. Running rate 𝑟𝑘𝑡 which is the

cumulated running time during a shift, can be given by the sum of running time throughout

the repeated process. The Pseudo code is as follows.

Algorithm 2 Sampling from CTMC

𝐒𝐀𝐌𝐏𝐋𝐄𝐂𝐓𝐌𝐂(𝑆, 𝑟, 𝑐)
 𝐢𝐟 𝑆 = 𝑈𝑃 𝐭𝐡𝐞𝐧
 𝑢𝑝𝑡𝑖𝑚𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑒𝑥𝑝 (𝜆1)
 𝐢𝐟 𝑢𝑝𝑡𝑖𝑚𝑒 < 𝑟 𝐭𝐡𝐞𝐧
 𝑐 ← 𝑐 + 𝑢𝑝𝑡𝑖𝑚𝑒
 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑒𝑥𝑝(𝜆2)
 𝐢𝐟 𝑢𝑝𝑡𝑖𝑚𝑒 + 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 > 𝑟 𝐭𝐡𝐞𝐧
 𝑟𝑒𝑡𝑢𝑟𝑛 [𝐷𝑂𝑊𝑁, 𝑐]
 𝐞𝐥𝐬𝐞
 𝑟𝑒𝑡𝑢𝑟𝑛 𝐒𝐀𝐌𝐏𝐋𝐄𝐂𝐓𝐌𝐂(𝑈𝑃, 𝑟 − 𝑢𝑝𝑡𝑖𝑚𝑒 − 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒, 𝑐)
 𝐞𝐥𝐬𝐞
 𝑐 ← 𝑐 + 𝑟
 𝑟𝑒𝑡𝑢𝑟𝑛 [UP, c]
 𝐞𝐥𝐬𝐞
 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑒𝑥𝑝 (𝜆2)
 𝐢𝐟 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 > 𝑟 𝐭𝐡𝐞𝐧
 𝑟𝑒𝑡𝑢𝑟𝑛 [𝐷𝑜𝑤𝑛, 𝑐]
 𝐞𝐥𝐬𝐞
 𝑢𝑝𝑡𝑖𝑚𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑒𝑥𝑝 (𝜆1)
 𝐢𝐟 𝑢𝑝𝑡𝑖𝑚𝑒 + 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 > 𝑟 𝐭𝐡𝐞𝐧
 𝑐 ← 𝑐 + 𝑟 − 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 𝑟𝑒𝑡𝑢𝑟𝑛 [𝑈𝑃, 𝑐]
 𝐞𝐥𝐬𝐞
 𝑟𝑒𝑡𝑢𝑟𝑛 𝐒𝐀𝐌𝐏𝐋𝐄𝐂𝐓𝐌𝐂(𝑈𝑃, 𝑟 − 𝑢𝑝𝑡𝑖𝑚𝑒 − 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒, 𝑐)

𝑚𝑘(𝑡+1), 𝑟𝑘𝑡 = 𝐒𝐀𝐌𝐏𝐋𝐄𝐂𝐓𝐌𝐂(𝑚𝑘𝑡, 1, 0)

24

Instead of controlling transition rate values, we decided to use a combination of probabilities

(𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟). It is because our model requires the running rate for the current shift and

the ending status at the end of the shift. We wanted to assign a probability of machine

running more than 1 shift given the initial status ‘Up’, along with the probability of machine

taking less than 1 shift to recover from the initial ‘Down’ status. Equations bellow explain

the relation between 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 and 𝜆1, 𝜆2. 𝑈,𝐷 are the interarrival times of ‘Up’ to

‘Down’ and ‘Down’ to ‘Up’ respectively. By our defined CTMC each follows an exponential

distribution with 𝜆1, 𝜆2 respectively.

𝑡𝑟𝑢𝑛 = 𝑃{𝑈 ≥ 1} = ∫ 𝜆1𝑒
−𝜆1𝑡𝑑𝑡

∞

1

 (3.27)

𝜆1 = − ln (𝑡𝑟𝑢𝑛) (3.28)

𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 = 𝑃{𝐷 ≤ 1} = ∫ 𝜆2𝑒
−𝜆2𝑡𝑑𝑡

1

0

 (3.29)

𝜆2 = −ln (1 − 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟) (3.30)

We have composed total 9 combinations of (𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟) to experiment on various

machine stability conditions. The combination is the product set of {0.5,0.7,0.9} and

{0.5,0.7,0.9}. Table 3.1 shows the corresponding 𝜆1, 𝜆2, Mean Time Between Failures

(MTBF), Mean Time To Recovery (MTTR) of corresponding values of 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 .

Some cases such as 𝑡𝑟𝑢𝑛 having value 0.5 might be unrealistic, however, we tried to

compare the performance of RL from the human imitating policy in various machine

stability conditions.

Table 3.1: 𝜆1, 𝜆2, MTBF, MTTR for corresponding 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 values

𝑡𝑟𝑢𝑛 𝜆1 MTBF 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 𝜆2 MTTR

0.5 0.69 1.44 0.5 0.69 1.44

0.7 0.36 2.80 0.7 1.20 0.83

0.9 0.11 9.49 0.9 2.30 0.43

25

In order to check the effect of various 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 combinations on the simulator, we

have sampled the average running rate 𝑟𝑘𝑡 given the initial state 𝑚𝑘𝑡 (Up or Down) using

Algorithm2. The results are shown in Table 3.2. We also approximated the probability of

the next shift being ‘Up’ given the initial machine status. The results were calculated by

calculating the proportion of ‘Up’ among the 10,000 samples for each case.

Table 3.2: Average running rate 𝑟𝑘𝑡 observed for corresponding 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 values

𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟

Average Running Rate

𝐸[𝑟𝑘𝑡|𝑚𝑘𝑡]

𝑚𝑘𝑡 = 𝑈𝑝 𝑚𝑘𝑡 = 𝐷𝑜𝑤𝑛

0.5

0.5 0.66 0.21

0.7 0.74 0.29

0.9 0.88 0.44

0.7

0.5 0.78 0.29

0.7 0.84 0.4

0.9 0.93 0.58
 0.5 0.87 0.36

0.9 0.7 0.91 0.52

 0.9 0.96 0.71

Table 3.3: Probability of next shift being ‘Up’ for corresponding 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 values

𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟

Probability of next shift being ‘Up’

𝑃[𝑚𝑘(𝑡+1) = 𝑈𝑝 |𝑚𝑘𝑡]

𝑚𝑘𝑡 = 𝑈𝑝 𝑚𝑘𝑡 = 𝐷𝑜𝑤𝑛

0.5

0.5 0.52 0.47

0.7 0.66 0.66

0.9 0.87 0.87

0.7

0.5 0.68 0.57

0.7 0.78 0.76

0.9 0.92 0.92
 0.5 0.81 0.65

0.9 0.7 0.87 0.83

 0.9 0.96 0.95

26

3.3 Reinforcement Learning Approach

3.3.1 Markov Decision Process and Reinforcement Learning

In Reinforcement Learning (RL), the problem to resolve is described as a Markov Decision

Process (MDP). Since the theoretical results of RL rely on the MDP description, the more

the problem is acceptable as a MDP problem, the better RL would work as a good solution.

A MDP is composed of objects < 𝑇, 𝑆, 𝐴, 𝑃(∙ |𝑠, 𝑎), 𝑅(𝑠, 𝑎) > where 𝑇 is a discrete time

horizon, 𝑆 is a state space, 𝐴 is an action space, 𝑃(∙ |𝑠, 𝑎) are the state transition

probabilities and 𝑅(𝑠, 𝑎) is a reward function. For our problem to be suitable for a MDP

problem, we must assume the Markov property in Equation (3.31) applies to the transition

probabilities. This means the transition to the next period state only depends on the previous

state and action.

𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 , 𝑎𝑡) = 𝑃(𝑠𝑡+1 = 𝑠′| 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … 𝑠0, 𝑎0) (3.31)

The goal of a MDP is to find a good policy, which is a function 𝜋 ∶ 𝑆 → 𝐴 that specifies

the action 𝜋(𝑠) to choose given state 𝑠. A good policy is to maximize the expected sum of

random future rewards. With a discount factor satisfying 0 ≤ 𝛾 ≤ 1, the goal would be to

maximize 𝑉𝜋(𝑠) = 𝐸𝜋[∑ 𝛾𝑡 𝑅𝑡+𝑗+1| 𝑆𝑡 = 𝑠)∞
𝑗=0]. The policy that maximizes this function

is called the optimal policy for the MDP and is denoted as 𝜋∗.

When we know the transition probabilities 𝑃(𝑠′|𝑠, 𝑎) 𝑓𝑜𝑟 ∀𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴 , we solve it

through Dynamic Programming. Finding the optimal policy goes under policy evaluation

and policy iteration. Policy evaluation evaluates all state values represented as the state

value function 𝑉𝜋(𝑠) and policy iteration improves the policy by updating the policy 𝜋 →

 𝜋′, 𝑤ℎ𝑒𝑟𝑒 𝜋′(𝑠) = 𝑔𝑟𝑒𝑒𝑑𝑦(𝑣𝜋). This process is called value iteration and it is known to

converge to an optimal policy. By Richard E. Bellman, this relation was shown as an

equation called Bellman Optimality Equation. The Bellman Optimality Equation for value

function and action value function is represented in Equation (3.32), (3.33) respectively.

𝑉𝜋∗(𝑠) = ∑ 𝑃(𝑠′|𝑠, 𝑎) (𝑅(𝑠, 𝑎) + 𝛾𝑉𝜋∗(𝑠′))𝑠′∈𝑆 (3.32)

𝑄𝜋∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′∈𝐴

𝑄𝜋∗(𝑠′, 𝑎′) (3.33)

On the other hand, if we do not know the dynamics of the environment, we use RL. RL

27

algorithms are based on the fact that we do not know the transition probabilities. Therefore,

it updates the policy based on sampled experiences. The Monte Carlo (MC) method samples

the whole return for each episode and uses it to evaluate the value function. In other words,

it replaces the expectation on 𝑉𝜋(𝑠) or 𝑄𝜋(𝑠, 𝑎) to an empirical mean return. Temporal

Difference method does not sample every reward to the end of an episode. Instead, it

samples few steps ahead and updates the value function 𝑉𝜋(𝑆𝑡) or action value function

𝑄𝜋(𝑆𝑡 , 𝐴𝑡) towards an estimated return 𝑅𝑡+1 + 𝛾𝑉𝜋(𝑆𝑡+1) or 𝑅𝑡+1 + 𝛾𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1) .

This method has benefit on the fact that it can learn while experiencing. One well known

example for TD method is 𝑆𝐴𝑅𝑆𝐴. The algorithm works by sampling rewards one step

ahead and uses the estimated return to evaluate and improve the policy. For policy iteration,

it uses epsilon greedy method. The algorithm is as follows.

Algorithm 3 SARSA

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝑄(𝑠, 𝑎) arbitrarily
𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐞𝐩𝐢𝐬𝐨𝐝𝐞:
 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝑆
 𝐂𝐡𝐨𝐨𝐬𝐞 𝐴 from 𝑆 using policy from Q(ϵ − greedy)
 𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐞𝐩𝐢𝐬𝐨𝐝𝐞:
 𝐓𝐚𝐤𝐞 action 𝐴, 𝐨𝐛𝐬𝐞𝐫𝐯𝐞 𝑅, 𝑆′
 𝐂𝐡𝐨𝐨𝐬𝐞 𝐴′ from 𝑆′ using policy derived from 𝑄(𝜖 − greedy)
 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼(𝑅 + 𝛾 𝑄(𝑆′, 𝐴′) − 𝑄(𝑆, 𝐴))
 𝑆 ← 𝑆′; 𝐴 ← 𝐴′;
 until 𝑆 is terminal

In 𝑆𝐴𝑅𝑆𝐴, the maximum reward for the next state is not necessarily used for updating the

Q values. Instead, a new action is selected using the same policy that determined the original

action. This makes the policy exploit more the greedy selections. Algorithms that set the

behavior policy and target policy same are called On-policy algorithms. The opposite

concept is Off-policy. It overcomes the low exploration level and can learn about the optimal

policy while following an exploratory policy. By separating the behavior policy and the

target policy the agent can explore more trajectories. 𝑄 learning is the representative Off-

policy algorithms and the pseudo code is as follows.

28

Algorithm 4 Q-Learning

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝑄(𝑠, 𝑎) arbitrarily
𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐞𝐩𝐢𝐬𝐨𝐝𝐞:
 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 𝑆
 𝐅𝐨𝐫 𝐞𝐚𝐜𝐡 𝐞𝐩𝐢𝐬𝐨𝐝𝐞:
 𝐂𝐡𝐨𝐨𝐬𝐞 𝐴 from 𝑆 using policy derived from 𝑄(𝜖 − greedy)
 𝐓𝐚𝐤𝐞 action 𝐴, 𝐨𝐛𝐬𝐞𝐫𝐯𝐞 𝑅, 𝑆′
 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼(𝑅 + 𝛾 max

𝐴′
𝑄(𝑆′, 𝐴′) − 𝑄(𝑆, 𝐴))

 𝑆 ← 𝑆′
 until 𝑆 is terminal

Both 𝑆𝐴𝑅𝑆𝐴 and 𝑄-learning are tabular methods and the curse of dimension can happen

with large problems. It is because we need to save and read all updating Q values in a table.

Therefore, for large environments such as FAB environment, requires a method called Value

Function Approximation.

𝑉𝜋̂(𝑠, 𝑤) ≈ 𝑉𝜋(𝑠) (3.34)

𝑄𝜋̂(𝑠, 𝑎, 𝑤) ≈ 𝑄𝜋(𝑠, 𝑎) (3.35)

∇𝑤𝐽(𝑤) = (
𝜕𝐽(𝑤)

𝜕𝑤1
,
𝜕𝐽(𝑤)

𝜕𝑤2
, … ,

𝜕𝐽(𝑤)

𝜕𝑤𝑛
) 𝑓𝑜𝑟 |𝑤| = 𝑛 (3.36)

∇w = −
1

2
𝛼∇𝑤𝐽(𝑤) (3.37)

𝐽(𝑤) = 𝐸𝜋 [(𝑉𝜋(𝑠) − 𝑉𝜋̂(𝑠, 𝑤))
2
] (3.38)

∇𝑤 = 𝛼𝐸𝜋[(𝐺𝑡 − 𝑉𝜋̂(𝑠, 𝑤)) ∇𝑤𝑉𝜋̂(𝑠, 𝑤)] (3.39)

∇𝑤 = 𝛼𝐸𝜋[(𝑅𝑡+1 + 𝛾𝑉𝜋̂(𝑆𝑡+1, 𝑤) − 𝑉𝜋̂(𝑠, 𝑤))∇𝑤𝑉𝜋̂(𝑠, 𝑤)] (3.40)

Approximating the value function is done by parameterizing the value function as in

Equation (3.34) and (3.35). The function can be in any regression form such as linear

regression, Random Forests, Neural Networks etc. The parameter vector 𝑤 is updated

through gradient descent on the loss function 𝐽(𝑤) . The gradient of the loss function,

∇𝑤𝐽(𝑤) is shown in Equation (3.21). The gradient for the parameter vector ∇𝑤 is defined

as in Equation (3.22). The loss function is defined as in Equation (3.38) which leads to

parameter update of MC, TD to be done as in Equation (3.39), (3.40) respectively.

29

3.3.2 Deep Q Network (DQN)

DQN is a Deep RL algorithm that uses Neural Networks as the Q value approximation

function. This study refers to Minh et al (2013), which introduced Deep Neural Networks

as a Q value approximation function for learning policies of playing Atari games. Since the

state of game environments are in forms of image frames, using Convolution Neural

Networks helped to understand the state of the player at some specific moment. The

algorithm is based on 𝑄-learning except the fact that they use an approximation function.

The pseudo code is as follows.

Algorithm 5 Deep Q Network with Experience Replay

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 replay memory 𝐷 to capacity 𝑁
𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 action value function 𝑄 with random weights
𝐅𝐨𝐫 episode = 1,𝑀:
 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 sequence 𝑠1 = {𝑥1} and preprocessed sequence 𝜙

1
= 𝜙(𝑠1)

 𝐅𝐨𝐫 𝑡 = 1, 𝑇:
 With probability 𝜖 select a random action 𝑎𝑡
 otherwise select 𝑎𝑡 = max

𝑎
𝑄∗(𝜙(𝑠𝑡), 𝑎; 𝜃)

 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑟𝑡 , 𝑥𝑡+1
 Set st+1 = 𝑠𝑡 , 𝑎𝑡 , 𝑥𝑡+1 and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1)
 Store transition (𝜙𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝜙𝑡+1) in 𝐷

 Sample random minibatch of transitions (𝜙𝑗, 𝑎𝑗, 𝑟𝑗, 𝜙𝑗+1) from 𝐷

 Set 𝑦𝑗 = {
𝑟𝑗 for terminal 𝜙𝑗+1

𝑟𝑗 + 𝛾 max
𝑎′

𝑄(𝜙𝑗+1, 𝑎
′; 𝜃) for nonterminal 𝜙𝑗+1

 Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝜙𝑗, 𝑎𝑗; 𝜃))
2

They introduced a method called Experience Replay that stores experiences in a memory

and sample batches to update the target policy. This was to make sure that the training data

is independent and identically distributed, which is a fundamental requirement for

Stochastic Gradient Descent optimization. Since sequentially learning from a sequence of

an experience causes correlation among training data, by creating a large buffer of

experience and randomly sampling a subset of these experiences help keep samples

independent.

30

Chapter 4

Computational Experiments

We compared the performance of our RL policy and human imitated policy (HIP). Average

throughput and machine efficiency were used as the performance measures. The two

policies are described in Table 4.1. 𝑄̂ is the trained Deep Q Network and 𝑙𝑖𝑗𝑡 is the

lateness for product 𝑖, layer 𝑗 at shift 𝑡.

Table 4.1: Policy of RL and HIP

Policy Product, Layer Quantity

RL product, layer of 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄̂(𝑠𝑡, 𝑎) quantity of 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄̂(𝑠𝑡, 𝑎)

HIP 𝑎𝑟𝑔𝑚𝑎𝑥𝑖,𝑗𝑙𝑖𝑗𝑡 𝑚𝑖𝑛(𝑙𝑖𝑗𝑡, 𝑀)

4.1 Experimental Settings

The virtual FAB to be used in the experiment is a small FAB with two products, five layers,

and ten machines. The size of the virtual FAB was chosen to be small since the WIP

Balancing Scheduler takes a long time (15 minutes per shift for a FAB with four products,

25 layers, and 50 machines) for solving an optimal solution for one shift. Considering the

required number of shifts to learn the Q function approximator and that the purpose of our

research is to show the existence of a better policy than human decision concluded us that

it will be better to experiment in a small FAB environment.

31

The weekly demand was sampled from a normal distribution with mean 4,000 wafers/week

and standard deviation 500. The process time for each product and layer was set equal as

300 seconds per wafer. The setup time was set 10 minutes/setup. The initial WIP at the

beginning of every experiment was set 𝑅𝑑𝑙 where 𝑑𝑙 is the layer demand and

𝑅~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0.5,0.7). The machine running status 𝑟𝑖𝑗𝑘 for the initial shift was set zero.

The machine dedication ℎ𝑖𝑗𝑘 was generated by randomly assigning layers to have 5 or 6

machines available to process.

We used the Python-MIP package to solve the WIP Balancing Scheduling problem and

Pytorch package to build and train DQN. Experiments were performed on a computer with

Ubuntu 18.04 as operating system, processor Intel(R) Core(TM) i7-7700, GeForce gtx 1080

and 16G of RAM.

4.2 Test Instances

The experiment was done in the following test instance sets shown in Table 4.2. They were

generated to compare the results in different disruption scenarios and different machine

dedication scenarios. The disruption scenarios were generated by using the product of

{0.5, 0.7, 0.9} itself as the space for (𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟). Here we fixed the Machine Numbers

Per Layer (MNPL) to {5,6}. For comparing various machine dedication scenarios, we

selected MNPL from {2 𝑜𝑟 3, 5 𝑜𝑟 6, 8 𝑜𝑟 9} and (𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟) from

{(0.5,0.5), (0.7,0.7)}.

32

Table 4.2: Description of test instances

Set 𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟 𝑀𝑁𝑃𝐿

1 0.5 0.5 5 or 6

2 0.5 0.7 5 or 6

3 0.5 0.9 5 or 6

4 0.7 0.5 5 or 6

5 0.7 0.7 5 or 6

6 0.7 0.9 5 or 6

7 0.9 0.5 5 or 6

8 0.9 0.7 5 or 6

9 0.9 0.9 5 or 6

10 0.9 0.9 5 or 6

11 0.9 0.9 5 or 6

12 0.9 0.9 5 or 6

13 0.5 0.5 2 or 3

14 0.7 0.7 2 or 3

15 0.5 0.5 5 or 6

16 0.7 0.7 5 or 6

17 0.5 0.5 8 or 9

18 0.7 0.7 8 or 9

33

4.3 Test Results

We performed two tests for our thesis. First was to show that our policy can perform better

than human imitated policy (HIP). This was performed in various machine disruption

scenarios. Secondly, by applying various machine utilization levels we showed that the more

complicated the layer-machine relation is makes HIP perform worse than not applying it.

Each performance test was done by running 1,000 tests for each test instances.

Test results for different machine scenarios are shown in Table 4.1, Table 4.2. We compared

the average throughput and average machine efficiency for each policy. This verifies that

the proposed method RL is more effective than HIP.

Table 4.3: Average Throughput comparison by different machine disruption scenarios

The result shows that RL policy performs better than HIP in terms of average throughput

and machine efficiency both. The throughput of RL was in average 30% better than HIP and

the efficiency was better in average by 1.02%. We performed a two-sided independent

samples t-test in order to see the mean difference of efficiency between each policy. Table

4.4 and Table 4.5 compare RL with HIP and No SendFAB in respect to machine efficiency.

The result tells RL and HIP have statistically significant mean difference of machine

efficiency. RL and No SendFAB, however, had similar machine efficiency results.

Considering the fact that Send FAB deteriorates its own machine efficiency by using other

𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟
Throughput (wf/shift)

RL HIP RL↔HIP(%) No SendFAB

0.5

0.5 83.59 48.96 70.7 52.78

0.7 92.87 67.54 37.5 68.31

0.9 113.70 91.23 24.6 87.77

0.7

0.5 92.97 68.50 35.7 69.62

0.7 106.74 82.57 29.3 80.18

0.9 117.09 99.50 17.7 93.01

 0.5 115.87 84.92 36.4 83.02

0.9 0.7 119.83 93.8 27.7 88.86

 0.9 121.63 105.37 15.4 98.4

34

lines’ machines, it appeared that RL policy prevents this effect by improving WIP balancing

among machines.

Table 4.4: Average Efficiency comparison between RL and HIP

by different machine disruption scenarios

𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟
Efficiency(%)

RL HIP Diff t p

0.5

0.5 45.36 44.56 0.8 6.56 0.000

0.7 60.69 59.73 0.96 4.01 0.000

0.9 82.95 81.87 1.08 6.46 0.000

0.7

0.5 61.98 60.77 1.21 4.42 0.000

0.7 75.15 73.9 1.25 11.59 0.000

0.9 89.98 89.16 0.82 6.01 0.000
 0.5 77.07 75.95 1.12 4.12 0.000

0.9 0.7 86.11 84.83 1.28 7.06 0.000

 0.9 94.57 93.88 0.69 18.07 0.000

Table 4.5: Average Efficiency comparison between RL and No Send FAB

by different machine disruption scenarios

𝑡𝑟𝑢𝑛 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟
Efficiency(%)

RL No SendFAB Diff t p

0.5

0.5 45.36 45.27 0.09 -0.07 0.950

0.7 60.69 60.72 -0.03 -0.14 0.890

0.9 82.95 82.99 -0.04 -0.28 0.780

0.7

0.5 61.98 62.15 -0.17 -0.66 0.510

0.7 75.15 75.03 0.12 -0.45 0.650

0.9 89.98 90.39 -0.41 -9.87 0.000
 0.5 77.07 77.07 0 0.008 0.990

0.9 0.7 86.11 86.16 -0.05 -0.32 0.750

 0.9 94.57 94.95 -0.38 -6.84 0.000

35

It showed that the throughput improvement was higher when the machine was more unstable

(lower values of 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟). The average throughput by different 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟

groups are shown in Figure 4.1.

 Figure 4.1: Performance by 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟

We have also discovered that the performance improvement gets bigger when the machine

is in a more unstable configuration. The average performance improvement of throughput

is show in Figure 4.2. RL was more beneficial as the machine became more unstable.

36

Figure 4.2: Throughput improvement by different levels of 𝑡𝑟𝑢𝑛, 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟

The results for applying different machine utilization is shown in Figure 4.3. The result

shows that when machine utilization increases the performance relative to policy without

Send FAB increases. This indicates that HIP harms the performance and our policy improves

the performance when the layer-machine relation gets more complicated.

Figure 4.3: Throughput against No Send FAB by different levels of machine utilization

37

Chapter 5

Conclusions

Through experiments upon different test instances, we have seen that a new policy rather

than a decision policy based on human experience is needed. We also checked that the more

complex the system is, and the more unstable the machines are leads to a greater

performance improvement when using our policy. This indicates that in a real FAB

environment which is much more complex with more components to consider, would be

able to benefit from applying our framework.

Our thesis provides a guideline for applying Reinforcement Learning to the Send FAB

problem. It can be easily applied for any FAB environment. A FAB production manager can

apply their own FAB scheduler and machine disruption model and build their own FAB

environment.

Our FAB environment, however, assumes that the offering line receives all the required

quantity unless it exceeds a limit. The research on the Send FAB problem can be expanded

by modeling several lines. Our thesis assumes that the offering line of Send FAB accepts

the whole requested amount unless it is below the maximum quantity available. In reality,

however, the managers of each line negotiate the amount that can be processed. In other

words, the offering line checks the capacity status of their own line and decides an amount

that would benefit in machine efficiency while not harming their other production

performances. Therefore, modeling several lines together with their own bottleneck layers

could help develop a full automation on Send FAB contracts without any negotiation

between line managers.

38

Bibliography

[1] Lin, Y.H. and Lee, C.E., 2001. A total standard WIP estimation method for wafer

fabrication, European Journal of Operational Research, 131(1), 78-94.

[2] Lou, S.X.C. and Kager, P.W., 1989. A robust production control policy for VLSI wafer

fabrication, IEEE transactions on semiconductor manufacturing, 2(4), 159-164.

[3] Toba, H., Izumi H., Hatada, H., Chikushima, T., 2005. Dynamic Load Balancing

Among Multiple Fabrication Lines Through Estimation of Minimum Inter-Operation

Time, IEEE transactions on semiconductor manufacturing, 18(1), 202-213.

[4] Chung, J. and Jang, J., 2009. A WIP Balancing Procedure for Throughput Maximization

in Semiconductor Fabrication, IEEE transactions on semiconductor manufacturing,

22(3), 381-390.

[5] Urayama, K., Fu, M.C., and Marcus, S.T.,2015. Simulation-Based Work Load and Job

Release Control for Semiconductor Manufacturing, IEEE 54th Conference on Decision

and Control, Osaka, Japan, 15-18 Dec.

[6] Lee, W.J., Kim, B.H., Ko, K. and Shin, H., 2019. Simulation based multi-objective FAB

scheduling by using reinforcement learning, Proceedings of the 2019 Winter

Simulation Conference, National Harbor, MD, USA, 8-11 Dec.

[7] Kim, H. Lim, D.E., and Lee, S. 2020. Deep Learning-Based dynamic scheduling for

semiconductor manufacturing with high uncertainty of Automated Material Handling

System capability, IEEE transactions on semiconductor manufacturing, 33(1), 13-22.

[8] Mnih, V. Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, L., Wlerstra, D., and

Riedmiller, M., 2013. Playing Atari with Deep Reinforcement Learning,. arXiv preprint

arXiv: 1312 5602.

39

국문초록

반도체공장은 설비 용량의 불안정성 때문에 초기 계획하여 할당된 설비

용량에 비해 일시적으로 생산 용량이 부족해지는 경우가 발생한다. 이를

대응하기 위해 생산 담당자들은 다른 라인에 호환가능한 설비를 공유하는

것을 요청하는데, 가능한 많은 양의 WIP에 대한 요청을 한다. 이러한

의사결정은 공정이 순차적으로 연결된 점 때문에 라인 전체 측면에서는

오히려 WIP Balancing을 악화시킬 수 있다. 특히 해당 공정군이 병목공정군인

경우 더 문제가 된다. 따라서 본 연구에서는 병목공정군을 중심으로 한 WIP

Balancing scheduler를 이용하여 FAB simulator를 만든 뒤 이러한 환경속에서

강화학습 알고리즘으로 학습한 생산 용량 확장 정책을 제안한다. 이러한

정책은 throughput, machine efficiency 측면에서 사람의 의사결정을 모방한

정책보다 좋은 성과를 보였다.

주요어: 생산용량관리, 강화학습, 산업공학

학번: 2019-23474

	Chapter 1 Introduction
	1.1 Problem Description
	1.2 Research Motivation and Contribution
	1.3 Organization of the Thesis

	Chapter 2 Literature Review
	2.1 Review on FAB scheduling
	2.2 Review on Dynamic production control

	Chapter 3 Proposed Approach and Methodology
	3.1 Proposed Approach
	3.2 FAB Simulator
	3.3 Reinforcement Learning Approach

	Chapter 4 Computational Experiments
	4.1 Experiment settings
	4.2 Test Instances
	4.3 Test Results

	Chapter 5 Conclusions
	Bibliography
	국문초록

<startpage>9
Chapter 1 Introduction 1
 1.1 Problem Description 3
 1.2 Research Motivation and Contribution 5
 1.3 Organization of the Thesis 5
Chapter 2 Literature Review 6
 2.1 Review on FAB scheduling 6
 2.2 Review on Dynamic production control 7
Chapter 3 Proposed Approach and Methodology 8
 3.1 Proposed Approach 8
 3.2 FAB Simulator 17
 3.3 Reinforcement Learning Approach 26
Chapter 4 Computational Experiments 30
 4.1 Experiment settings 30
 4.2 Test Instances 31
 4.3 Test Results 33
Chapter 5 Conclusions 37
Bibliography 38
국문초록 39
</body>

