creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Tor
Ho

Temporary Capacity Expansion Policy in
Semiconductor FAB using Reinforcement Learning

2020 1 12 ¥

o
Ho
gl
~g

o] & A

Temporary Capacity Expansion Policy in
Semiconductor FAB using Reinforcement Learning

HEA B W GARD AN P BF A AL
AEms w4

o] =R FIMA FSRoR A

2020 9 12 ¥

IR £ 97
59407 2 Q-

1o
o,
L@
=
| Ho

Abstract

Temporary Capacity Expansion Policy in
Semiconductor FAB using Reinforcement Learning

Hee Jae Lee
Department of Industrial Engineering
The Graduate School

Seoul National University

Due to the instability of the capacity of the semiconductor process, there are cases in
which the production capacity temporarily becomes insufficient compared to the capacity
allocated by the initial plan. To respond, production managers require capacity to other
lines with compatible equipment. This decision can have an adverse effect on the entire
line because the processes are connected in a sequence. In particular, it becomes more
problematic when the machine group is a bottleneck process group. Therefore, this study
proposes a capacity expansion policy learned by reinforcement learning algorithms in this
environment using a FAB simulator built upon a WIP balancing scheduler and a machine
disruption model. These policies performed better than policies imitating human decision

in terms of throughput and machine efficiency.

Keywords: Capacity Management, Reinforcement Learning, Industrial engineering

Student Number: 2019-23474

Contents

Abstract
Contents

List of Tables
List of Figures

Chapter 1 Introduction

1.1 Problem Description ««=««««rsrsesrmrumreer e e
1.2 Research Motivation and Contribution ««-««--s-=sseeremrrmremmmrniieas
1.3 Organization of the Thesis «==«=ssrseremrmemmrmr e

Chapter 2 Literature Review
2.1 Review on FAB scheduling ««---«=sssermemrmmmmm e

2.2 Review on Dynamic production control === -«=«=ssssessmrmemmmmmimmininene.

Chapter 3 Proposed Approach and Methodology

3.1 Proposed Approach ««--sereeseceriecareniieerieiieniiiiiiitiiee e
3.2 FAB Simulator -« ««x=sesremremreser e
3.3 Reinforcement Learning Approach «««««ssessermemrmmmmminninenaes

Chapter 4 Computational Experiments

4.1 Experiment Settings =««--=«=s=ssremreemrramumrimiriinas
4.2 Test INStances ««======xrrreemmmmmmm e
4.3 Test RESUILS =-rmrremremmrmrn e

il

Chapter 5 Conclusions

Bibliography

SEx%

il

[,

2

37

38

39

: 1_'_” [

1

I

1L

List of Tables

Table 3.1
Table 3.2
Table 3.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4

Table 4.5

A1, 1, MTBF, MTTR for corresponding ., trecoper Values----=-ssemrermamaannanas 24
Average running rate 1y, observed for t,,n, trecover VAIUES ==resresrenriiiiaiana. 25
Probability of next shift being ‘Up’ for t,,n, trecover Values==-=sremremramrmiarannan 25
Policy Of RL and HIP ««««ssssssssssmmmnmmmmmmmmnmsnesesesessssesssessss e 30
DeSCription Of test INStANCES ««««=======sssssssssmmmmmmmmmmmmnmnsnnnnnssesssnneseasennnnnnnes 32
Average throughput comparison by different machine disruption scenarios --------- 33
Average efficiency comparison between RL and HIP «-----ceeremremmemmennenanennan. 34
Average efficiency comparison between RL and No Send FAB -------evvereeruannanes 34
v '

List of Figures

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 4.2

Figure 4.3

An illustration of how Send FAB WOTKS -« -« rxrnrerernrrararararararararamararamamaraens 3
AD lUSHrAtion Of Jayers ««««««xxxxeeeeererrererarrieiriee e 9
An illustration of Send FAB action changing FAB aggregate -----------=eseereerenne 12
An illustration of how transition probabilities are calculated «--------=sssereerernane 14
An illustration of learning the Send FAB POLCY «=--=====xxxxssseeererraaramaraaaaaanns. 16
An illustration of our Deep Q NEtwork ««««««=«xxssseeerrrrrrmarrrmirini, 17
An illustration of transition diagram of machine status «---=-«=--ssreeremremienannan. 21
An illustration of transition how CTMC provides disruption scenarios ---=--=------ 22
PErformance DY trym, Erecoper ****===========ssrsseeermmmmmmmmamaaaaaaaaaaaaaaaaaaaaaes 35
Throughput improvement by different levels of t,y,, trecoper ===x==========r=erere- 36
Throughput against No Send FAB by different levels of machine utilization ------- 36

¥ A2 1

I % 1]

Chapter 1

Introduction

Semiconductor factories are consisted of several lines which are classified by the product
type it manages to produce. Each line is assigned its own Work In Process (WIP) and
machines to manage. When a monthly production target is given at the company-wide
production planning stage, the production target for each line is determined based on the
target amount for each product. If it is difficult to achieve the production target, the
affiliation of the machines may be changed on a weekly and monthly basis through
discussions between lines. Reallocation of production capacity is done by reassigning the
managing line of each machine. It is possible because most machines are compatible for
different product types and the total FAB is connected by Over Head Transports (OHT) and
trucks.

Even after such capacity redistribution, cases of insufficient capacity occur. This is because
semiconductor facilities frequently experience unexpected disruptions that are difficult to
predict. When such disruption occurs in the bottleneck process, additional capacity
expansion is required because waiting WIP can be maintained at a high level for a long time.
To cope with this, production managers make a decision to temporarily expand production
capacity in shift units.

In this thesis, we consider the problem of temporarily sharing capacity of other lines which
is called Send FAB. Send FAB is a major task that is required and requested frequently for
production managers in semiconductor FABs. The decision, however, is made by the
managers’ experiences on the WIP status. They seek to request as much capacity as possible
to the amount they think they need. They struggle to release waiting WIP as fast as possible.
The more they experienced a tight production schedule, their belief on maximizing the

quantity is stronger.

Send FAB decisions should be made very carefully. It is because semiconductor FABs has
properties such as complicated sequence of re-entrant process, multi-objective system, and
highly unpredictable machine status. The best way to make a careful decision is to consider
all status regarding to the production objective. It is why our thesis introduces a Markov
Decision Process. The fact that managers cannot see WIP status, machine status, and
machine dedication all together made us think of creating a policy that considers all these
states as an input. The stochastic nature of FAB aggregates limits our model to be solved by
deterministic optimization models.

The environment of our Send FAB problem is built on a FAB simulator. Since the real FAB
data is not available, we try to conform a FAB environment containing the most important
features of Send FAB problem. The simulator consists of a scheduler that decides production
schedule every shift, and a disruption model of machines to model machine uncertainty. The
simulator reads the beginning WIP and machine status of each shift and returns the ending
WIP and machine status.

We use Reinforcement Learning to solve MDP on our FAB environment. Since the problem
with continuous state variables make the state space dimension infinite, and the transition
probability is not deterministic, we cannot use tabular methods. Instead, we use a function
approximation approach, Deep Q Network. We train the Deep Q Network in several FAB
settings that are distinguished by different machine disruption scenarios and machine
dedication scenarios.

We compare the performance of our trained policy and the policy that imitates the
production managers. Since there are no officially known rule for a the Send FAB decision
of the production manager, we make a policy that best describes the manager’s decision.
The results prove that our policy improves the performance in a big scale and that the policy
imitating the human decision can harm the performance in some occasions. We start by

describing the details of the problem in Section 1.1.

1.1 Problem Description

Send FAB is a contract between two lines of sharing one’s capacity for a promised period
and quantity. It is triggered by the production manager of the line with insufficient capacity
on a process group, which is a group of machines that operate similar processes. The contract
is agreed when both lines achieve benefits. For the requiring line, they get to deal with issues
coming from capacity shortage. The offering line, on the other hand, can benefit by
increasing their machine efficiency.

The actual operation is done by enrolling the contract to the Automatic Material Handling
System (AMHS). Every lot and machine in the FAB have owning line tags. AMHS prevents
track-in events of lots to machines with different owning line tags. When the Send FAB
contract is enrolled, however, the AMHS allows the requiring line’s lot to track-in to
machines of the offering line. The lots of the requiring line is then recognized as lots of the
offering line and competes with the offering line’s lots by the dispatching score. This tag

returns to its original status when the promised period or amount is reached.
e e

AMHS AMHS

< tags Line 1 < deletes tag <
WIPtobe When contract
dispatchable to amount, time

Line 2 Machines reached

Before Send FAB While Send FAB After Send FAB

Figure 1.1: An illustration of how Send FAB works
The period of a Send FAB contract is usually one to three shifts. It is because decision
makers are not sure of their decisions and to be able to deal with uncertainties of the future
capacity status. The number of processes in a Send FAB contract is usually one. It is because
the more different steps a machine processes, the higher the setup time would be. Therefore,
the requiring line’s manager usually selects one process step of the process group for Send

FAB.

&) s

1

I

U

The selection of the process step is done by selecting the most delayed layer. In reality there
are no Standard Operation Procedure (SOP) for the decision. It is mostly chosen by the
manager’s instinct based on years of experience. Still, for comparison of our RL policy, we
used a rule-based policy that selects the most delayed layer which is the best out of just
using the WIP information. The manager calculates the lateness of each layer of the
problematic process group and selects the process step with the largest late quantity.

The manager of the requiring line asks as much as possible of the late quantity of the
problematic layer’s process. The final amount is decided after negotiation with the offering

line’s manager. If the late quantity is x4, and the affordable quantity of the offering line
IS Xaffordable» the quantity is decided as min(xlate, xaffordable).

For a better explanation let’s suppose line A is the line with insufficient capacity and line
B, C are the lines requested for some capacity sharing and the process group in capacity
shortage is P. A scenario for a Send FAB is presented below.
1) Production manager of line A checks the WIP status of every layer Py, P,, ..., Py in
process group P.
2) The manager calculates the late quantity [y, 1[5, ..., [y of each layer and decides the
layer to require a Send FAB by p = argmax; ;.

3) The manager requires usage of compatible machines of line B, C with layer p for
L, wafers per shift.

4) Managers of line B,C check the status of their own WIP status on P and calculates
the amount of capacity og, 0, they can provide.

5) op appears to be zero, which means support is unavailable from line B, and o,

appears to be non-zero but smaller than 1.

6) The manager of line C enrolls a Send FAB contract of min(lp, oc) per shift in the

system.

Deciding the process step, quantity of Send FAB based on the manager’s instinct can cause
future adverse effects. It is because the FAB is a multi-objective system having objectives
such as throughput, cycle time, efficiency etc. Some have a trade-off relation. Even if the
quantity of Send FAB is relatively low, it changes the aggregate of the FAB and could some

time bring a massive damage to the whole system.

1.2 Research Motivation and Contribution

In order to deal with emergent situations on bottleneck process groups, Send FAB request
come and go frequently between lines. The managers, however, are unavailable to grasp the
FAB aggregate and the future effect of the decision. Even if by asking the most of the late
quantity may seem to benefit by releasing waiting WIP, the cumulative performance may
decrease due to problems that may occur at a future point.

We believe a Send FAB policy should be built on considering the FAB aggregate and its
stochastic dynamics on machine uncertainty. Therefore, we develop a Markov Decision
Process for Send FAB policy and derive a policy that can replace the manager’s decision.
The thesis contributes by suggesting a better solution for the Send FAB problem. By
showing results of human imitated policy damaging the production performance after all,
we claim that a new policy is needed. The results show that our policy performs better in
terms of throughput and machine efficiency which are the key performance measure for

production management.

1.3 Organization of the Thesis

The thesis is composed of 5 chapters. In Chapter 2, we review literatures related to the
problem. In Chapter 3, we introduce our proposed approach and methodology. In Chapter
4, results of computational experiments are presented. Finally, in Chapter 5, we give

concluding remarks and possible future research directions of this thesis.

Chapter 2

Literature Review

To the best of my knowledge, there are no previous research on the Send FAB problem dealt
in our research. Therefore, in this section we review researches on FAB scheduling and

dynamic production control that we referred while developing our thesis.

2.1 Review on FAB Scheduling

Early research on FAB scheduling, which deal with lot releasing, due-date scheduling, and
WIP balancing were focused on each single operational issue. There were researches on lot
releasing methods attempting to avoid starvation of bottleneck machines by using the flow
rate of a layer. The research of Lin and Lee [1] introduces an appropriate total WIP level in
order to achieve better throughput rate while keeping the corresponding cycle time relatively
low. They introduced a queueing network based algorithm to develop a FAB environment
with a fixed-WIP control policy.

Researches that integrated approaches to focus on multiple performance measures are based
on the flow rate control procedure. The Two Boundary algorithm was introduced by Lou
and Kager [2]. The algorithm determines the Target Production Quantity (TPQ) by trying to
make the difference between planned and actual production zero. Our scheduler was based
on the research of Chung and Jang [3] which applies the concept of TPQ in order to solve
the scheduling problem that can deal with WIP balancing on process layers, machines
together. They introduced a new WIP balancing method called Toolset Available WIP
Balancing (TAWB). By adding the concept of Average Available WIP for each machine to
the WIP Balancing objective, they showed that it can prevent machine starvation of

bottleneck machines.

2.2 Review on Dynamic Production Control

In order to deal with varying production requirements of various products, the FAB operates
with multifunctional machines. This additional flexibility helps dealing with demand
uncertainty of various products. Ever since its appearance, researchers have started to
developed dynamic production controlling methods. Simulation approaches and Markov
Decision Process approaches have been widely applied in solving the dynamic capacity
allocation problem.

Toba [4] has proposed a load balancing method among multiple FAB lines using predictive
scheduling results. It assumes the capacity sharable situation among multiple lines and tries
to minimize the transportation cost between two process steps. Urayama, Fu and Marcus [5]
adopts a hierarchical control model: long-term and capacity model and short-term job
release control model to deal with the dynamic job release control. It applies simulation
methods for estimating the parameters for each control model. Kim, Ko and Shin [6] applied
a semi-Markov Decision Process and proposed a reinforcement learning method together
with the fab simulator to obtain near optimal dispatching policy. They introduced a policy
that learns the appropriate weight for selecting multiple dispatching policies together. Kim,
Lim and Lee [7] introduced a dynamic scheduling system based on Deep Learning that can
consider the Automated Material Handling System (AMHS) constraints. They suggested a
new frame of applying trained Neural Networks replaceable of rule based dispatching

policies.

Chapter 3

Proposed Approach and Methodology

This section describes how we develop our RL policy on the Send FAB problem. Then, we
introduce the FAB simulator we used as our RL environment. Finally, we introduce the

methodology on RL.

3.1 Proposed Approach

Our model is built upon the fact that production managers cannot see the whole FAB status.
Therefore, we build a Markov Decision Process (MDP) that uses the FAB aggregate as the
state and Send FAB decision as the action. In order to solve the MDP with RL, we use a
FAB simulator based on preceding WIP Balancing Scheduler along with a disruption model
as the RL environment.

We train the RL agent having a goal to meet the production target for the upcoming week.
The time period is set as one week since production target usually varies by a week. Along
with the fact that Send FAB is negotiated in a shift unit period, we consider every 21 shifts
of one week to be the time horizon. The goal of the RL agent is to benefit the FAB aggregate
using Send FAB contracts. We start by introducing the concepts of layers which we use to

represent our problem.

3.1.1 Layer

The FAB environment is represented by layers of the bottleneck process group. Although
there are dozens of process groups in semiconductor production FABs, this study focuses
only on the bottleneck process group. It is because most of the Send FAB decisions are made
on the bottleneck process group and whenever it causes an adverse effect in the future, it

will be on the group itself. Based on the fact that the bottleneck process group controls the

throughput rate [1], many researches ([2],[3]) on FAB bottleneck processes have modeled
the entire FAB process as a series of loops re-entering the bottleneck process group. We
define all processes between these loops as a layer. The processes starting from the process
right after the bottleneck process to the next bottleneck group process forms a layer. This is

illustrated as in Figure 3.1.

Layer1 FABIN B/N PRCGroup
Layer 2 B/N PRCGroup
Layern B/N PRCGroup — 20T,

Figure 3.1: An illustration of layers

If the bottleneck process group has n processes, the model will have n layers. The flow
time of a layer will be defined as the approximated turnaround time for all processes in the
layer. The WIP level of a layer is be the total WIP in a layer. Also, each layer will be

designated a demand proportional to their flow times starting from the last layer.

3.1.2 FAB Aggregate

The FAB aggregate represents the whole WIP status of each layer, machine status of each
machine and the lateness of production for each layer. For every layer j € J; for product
[€ I, we define the beginning WIP as b;; as the WIP waiting in all process steps in product
i and layer j. The machine status for machine k € K at the beginning of the shift is
defined as m;, € {0,1} where 0,1 indicates ‘Down’, ‘Up’ status.

The lateness of scheduled production target for each product and layer is defined as [;;. In
order to calculate the lateness of production, we compare the rolling demand with the rolling
beginning WIP. The demand d;; for product i and layer j represents the needed WIP for

the layer. Using the weekly production target wy, and flow time ¢;; we calculate the

demand for product i and layer j as in (3.1) and (3.2). If the flow time of the layer is
covered by one weekly target, we use (3.1). If the flow time of a layer is covered by two

weekly target production volumes, we use (3.2). ¢;j, and ¢;;, each indicated the parts of

¢;j in the first and second weeks, respectively.

dyj =%,if7(n—1) <c¢;; <7n (3.1
W,, C;: : w. +1C" .
dyj=—2"+———2 if Tn=1) 2 ¢jjorc;; < Tn (3.2)

The demand indicates the wanted amount of WIP in order to meet the weekly production
target. Since layers are sequentially connected, we roll the demand and WIP to compare the
lateness. We define the lateness [;; for product i, layer j as (3.3). We roll the demand and
beginning WIP from the last layer to the next layer. This means difference between the
amount that was supposed to be produced and sent to next layers, and the amount that has

been produced and sent to next layers.

[7il [7il
lij = E o dy — E by (3.3)
k=j+1 k=j+1

3.1.3 MDP Modeling of Send FAB

In this section we introduce how the Send FAB problem was formulated into a MDP. Our
MDP model is designed to consider the important factors and settings of the Send FAB
problem. By reflecting the components of the FAB situation related to production KPIs such
as WIP status of every layer, machine status of every machine, and the lateness of production
by layers, we make it able to consider the FAB aggregate. We also set an appropriate time
horizon that can embrace the settings of the Send FAB problem.

Since the production of semiconductors are nearly all time operating, the selection of the
time horizon can be a major issue. Unlike MDP models having a terminal state that ends the
episode, our problem does not have a specific goal that it heads for. With the no-break
production and no-terminal state situation, we need to set a time horizon that appropriately

leads the solution to fulfill the production manager’s needs. In our model, considering the

10

fact that Send FAB decisions are made to deal with a short-period (few shifts) capacity
shortage, and that production target usually fluctuate on a weekly basis, we set the time
horizon to 21 shifts, T = {1,2, ...,21}. Therefore, we terminate the episode when it reaches
the 21th shift (one week). This way, the solution of the MDP can provide a good Send FAB
decision for the production manager considering the weekly production target.

The state space of our MDP is a set of vectors that represent the FAB aggregate. The vector

is shown in following equations:

S = [W,L,M] (3.4)

W = [Wy, Wy, ..., Wi], W; = [biy, big, .., by] (3.5)
L =Ly, Ly, L] Ly = [lins Lizs oo Ly] (3.6)
M= [ml,mz, ...m|K|] 3.7

lyj = 225" i — T bugsa-n (3-8)

W is the state vector of beginning WIPs for all products. Each vector W{ consists of initial
WIP for each |J;| layers. L is the state vector of late production quantities for each product.

Each vector f{ consists of late quantities for all [J;| layers. They are calculated by
subtracting rolling WIP from rolling demand as shown in (3.8). The rolling demand
indicates the amount that should have been produced and the rolling WIP is the amount that
was produced. M is the state vector of machine status for |K| machines.

The action space is a consisted of vectors of all possible Send FAB decision. Each Send
FAB decision vector (i,j,q) is consisted of the product type i, layer number j and
quantity q. Since Send FAB wafers are carried in a lot which has a size of 25 wafers, we
discretized the possible range of sending quantity. The range is chosen to be smaller than
20% of the average layer demand to apply the fact that Send FAB quantities are small
relative to regular production quantities. For example, if the average layer demand is 20,000
wafers we limit the maximum Send FAB quantity to be 400 wafers and the possible
collection of Send FAB quantities would be {0,25,50,...,375,400}. In this case, the
dimension of the action vector space is 17|I||J| where |I| is the number of products, |/|

is the number of layers, and 17 is the number of Send FAB quantity selections.

11

The action for Send FAB on product i, layer j, with quantity q is applied by changing the

WIP of and demand status of each layer. The beginning WIP b;; and the demand for the

next layer d;(j;q) is decreased by q. Figure 3.2 shows how the FAB aggregate changes.

Layer Demand WIP
1 djy by
2 diz biz
j dij by |
j+1 digj+1) bi(y+1)
Vil =1 dijj;1-1 bijji1-1
il difjil by

Layer j,
Qty q

Layer Demand WIP
1 diy biy
2 di; b,
j dl'j bij -q |
j+1 di+1y—q | by
Vil =1 dijji1-1 bijji1-1
il dijy;| b

Figure 3.2: An illustration of Send FAB action changing FAB aggregate

The reward is defined by whether there was improvement of the WIP Balancing Scheduler’s

objective value. Reward for choosing action A at current FAB aggregate S, is defined as

in (3.9) and (3.10). p is the penalty variable that prevents choosing more quantity than the

beginning WIP. We give -5 as the penalty value for these cases, and 0 for the cases that does

not violates this condition. Improvement and deterioration regard the change in the objective

value of the WIP Balancing Scheduler. It checks how helpful the action was with respect to

WIP balancing. The condition ‘improvement’ indicates that O(S{;;) — 0(S¢z1) >0,

where 0(S) is the objective value of the WIP Balancing Scheduler and S/, ; is the next

state effected by Send FAB action. ‘deterioration’ means negative effects on the objective

value, and ‘large improvement’ indicates to times when the improvement quantity is the

largest among previous shifts.

12

10+p if large improvement

) 1+p if improvement
R(Se) = 0+p if no improvement (3.9)
-10+p if deterioration
-5 if q = b;;
= .f 7= Dy (3.10)
0 lf q < bU

The objective of our MDP is to find a policy 7 that maximizes cumulative sum of rewards
as shown in (3.11). The cumulative reward can be represented as the bellman optimality

equation of action value function Q(s,a) as shown in (3.12).

20
EL) y'R(S,m(S))] (3.11)
t=0
Qr+(s,a) = R(s,a) +ymax Q-+ (s", a’) (3.12)

In order to solve the bellman optimality equation, we need to know the transition probability
from prevision state S; = [W{, L_t), ﬁt)] to next state S;yq = [Wt+1, Zt+1,ﬁt+1] for
choosing action A; = [i,j,q] . The process, however, requires a large amount of
computation to cover all possible transitions.

Figure 3.3 shows the process of transition when chosen an action. When initial state S; is
given and action A; is chosen, the WIP status and lateness status changes as shown in
Figure 3.2. The changed FAB aggregate S;' then goes through a scheduling process that
decides the production quantity X, which is a matrix consisted of the production variables
X;jk assigned for each product i, layer j, machine k. Then the initial machine status M;
goes through a machine disruption scenario which is based upon a Continuous Markov
Chain model (3.2.2 describes details). It returns ﬁt which is a vector consisted of running
rates of each machine throughout the shift. ﬁt is then applied to the planned production
X; to acquire the actual production X;. Then X/ is used to calculate the next WIP status
Wtﬂ and lateness Zt+1. The initial machine status Mt+1 is directly acquired from the

machine disruption model.

13

1
/ i
e
A P LW,
_? t Apply Run : N t+1
L —_— Rate of 1 L
t Action Machines : _E+1
changes 1
M, WIP and I Mivq
Lateness :
Sf ! St+1
1
1

Area where the randomness of state transition applies

Figure 3.3: An illustration of how transition probabilities are calculated

In order to calculate the transition probability, we discriminate deterministic processes and
random processes. The deterministic processes do not influence the probability. The
transition probability is only affected by the random processes (dotted box area in Figure
3.3). Wt+1, Zt+1 is obtained using the actual production X; which is determined by the
random vector I_Q)t, and Mt+1 is the next machine status given the previous initial status
ﬁt. Therefore, we only consider the probability P{ﬁt, Mt+1 |M}} . In other words,
P{S:111S: A} = P{(ﬁt, Mt+1)|5£}) P{(ﬁt, 1\7I)t+1)|55} can be calculated from the
Continuous Time Markov Chain we define as the machine disruption model (3.2.2).

The values of fét, however, requires to solve a Mixed Integer Programming (MIP) problem
and a Linear Programming (LP) problem each time for a pair of state and action. The MIP
problem is needed to get the scheduled production amount X; and LP is used to solve the
corresponding 7;; values that generates X; which eventually leads to the final state S¢. ;.
In order to solve our MDP with Dynamic Programming, we need to obtain all possible
transition probabilities between states. Also, the states have continuous values that makes it
impossible to approach the problem in a tabular method. Even we go through discretization
on state values, the two required optimization in calculating a single transition probability
would lead to a large amount of computation time. Therefore, we instead use a model-free

Reinforcement Learning Approach.

14 . ’H _-;‘I: . 1” &

3.1.4 Learning Send FAB policy

Our MDP is defined in a state space with infinite dimension. Therefore, we use a Q function
approximating approach instead of a tabular method which save all Q values. Among the
function approximating approach, we use Deep Q Network (DQN) [8]. The DQN algorithm
works by selecting the greatest estimated Q value for a given state and action. The neural
network uses the state of our MDP model as the input variable and returns the Q value for
every possible action for the given state. In order to fit the neural network, we train the

model as in Algorithm 1.

Algorithm 1 Learning DQN for Send FAB

Initialize FAB environment
Initialize action value function Q,y;ine With random weights
Copy Qontine as Qrarget
Create dequeing structure D for memory
For episode = 1, M:
Initialize weekly demand and allocate layer demand
Initialize FAB aggregate s; and preprocess into ¢; = ¢(s1)
Fort =1,21:
With probability € select a random action a;
otherwise select a; = max Qoniine (D(se), a; 6)

increase € by 107> and € « max (0.01,€)
if a; is no Send FAB then:
=0
else:
Create s{ which is the updated FAB aggregate after a;
Solve WIP Balancing MIP for s;, s{ and get x;,1, 0(st), 0(s¢), E(st), E(s¢)
1y = 0(st) — 0(s) + e (E(sp) — E(sp)).
SetSty1 = St, Ap, X¢+1 and preprocess ¢ryq = P(Se41)
Store transition (¢, as, 1, Pey1) in D

if |D| > minibatch size then:
Sample random minibatch of transitions (qb]-, a;, 1, ¢j+1) from D
Sety; =1; +y max Qrarger ($j+1,a’; 6)

2
Perform a gradient descent step on (y]- — Qontine ((,bj, a;; 6))

15

|

Aggregate, .
| ‘ FAB environment

Aggregate,.y

State, Aggregate

Machine

Experience .
Memory

WIP Balancing

Di:;ugtilon Based Scheduler CRIE!WIaI‘d
ode alculator

' » Reward,

Action, WIP Balancing
| Ending Status, Based Scheduler
Running Rate
Next

v Aggregate

Aggregate/ Aggregate;

Figure 3.4: An illustration of learning the Send FAB policy

DOQN is fitted by numerous episodes that is performed as shown in Figure 3.3. The RL agent
chooses the action with the largest estimated Q value from the current DQN. The action is
performed to change the FAB aggregate for the current shift. The changed FAB aggregate
along with the original FAB aggregate are used as the initial FAB status for production
scheduling. After applying a machine disruption scenario, the next FAB aggregate is
obtained. For reward assignment we compare the WIP Balancing scheduler’s objective of
the next shift’s aggregate with and without the action. Then the state, action and reward are
then saved in an experience memory which has a LIFO structure with a given memory size.
The DQN is fitted with a batch of experiences extracted from the experience memory and
repeats the process until the end of episode. We used an architecture for the Neural Network
as shown in Figure 3.4. The learning rate was set 0.001, and epsilon increases by 10~5 for

every shift.

16

5 gt 8t

= -

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer

(relu) (relu) (relu) (relu)

A1+ 1Kl 1|+ K] M 11111Q]

Figure 3.5: An illustration of our Deep Q Network

3.2 FAB simulator

The FAB simulator is composed of a WIP Balancing Scheduler and a Machine Disruption
Model. Since real production data is not available for this study, we make a simulator that
can represent the key elements of the Send FAB problem. We use a WIP Balancing
Scheduler of Chung and Jang [4]. It decides the production quantities and machine usage
on bottleneck layers. To deal with machine status on making a Send FAB decision, we made
a Machine Disruption Model that models the status of the machine and its running time

during a shift.

17 5

3.2.1 WIP Balancing Scheduler
In this section we introduce the Mixed Integer Program (MIP) problem of Chung and Jang
[4]. The scheduler decides how much to produce for each product and layer. It seeks to
minimize lateness of production and starvation of machines. It considers constraints
regarding to machine dedication and production capacity. It uses WIP status and machine
status of the previous shift along with machine dedication, process time, and setup time as
input data.
Unlike the original MIP of Chung and Jang, we remove the constraints related to
lithographic process groups. It is a constraint that prevents the number of assigned machines
exceeding the number of masks for each layer. Unlike Chung and Jang, we do not assume
the bottleneck process group is always a lithographic process group. We intend our model
to be applied to any process group that currently is the bottleneck. Therefore, we remove
the mask constraints from the original MIP. The following notations are used in this model.
1) Data sets
I: Set of products.
Ji Set of layers of product i,i € I.
K: Set of machines.

N: Set of weeks for demands.

2) Input Data
S: Setup time of machine.
¢ij: Flow time of product i, layer j.
Sum of flow time of product i from layer j to final layer.
pijk: Wafer processing time of product i, layer j on machine k.
Tiji: Initial processing layer index. If machine k is processing product i, layer
J at the beginning of the current shift, 7,5, = 1; otherwise 7y, = 0.
bij: WIP level of product i, layer j at the beginning of the current shift.

ejj: WIPlevel of product i, layer j at the end of the current shift.

18

Target production volume for week n.

Layer demand for product i, layer j.

Toolset dedication. If product i, layer j can be processed at machine k,

hijk = 0

Upper-limit production quantity (UPQ) for product i, layer ;.

Current lateness(days) of WIP of product i, layer j

3) Decision Variables

xiij

YVijk:

Production quantity for product i, layer j from machine k during current

shift.

Production assignment. If x;;; > 0, y;j = 1; otherwise y;j, = 0.

The WIP Balancing problem is as follows.

minimize

subject to

Z Z(uij - Z xiji) + G Z |MAW, — AAW|

i€l jeJ kek kek

WPMi = — 8
Y ke hijic

MAWR == ZZMPTUhUk
i€l jej
_ Skex MAW,

AAW
K]

Ykek Xijk < byj

Xij < Myijk

Yier Xjes Xiji Pijk + S (Tier Xjey vijk —1) < H

e;j = bij + Xkex Xi(j-1)k — Zkek Xijk

eio = bio + Xkek Xi|jjk — Zkek Xiok
Ykek Xijk < Wjj

Yijk =0 if hyjp =0

19

ieljej;

i€eljej, kek

keK

ieljej;
ieljej;
kekK
ielje];—{0}
iel
ieljej;

ielje], kek

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
(3.18)
(3.19)
(3.20)
(3.21)
(3.22)
(3.23)

Yijk =1 if mp=1 ielLjej, kek (3.24)
Xijk = 0 ielLjej, kek (3.25)

Yijr € {0,1} ielje], kek (3.26)

(3.13) is the objective function for the problem. It is consisted of two parts:
Yier 2jej(Uij — Xkex Xiji) is the part to assure production on product i, layer j be close
to the Upper Production Quantity (UPQ) u;; and G Yxex [TAW), — AAW| is to minimize

the variation on WIP per machine which can help prevent machine starvation for unbalanced

WIP distribution. UPQ is defined as in Equation (3.27). lejzl j d;; is the rolling demand,
lejzl i1 b;; is the rolling WIP, and Q;; is the pulling demand which is the upcoming layer’s
demand for 3 days. Therefore, UPQ is the WIP amount that is behind schedule plus the WIP
that are soon coming into the buffer.
u;j = leilj dy — le]=|j+1 by + Qy; (3.27)

For the WIP balancing among machines, the objective minimizes the difference between the
average available WIP (AAW) and each machine’s average WIP (MAW},). Equations (3.14),
(3.15), and (3.16) shows how the ending inventory (e;;) and machine dedication (h;jy) is
used to define these concepts.

Equation (3.17) is the production quantity constraint that makes production quantity not to
exceed the available beginning WIP. Equation (3.18) is the machine setup constraint that
makes y;j, > 0 if there is production during a scheduled shift. Where M is a large
number. Equation (3.19) is the machine time constraint that makes total process time and
setup time not exceed a shift. Equation (3.20), (3.21) are the balance equation constraints.
The ending inventory of a layer is the sum of beginning inventory and incoming WIP minus
the WIP produced in the layer this shift. The final layer production is released back into the
first layer and makes the relation as in Equation (3.21). The model assumes a fixed total
WIP release policy and therefore releases the same amount produced at the last layer.
Equation (3.22) is the UPQ constraint that prevents production exceeding UPQ. Equation

(3.23) is the machine dedication constraint that blocks unavailable layer-machine

20

production. Equation (3.24) is the current processing layer constraint that makes the running
status continue from the previous shift. If a machine was running in the previous state, the
machine starts in a usage status for the current shift. Equation (3.25), (3.26) are the

constraints on the decision variables.

3.2.2 Machine Disruption Model

The scheduler itself, cannot work as a simulator. The solution of the scheduler is a scheduled
quantity, to get the actual production results we need a disruption scenario. In order to adapt
a disruption scenario, we need to generate the next status and the running rate during the
period when given the initial status. We assume the machine status follows a Continuous
Time Markov Chain (CTMC) with two states ‘Up’ and ‘Down’. We define the machine
status at shift t as X(t). The transition rate of ‘Up’ becoming ‘Down’ is defined
as P{X(t + dt) = Down|X(t) = Up} = A,dt. The transition rate of ‘Down’ becoming
‘Up’ is defined as P{X(t + dt) = Up|X(t) = Down} = A,dt. The transition diagram is
shown in Figure 3.5.

A, dt
T T

1-Adt(%y pown .) 1—7Adt

’_/
A, dt

Figure 3.6: An illustration of transition diagram of machine status

21 T

|
I Ul‘l UZ.l U3.1 I
: |
|
Dii 5 |
| P .
|
| D3y D3, |
L 1 2 3 |
A ’— — o o o o o o o .
7/
7/
Up] X(t)
I |
I |
I |
I |
Down _| § | y t
LI [I I \ I \ I I g
Ll 2 3 I 4 5 6 7 17 18 19 20 21
Mp(e41) Up Down Up Down Up Up Up Up Up Down Up Up
Tge 1 0.75 0.8 0.65 0.95 0.95 1 0.7 1 0.95 0.45 1

Figure 3.7: An illustration of how the CTMC provides disruption scenarios

The purpose of the disruption model is to generate the machine status of the next shift and
the running rate during the shift. Since all machines follow a CTMC we use the initial
machine status for each shift t and sample interarrival times to generate the next initial
status My (t4+1) and the running rate 7y.. Figure 3.6 shows how the CTMC provides the
disruption scenarios on a shift time basis. Here, my,; is the status of machine k at the
beginning of shift ¢, and 7y, is the running rate during shift t.

We can acquire My (;41), k¢ by sampling interarrival times for given current status of the

machine. The upper part of Figure 3.6 shows that every start of a shift, we sample the

22 -

corresponding interarrival random variable U~ exp(4;) or D~exp (4,) and seize the
machine status when it reaches the next shift. The following algorithm shows the process of
sampling running time and recovery time according to the given initial status. It keeps
sampling until the remaining time of the current shift becomes zero. The last status reaching
the next shift becomes the initial shift for the next shift. Running rate 1, which is the
cumulated running time during a shift, can be given by the sum of running time throughout
the repeated process. The Pseudo code is as follows.

Algorithm 2 Sampling from CTMC

SAMPLECTMC(S,,¢)
if S = UP then
uptime = sample_exp (1)
if uptime < r then
¢ « ¢ +uptime
downtime = sample_exp(1,)
if uptime + downtime > r then
return [DOWN, c]
else
return SAMPLECTMC(UP, r — uptime — downtime, c)
else
c «c+r
return [UP,]
else
downtime = sample_exp (1)
if downtime > r then
return [Down, c]
else
uptime = sample_exp (1,)
if uptime + downtime > r then
¢ < c+r —downtime
return [UP, c]
else
return SAMPLECTMC(UP, r — uptime — downtime, c)

mk(t+1), Tkt = SAMPLECTMC(mkt, 1, 0)

23 5

Instead of controlling transition rate values, we decided to use a combination of probabilities
(truns trecover)- It 1s because our model requires the running rate for the current shift and
the ending status at the end of the shift. We wanted to assign a probability of machine
running more than 1 shift given the initial status ‘Up’, along with the probability of machine
taking less than 1 shift to recover from the initial ‘Down’ status. Equations bellow explain
the relation between t,yn, trecover and Aq,4,. U, D are the interarrival times of ‘Up’ to
‘Down’ and ‘Down’to ‘Up’ respectively. By our defined CTMC each follows an exponential

distribution with A;, 1, respectively.

trun = P{U =1} = fwﬂle_litdt (3.27)
1
A= —In (tryn) (3.28)
trecover = P{D < 1} = f 1/12e"12tdt (3.29)
0
A = —In (1 — trecover) (3.30)

We have composed total 9 combinations of (tyyn, trecover) tO €Xxperiment on various
machine stability conditions. The combination is the product set of {0.5,0.7,0.9} and
{0.5,0.7,0.9}. Table 3.1 shows the corresponding A;,4,, Mean Time Between Failures
(MTBF), Mean Time To Recovery (MTTR) of corresponding values of t,,p, trecover-
Some cases such as t,,, having value 0.5 might be unrealistic, however, we tried to
compare the performance of RL from the human imitating policy in various machine

stability conditions.

Table 3.1: A4,4,, MTBF, MTTR for corresponding t,,n, trecover values

trun M MTBF trecover A, MTTR
0.5 0.69 1.44 0.5 0.69 1.44
0.7 0.36 2.80 0.7 1.20 0.83
0.9 0.11 9.49 0.9 2.30 0.43

24 :

In order to check the effect of various t,,p, trecover cOmbinations on the simulator, we
have sampled the average running rate 3, given the initial state my, (Up or Down) using
Algorithm2. The results are shown in Table 3.2. We also approximated the probability of
the next shift being ‘Up’ given the initial machine status. The results were calculated by

calculating the proportion of ‘Up’ among the 10,000 samples for each case.

Table 3.2: Average running rate 1; observed for corresponding t,,p, trecover Values

Average Running Rate
trun | trecover E7yee e
my: = Up my: = Down
0.5 0.66 0.21
0.5 0.7 0.74 0.29
0.9 0.88 0.44
0.5 0.78 0.29
0.7 0.7 0.84 0.4
0.9 0.93 0.58
0.5 0.87 0.36
0.9 0.7 0.91 0.52
0.9 0.96 0.71

Table 3.3: Probability of next shift being ‘Up’ for corresponding t,,p, trecover values

Probability of next shift being ‘Up’
trun trecover P[mk(t+1) =Up |mkt]
my. = Up my: = Down
0.5 0.52 0.47
0.5 0.7 0.66 0.66
0.9 0.87 0.87
0.5 0.68 0.57
0.7 0.7 0.78 0.76
0.9 0.92 0.92
0.5 0.81 0.65
0.9 0.7 0.87 0.83
0.9 0.96 0.95

25

3.3 Reinforcement Learning Approach

3.3.1 Markov Decision Process and Reinforcement Learning
In Reinforcement Learning (RL), the problem to resolve is described as a Markov Decision
Process (MDP). Since the theoretical results of RL rely on the MDP description, the more
the problem is acceptable as a MDP problem, the better RL would work as a good solution.
A MDP is composed of objects < T,S,4,P(- |s,a), R(s,a) > where T is a discrete time
horizon, S is a state space, A is an action space, P(-|s,a) are the state transition
probabilities and R(s,a) is a reward function. For our problem to be suitable for a MDP
problem, we must assume the Markov property in Equation (3.31) applies to the transition
probabilities. This means the transition to the next period state only depends on the previous
state and action.
P(sey1 = s"Ist,ar) = P(Se41 = S'| S, Aty Se—1, @1, - So, Ao) (3.31)
The goal of a MDP is to find a good policy, which is a function m : S = A that specifies
the action 7(s) to choose given state s. A good policy is to maximize the expected sum of
random future rewards. With a discount factor satisfying 0 <y < 1, the goal would be to
maximize V(s) = Ex[X720¥" Re+j+1] St = 5)]. The policy that maximizes this function
is called the optimal policy for the MDP and is denoted as m*.
When we know the transition probabilities P(s'|s,a) for Vs,s' € S,a € A, we solve it
through Dynamic Programming. Finding the optimal policy goes under policy evaluation
and policy iteration. Policy evaluation evaluates all state values represented as the state
value function V;(s) and policy iteration improves the policy by updating the policy © —
n', where n'(s) = greedy(vy,). This process is called value iteration and it is known to
converge to an optimal policy. By Richard E. Bellman, this relation was shown as an
equation called Bellman Optimality Equation. The Bellman Optimality Equation for value
function and action value function is represented in Equation (3.32), (3.33) respectively.
Var () = sies P(s'ls,a) (R(s,a) + yVz+(s) (3.32)
Qr+(s,a) = R(s,a) +y max Qr:(s',a') (3.33)

On the other hand, if we do not know the dynamics of the environment, we use RL. RL

26 5

algorithms are based on the fact that we do not know the transition probabilities. Therefore,
it updates the policy based on sampled experiences. The Monte Carlo (MC) method samples
the whole return for each episode and uses it to evaluate the value function. In other words,
it replaces the expectation on Vi (s) or Q,(s,a) to an empirical mean return. Temporal
Difference method does not sample every reward to the end of an episode. Instead, it
samples few steps ahead and updates the value function V. (S;) or action value function
Q. (S, Ap)towards an estimated return Ryyq + ¥V (Sev1) o Ripq + YQr(Sttr1,Ars1)-
This method has benefit on the fact that it can learn while experiencing. One well known
example for TD method is SARSA. The algorithm works by sampling rewards one step
ahead and uses the estimated return to evaluate and improve the policy. For policy iteration,
it uses epsilon greedy method. The algorithm is as follows.
Algorithm 3 SARSA
Initialize Q(s, a) arbitrarily
For each episode:
Initialize S
Choose A from S using policy from Q(e — greedy)
For each episode:

Take action 4, observe R, S’

Choose A’ from S’ using policy derived from Q (e — greedy)
Q(S,A) <« QS A +aR+yQ(S,A) —Q(S,4)
S«SEA< A,

until S is terminal

In SARSA, the maximum reward for the next state is not necessarily used for updating the
Q values. Instead, a new action is selected using the same policy that determined the original
action. This makes the policy exploit more the greedy selections. Algorithms that set the
behavior policy and target policy same are called On-policy algorithms. The opposite
concept is Off-policy. It overcomes the low exploration level and can learn about the optimal
policy while following an exploratory policy. By separating the behavior policy and the
target policy the agent can explore more trajectories. Q learning is the representative Off-

policy algorithms and the pseudo code is as follows.

27 5

Algorithm 4 Q-Learning
Initialize Q(s, a) arbitrarily
For each episode:
Initialize S
For each episode:
Choose A from S using policy derived from Q(e — greedy)
Take action 4, observe R, S’

S«S
until S is terminal

Both SARSA and Q-learning are tabular methods and the curse of dimension can happen
with large problems. It is because we need to save and read all updating Q values in a table.
Therefore, for large environments such as FAB environment, requires a method called Value

Function Approximation.

Ta(sw) ~ Vi(s) (3.34)

Ons,0,w) ~ Qu(s,0) (3:33)

v, J(w) = (aégvvz),aés:z), ...,aésvwn)> for lwl=n (3.36)
Vw = —%aij(w) (3.37)

1) = B () - GG w)) | (3.39)

W = aBr[(Ge — Vs, w)) V V(s w)] (3.39)

W = aBr[(Rers + 1 V(Sers, w) = Vs, w)) U Vs, w)] (3.40)

Approximating the value function is done by parameterizing the value function as in
Equation (3.34) and (3.35). The function can be in any regression form such as linear
regression, Random Forests, Neural Networks etc. The parameter vector w is updated
through gradient descent on the loss function J(w). The gradient of the loss function,
VJ(w) is shown in Equation (3.21). The gradient for the parameter vector Vw is defined
as in Equation (3.22). The loss function is defined as in Equation (3.38) which leads to
parameter update of MC, TD to be done as in Equation (3.39), (3.40) respectively.

28 5

3.3.2 Deep Q Network (DQN)

DQN is a Deep RL algorithm that uses Neural Networks as the Q value approximation
function. This study refers to Minh et al (2013), which introduced Deep Neural Networks
as a Q value approximation function for learning policies of playing Atari games. Since the
state of game environments are in forms of image frames, using Convolution Neural
Networks helped to understand the state of the player at some specific moment. The
algorithm is based on @Q-learning except the fact that they use an approximation function.

The pseudo code is as follows.

Algorithm 5 Deep Q Network with Experience Replay
Initialize replay memory D to capacity N
Initialize action value function @ with random weights
For episode = 1, M:
Initialize sequence s; = {x;} and preprocessed sequence ¢, = ¢(s;)
Fort=1,T:
With probability € select a random action a;
otherwise select a; = max Q" (¢p(sp),a; 6)

Execute action a; and observe 1 ,X;4q

SetSty1 = St, at, X¢41 and preprocess ¢riq = P(Se41)
Store transition (¢, as, 1, Pey1) in D

Sample random minibatch of transitions (¢;, a;, 75, ¢4+,) from D
S U for terminal ¢, 4
ety; = rj + ¥ max Q(¢j4+1,a’;0) for nonterminal 1

2
Perform a gradient descent step on (yj — Q((;bj, a;; 9))

They introduced a method called Experience Replay that stores experiences in a memory
and sample batches to update the target policy. This was to make sure that the training data
is independent and identically distributed, which is a fundamental requirement for
Stochastic Gradient Descent optimization. Since sequentially learning from a sequence of
an experience causes correlation among training data, by creating a large buffer of
experience and randomly sampling a subset of these experiences help keep samples

independent.

29 5

Chapter 4

Computational Experiments

We compared the performance of our RL policy and human imitated policy (HIP). Average

throughput and machine efficiency were used as the performance measures. The two
policies are described in Table 4.1. Q is the trained Deep Q Network and [jt 1s the

lateness for product i, layer j at shift t.

Table 4.1: Policy of RL and HIP

Policy Product, Layer Quantity
RL product, layer of argmax,Q(s,, a) | quantity of argmax,Q(s;, a)
HIP argmax; jl;j min(l;je, M)

4.1 Experimental Settings

The virtual FAB to be used in the experiment is a small FAB with two products, five layers,
and ten machines. The size of the virtual FAB was chosen to be small since the WIP
Balancing Scheduler takes a long time (15 minutes per shift for a FAB with four products,
25 layers, and 50 machines) for solving an optimal solution for one shift. Considering the
required number of shifts to learn the Q function approximator and that the purpose of our
research is to show the existence of a better policy than human decision concluded us that

it will be better to experiment in a small FAB environment.

30

The weekly demand was sampled from a normal distribution with mean 4,000 wafers/week
and standard deviation 500. The process time for each product and layer was set equal as
300 seconds per wafer. The setup time was set 10 minutes/setup. The initial WIP at the

beginning of every experiment was set Rd; where d; is the layer demand and

R~uniform(0.5,0.7). The machine running status 7y, for the initial shift was set zero.

The machine dedication h;j, was generated by randomly assigning layers to have 5 or 6

machines available to process.

We used the Python-MIP package to solve the WIP Balancing Scheduling problem and
Pytorch package to build and train DQN. Experiments were performed on a computer with
Ubuntu 18.04 as operating system, processor Intel(R) Core(TM) 17-7700, GeForce gtx 1080
and 16G of RAM.

4.2 Test Instances

The experiment was done in the following test instance sets shown in Table 4.2. They were
generated to compare the results in different disruption scenarios and different machine
dedication scenarios. The disruption scenarios were generated by using the product of
{0.5,0.7,0.9} itself as the space for (tyyn, trecover)- Here we fixed the Machine Numbers
Per Layer (MNPL) to {5,6}. For comparing various machine dedication scenarios, we
selected MNPL from {20r3,50r6,80r9} and (tyun trecover) from
{(0.5,0.5), (0.7,0.7)}.

31

Table 4.2: Description of test instances

Set trun trecover MNPL
1 0.5 0.5 Sorb
2 0.5 0.7 Sorb
3 0.5 0.9 Sor6
4 0.7 0.5 Sor6
5 0.7 0.7 Sorb
6 0.7 0.9 Sorb
7 0.9 0.5 Sor6
8 0.9 0.7 Sorb
9 0.9 0.9 Sorb
10 0.9 0.9 Sorb
11 0.9 0.9 So0r6
12 0.9 0.9 Sor6
13 0.5 0.5 2or3
14 0.7 0.7 2o0r3
15 0.5 0.5 Sorb
16 0.7 0.7 Sor6
17 0.5 0.5 8or9
18 0.7 0.7 8or9

32

4.3 Test Results

We performed two tests for our thesis. First was to show that our policy can perform better
than human imitated policy (HIP). This was performed in various machine disruption
scenarios. Secondly, by applying various machine utilization levels we showed that the more
complicated the layer-machine relation is makes HIP perform worse than not applying it.
Each performance test was done by running 1,000 tests for each test instances.

Test results for different machine scenarios are shown in Table 4.1, Table 4.2. We compared
the average throughput and average machine efficiency for each policy. This verifies that

the proposed method RL is more effective than HIP.

Table 4.3: Average Throughput comparison by different machine disruption scenarios

Throughput (wf/shift)
frun | trecover | gL | HIP | RLoHIP©®) | No SendFAB
0.5 83.59 48.96 70.7 52.78
0.5 0.7 92.87 67.54 37.5 68.31
0.9 113.70 91.23 24.6 87.77
0.5 92.97 68.50 35.7 69.62
0.7 0.7 106.74 82.57 29.3 80.18
0.9 117.09 | 99.50 17.7 93.01
0.5 115.87 | 84.92 36.4 83.02
0.9 0.7 119.83 93.8 27.7 88.86
0.9 121.63 | 105.37 154 98.4

The result shows that RL policy performs better than HIP in terms of average throughput
and machine efficiency both. The throughput of RL was in average 30% better than HIP and
the efficiency was better in average by 1.02%. We performed a two-sided independent
samples t-test in order to see the mean difference of efficiency between each policy. Table
4.4 and Table 4.5 compare RL with HIP and No SendFAB in respect to machine efficiency.
The result tells RL and HIP have statistically significant mean difference of machine
efficiency. RL and No SendFAB, however, had similar machine efficiency results.

Considering the fact that Send FAB deteriorates its own machine efficiency by using other

33 1

lines’ machines, it appeared that RL policy prevents this effect by improving WIP balancing

among machines.

Table 4.4: Average Efficiency comparison between RL and HIP
by different machine disruption scenarios

. . Efficiency(%)

run recover RL H I P D|ff t p
0.5 45.36 44.56 0.8 6.56 0.000

0.5 0.7 60.69 59.73 0.96 4.01 0.000
0.9 82.95 81.87 1.08 6.46 0.000
0.5 61.98 60.77 1.21 4.42 0.000

0.7 0.7 75.15 73.9 1.25 11.59 0.000
0.9 89.98 89.16 0.82 6.01 0.000
0.5 77.07 75.95 1.12 412 0.000

0.9 0.7 86.11 84.83 1.28 7.06 0.000
0.9 94.57 93.88 0.69 18.07 0.000

Table 4.5: Average Efficiency comparison between RL and No Send FAB
by different machine disruption scenarios

; . Efficiency(%)

rum|rrecover gL | No SendFAB Diff t p
05 | 45.36 45.27 0.09 -0.07 0.950

05 | 0.7 | 60.69 60.72 -0.03 -0.14 0.890
0.9 | 8295 82.99 -0.04 -0.28 0.780
05 | 61.98 62.15 -0.17 -0.66 0.510

07 | 07 | 7515 75.03 0.12 -0.45 0.650
0.9 | 89.98 90.39 -0.41 -9.87 0.000
05 | 77.07 77.07 0 0.008 0.990

09 | 07 | 8611 86.16 -0.05 -0.32 0.750
0.9 | 9457 94.95 -0.38 -6.84 0.000

34

It showed that the throughput improvement was higher when the machine was more unstable

(lower values of t,yn, trecover)- The average throughput by different .., trecover

groups are shown in Figure 4.1.

130
120

10

@ trun=05
& trun=07
- tun-09
HIP No Send FAB RL
Throughput for different ¢,
@ trecover =05
&k~ trecover =07
< trecover =09
HIP No Send FAB RL

Throughput for different t,ocoper

& trun =05
090 —& trun=07
- 4 trun=09
08s | W u
080
" A
075 A— *x -
070
065
° < *
o
060
055 L— + —
HIP No Send FAB RL
Efficiency for different t,,,
095
@ trecover =05
090 S & | & trecover=07
= i trecover =09
085 1
080 1
075 L 2
e - =
070
065 1
1 & e
060 { @— b4 b 2
0ss 1— : !
HIP No Send FAB RL

Efficiency for different t,ocoper

Figure 4.1: Performance by t,,n, trecover

We have also discovered that the performance improvement gets bigger when the machine

is in a more unstable configuration. The average performance improvement of throughput

is show in Figure 4.2. RL was more beneficial as the machine became more unstable.

35

s 4 &) 8t

-@- trecover
45 4 -k~ trun
40 B
35 1
30 4
—A
25 1
20 4
05 0.7 0.9

Throughput improvement(%)

Figure 4.2: Throughput improvement by different levels of t,, trecover
The results for applying different machine utilization is shown in Figure 4.3. The result
shows that when machine utilization increases the performance relative to policy without
Send FAB increases. This indicates that HIP harms the performance and our policy improves

the performance when the layer-machine relation gets more complicated.

-@- HP -@- HP
—& RL —&- RL

e T

20r3 Soré 8org 20r3 5or6 8org
Throughput against No Send FAB(%) Throughput against No Send FAB(%)
When tyn, trecover = 0.5,0.5 When tyy, trecover = 0.7 0.7

Figure 4.3: Throughput against No Send FAB by different levels of machine utilization

i 5 A S e

Chapter 5

Conclusions

Through experiments upon different test instances, we have seen that a new policy rather
than a decision policy based on human experience is needed. We also checked that the more
complex the system is, and the more unstable the machines are leads to a greater
performance improvement when using our policy. This indicates that in a real FAB
environment which is much more complex with more components to consider, would be
able to benefit from applying our framework.

Our thesis provides a guideline for applying Reinforcement Learning to the Send FAB
problem. It can be easily applied for any FAB environment. A FAB production manager can
apply their own FAB scheduler and machine disruption model and build their own FAB
environment.

Our FAB environment, however, assumes that the offering line receives all the required
quantity unless it exceeds a limit. The research on the Send FAB problem can be expanded
by modeling several lines. Our thesis assumes that the offering line of Send FAB accepts
the whole requested amount unless it is below the maximum quantity available. In reality,
however, the managers of each line negotiate the amount that can be processed. In other
words, the offering line checks the capacity status of their own line and decides an amount
that would benefit in machine efficiency while not harming their other production
performances. Therefore, modeling several lines together with their own bottleneck layers
could help develop a full automation on Send FAB contracts without any negotiation

between line managers.

37 .

Bibliography

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

Lin, Y.H. and Lee, C.E., 2001. 4 total standard WIP estimation method for wafer
fabrication, European Journal of Operational Research, 131(1), 78-94.

Lou, S.X.C. and Kager, P.W., 1989. 4 robust production control policy for VLSI wafer
fabrication, IEEE transactions on semiconductor manufacturing, 2(4), 159-164.

Toba, H., Izumi H., Hatada, H., Chikushima, T., 2005. Dynamic Load Balancing
Among Multiple Fabrication Lines Through Estimation of Minimum Inter-Operation
Time, IEEE transactions on semiconductor manufacturing, 18(1), 202-213.

Chung, J. and Jang, J., 2009. A WIP Balancing Procedure for Throughput Maximization
in Semiconductor Fabrication, IEEE transactions on semiconductor manufacturing,
22(3), 381-390.

Urayama, K., Fu, M.C., and Marcus, S.T.,2015. Simulation-Based Work Load and Job
Release Control for Semiconductor Manufacturing, IEEE 54" Conference on Decision
and Control, Osaka, Japan, 15-18 Dec.

Lee, W.J., Kim, B.H., Ko, K. and Shin, H., 2019. Simulation based multi-objective FAB
scheduling by using reinforcement learning, Proceedings of the 2019 Winter

Simulation Conference, National Harbor, MD, USA, 8-11 Dec.

Kim, H. Lim, D.E., and Lee, S. 2020. Deep Learning-Based dynamic scheduling for
semiconductor manufacturing with high uncertainty of Automated Material Handling
System capability, IEEE transactions on semiconductor manufacturing, 33(1), 13-22.
Mnih, V. Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, L., Wlerstra, D., and
Riedmiller, M., 2013. Playing Atari with Deep Reinforcement Learning,. arXiv preprint
arXiv: 1312 5602.

38 1

—_—

0

)

vze)
Ho
Hr
mo

M

2o}

Mo

3

& obaA]

18 WIP Balancing'g

S

o
-

2] 4

h s

sl WIP

7

2
<

A oled
oA}

T

]_‘l:

Au
Y

=

Zwelq Aol

39

o] FAB simulator

°©

[¢)

Q
B

o]

=

=

=
=

3}

throughput, machine efficiency
<> 1o

B}

=0

3

A

Balancing scheduler
3+ : 2019-23474

g

	Chapter 1 Introduction
	1.1 Problem Description
	1.2 Research Motivation and Contribution
	1.3 Organization of the Thesis

	Chapter 2 Literature Review
	2.1 Review on FAB scheduling
	2.2 Review on Dynamic production control

	Chapter 3 Proposed Approach and Methodology
	3.1 Proposed Approach
	3.2 FAB Simulator
	3.3 Reinforcement Learning Approach

	Chapter 4 Computational Experiments
	4.1 Experiment settings
	4.2 Test Instances
	4.3 Test Results

	Chapter 5 Conclusions
	Bibliography
	국문초록

<startpage>9
Chapter 1 Introduction 1
 1.1 Problem Description 3
 1.2 Research Motivation and Contribution 5
 1.3 Organization of the Thesis 5
Chapter 2 Literature Review 6
 2.1 Review on FAB scheduling 6
 2.2 Review on Dynamic production control 7
Chapter 3 Proposed Approach and Methodology 8
 3.1 Proposed Approach 8
 3.2 FAB Simulator 17
 3.3 Reinforcement Learning Approach 26
Chapter 4 Computational Experiments 30
 4.1 Experiment settings 30
 4.2 Test Instances 31
 4.3 Test Results 33
Chapter 5 Conclusions 37
Bibliography 38
국문초록 39
</body>

