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Abstract
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Considering Covering Models
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Seoul National University

There is increasing interest in the unmanned aerial vehicle (UAV) in various fields

of the industry, starting from the surveillance to the logistics. After introducing

the smart city, there are attempts to utilize UAVs in the public service sector by

connecting individual components of the system with both information and physical

goods. In this dissertation, the UAV operation problems in the public service sector

is modeled in the set covering approach. There is a vast literature on the facility

location and set covering problems. However, when operating UAVs in the system,

the plan has to make the most of the flexibility of the UAV, but also has to consider

its physical limitation. We noticed a gap between the related, existing approaches

and the technologies required in the field. That is, the new characteristics of the

UAV hinder the existing solution algorithms, or a brand-new approach is required.

In this dissertation, two operation problems to construct an emergency wireless

network in a disaster situation by UAV and one location-allocation problem of the
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UAV emergency medical service (EMS) facility are proposed. The reformulation

to the extended formulation and the corresponding branch-and-price algorithm can

overcome the limitations and improve the continuous or LP relaxation bounds, which

are induced by the UAV operation.

A brief explanation of the UAV operation on public service, the related literature,

and the brief explanation of the large-scale optimization techniques are introduced in

Chapter 1, along with the research motivations and contributions, and the outline of

the dissertations. In Chapter 2, the UAV set covering problem is defined. Because the

UAV can be located without predefined candidate positions, more efficient operation

becomes feasible, but the continuous relaxation bound of the standard formulation

is weakened. The large-scale optimization techniques, including the Dantzig-Wolfe

decomposition and the branch-and-price algorithm, could improve the continuous

relaxation bound and reduce the symmetries of the branching tree and solve the

realistic-scaled problems within practical computation time. To avoid numerical in-

stability, two approximation models are proposed, and their approximation ratios

are analyzed. In Chapter 3, UAV variable radius set covering problem is proposed

with an extra decision on the coverage radius. While implementing the branch-and-

price algorithm to the problem, a solvable equivalent formulation of the pricing sub-

problem is proposed. A heuristic based on the USCP is designed, and the proposed

algorithm outperformed the benchmark genetic algorithm proposed in the literature.

In Chapter 4, the facility location-allocation problem for UAV EMS is defined. The

quadratic variable coverage constraint is reformulated to the linear equivalent for-

mulation, and the nonlinear problem induced by the robust optimization approach

is linearized. While implementing the large-scale optimization techniques, the struc-
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ture of the subproblem is analyzed, and two solution approaches for the pricing

subproblem are proposed, along with a heuristic.

The results of the research can be utilized when implementing in the real ap-

plications sharing the similar characteristics of UAVs, but also can be used in its

abstract formulation.

Keywords: branch-and-price, column generation, emergency wireless network, emer-

gency medical service, facility location problem, location-allocation problem, robust

optimization, set covering problem, unmanned aerial vehicle

Student Number: 2014-21815
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Chapter 1

Introduction

1.1 Unmanned aerial vehicle operation on public services

Various fields of industry are showing an increasing interest in unmanned aerial

vehicles (UAV). The main advantage of UAVs is their autonomous swarm operation

capability [67, 68], which enables the system to execute multiple tasks simultaneously

at a low cost and without human intervention. Under the most recent positioning

system, which guarantees precise location recognition, UAVs can be operated as

flexible, expendable resources in diverse industries and environments.

The introduction of the UAV started from the military and surveillance area,

but now is in the most active spotlight in the logistics applications. Along with the

various unmanned systems, the UAV is becoming an essential component of the

last-mile logistics of the next generation.

At the same time, there are attempts to utilize the UAV in the public service

sector. UAVs can be operated as multipurpose resources providing rapid and flexi-

ble responses. Specifically, after introducing the smart city, the inspection and the

maintenance of the infrastructure, monitor of the traffic condition, monitor of the

vulnerable security points, and the disaster identification have been investigating

the possibilities of the UAVs. UAVs can become a link connecting the physically or
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socially remote area to the central authorities.

In the case of unexpected situations, the advantages of the UAVs become more

prominent. The UAV can access the remote area without interruption to the road

situation and react to the rapidly changing environment. Especially for disaster

management, there are many projects to utilize UAV for the routing-related tasks

and the covering-related tasks.

Meanwhile, attempts are trying to implement UAVs to search for and identify

patients or transport emergency medicine, blood, and automated external defibrilla-

tor (AED). It is challenging to maintain a responsive EMS system in remote areas,

such as hamlets and isolated dwellings, and in city centers with heavy traffic [29].

However, if UAVs can augment the EMS system, they can be used to access demand

points through the air, thereby avoiding traffics.

In this dissertation, we are modeling the public service sector’s UAV operation

problems based on the set covering approach. Two types of problems are considered

in the research. The first problem is to use UAVs to construct an emergency wireless

network in a disaster situation. UAVs can cover certain areas and communicate with

the sensors and the survivors, which can be modeled as a set covering problem with

a coverage distance. The second problem is the facility location of the emergency

medical service (EMS) operated by the AED-mounted UAVs. The problem locates

the EMS facility along with the number of UAVs assigned to it. Based on the number

of UAVs, the facility’s capability is decided, which is related to its capacity and the

coverage distance.

When planning the UAV operation system, the advantages and the limitations

of the UAV have to be considered. Furthermore, if those characteristics hinder the
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direct usage of the existing literature, a new optimization model has to be designed.

1.2 Facility location problems

There are three approaches in the facility location problems related to this research.

The first is the continuous location approach. The continuous location problem, in-

cluding the minimum covering circle problem, aims to decide the position of facilities

in the xy-plane with various types of distance (e.g., Euclidean, rectangular, and p-

norms). While deciding the position of given number of facilities, a weighted sum or

a minimax distance is used as an objective. Accordingly, every facility and demand

point pair is considered without division. Drezner et al. [40] and Plastria [85] provide

detailed information about the continuous location problem approach.

The second is the set covering-based approach. Facility location problems with

a set covering approach make the decision using given candidates with predefined

positions for facility locations. Because every location of the facility is already known,

the constraint on the coverage radius is easily considered by checking the binary

feasibility of each facility and demand point pair. In the covering-based approach,

the actual distance is binarized, and the demand point is considered to be “covered”

if it is in the critical coverage distance from a facility.

The third approach is the median-based approach. In the median-based ap-

proach, the distance between the facility and the demand point is considered as

a cost in the objective function instead of a constraint. In other words, usually there

is no limitation on the coverage distance of a facility. Any demand point can be

assigned to a facility as a decision, and the distance-weighted cost is accumulated

to the objective function in the company with the facility’s opening cost. Despite of
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the pioneering literature considering maximum distance constraints in median-based

approach as Toregas et al. [101] and Choi and Chaudhry [28], the objective of the

median-based approach usually focuses on the total operation cost related to the

summation of the distances between every demand point and the allocated facility.

The main difference between the last two approaches is based on the way the

distance between a facility and a demand point is considered. In the covering-based

approach, the distance is binarized with the coverage distance limitation of a facility.

Conversely, in the median-based approach, the demand point is allocated without

any restriction, even though the cost of the allocation can be high-valued.

1.3 Large-scale optimization techniques

Mixed-integer linear optimization heavily depends on the linear programming (LP)

based branch-and-bound and the cutting plane method. The LP-based branch-and-

bound is based on the divide-and-conquer, which provides a dual bound and the

global best feasible (integer) solution by solving the LP relaxation of the original

problem. On the other hand, the branch-and-cut algorithm generates the valid in-

equality from the fractional solution of the LP relaxation to improve the LP bound.

The commercial optimization solver utilizes both approaches, where the root node

LP is strengthened by adding the valid inequalities and then solved by the branch-

and-bound.

However, when solving large-scale problems, there is a decomposition-based ap-

proach that can be helpful for reducing the variables by handling them implicitly,

which can improve the LP bound of the problem. Minkowski’s theorem proves that a

polyhedron can be represented by its extreme points and extreme rays instead of the
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original variables. That is, a vector in a polyhedron can be represented as a summa-

tion of a convex combination of the extreme points and a conic combination of the

extreme rays of the polyhedron. Dantzig-Wolfe decomposition reformulates the orig-

inal problem by decomposing the block-diagonal structure of the constraint into the

smaller subproblems and the extended formulation [31]. Each subproblem consists

of the structural constraints, and the resulting variables in the extended formula-

tion implicitly satisfies those structural constraints. Minkowski’s theorem enables

Dantzig-Wolfe decomposition. By definition, even when the extended formulation

is linear programming relaxed, the solution satisfies the structural constraints so

can provide tighter bounds than the LP bound of the original formulation. Exactly

speaking, the LP relaxation of the extended formulation is the dual of the Lagrangian

subproblem. Thus, the LP bound of the extended formulation has the same value of

the Lagrangian dual bound.

Instead of enumerating the exponential number of possible variables of the ex-

tended formulation, the column generation helps to manage the variable efficiently.

By finding a new variable that improves the restricted master linear problem with

iterations, only the required variables to represent the feasible set is generated and

managed.

Another advantage of the branch-and-price algorithm is that if the decomposed

subproblem have the structures of the well-studied problems, the techniques for those

known problems can be utilized to solve the problem. Based on these advantages,

the branch-and-price algorithm has been successfully implemented to handle cutting

stock problem [104, 103], bin packing problem [90], vertex coloring problem [77],

clique partition [78, 62], vehicle routing problem [36], crew scheduling problem [37],
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and generalized assignment problem [93]. In this problem, the column generation

and the corresponding branch-and-price approach are used to solve the proposed

problems.

1.4 Research motivations and contributions

The planning model of the UAV operation system has to consider the character-

istics of the UAV, which provides an additional degree of freedom and additional

constraints, also. The first and the second problems in this dissertation locate indi-

vidual UAVs to provide emergency wireless networks to the disaster scene, based on

the set covering approach. Unlike the traditional discrete facility location problems,

the UAVs can locate without a candidate position that limits the global optimal

operation. However, because of the payload limitation, only a bounded area can be

covered by the UAV-enabled emergency wireless network.

The third problem in this dissertation locates the EMS facility operating UAV

EMS. The flight distance limitation of a UAV provides a hard constraint on the

coverage distance around a facility. The problem decides both facility location and

the assignment of the UAV to each facility, which decides the capacity and the

coverage distance of the facility.

We denote the first problem as UAV set covering problem (USCP). The USCP

has two characteristics, which are distinct from the existing literature. The objec-

tive of the USCP is to cover every demand point with a minimum number of UAVs.

Thus, the problems with a given number of resources, the continuous location prob-

lem, and the clustering-based approach are not suited for the USCP. On the other

hand, because the UAV can fly at any point, the discrete facility location problems,
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including the nominal set covering and location-allocation problems, can only pro-

vide local optimal solutions. Because of the characteristics of the problem, a new

modeling approach is required. Although the USCP has a fairly straightforward def-

inition, the problem requires a substantial computational burden, which originates

from an exponential number of subsets to be checked (see Chapter 2).

The second problem, UAV variable radius set covering problem (UVCP) consid-

ered the extra decision on the coverage radius of each UAV. The USCP assumes the

homogeneous radius of the UAV network. In real applications, the radius of the net-

work can be changed when the UAV flights at different altitudes. The allowance of

the extra decision results in the nonconvex feasible set of the continuous relaxation,

which makes the problem impossible to be solved by an optimization solver. Thus,

Berman et al. [14] claimed that the UVCP requires the brute force search to find the

optimal solution. However, the problem can be modeled as a solvable mathematical

model, using the knowledge of the minimum covering circle (see Chapter 3).

The third problem is denoted as facility location-allocation problem for UAV

EMS (ULAP). In the ULAP, the limitation of the flight distance requires a hard

constraint of the coverage distance. In the literature considering the variable but

bounded coverage distance, the resource capacity and the availability are not con-

sidered. On the other hand, in the nominal location-allocation problems, the resource

availability is modeled as a cost parameter rather than a constraint. When consider-

ing the bounded coverage distance in the existing literature, the problem is modeled

with a covering-based approach. In the ULAP, the coverage distance of a UAV EMS

facility is modeled as a function of the number of the UAV. Because the ULAP

includes a strategic decision of the long-term operation, the demand uncertainty is
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considered, which also complicated the problem (see Chapter 4).

Figure 1.1 illustrates the overview of the research problems investigated in this

dissertation. The dissertation considers two problem environments of disaster and

ordinary situations. The USCP and the UVCP in Chapters 2 and 3 considers the

planning problem of the UAV-based emergency wireless network in a disaster envi-

ronment. As shown in the figure, while locating the UAVs in the disaster area, the

USCP assumes the homogeneous UAVs, which provides the fixed-radius network

coverage area, and the UVCP decides the size of the coverage area simultaneously.

The ULAP in Chapter 4 decides the location and the capability of the UAV-based

emergency medical service facility in an ordinary situation. Based on the number of

the UAVs assigned to each facility, the coverage area and the capacity of the facility

is decided.

UAV-based wireless network

DISASTER SITUATION ORDINARY SITUATION

USCP (Ch.2) UVCP (Ch.3)

UAV location UAV location & coverage distance

UAV-based EMS

ULAP (Ch.4)

Facility location & resource (UAV) assignment

UEMS facility

Fixed radius

(USCP)

Various radius

(UVCP)

UAV-based emergency 

wireless network

in a disaster environment

UAV-based 

emergency medical 

service

Emergency 

wireless network

Figure 1.1: Overview of the dissertation
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The comparison of the existing modeling approaches and the researches in this

dissertation is summarized in Table 1.1.

Table 1.1: Comparison of this dissertation and existing approaches

Chapter Research problem
Candidate
position

Number of
resources

Coverage
distance

constraint

2 & 3 Continuous facility location without fixed fixed
2 & 3 Covering-based approach given not fixed fixed
2 & 3 Median-based approach given not fixed not fixed

2 This dissertation (USCP) without not fixed fixed
3 This dissertation (UVCP) without not fixed not fixed

Chapter Research problem
Candidate
position

Demand
Coverage
distance

constraint

4
Covering-based approach,
Median-based approach

given
deterministic,

partial,
uncertain

double,
backup,
gradual,
variable

4 This dissertation (ULAP) given uncertain variable

The principal contributions of the dissertation are summarized as follows:

1. For the UAV set covering problem,

• The problem can be modeled as a set covering problem with an extra de-

cision of the position of the UAV, which is a mixed-integer quadratically-

constrained programming model.

• The extra decision on the position neutralizes the continuous relaxation

bound of the standard formulation to 1.

• For Dantzig-Wolfe decomposition, the generating set of the USCP is de-

signed for the quadratic coverage constraint and the continuous decision

variable.
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• By implementing Dantzig-Wolfe reformulation, the continuous relaxation

bound is improved and could solve the realistic-scale problems within the

practical computation time.

• For a numerical stability, the approximation of the problem, which is

mixed-integer linear programming model, is proposed based on Jung’s

theorem [65].

• The approximation ratio of the approximation model is provided, along

with an approximation model based on the discretization of every lattice

point over the plane.

• The algorithmic performances of the proposed algorithms are analyzed.

2. For the UAV variable radius set covering problem,

• The nonconvex continuous relaxation of the problem is shown.

• The problem is reformulated to the extended formulation and solved by

the branch-and-price algorithm.

• By using the extended formulation, the concept of the minimum cover-

ing circle can be used, and the bound for the number of the columns is

provided.

• Based on the minimum covering circle, the equivalent subproblem, which

is a mixed-integer linear programming model, is proposed. It allowed the

UVCP to be reformulated by Dantzig-Wolfe decomposition and the pric-

ing subproblem to be solved by the optimization solver.

• Radius-fixing-based heuristic is designed and implemented to the hybrid

approach of the heuristic and the branch-and-price algorithm.

10



• The proposed algorithms outperformed the genetic algorithm proposed

in Berman et al. [14].

3. For the facility location-allocation problem for UAV EMS,

• A cost-minimization problem is developed based on the uncertain demand

with a robust optimization approach with a cardinality-constrained un-

certainty set.

• The number of UAVs assigned to a UAV EMS facility is modeled to be

related to both capacity and the coverage distance constraint, which is

introduced for the first time in this research.

• To apply the strict limitation of the flight distance constraint, the variable

coverage distance constraint is modeled. Based on the proximity of the

resource availability and the size of the covered area, the variable coverage

distance constraint is modeled as a quadratic constraint and linearized.

• The integer and continuous decision variables of the model have highly

fractional LP solutions and weak LP bound. A branch-and-price algo-

rithm is introduced for the better LP bound, and the appropriate branch-

ing strategy is designed.

• The subproblem is analyzed to be the robust disjunctively constrained

integer knapsack problem. Two approaches of mixed-integer linear pro-

gramming (MILP) reformulation and decomposed dynamic programming

approaches are proposed to solve the subproblem, and the advantages are

analyzed.
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• A restricted master heuristic based on the B&P algorithm is proposed to

provide a time-efficient feasible solution to large-sized problems.

The USCP and the UVCP in Chapters 2 and 3 allow the continuous decision

of the location and therefore improves the existing set covering approach of the

facility location problem. The same approach can be implemented in various ap-

plications considering the clusters such as data classification, bandwidth packing,

location-routing, and generalized traveling salesman problems. The ULAP in Chap-

ter 4 relates the variable coverage distance to the resource availability, which can

be utilized when the variable coverage distance and the capacity of the facility is

decided based on the resource assigned. The solution algorithms proposed in the

research can help solving various types of facility location-allocation problems.

1.5 Outline of the dissertation

In this dissertation, we consider three problems related to the UAV operation with

covering models. In Chapters 2 and 3, the location problems of UAVs to provide

emergency network to the disaster scene are introduced. In Chapter 4, the facility

location-allocation problem based on the UAV assignment is introduced. In Chap-

ter 2, the UAV set covering problem is defined, and the weak continuous relax-

ation bound of the standard formulation is shown. The extended formulation and

the corresponding branch-and-price algorithm is proposed, which could solve the

realistic-scaled problems within reasonable computation time. To avoid the numer-

ical instability which is caused by the quadratic constraint, a linear approximation

model is designed based on the Jung’s theorem. In Chapter 3, UAV variable ra-

dius set covering problem is proposed. An explicit mathematical model is proposed
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with the analysis of the feasible region of the problem. While implementing the

branch-and-price algorithm to the problem, a solvable equivalent mixed-integer lin-

ear formulation of the pricing subproblem is proposed. A heuristic based on the

USCP is designed with a hybrid, exact algorithm for the fast computation speed.

In Chapter 4, we define the facility location-allocation problem for UAV EMS. The

quadratic variable coverage constraint is reformulated to the linear equivalent for-

mulation, and the nonlinear problem induced by the robust optimization approach

is linearized. The extended formulation and the corresponding branch-and-price al-

gorithm is designed, and the branching strategies are compared. The structure of

the subproblem is analyzed, and two solution approaches for the pricing subproblem

are proposed. In addition, a heuristic based on the extended formulation is proposed

for the time-efficient solution of the large-sized problems, and the performances of

the algorithms are compared. Finally, Chapter 5 concludes the dissertation.
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Chapter 2

Unmanned aerial vehicle set covering problem
considering fixed-radius coverage constraint

2.1 Introduction

An emerging approach is the use of UAVs to establish an emergency wireless network

in a disaster area. In a natural disaster situation with mass destruction over a large

area, such as an earthquake, tsunami, or flood, the damage to infrastructure facilities

often leads to immediate and secondary casualties. Survivors in the disaster area who

cannot evacuate immediately require a means of communication with the outside

world. At the same time, authorities require a system for monitoring survivors and

the scene of the disaster.

Many cases have shown that in disaster areas, the wireless network is one of

the systems to be recovered first. Survivors of disasters often use wireless networks

to inform the authorities and their relatives the status they are encountered. For

example, some survivors of the 2011 Great East Japan Earthquake watched for

updates of the disaster and posted about their situation on Twitter and Facebook

[108]. Besides, some survivors used the wireless network to inform authorities of the

current immediate situation and to request rescue [2]. Similarly, survivors of the 2010

Haiti earthquake [52] and Hurricane Harvey in southeast Texas [56] used Twitter to
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request evacuation, which allowed authorities and homegrown volunteer groups to

provide aid.

Efforts have also been underway to develop systems to monitor disaster scenes.

After the rapid growth of sensor technology, the only remaining hurdle is to maintain

connectivity between the disaster scene and authorities. Thus, researchers in both

academia and industry are helping to develop UAV-based wireless networks that can

help recover a temporary wireless connection in a disaster environment. One issue

with a UAV-enabled wireless network is ensuring that the overall system (including

the sensors and the UAV) has enough power to maintain operation for the time

needed. Thus, researchers are searching for ways to minimize energy consumption

and maximize the overall system lifetime. The UAV routing model can be used

for similar problems, such as a visual surveillance and monitoring system based on

camera-mounted UAVs that need to operate near the actual site. Ho et al. [53] used

particle swarm optimization as an approximation algorithm to optimize the UAV

trajectory along waypoint candidates. Zhan et al. [116] synchronized the wake-up

schedule of sensors and the UAV trajectory. Zeng et al. [115] and Wu et al. [112]

maximized the throughput controlling trajectory and speed of the UAV. Zeng et al.

[114] approximated the makespan-minimization problem as a generalized traveling

salesperson problem and proposed a two-stage algorithm to solve it.

Another issue is the UAVs’ need to hover in a planned area to maintain con-

tinuous network connectivity, which is addressed in this chapter. In this case, the

problem can be modeled based on the facility location problem, which is introduced

in Section 1.2. In the set covering-based approach, Chandrashekar et al. [27] mod-

eled a two-layer network that consists of mobile ad hoc networks (MANET) and a
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covering UAV network. Zorbas et al. [122] proposed a minimum-cost drone location

problem that takes into consideration the network coverage changing over flight alti-

tudes. In the continuous facility location problem, some of the considerable research

has focused on the clustering problems such as K-means [83, 92], modified K-means

[83], disk covering [80], and circle packing in a circle [79]. In the median-based ap-

proach of the UAV location, there were p-center [34] and p-cover [23] problems,

which also considered the given number of the clusters p as the primary constraint

instead of the physical limitation of the coverage radius.

The UAV set covering problem (USCP) has two distinct characteristics that

the approaches mentioned above do not have. First, the objective of the USCP is

to optimize the cardinality of the UAVs, whereas the continuous facility location

problem and median-based approach minimize the cost function, which is usually

related to the arcs of the network. The arc-related cost function considers the relation

between every facility and demand point pair, which does not require an extra

decision on a set partition. Interested readers are referred to Boonmee et al. [19]

for a detailed literature review. For the USCP, changing the objective significantly

reduces the ability to resolve the problem. Without a decision on a set partition,

the continuous relaxation bound for the USCP does not provide any information, as

explained in Section 2.3.1. Note that the solution algorithm of p-center problem has

a complexity of O(|N |p) [24]. Because the cardinality of the UAV is not predefined

as a parameter in the USCP, the researcher must iterate over p up to the number of

demand points, which will grow exponentially.

Second, the USCP brings the positions of facilities into the decision problem.

The traditional set covering- and median- based approaches decides among given
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Table 2.1: Comparison of this research and existing literature

Author (year) Type
Given

candidate
position

Fixed number
of resources

Comley (1995) [30] Continuous No Yes
Drezner et al. (2001) [40] Continuous No Yes

Plastria (2001) [85] Continuous No Yes
Capoyleas et al. (1991) [24] Continuous No Yes

Sasikumar and Khara (2012) [92] Continuous No Yes
Periyasamy et al. (2016) [83] Continuous No Yes

Daskin (1983) [32] Set cover Yes No
Gendreau et al. (1997) [47] Set cover Yes No
Zorbas et al. (2016) [122] Set cover Yes No

ReVelle and Hogan (1989) [88] Set cover Yes Yes
Choi and Chaudhry (1993) [28] Median Yes Yes

Calik et al. (2015) [23] Median No Yes
Daskin and Maass (2015) [34] Median No Yes
Wankmüller et al. (2020) [109] Median Yes No

This dissertation (Chapters 2 & 3) Set cover No No

candidates for facility locations. This is because a real disaster situation has a wide

variety of constraints and a handful of possible sites for facility locations. Also, to

avoid impractical solution algorithms [101], the models make decisions among a lim-

ited number of candidates. When the facility candidate is predefined, the availability

between each demand point and each candidate facility location is defined as well;

thus, it is straightforward to apply coverage radius as a constraint. For literature

focusing on coverage constraints, we refer readers to ambulance location and relo-

cation problems [21, 5, 1, 10]. However, in the case of the USCP, there is flexibility

to position the UAV freely on the xy-plane. This imposes the problem of having to

check every possible subset of demand points, which will grow exponentially. Table

2.1 compares this research to the existing literature.

Therefore, it is difficult to apply the knowledge from existing studies to the
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USCP straightforwardly. Despite the straightforward definition of the problem and

the model, which will be presented later, the USCP suffers from a computational

burden; however, the necessity of the research has recently begun to emerge. The

introduction of UAVs into the set covering problem has changed the situation dra-

matically because of the flexible positioning and the limitations of network coverage

significantly affect the model. We noticed a gap between the related approaches and

the technologies required at the scene of a disaster. Thus, this chapter presents a set

covering problem without predefined candidate positions and with the consideration

of a fixed-radius coverage constraint to fill the gap mentioned above.

The wireless network is assumed to be uncapacitated and allowed to be not con-

nected each other to show and maximize the effects of the disaster environment’s

topographic structures. To utilize the knowledge of the topographic structure for

the solution algorithm, we developed a branch-and-price (B&P) algorithm for the

USCP as other research considering assignment constraints (e.g., set covering, clique

covering, and vehicle routing; [104, 103, 63, 62]). The reformulation associated with

the B&P algorithm strengthens the continuous relaxation bound and decreases sym-

metries in the branching tree. It enabled the proposed B&P algorithm to provide the

optimal solution in a reasonable timescale for both a small-sized artificial dataset

and a realistic-scale dataset in computational experiments.

Even though the USCP is reformulated, the mixed-integer quadratic coverage

constraint remains in the CG subproblem. An approximation model is designed to

avoid the numerical instability incurred by the coverage constraint and to improve

the computation speed. In the approximation model, a linearized, pairwise-conflict

constraint based on the sufficient condition substitutes the quadratic constraint. We
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observed that the B&P algorithm for the pairwise-conflict constraint approximated

model is numerically stable and provides a time-efficient solution with applicable

optimality.

The USCP has a basic structure of the set covering problem, in which the physical

location and distribution of the demand points over the plane plays a significant role

in the solution. Because the location of the UAV is not limited to the given candidate

locations in the USCP, more efficient solutions can be provided. The approach is not

confined to the UAV-related problems but also can be used in various operation

problems. For the problems that the physical locations and the distance constraints

are important, and continuous decision variables over the space are incorporated

share the similar structures of the USCP. In the problems of the data clustering,

if the diameter of each cluster is important than limiting the fixed number of the

cluster, the approach of the USCP would be more suited than the support vector

machine or the K-means. If the information of the multidimensional data is given

and the distance between the data points is defined, the USCP can be used to

cluster the data into the minimum number of subsets, where each subset is bounded

within a given diameter. In this approach, the outliers would be identified more

intuitively. Furthermore, other problems of bandwidth packing, location-routing,

and generalized traveling salesperson problems can get advantages from the USCP,

too.

For the technical implication of the research, the coverage distance constraint is

modeled as a quadratic equation, which makes the problem to be MIQCP. Despite

of the continuous decision variable and the quadratic constraint, the USCP can be

decomposed by the generic framework of Dantzig-Wolfe reformulation, and the gen-
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erating set can be defined based on the projection to the discrete decision variable.

It implies that similar problems can be solved by Dantzig-Wolfe decomposition and

the corresponding B&P algorithm. Apart from the USCP, the problems that decide

the location freely on the xy-plane as the continuous decision can be approached by

this solution procedure.

The rest of this chapter is structured as follows: Section 2.2 proposes the problem

description and the mathematical model of the standard formulation. A direct way

to discretely approximate the mixed-integer quadratic constraint into the integer

constraint is also proposed. Section 2.3 describes, in detail, the B&P approach for the

USCP and the pairwise-conflict constraint approximation based on Jung’s theorem.

This section also presents the comparison between two approximation models and

the overall algorithmic framework for further clarification. Section 2.4 presents the

computational experiments conducted, including the algorithmic performances of

four proposed models. In this section, we analyze the managerial insights for practical

applications in a disaster environment. Section 2.5 introduces the structure of the

solution and the application of the USCP. Finally, Section 2.6 concludes the research.

2.2 Problem definition

This section presents a detailed description of the USCP. UAVs construct a wireless

network to restore connectivity for survivors in a disaster area. The ultimate scope of

the UAV operation problem should be the development of an optimal flight schedule

for an overall UAV system within the constraints of battery capacity. The interval

scheduling or interval partitioning problem expands the set covering problem to the

time dimension. The flight time to the target position and the duration of hovering,
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considering the battery capacity of the UAVs, would be incorporated into the interval

scheduling problem.

However, this problem is simplified in the set covering problem to allow more ex-

plicit consideration of the UAV system’s characteristics. The set covering approach

provides a less dimensionally complex and more intuitive solution as compared with

the scheduling approach; this would allow authorities to manage the system effi-

ciently. The proposed USCP provides a rough-cut response plan that can be used in

creating a routing and scheduling plan. The solution for the USCP, which consists

of the position and the assignment of demand points for each UAV, can be used as

a set of feasible tasks.

In this research, the set covering problem does not consider the network coverage

distance from the ground access point to the UAV or between the UAVs. The wireless

network that is provided by the UAV to cover the area (UAV-to-ground wireless

network) is omnidirectional and has a limited transmission capacity and the limited

coverage distance. However, as considered in Khan et al. [66], UAV-to-UAV and

UAV-to-gateway networks are more likely directional transmissions and therefore

have a longer transmission distance. Based on these characteristics, in the USCP,

the UAVs are assumed to be connected to the authority, regardless of their location.

On the other hand, even in the problem environment in which the distance be-

tween the UAVs or the UAV-to-gateway transmission distance provides constraints,

the USCP model and the solution can give a critical input. In the cases that utilize

the multi-tier network architecture [95, 69] or the connected set covering approach

that limits the communication distance between the UAVs, the solution of the USCP

can be used. As explained, this research investigates the simplest model of the UAV
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set covering problem to identify the topographical characteristic of the problem. The

ways to utilize the USCP in more practical problems are presented in Section 2.5.

2.2.1 Problem description

The cardinality minimization problem is designed for the immediate response phase

after a disaster. Thus, authorities can obtain information on the approximate number

of UAVs to create a rough-cut response plan. The cardinality minimization problem

can be transformed into the coverage maximization problem, which maximizes the

number of demand points covered by a given number of UAVs. Since the hard target

in disaster management is to minimize the damage of human life through the utmost

efforts, the constraint is set to fulfill every demand.

The assumptions of the presented problem are defined as follows:

(1) The information on the positions of demand points is already known.

(2) Each UAV has an identical coverage distance.

(3) There is no restriction on a UAV’s hovering position in the xy-plane.

(4) A demand point is covered if it is in the coverage circle.

(5) There is no transmission capacity limitation on the wireless network.

(6) There is no overlap interference between UAVs or shadowing effect incurred

by buildings.

It is assumed to have initial information on the positions of demand points,

which can be acquired by a primary search or by experts of disaster management. If

there is a solution algorithm to solve the USCP efficiently, authorities can provide
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a more advanced response through optimizing the model iteratively and adding

new information. To utilize the UAV’s full capability, there is no restriction on its

position; in other words, there is no predefined candidate for each UAV to fly. This

research focuses on the geometrical coverage constraint rather than the capacity

constraints of the wireless network. Each demand point is covered by a UAV if it is

in the coverage circle, regardless of a UAV’s capacity on the network’s accessor or

transmission. The characteristic that authorities and survivors both have limitations

on resources grounds the assumption. For the authorities, there are limitations on the

number of UAVs to be invested. At the same time, survivors conserve their battery of

the mobile devices as much as possible because there is a lack of assurance of rescue.

As a result, access to the wireless network only occurs if absolutely necessary, which

makes capacity constraints of the network immaterial.

Figure 2.1 presents an overview of the USCP. Under the given information of

the static position of demand point, the objective of the UAV set covering problem

considered in this chapter is to minimize the number of UAVs required to cover every

demand point in a disaster situation. UAVs can be located without any restriction

on an xy-plane. The network-covered area is defined by the employment and position

of UAVs, and a demand point is covered if and only if it is inside the area.

2.2.2 Mathematical formulation

Based on the problem defined in Section 2.2.1, a mathematical model is developed.

The followings are the notations used in the standard mathematical formulation for

the USCP:
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𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡

𝑈𝐴𝑉

𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

Figure 2.1: Overview of the USCP

Set

N set of demand points.

Parameters

ax̂i position of demand point i on x-coordinate. ∀i ∈ N

aŷi position of demand point i on y-coordinate. ∀i ∈ N

R coverage radius of a UAV.
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Decision variables

yj =


1, if UAV j is used.

0, otherwise.

∀j ∈ {1, ..., |N |}

xij =


1, if demand point i is covered by UAV j.

0, otherwise.

∀i ∈ N

∀j ∈ {1, ..., |N |}

cx̂j ∈ R, position of UAV j on x-coordinate. ∀j ∈ {1, ..., |N |}

cŷj ∈ R, position of UAV j on y-coordinate. ∀j ∈ {1, ..., |N |}

The set N consists of the demand points and represents the survivors in the

disaster area. Positions of demand points and the coverage radius of a UAV are

given as parameters. There are two types of decision variables: binary decision vari-

ables related to the location-allocation problem and position decision variables on

the xy-plane. UAV j and yj are predefined for each demand point to cover every

extreme case, which has a cardinality of |N |. The following is the standard mathe-

matical formulation of the USCP. For distinction, the formulation will be renamed

as Euclidean standard (ES) formulation.

min

|N |∑
j=1

yj (2.1)

s.t. xij ≤ yj , ∀i ∈ N, ∀j ∈ {1, ..., |N |} (2.2)

|N |∑
j=1

xij ≥ 1, ∀i ∈ N (2.3)

(ax̂i − cx̂j )2 + (aŷi − c
ŷ
j )2 ≤ R2 + M̃(1− xij), ∀i ∈ N, ∀j ∈ {1, ..., |N |} (2.4)

xij ∈ B, ∀i ∈ N, ∀j ∈ {1, ..., |N |} (2.5)
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yj ∈ B, ∀j ∈ {1, ..., |N |} (2.6)

cx̂j , c
ŷ
j ∈ R ∀j ∈ {1, ..., |N |} (2.7)

The objective of the mixed-integer quadratically-constrained programming (MIQCP)

model is to minimize the total number of UAVs used to cover the demand points.

Constraint (2.2) is a linking constraint between a demand point and a UAV; the

deployment of a UAV precedes the assignment of a demand point. Constraint (2.3)

is a demand assignment constraint; every demand is required to be fulfilled by at

least one UAV. Constraint (2.4) is a mixed integer quadratic constraint that relates

the position-coverage of UAV and its usage. A demand point i is covered by a UAV

j only if the distance between the position of the demand point i, (ax̂i , aŷi ) and the

position of UAV j, (cx̂j , cŷj ) is less than the coverage radius R. Constraints (2.5),

(2.6), and (2.7) define the dimension of the decision variables. The quadratic shape

of Constraint (2.4) originates in Comley [30]. It is hard to solve the ES model within

an applicable time, even for a small-sized problem. To tackle the intractability of

the ES model, a natural approximation model based on discretization is proposed

in the next section.

2.2.3 Discrete approximation model

Constraint (2.4) is quadratic because of the continuous decision variable for the

position of the UAV, cx̂j and cŷj . The simplest approximation of the ES model to

linearize the quadratic constraint is to discretize the xy-plane into grids and consider

every lattice point as a candidate for the position of a UAV. The following are

the new set and parameters used in the mathematical formulation of the discrete
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approximation (DA) model:

Set

M set of candidates of flight position of UAV.

Parameters

bx̂j flight position of UAV j on x-coordinate. ∀j ∈M

bŷj flight position of UAV j on y-coordinate. ∀j ∈M

αij binary feasibility of UAV j to cover demand point i. ∀i ∈ N, ∀j ∈M

Decision variables

yj =


1, if UAV j is used.

0, otherwise.

∀j ∈M

xij =


1, if demand point i is covered by UAV j.

0, otherwise.

∀i ∈ N

∀j ∈M

Unlike in the ES model, UAV j ∈ M is predefined for each lattice point on the

xy-plane, separated into grids. The binary feasibility αij is defined based on the

distance between the demand point and the flight position of UAV j. αij equals 1 if√
(ax̂i − bx̂j )2 + (aŷi − b

ŷ
j )2 ≤ R and 0 otherwise. Except for the domain of the binary

decision variable yj and the discretization of the continuous decision variables cx̂j

and cŷj , the mathematical formulation of the DA model is almost identical to that

of the ES model:

min
∑
j∈M

yj (2.8)

s.t. xij ≤ yj , ∀i ∈ N, ∀j ∈M (2.9)
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∑
j∈M

αijxij ≥ 1, ∀i ∈ N (2.10)

xij ∈ B, ∀i ∈ N, ∀j ∈M (2.11)

yj ∈ B, ∀j ∈M (2.12)

Set M is defined based on the size of the grid and the boundary of the demand

points. The extreme values of the leftmost, rightmost, uppermost, and lowermost

points become the boundary of set M . The smaller each grid is, the more precise the

approximation becomes, but at the same time, the size of set M increases quickly

in squares. Even though the approximation of the quadratic constraint accelerated

the computation speed, the size of the problem in terms of decision variables and

constraints can be excessively large. Thus, a scientific criteria to identify an efficient

grid size is vital to implement the DA model. The detailed performance of the DA

model and the criteria for the grid size is analyzed in Sections 2.3.4 and 2.4.

2.3 Branch-and-price approach for the USCP

Section 2.3.1 presents an extended formulation for the B&P algorithm. Section 2.3.2

introduces a detailed branching strategy related to the B&P algorithm on the USCP.

Section 2.3.3 examines Jung’s theorem and the approximation model with pairwise-

conflict constraints based on Jung’s theorem. Section 2.3.4 compares two approxi-

mation models based on the approximation ratio. Section 2.3.5 presents the overall

algorithmic framework to use pairwise-conflict constraint approximation model in a

disaster situation.

28



2.3.1 An extended formulation of the USCP

To utilize the structural knowledge of the problem’s feasible solution, we reformu-

lated the ES into the extended formulation. One strong point of the nominal set

covering problem is the small integrality gap and the tendency for the LP relaxation

to provide an integer solution [100]. However, the continuous relaxation of the USCP

neutralizes the coverage constraint. Unlike in the nominal set covering problem, the

coverage constraint is considered jointly by Constraints (2.3) and (2.4) in the ES

formulation. The continuous relaxation separates the relation among xij , c
x̂
j , and

cŷj . Thus, the solution of the continuous relaxation does not satisfy the coverage

constraint. Moreover, because the objective of the USCP is to minimize the num-

ber of homogeneous UAV without a consideration of capacity, the relaxation always

provides the bound as 1.

We propose a Dantzig-Wolfe decomposition based on each UAV. Because the

USCP includes the continuous decision variables, cx̂j and cŷj , the concept of generating

sets proposed in Vanderbeck and Savelsbergh [106] is used. While discretizing the

binary variables, xij and yj , generating sets for the subsystem of a UAV can be

defined and reformulate the USCP. Let XB be a subsystem for a UAV:

XB =
{

(c,x,y) : (ax̂i − cx̂j )2 + (aŷi − c
ŷ
j )2 ≤ R2 + M̃(1− xij), xij ≤ yj ,

∀i ∈ N, ∀j ∈ {1, ..., |N |}; c ∈ R|N |×|N |+ ;x ∈ B|N |×|N |;y ∈ B|N |
}
,

where c =
(
c1, ..., c|N |

)
and cj = (cx̂j , c

ŷ
j ). A set of the feasible flight positions of a
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UAV, SB(x,y), can be defined as a union of the circles:

SB(x,y) =
{
c ∈ R|N |×|N | : (ax̂i − cx̂j )2 + (aŷi − c

ŷ
j )2 ≤ R2 + M̃(1− xij), xij ≤ yj ,

∀i ∈ N, ∀j ∈ {1, ..., |N |}; [xij ] = x, [yj ] = y; c ∈ R|N |×|N |+

}
.

The generating set GB and its projection GB
p can be defined as:

GB
p = proj(x,y)X

B =
{
x ∈ B|N |×|N |;y ∈ B|N | : (ax̂i − cx̂j )2 + (aŷi − c

ŷ
j )2 ≤ R2

+M̃(1− xij), xij ≤ yj , ∀i ∈ N, ∀j ∈ {1, ..., |N |}; c ≥ 0
}
,

GB =
{

(c,x,y) ∈ R|N |×|N |+ × B|N |×|N | × B|N | : (x,y) ∈ GB
p ; c ∈ SB(x,y)

}
.

The reformulation based on the proposed generating set GB can be defined as:

min
∑
g∈GB

|N |∑
j=1

ygjλg

s.t.
∑
g∈GB

|N |∑
j=1

xgijλg ≥ 1 ∀i ∈ N

λg ∈ B, ∀g ∈ GB

where λg denotes the weight of the generator g and (cg,xg,yg) denotes the solution

(c,x,y) defined by generator g. However, one can use a finite generating set GB
p for

the reformulation. The reformulation cannot fully describe the feasible set but the

projection of the original problem. However, the objective function can be described

by the variables xij and yj , thus the decomposition can be executed based on the

projection over (x,y). We first define the generator k ∈ GB
p . Furthermore, there is

no predefined information related to the UAV, so that one can replace the index of
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the UAV j with the generator k. Thus, the generator k can be defined solely based

on the variable x. The term “column” will be used instead of the generator, and the

“set of columns” will be used instead of the generating set for the convenience.

In the extended formulation, the fixed-radius coverage constraint with Euclidean

distance (2.4) is considered implicitly in the decision variable; therefore, the solutions

of the continuous relaxation satisfy the coverage constraints, which obtains tighter

continuous relaxation bounds than in the nominal set covering problem. Another

advantage of the decomposition is the elimination of symmetry among solutions,

which obstructed the search on the B&B algorithm [107]. Each column in the ex-

tended formulation defines a set of demand points that can be covered by one UAV.

In this approach, one makes the column-wise decision instead of the UAV−demand

point pair decision by choosing to use particular columns and cover the included

demand points. For example, if columns k1 = {1, 3}, k2 = {2, 3}, and k3 = {1, 2} are

considered, one can cover demand points {1, 2, 3} by selecting columns k1 and k2, or

k2 and k3. Let a generating set Ω be the set of every feasible column that implicitly

represents a set of demand points covered by one UAV. For each assignment pattern

k ∈ Ω, the inclusion of each demand point i is defined as a binary parameter wik. A

binary decision variable zk is defined for each feasible column to denote the adop-

tion. The extended formulation model of the USCP is represented in the following

integer program:
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min
∑
k∈Ω

zk (2.13)

s.t.
∑
k∈Ω

wikzk ≥ 1 ∀i ∈ N (2.14)

zk ∈ B ∀k ∈ Ω (2.15)

Objective function (2.13) minimizes the cardinality of UAVs operated to cover ev-

ery demand point. Constraint (2.14) is a demand assignment constraint. For each

demand point, at least one active assignment plan is required to cover it. In the

extended formulation, it is impossible to define intact Ω and every decision variable

zk because the size of the set Ω is exponential on the number of demand points |N |.

The optimality under the current basis is verified by a subproblem called a pricing

subproblem, which identifies a new column for entering the basis to improve the so-

lution; the operation is iterated until no new column with a negative reduced cost is

found. The B&P algorithm is a B&B algorithm with a CG technique implemented

at each node. The branching occurs when the solution of the root node CG does

not satisfy the integrality. Let πi be a dual price associated with constraint (2.14);

additional columns for the restricted master problem can be generated by solving

the following pricing problem:
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Decision variables

xi =


1, if demand point i is covered by the generated column.

0, otherwise.

∀i ∈ N

cx̂ ∈ R, position of UAV of the generated column on x-coordinate.

cŷ ∈ R, position of UAV of the generated column on y-coordinate.

min 1−
∑
i∈N

πixi (2.16)

s.t. (ax̂i − cx̂)2 + (aŷi − c
ŷ)2 ≤ R2 + M̃(1− xi), ∀i ∈ N (2.17)

xi ∈ B, ∀i ∈ N (2.18)

cx̂, cŷ ∈ R, (2.19)

The pricing subproblem for the CG is equivalent to the Lagrangian subproblem of

the ES formulation. Because all the UAVs are assumed to be identical, the cost

parameter for using a UAV k is set to be 1 for every UAV in Formulation (2.1).

Thus, the pricing subproblem is identical for every UAV. The objective function

(2.16) calculates the cost to employ one UAV, as we must always use one UAV.

Moreover, the dual price πi subtracts the covering effect of the demand point. The

fixed-radius coverage constraint with Euclidean distance, Constraint (2.4) in the ES

formulation, is considered in Constraint (2.17), which provides the feasible column to

be covered by one UAV. The B&P algorithm over extended formulation is renamed

as Euclidean branch-and-price (EBP). For the initial restricted master problem, we

assigned a UAV to each demand point. In other words, each initial column covered
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one demand point, and the number of initial columns was the same as the number of

demand points. In this way, the initial restricted master problem had a feasible LP

relaxation and could provide dual values, which were used in the pricing problem.

Powerful heuristic algorithms exist to cluster demand points efficiently, and one can

easily use these algorithms to provide initial columns while implementing the system

in the real application.

2.3.2 Branching strategies

Branching is required when the CG terminates and the optimal solution does not

satisfy integrality. New constraints are added by the branching to divide the solution

space without losing any feasible solution and to gain the optimal integer solution.

The branching decision is based on the standard formulation rather than on an

extended (disaggregated) formulation, because branching on the decision variable

causes an unbalance in the branch-and-bound tree and requires massive modifica-

tions in the pricing subproblem [35]. The Ryan-Foster branching rule [89] is often

used in the set partitioning problem [61]. In this rule, the branching decision con-

trols whether two demand points are simultaneously covered by a UAV or not. It is

modeled by fixing the coexistence of decision variables xi1 and xi2 for subproblem,

which represents the assignment of demand points i1 and i2 for each UAV. In detail,

we can identify a pair of the most fractured demand points based on the solution

from extended formulation. Because the CG is operated on the restricted master

linear program (RMLP), the employment of each column is given as a fractional

value. Based on the fractional solution of the RMLP, the degree of coexistence of a

pair of demand points vi1i2 is calculated. For each pair of demand points, the value
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of the fractional solution of a column z̃k is aggregated if both demand points are

included:

vi1i2 :=
∑

k∈Ω,wi1k
=wi2k

=1

z̃k.

The pair of demand points with the degree of coexistence nearest to 0.5 is chosen

for the branching.

When the branching is executed, division of feasible solutions is required in

both the master problem and the pricing subproblem. In the master problem, the

existing columns should be divided into two groups based on the coexistence of

the pair of demand points chosen for the branching. This separates the columns

covering both demand points into one branch and the columns covering only one

demand point of the pair into another branch. In the pricing subproblem, a new

pairwise-conflict constraint is added to enforce the acceptance or prohibition of the

coexistence. Because the subproblem makes decision of the demand points to be

covered, the addition of the pairwise-conflict constraint does not change the structure

of the problem.

2.3.3 Pairwise-conflict constraint approximation model based on

Jung’s theorem

The reformulation provides a better continuous relaxation bound and eliminates

the symmetries in the branching tree. Furthermore, the advancement of the non-

linear solver engine enables the solution algorithm to solve the pricing subproblem

efficiently regardless of the quadratic constraints. In ES and extended formulations

of the USCP, quadratic constraints (2.4) and (2.17) represent the coverage circle

around each UAV. Even though the commercial solver can find the optimal solution
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of USCP within the appropriate time, it is still necessary to find a more practical

model. One reason for this is the numerical instability of the coverage constraint.

The binary decision variable xi and the continuous decision variables cx̂ and cŷ co-

exist in Constraint (2.17). Because the scale of the coverage distance of one UAV

and overall xy-plane is compared in one inequality in quadratic form, R2 and M̃ can

easily have the difference of 108 units when 10−8 is the limit of the solver’s feasibility

tolerance.

For the same reason, it is not possible for the solver to use the built-in pre-

solver and heuristics, since they can provide infeasible solutions. In addition, linear

constraints are usually preferred over nonlinear constraints because the movement

between feasible points is more straightforward when the solution space is linear

rather than curved [44]. Therefore, in most cases, linearization can accelerate the

computation speed.

In the field of geometry, finding the minimum enclosing ball of a set has been an

important question. Under the given set, Welzl [110] proposed a randomized linear

programming algorithm that runs in linear time. Because a circle is defined by three

points, Welzl’s algorithm recursively chooses three points from the given set of points

to find the enclosing circle. However, due to the recursive characteristic, it is not

possible to apply Welzl’s algorithm as a constraint in the mathematical model. In

Chapter 3, the minimum covering circle-based formulation is defined.

Instead of the Welzl’s algorithm, which cannot be used as a constraint, a suffi-

cient condition can be used for the approximation. If every pair in the set of demand

points satisfies the linearized conflict constraint, the sufficient condition ensures that

the set will be covered together in one circle. The conflict constraint is widely used
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in optimization models. Sadykov and Vanderbeck [90], Gendreau et al. [48], and

Manerba and Mansini [76] used conflict constraints to model predefined incompati-

bility between choices. Grötschel and Wakabayashi [49], Hoffman and Padberg [54],

and Borndörfer and Weismantel [20] developed valid inequalities for the solution al-

gorithm. In our approximation, a pairwise-conflict constraint inspired by the Ryan-

Foster branching strategy and Jung’s theorem is used to identify the pairs of demand

points that can coexist within a given coverage distance.

Jung [65] proposed an inequality between the diameter and the radius of the

minimum enclosing ball of a set:

Theorem 2.1 (Jung’s theorem). Considering a compact set K ⊂ Rn and let the

diameter of a set K as d(K) := max
p,q∈K

||p− q||2. There exists a closed ball with radius

r ≤ d(K)

√
n

2(n+ 1)

that contains K.

In the case of the xy-plane (n = 2), according to Jung’s theorem, a circle with

r ≤ d(K)√
3

containing the given compact set K exists. However, we can distinguish

a sufficient condition for some sets to be enclosed in a closed ball under the given

radius R.

Lemma 2.2. Considering a compact set K ⊂ Rn. For a given R ∈ R1, if d(K) ≤
√

3R, then there exists a closed ball with radius r ≤ R.

According to Lemma 2.2, if the coverage radius R is given and the distance

of every pair of demand points in a set K is smaller than
√

3R, the set K can
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be covered by one circle. The approximation of Constraints (2.4) and (2.17) are

modeled as pairwise-conflict constraints. A constraint on the diameter of a set K

can be substituted by a set of constraints that includes the constraint of distance

between every pair of demand points. Let di1i2 be the distance between demand

points i1 and i2. Constraints (2.4) and (2.17) can be approximated into Constraints

(2.20) and (2.21), respectively:

xi1j + xi2j − 2 + Ci1i2 ≤ 0 ∀i1, i2 ∈ N, ∀j ∈ {1, ..., |N |} (2.20)

xi1 + xi2 − 2 + Ci1i2 ≤ 0 ∀i1, i2 ∈ N (2.21)

where pairwise-conflict parameter Ci1i2 :=
(di1i2)2 − 3R2

( max
i1,i2∈N

[di1i2 ])2 − 3R2 . If di1i2 ≤ R
√

3,

Constraints (2.20) and (2.21) become redundant. Otherwise, 0 ≤ Ci1i2 ≤ 1 and Con-

straints (2.20) and (2.21) define pairwise-conflict constraints. The model is named

as pairwise-conflict constraint approximation (PCA) model. For distinction, the ap-

proximated formulations are renamed as pairwise-conflict constraint approximated

standard formulation (PCS) and pairwise-conflict constraint approximated branch-

and-price algorithm (PCBP). Both PCA and PCBP models are mixed-integer linear

programming. Let x, y be a feasible solution of a PCS model. According to Lemma

2.2, x, y is also feasible for the ES model. A feasible solution to a pricing subprob-

lem of PCBP is likewise feasible for the pricing subproblem of EBP. Note that the

approximations of the coverage constraints have the same structure as the branching

constraints. Moreover, this means that the structure of the problem does not need

to be changed while executing branching over the original model.

PCBP has the same extended formulation as EBP, and the approximated CG
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subproblem has the same objective function as Formulation (2.16) and Constraints

(2.18) and (2.19). Constraint (2.21) replaces Constraint (2.17) to represent the ap-

proximated coverage constraint. In the CG subproblem, Constraint (2.21) requires

that every pair of demand point chosen for a new column must be within a certain

distance. After the approximation, the decisions of the UAV position and the set

partition are decomposed, and only the decision of the set partition becomes rel-

evant. In other words, when we approximate the geometric network structure, the

pairwise-conflict constraint can work as a filter that abstracts the original network

into the digitized network. Connectivity between a pair of demand points remains

only if Jung’s theorem guarantees the coexistence. After the abstraction, it is not

necessary to consider the length of each arc between the demand points. By the

approximation, the physical distribution of demand points is abstracted to a net-

work that only considers the pairwise connectivity between demand points. In the

abstracted network, the master problem is to cover every demand point with the

minimum number of cliques, and the pricing subproblem is translated into the cat-

egory of finding the maximum vertex clique.

The clique partitioning problem is one of the most studied combinatorial opti-

mization problems. Many researchers (e.g., [49, 61, 62]) have conducted various types

of problems both in practical and theoretical fields, including maximum clique or

K-equipartition problems with several categories of constraints including minimum

or maximum clique size and capacity. The closest work to the proposed problem

is the uncapacitated clustering problem [78], which introduced a B&P algorithm.

However, even though the Ryan-Foster branching strategy is incorporated in their

work, the solution method is not applicable to the problem in this chapter be-
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cause their objective was to minimize the sum of the arc cost under the minimum

clique size requirement. As mentioned earlier, capacity-related constraints (e.g., min-

imum/maximum clique size) are not considered in this research as we focus instead

on the effects of the geometrical coverage constraint. In further research, more prac-

tical constraints could be considered with the related knowledge, including cutting

plane or branching strategies from the literature mentioned earlier.

The cost of the approximation is the loss of the feasible solution, which might

decrease the optimal value of the problem. However, in the case of large-sized prob-

lems, the approximation provided time-efficient solutions at relatively high speeds.

The performance of the approximated algorithm was analyzed in the perspective

of the approximation rate and the computational experiments in Sections 2.3.4 and

2.4.

2.3.4 Comparison of the approximation models

The proposed approximation models are compared from the perspective of the per-

formance ratio. Let F be the solution of an exact or approximation model in the

form of the set of subsets of demand points. For an optimal solution of the USCP F∗,

each element S∗j ∈ F∗ can be covered by a UAV. Let FPCA and FDA be optimal

solutions for the PCA model and the DA model, respectively. An approximation

ratio of each approximation model is calculated based on the ratio between |F| and

|F∗|.

Theorem 2.3. The PCA model is a 3-approximation for the USCP.

It is obvious that if a set of demand points can be enclosed in a circle with a

given radius R, the PCA model requires at most three circles with the same radius
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to cover the set. The worst-case is when the solution of the PCA model separates the

given set into three sets whose diameters are equal to
√

3R. This case is presented

in Figure 2.2.

Proof. For every element S∗j ∈ F∗, there exists a subset PPCA ⊆ FPCA such that

|PPCA| ≤ 3 and S∗j ⊆
⋃
PPCA. It will follow that |F∗| ≥ |FPCA|/3.

Figure 2.2: Worst-case of the PCA

In the DA model, the size of the grid affects the computation speed and the

approximation ratio–that is, when the grid size decreases, the loss in the approxi-

mation follows until the objective value converges to a near-optimal value of USCP.

Nevertheless, the computational burden increases after the size of the problem in-

creases. Therefore, it is essential to decide on an appropriate grid size. From the

perspective of the approximation ratio, the most natural setting of the DA model

with a grid size of R is used for the analysis. Let Gd and FDA
Gd

be the grid size and

the associated optimal solution of the DA model, respectively. If Gd ≤
√

2R, the DA

model can cover the plane with circles with radius R around each lattice point.
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Theorem 2.4. The approximation ratio of DA model with Gd ≥ R for the USCP

is larger than 3.

Proof. To prove that this is true, a counterexample that holds 3|F∗| < |FDA
Gd
| is sug-

gested: LetR =
√

3 and |N | = 4 with (ax̂i , a
ŷ
i ) = (17

10 ,
√

11
5 −

√
299
10 ), (33

10 ,
3
√

11
10 ), (17

10 ,
√

11
5 +

√
299
10 ), and (− 1

10 ,
3
√

11
10 ) are given. The USCP covers the given demand points with

one circle: (x − 16
10)2 + (y −

√
11
5 )2 = 3. Therefore, |F∗| = 1. In the DA model with

Gd =
√

3, no lattice point that can cover more than one given demand point. Thus,

|FDA
R | > 3 holds for the given counterexample.

Note that the approximation ratio is measured based on the worst-case scenario.

In most situations, the worst cases have the extreme position of the demand points

that spreading around circles with the coverage radius. In most instances, the ob-

jective value of the approximated model was within the 30% gap from the optimal

value of USCP. Section 2.4 compares performances of the DA and the PCA models

with the exact model based on the computation speed and the objective value.

2.3.5 Framework of the solution algorithm for the PCBP model

Figure 2.3 shows the overall framework of the solution algorithm using the PCBP

model. The framework consists of three phases: approximation, B&P, and flight po-

sition decision phase. At the first phase, information on the positions of demand

points is translated into a set of pairwise-conflict constraints based on Jung’s theo-

rem. Constraint (2.21) is calculated for each pair of demand points i1 and i2 based

on the distance di1i2 and M̃ . At the second phase, the PCBP algorithm is executed

for the set covering solution; this algorithm provides only the set of demand points

assigned for each UAV, unlike the EBP algorithm, which also determines the posi-
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UAV Set Covering Problem

1. Positions of demand points on the xy-plane 

2. Wireless coverage radius of a UAV

Define possible pairs of demand points

Set covering of demand points 

based on pairwise-conflict constraints

1. UAV destination position

2. Set of demand points covered by each UAV

Decide UAV destination position based on 

set of assigned demand points

Pairwise-conflict constraints based on 

the distance between two demand points

Input Information

Phase 1 Output

Output Information

Sets of demand points to be covered by each UAV

Phase 2 Output

Phase 1: Approximation using Jung’s theorem

Phase 2: Solve set covering problem using branch-and-price algorithm

Phase 3: UAV flight position using Welzl’s algorithm

Figure 2.3: Framework of the solution algorithm for PCBP model
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tion for each UAV. Therefore, an additional phase is required to decide the position

for each UAV. In the third phase, Welzl’s algorithm is employed for each UAV to

provide the destination points. Since Welzl’s algorithm provides not only the cir-

cumcenter but also the circumradius of the given set, the feasible region that the

UAV needs to fly to cover the demand points can be calculated based on the out-

put solution. Figures 2.4a and 2.4b show solutions of the USCP, illustrated on the

xy-plane.

2.4 Computational experiments

We conducted computational experiments to measure the performance of the pro-

posed solution algorithms (Section 2.4.2). Section 2.4.1 describes two datasets used

for computational experiments. The Euclidean standard (ES), Euclidean branch-

and-price (EBP), pairwise-conflict constraint approximated standard formulation

(PCS) and pairwise-conflict constraint approximated branch-and-price algorithm

(PCBP) models were developed in FICO Xpress 7.9 and solved with Xpress-Optimizer

33.01.02. MIQCP in the ES and EBP models were solved by B&B in Xpress MIQCQP

solver using barrier algorithm for each nodes. The discrete approximation (DA)

model was developed in FICO Xpress Python interface 8.6.1. and solved on Python

3.6. Experiments were performed with Intel ® Core TM i7-3820 CPU at 3.60GHz

and 24GB of RAM operated on a Windows 10 64-bit operating system.

2.4.1 Datasets used in the experiments

Two datasets were used for the computational experiments. A small-sized artificial

dataset drew input from the benchmark data of the customer position of a capac-
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itated p-median test problem in OR-Library [9], which was introduced by Osman

and Christofides [81]. Based on the benchmark data, instances were developed with

three sizes of demand points: 10, 20, and 50. For each size of the demand point,

10 instances were modeled by distributing demand points uniformly on the 100 ×

100 xy-plane. Three coverage radii—10, 20, and 30—were tested for each instance.

A realistic-scale dataset was developed based on the well-known dataset of Hurri-

cane Katrina Fatalities (HKF), as reported by Maaskant et al. [75]. HKF dataset

includes data on the recovery of deceased victims of Hurricane Katrina, one of the

most notorious hurricanes ever faced by the United States. The HKF dataset was

used to measure the applicability of the proposed algorithm in the actual situation

and was named as a realistic-scale dataset in this research. Detailed information

on fatalities in the HKF dataset has been used in a variety of studies on disaster

management [22, 64]. The recovery data consists of GPS coordinates, type of re-

covery location, and dates of the recovery of 771 fatalities of Louisiana. For the

realistic-scale dataset, 20 instances and 60 problems were generated based on the

539 fatalities found in New Orleans. Fatalities were considered as demand points if

the person could have survived if they had wireless communication. Datasets using

two sizes of demand points—50 and 100—were developed. For each size of demand

points, 10 instances were generated by randomly picking demand points from the

original dataset. The GPS information was translated into Cartesian coordinates by

equirectangular projection.

Using state-of-the-art wireless communication technology, UAVs can construct

a network with distances from 200 meters to 1,000 meters [26, 50]. Thus, three

radii—200, 1,000, and 2,000 meters—were tested for each instance. Figure 2.4b shows
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a solution of a realistic-scale dataset. In total, there were 15 classes of problems, each

consisting of 10 instances; 150 different problems ranging from small to large were

conducted for the computational experiments.

2.4.2 Algorithmic performances

We compared the performances of the ES, DA, EBP, PCS, and PCBP. For each

experiment, the limitation of maximum computation time was set to 3,000 seconds

because rapid computation is extremely important in disaster management. We con-

ducted three analyses for the algorithmic performances. First, we summarized the

computational experiments and compared the algorithmic performance between the

proposed algorithms from the perspectives of computation time and optimality. The

DA can be seen as a benchmark algorithm in this research. The DA is the fair mod-

eling considering the extra decision of the candidate location and depends solely on

the performance of the optimization solver, which can help to assess the effective-

ness of the other algorithms using the techniques tailored for the USCP. A detailed

analysis on the DA model is presented, including the adequate grid size and the

comparison between the DA and the PCBP model. Second, we conducted further

analysis of the B&P algorithm. Observations of root node CG and the overall B&P

algorithms were executed for the EBP and the PCBP. The comparison consisted of

the quality of the root node LP bound, the number of columns generated for each

stage, and the computation times. Third, we provided a sensitivity analysis of the

proposed algorithms for managerial insight.

For the first analysis, Tables 2.2, 2.3, and 2.4 summarize the computational

results of five algorithms, which are related to the computation speed and optimality,
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respectively. The columns in these tables are defined as follows:

• |N |: the number of demand points

• Rd: the coverage radius of a UAV

• #Opt: the number of problems for which the algorithm provided the optimal

solution

• #Feas: the number of problems for which the algorithm provided at least one

feasible solution

• Time: the average time for the computation to find the optimal solution– For

problems not solved within the time limit, the limit was used as the computa-

tion time while calculating the average.

• GapL: the average of the gap between the best lower bound (BB) and the best

feasible solution (BFS)–For the problems for which the algorithm provided

optimal solutions, GapL = 0 because the BB meets the BFS at the optimal

solution. GapL was used to evaluate the convergence of an algorithm itself.

GapL =
(BFS)− (BB)

(BFS)
× 100%

• # of UAVs: the average of the BFS, or the number of UAVs needed to cover

every demand point

• Gap: the average of the gap between # of UAVs of the EBP and an algorithm–

Gap was used to assess the optimality of an algorithm comparing it with the

EBP. It was possible for a problem and an algorithm to have either positive
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or negative Gap.

Gap =
(BFS of an algorithm)− (BFS of EBP)

(BFS of EBP)
× 100%

In the field of aerial operation, some circumstances demand sub-minute or sub-

second time pressures. Table 2.2 shows that the EBP could solve almost every

problem within 100 seconds, and the PCBP could solve every problem class except

|N | = 100 and Rd =2,000, faster than the EBP. The computation speed between

the EBP and the PCBP depends on |N | and Rd, both of which affect the sparsity

of the problem. In the USCP, the sparsity of the problem is affected not only by the

density of demand points but also by the coverage radius of the UAVs. In sparse

problems, demand points are widely spread with a small coverage radius, resulting in

a relatively small number of demand points assigned to a UAV. There is a tendency

for the computation speed of the PCBP to be faster than that of the EBP when

the problem class is sparse. In the artificial dataset, when Rd was less than 30, the

PCBP was faster than the EBP for 54 out of 60 instances. However, when Rd was

30, the EBP was faster than the PCBP for 11 out of 30 instances. Likewise, in the

realistic-scale dataset, when Rd was less than 2,000, the PCBP was faster than the

EBP for 35 out of 40 instances, while only 6 out of 10 instances were faster when

Rd =2,000.

In some extremely dense problem classes in artificial dataset Rd = 30, the com-

putation speed of the PCS was faster than both the EBP’s and the PCBP’s. Figure

2.4a shows the PCS solution of Instance 1 in problem class |N | = 50 and Rd = 30.

The 100 × 100 plane can almost be covered by 5 UAVs with a coverage radius of
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30. Thus, the solution does not change much as |N | increases, which means that the

concurrent optimizer of the commercial solver provides the solution fast.

Table 2.3 shows the loss of optimality of the PCS and the PCBP. There was

a general tendency for the gap to improve when the problem class became denser.

The problems in the artificial dataset had demand points on the fixed-size xy-plane;

the larger number of demand points |N | denoted the denser distribution of demand

points. The tendency mentioned above could be seen when comparing the problem

classes in the artificial dataset with the same Rd but different |N |. In some cases,

the approximation of the PCS and the PCBP provided dramatic increases in Gap.

However, Gap measured in the ratio can be exaggerated when the objective value

is too small. For example, for an instance with |N | = 50 and Rd = 30, even though

the objective value of the PCBP (which is 5) is only 1 larger than the optimal value

(which is 4), the Gap equals 25%. In total, for 10 out of 150 instances the actual

difference of the objective value between the PCBP and the EBP was greater than

3.

Tables 2.4 and 2.5 show the performance of the DA according to the grid size

based on two factors. Because the DA experiment was performed on the Python

and FICO Xpress Python interface with a large-sized problem, the computation

was executed even after the time limit had passed (3,000 seconds). The problems in

which the DA showed shorter computation times and better BFS than the PCBP are

indicated in bold font. In the problem classes with (|N |, Rd) = (50, 20), (50, 30), and

(100, 2,000), the system could be covered perfectly with a number of UAVs equal to

about one-tenth the number of demand points. Thus, it is reasonable to assume that

for extremely dense problems, discretization can provide a good solution efficiently.
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Figure 2.4: Solution examples
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However, it is difficult to find a simple, standardized way to decide the grid size.

The most natural way is to base the grid size on the multiples of Rd. As discussed

in Section 2.3.4, the upper limit of grid size Gd is
√

2Rd. Table 2.4 compares three

grid sizes–
√

2Rd, Rd, and Rd/2. For Gd = Rd, in 98 out of 150 instances, the DA

found the solution faster than the PCBP. However, the DA had only 22 instances

with the same objective value of the PCBP and no instance with the lower objective

value. For only five instances did the DA perform better than the PCBP in terms

of both computation speed and optimality. For Gd = Rd/2, the DA had only 61

instances with shorter computation times than the PCBP; however, the DA also

had 22 instances with the better objective value and 76 instances with the same

objective value. In conclusion, the DA with a grid size of Rd was faster than the

PCBP but was not sufficient in terms of optimality. At the same time, the DA with

the grid size of Rd/2 was better than the PCBP in terms of optimality, though it

was also slower.

Instead of finding one standardized grid size as the multiple of Rd, problem

classes in which the DA performed well were noticed. For problems with more density,

the DA outperformed the PCBP and could find near-optimal solutions within a

shorter amount of time than the EBP. Table 2.5 shows that for dense problems, the

DA with a grid size smaller than Rd/4 could be solved faster than both the PCBP

and the EBP. Appendix A compares the computation times and the objective values

of the EBP, PCBP, and DA with various grid sizes.
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Table 2.2: Results related to the computation speed

|N | Rd #Opt/#Feas T ime(s) GapL(%)

ES EBP PCS PCBP ES EBP PCS PCBP ES EBP PCS PCBP

10 10 2/10 10/10 10/10 10/10 2862.10 0.29 0.01 0.01 27.82 0.00 0.00 0.00
20 10/10 10/10 10/10 10/10 91.26 0.32 0.01 0.01 0.00 0.00 0.00 0.00
30 10/10 10/10 10/10 10/10 8.55 0.25 0.01 0.01 0.00 0.00 0.00 0.00

20 10 0/2 10/10 10/10 10/10 3000* 0.99 0.04 0.03 82.06 0.00 0.00 0.00
20 0/10 10/10 10/10 10/10 3000* 1.09 0.09 0.06 45.00 0.00 0.00 0.00
30 5/10 10/10 10/10 10/10 1531.02 0.68 0.04 0.20 12.50 0.00 0.00 0.00

50 10 0/0 10/10 9/10 10/10 3000* 10.39 393.99 2.02 96.00 0.00 0.77 0.00
20 0/0 10/10 8/10 10/10 3000* 14.46 663.61 22.49 96.00 0.00 2.27 0.00
30 0/8 10/10 10/10 10/10 3000* 8.35 3.15 70.02 68.05 0.00 0.00 0.00

50 200 0/0 10/10 10/10 10/10 3000* 3.10 0.79 0.18 95.80 0.00 0.00 0.00
1000 0/0 10/10 10/10 10/10 3000* 6.69 110.15 1.08 95.60 0.00 0.00 0.00
2000 0/0 10/10 10/10 10/10 3000* 7.07 95.14 7.38 95.75 0.00 0.00 0.00

100 200 0/0 10/10 10/10 10/10 3000* 32.02 360.90 3.72 98.98 0.00 0.00 0.00
1000 0/0 10/10 0/10 10/10 3000* 87.32 3000* 74.37 98.82 0.00 12.31 0.00
2000 0/0 10/10 1/10 10/10 3000* 69.65 2704.66 771.47 98.98 0.00 11.19 0.00

3000*: The solver failed to find the optimal solution within 3000 seconds for every instance.

52



Table 2.3: Results related to the optimality

|N | Rd # of UAVs Gap(%)

ES EBP PCS PCBP ES PCS PCBP

10 10 7.4 7.4 7.9 7.9 0.00 7.26 7.26
20 4.1 4.1 4.8 4.8 0.00 19.17 19.17
30 2.8 2.8 2.9 2.9 0.00 5.00 5.00

20 10 18.4 11.1 12.2 12.2 67.20 10.15 10.15
20 5.5 5.5 6.4 6.4 0.00 17.00 17.00
30 3.5 3.5 4.0 4.0 0.00 16.67 16.67

50 10 50.0 17.0 19.3 19.3 195.18 13.87 13.87
20 50.0 7.2 8.6 8.6 593.43 19.64 19.64
30 14.5 4.0 4.8 4.8 262.50 20.00 20.00

50 200 50.0 39.0 40.2 40.2 28.55 3.06 3.06
1000 50.0 17.4 19.9 19.9 188.93 14.45 14.45
2000 50.0 9.1 10.8 10.8 452.78 19.03 19.03

100 200 100.0 65.3 68.0 68.0 53.39 4.08 4.08
1000 100.0 22.1 25.5 25.2 354.20 15.49 14.14
2000 100.0 10.0 12.0 11.9 912.37 21.12 19.87

Table 2.4: Performance of DA in accordance of grid sizes related to Rd

|N | Rd Time(s) # of UAVs

Grid size of DA Grid size of DA
√

2Rd Rd Rd/2
√

2Rd Rd Rd/2

10 10 0.050 0.052 0.129 8.9 8.5 7.8
20 0.011 0.010 0.030 6.9 5.8 4.7
30 0.007 0.007 0.015 4.4 4.1 3.4

20 10 0.065 0.110 0.403 15.8 13.7 12.3
20 0.025 0.029 0.095 9.7 8.1 6.3
30 0.013 0.016 0.046 6.2 5.4 4.3

50 10 0.274 0.478 1.695 27.7 23.3 19.1
20 0.071 0.093 0.280 13.7 11.2 8.8
30 0.038 0.052 0.123 8.4 7.2 5.1

50 200 78.858 300.222 3885.516 41.5 40.8 40.0
1000 0.860 1.629 9.543 26.4 22.8 19.8
2000 0.193 0.313 1.169 14.7 13.4 10.8

100 200 320.876 822.009 10633.638 73.9 70.7 67.3
1000 3.682 6.733 32.115 35.1 30.5 25.6
2000 0.660 1.115 3.787 18.2 15.1 11.9
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Table 2.5: Performance of DA in accordance of grid sizes

|N | Rd Time(s) # of UAVs

Grid size of DA Grid size of DA

32 16 8 4 2 1 32 16 8 4 2 1

10 10 - - 0.046 0.221 1.772 22.888 - - 7.9 7.7 7.7 7.5
20 - 0.013 0.045 0.213 1.747 22.472 - 4.8 4.5 4.2 4.1 4.1
30 0.006 0.013 0.043 0.216 1.875 23.778 4.2 3.2 2.9 2.9 2.9 2.8

20 10 - - 0.135 0.667 5.596 88.567 - - 12.8 12 11.7 11.5
20 - 0.034 0.125 0.611 5.341 91.234 - 7 6.2 5.7 5.6 5.6
30 0.014 0.032 0.120 0.613 5.346 93.324 5.2 4.1 3.7 3.6 3.5 3.5

50 10 - - 0.669 2.756 20.481 302.785 - - 21.2 18.6 17.8 17.4
20 - 0.137 0.446 2.154 18.057 308.372 - 9.9 8.4 7.7 7.5 7.4
30 0.047 0.113 0.377 1.907 17.278 295.531 7.6 5.5 4.5 4.1 4 4

2048 1024 512 256 128 2048 1024 512 256 128

50 200 - - - 122.536 1681.441 - - - 41.5 40.1
1000 - 1.823 9.508 110.616 1671.042 - 23.7 19.3 18.3 17.9
2000 0.339 1.308 8.007 103.741 1677.347 13.2 10.8 9.9 9.5 9.2

100 200 - - - 502.397 4295.910 - - - 72.3 68.7
1000 - 7.117 35.634 311.769 3678.380 - 31.3 25.6 23.3 22.5
2000 1.079 3.906 24.819 280.069 3714.565 15.4 12.1 10.8 10.4 10.3

− : Grid size is bigger than the upper limit.
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For the second analysis, we summarized the performance of the B&P algorithm.

The computation performances of the root node and the overall B&P algorithm are

listed separately. Table 2.6 compares the integrality gap, the number of columns

generated during the algorithms, and the computation time of the root nodes and

their ratio compared to the overall B&P algorithm. The reformulation of the problem

and the CG in the root node provided strong LP bound, which minimized the

branching while solving the problem. The LP bounds and the process of branching

are illustrated in Table 2.7. The columns in Tables 2.6 and 2.7 are defined as follows:

• Integrality Gap: the average of the ratio of the BFS over the lower bound—For

the root node, the LP solution of the root node was used for the lower bound.

We used different BFS to the EBP and the PCBP, because the solution space of

the EBP included the solution space of the PCBP. For the EBP, some problems

could not be solved within the time limits. The better feasible solutions found

during the four algorithms were used as the BFS for those unsolved problems.

In addition, for the PCBP, there was one unsolved problem, and the BFS of

the PCS replaced the PCBP’s.

Integrality Gap =
(BFS)

(Lower bound)

• # Columns: the average of the number of columns generated while solving the

root node and the overall B&P algorithm

• Root Time: the average computation times needed to solve the root node

• Time Ratio: the ratio of the computation times of the root node over the
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overall B&P algorithm

Time Ratio =
(Root Time)

(Time)
× 100%

• #IB: the number of problems that were solved for which the LP bound was

not changed by branching

• #B: the number of problems that were solved for which branching was executed

• Nodes: the average number of nodes in the branch-and-bound tree

As mentioned in Section 2.3.1, the continuous relaxation neutralized the coverage

constraints (2.4) and (2.20) in the ES and the PCS, respectively. In the extended

formulation, however, even the LP solutions satisfied the coverage constraints and

had stronger LP bounds. Accordingly, unlike most of the literature on the B&P

approach, it was not significant to compare the relaxation bound between standard

formulations and the root node LP bounds of B&P algorithms; instead, we compared

the Integrality Gap between two B&P algorithms, as shown in Table 2.6. Both EBP

and PCBP had strong root node LP bounds, considering that both algorithms had

an integrality gap of root node near 1 for almost every problem class. Notably, many

problems had an integrality gap of root node equal to 1, which meant that the value

of the root node LP bound was the same as for the BFS. Likewise, the number

of columns generated and the computation times were highly concentrated on root

nodes. Table 2.7 shows the change of the LP bound over branching for a detailed

analysis of the performances of the CG algorithm on the root node. The EBP and the

PCBP provided a small integrality gap as the nominal set covering problem and had

a minimal number of branches. Furthermore, after the root node CG was finished, a
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limited number of problems (32 of 150 problems in the EBP and 48 of 150 problems

in the PCBP) had branching. Even if the branching occurred, many problems did

not have any improvement of LP bounds (11 of 32 problems in the EBP and 32 of

48 problems in the PCBP) until the algorithm found its optimal solution. For dense

problem classes, as the computation times of PCBP increases, the number of the

generated columns followed. It is analogized that in the dense problems, the possible

combination of the demand points satisfying Constraint (2.21) increased quickly and

slacked the computation speed.

For the third analysis, we provided insights for the decision makers of disaster

management. In the realistic-scale dataset, the size of the xy-plane was not limited,

so the sparsity of the problem was more related to the |N | than Rd. In the real-world,

we recommend the authorities to use the PCBP in the sparse disaster situations,

sparsely distributed survivors or UAVs of smaller radius. For the dense situations, the

EBP or the DA with a small grid size is recommended. Table 2.8 lists the number of

demand points assigned to one UAV (#DM), which is directly related to the sparsity

of the problem. At the same time, it can be used to predict the scale of the network

traffic and to estimate capacity. In a realistic-scale dataset, even though the average

number of demand points covered by one UAV maintained a reasonable size, the

maximum #DM exceeded the realistic limitation of the traffic. However, considering

that the distribution of #DM was skewed to the left, the solution would not change

dramatically even if we were to consider an additional constraint of an upper bound

of #DM. We could further speculate that in a real disaster, survivors are distributed

sparsely enough for the network transmission capacity to be immaterial; in that

case, the solution of the USCP could be used without the capacity constraint. The
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sparsity of demand points also hinders the improvement effect of network coverage.

The increase of Rd did not bring the same amount of increase of #DM. Even though

Rd increased fivefold, from 200 meters to 1,000 meters, #DM increased only around

twofold. On the other hand, for increased |N |, #DM also grew, even though Rd did

not change. Thus, the number of UAVs required increased, but the growth rate was

less than 1. The results in Tables 2.3 and 2.8 can be used to plan the cost-effective

development objective of UAVs and wireless network router. Based on the specifics

of the developed system, the decision maker can scale the required number of UAVs

and make a response plan.
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Table 2.6: Comparison between branch-and-price algorithms

|N | Rd Integrality Gap # Columns Root Time(s) Time Ratio(%)

EBP PCBP EBP PCBP EBP PCBP EBP PCBP

Root B&P Root B&P Root B&P Root B&P

10 10 1.009 1.000 1.000 1.000 3.8 3.9 3.0 3.0 0.20 0.00 66.02 63.25
20 1.032 1.000 1.000 1.000 6.0 7.0 6.3 6.4 0.23 0.01 68.73 76.98
30 1.000 1.000 1.000 1.000 5.3 5.3 7.7 7.7 0.20 0.01 79.65 76.19

20 10 1.005 1.000 1.000 1.000 9.9 10.0 8.2 8.3 0.90 0.03 90.18 80.48
20 1.009 1.000 1.000 1.000 10.2 10.6 13.9 14.2 0.90 0.05 84.49 84.02
30 1.000 1.000 1.000 1.000 8.0 8.5 17.7 22.1 0.58 0.12 87.90 80.69

50 10 1.006 1.000 1.000 1.000 25.2 25.9 36.0 39.2 9.65 1.58 93.39 82.81
20 1.016 1.000 1.018 1.000 27.6 32.9 100.5 117.5 11.86 15.44 86.81 78.57
30 1.000 1.000 1.000 1.000 16.6 18.7 184.6 211.5 6.80 53.26 90.95 80.98

50 200 1.000 1.000 1.000 1.000 9.5 9.5 8.4 8.4 2.75 0.14 88.29 75.34
1000 1.006 1.000 1.003 1.000 19.2 19.8 24.9 27.2 6.14 0.82 92.05 79.89
2000 1.018 1.000 1.005 1.000 18.9 20.1 57.8 71.4 6.46 4.17 91.29 71.23

100 200 1.000 1.000 1.000 1.000 21.4 21.4 20.7 20.7 30.30 3.34 94.53 89.67
1000 1.010 1.000 1.000 1.000 38.9 41.6 86.5 99.8 80.33 51.48 92.91 82.83
2000 1.010 1.000 1.004 1.000 29.6 32.8 243.5 310.6 63.21 454.32 91.24 64.70
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Table 2.7: The change of the LP bound over the branching

|N | Rd EBP PCBP Nodes

#IB #B #IB #B EBP PCBP

10 10 0 1 0 0 1.1 1.0
20 1 3 1 1 1.6 1.1
30 0 0 0 0 1.0 1.0

20 10 0 1 1 1 1.1 1.1
20 0 1 1 1 1.2 1.2
30 1 1 2 2 1.2 1.6

50 10 1 3 5 5 1.4 2.2
20 0 3 3 6 2.5 4.1
30 1 1 4 4 1.2 2.9

50 200 0 0 0 0 1.0 1.0
1000 0 2 4 5 1.3 1.8
2000 2 5 6 7 1.6 3.1

100 200 0 0 0 0 1.0 1.0
1000 2 6 6 6 2.2 2.6
2000 3 5 9 10 2.1 4.3

Table 2.8: The number of demand points assigned to one UAV

Rd |N | EBP PCBP

Avg. Max. Avg. Max.

10 10 1.4 2.4 1.3 2.3
20 1.8 3.3 1.7 3.1
50 3.0 5.9 2.6 5.3

20 10 2.5 4.0 2.1 3.6
20 3.7 6.3 3.1 5.5
50 7.0 11.7 5.8 10.0

30 10 3.8 5.3 3.6 4.7
20 5.8 8.7 5.0 7.7
50 12.5 18.8 10.5 14.9

200 50 1.3 3.7 1.2 3.6
100 1.5 7.2 1.5 7.2

1000 50 2.9 7.5 2.5 6.8
100 4.5 13.9 4.0 11.5

2000 50 5.5 11.8 4.7 9.5
100 10.1 23.9 8.4 19.3
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2.5 Solutions and related problems of the USCP

In this section, the solution structure and the application of the USCP is presented.

The optimal solution of the USCP consists of the set of demand points assigned to

a UAV and its flight position. Because the UAVs have a predefined homogeneous

network coverage radius, the optimal flight position of each UAV becomes a circular

area, which has its size defined by the assigned demand points. In other words, the

circumcircle of the chosen set of demand points can be smaller than the coverage

radius, so there are multiple flight positions that are equivalently optimal. With a

given network coverage radius R, if the set of demand points has a circumcircle with

a circumradius Rc, then the optimal flight positions form a circle which has a radius

R−Rc. For the sake of convenience, we use the term “optimal circle” to denote the

circle of the optimal flight positions.

When the USCP is employed to the real application, a further decision would be

required to select a flight position among many which are all “optimal” in the USCP.

The authority can arbitrarily choose a flight position in the optimal circle, but also

can fly in a spotlight-mode, which circulate along the boundary of the optimal circle,

to consider the possible uncertainty of the location. The spotlight-mode flight along

the optimal circle can maintain the connectivity to the selected demand points while

covering the largest area. Therefore, it can increase the probability of detecting new

casualties and the responsiveness to the possible movement of the current demand

points.

In the UAV routing models mentioned in Section 2.1, the optimal circles of

the USCP can be modeled as the clusters for the generalized traveling salesperson

problem. A two-stage approach that identifies the candidate flight positions at the
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first stage and plan the flight trajectory at the second stage can be used. The USCP

can be used for the first stage. Under the given waypoints or the clusters, there is a

vast literature considering the sequences (macroscopic-level planning) or the actual

flight trajectory (microscopic-level planning) that can be used for the second stage.

Another related problem is the connected set covering problem (CSCP). As in-

troduced in Section 2.2, when constructing the ad-hoc network by multiple UAVs,

the UAVs should be close enough to communicate with each other and ultimately

connected to the authority. The sets chosen for the solution should be connected,

which forms a connected set covering problem. Existing literature on the ad-hoc

sensor network models the connected set covering problem [121, 117, 51, 111, 58].

Because the connected set covering problem is NP-hard even for a graph with only

one vertex with degree greater than two [99], existing research focuses on the ap-

proximation algorithm.

As the classical set covering problem, the existing literature of CSCP assumes

the predefined candidate location of the facility. Thus, as the USCP can provide a

more flexible and efficient solution than the classical set covering approach, the extra

decision on the candidate location can provide a better solution than the classical

CSCP. The CSCP is a special case of a group Steiner tree (GST) problem [42]. Garg

et al. [46] formulated the GST as a MILP model. Wu et al. [111], and Huang et al. [58]

referred the MILP model of Garg et al. [46] to approach minimum connected sensor

covering problem and introduced approximation algorithms. Based on the columns

generated during the USCP, the USCP can be developed into the connected set

covering approach. Let Ω be the set of every column generated during the USCP.

We assume that the flight position (cx̂k , cŷk) of each UAV k to be the circumcenter
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of the chosen set of demand points. For each pair of columns k and k′ in Ω, the

connectivity between two UAVs can be identified based on the distance between the

flight positions. Let an access point of the authority be a root vertex, k0. Also, each

UAV (column) corresponds to a vertex. An undirected graph G = (V,E) is defined,

where V = Ω ∪ {k0} is the set of vertices and the set of the edge E is defined based

on the binary connectivity between every two UAVs. To model the problem in GST,

group gi is defined for each demand point i. Group gi consists of every vertex that

covers the demand point i. As in the USCP, the decision variable zk identifies the

adoption of a vertex (or column, or UAV) k. A new continuous decision variable εikk′

denotes the flow of the commodity i from vertex k to vertex k′. The following model

represents the GST formulation of the problem:

min
∑
k∈V

zk (2.22)

s.t.
∑
k∈V

wikzk ≥ 1, ∀i ∈ N (2.23)

∑
(k,k′)∈E

εikk′ −
∑

(k,k′)∈E

εik′k = 0, ∀i ∈ N, ∀k ∈ V \ ({k0} ∪ gi)

(2.24)∑
(k0,k)∈E

εik0k =
∑
k∈gi

( ∑
(k,k′)∈E

εik′k −
∑

(k,k′)∈E

εik′k

)
, ∀i ∈ N (2.25)

εikk′ ≤ zk, ∀i ∈ N, ∀k, k′ ∈ V (2.26)

εikk′ ≤ zk′ , ∀i ∈ N, ∀k, k′ ∈ V (2.27)

zk ∈ B, ∀k ∈ V (2.28)
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εikk′ ∈ [0, 1] ∀i ∈ N, ∀k, k′ ∈ V (2.29)

In the model, the network flow assures the connection of the UAVs. As in the

USCP, every demand point should be covered. By Constraints (2.24) and (2.25), at

least one flow should stream from the root vertex to at least one vertex in every

group. The network flow and the adoption of a UAV is related by Constraints (2.26)

and (2.27).

The existing approaches cannot be used for the CSCP when the network struc-

ture is not given. However, in the USCP-based approach introduced above, the net-

work structure is defined while executing the CG for the USCP and can be used to

solve the CSCP. If the optimal solution for the USCP is found, but the GST problem

comes out to be infeasible, it implies that the current G is not a connected graph.

In this case, one can generate candidate UAVs (or vertices) between the individual

connected subgraphs by heuristics to ensure the graph to be connected.

2.6 Summary

This chapter introduced the problem of developing a flight plan for UAVs to provide

a wireless network in the shadowed area of a disaster environment. We defined the

USCP as a set covering problem with a fixed coverage radius constraint in Euclidean

distance and without predefined candidates of positions. Due to the quadratic con-

straints, a standard formulation of the USCP was not solvable even for the smallest

problems. A simple discrete approximation model is proposed, and the approxi-

mation ratio of the DA model with the grid size equal to the coverage radius is

analyzed. To use Dantzig-Wolfe decomposition over the quadratic coverage distance
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constraint, the generic framework of Vanderbeck and Savelsbergh [106] is used. The

finite generating set is designed using the projection of the feasible set on the dis-

crete decision variables. An extended formulation and the associated B&P algorithm,

which were developed for the stronger relaxation bound, showed faster computation

speed. Based on the Ryan-Foster branching strategy used for the B&P algorithm,

we implemented Jung’s theorem to approximate the quadratic coverage constraint

of the USCP into the linear pairwise-conflict constraint. The approximation decom-

posed the decisions of the USCP into two separate decisions—UAV position and

set partition—and made only the set partition decision relevant. The computational

results showed that the EBP and the PCBP were applicable for both small-sized

artificial and realistic-scale problems within a proper time limit. For sparse prob-

lems, the PCBP provided the near-optimal solution faster than the EBP, and for

dense problems, the DA could find a better solution faster than the PCBP. One can

achieve a more optimal solution by the consideration of the extra decision of location.

A similar approach can be used in various problems, and the solution approaches of

the USCP can be implemented while solving them.

65



Chapter 3

Unmanned aerial vehicle variable radius set
covering problem

3.1 Introduction

In Chapter 2, the location problem of UAVs were modeled as a set covering prob-

lem with a fixed-radius coverage constraint. The main advantage of the UAV is its

flexible, unrestricted positioning, which also complicates the decision of the oper-

ation planning. In the unmanned aerial vehicle set covering problem considering

fixed-radius coverage constraint (USCP), the UAVs were assumed to fly at a certain

altitude while providing the wireless network on the circular area with a fixed cov-

erage radius. However, in realistic applications, UAV positions at various altitudes

and their corresponding coverage distance can be diversified. Literature considers

the relation between the UAV altitude, the coverage radius, and the operation cost

[38, 122].

The concept of the coverage distance has been investigated by numerous re-

searchers, as introduced in Chapter 2. As mentioned in Berman et al. [14], the

radius of the coverage area can vary based on the capability and the height of the

facility. Also, it is natural that the coverage size of each facility follows a mono-

tonically increasing function of its cost, and vise versa. The proposed problem in

66



Berman et al. [14] consists of the characteristic of the UAV operation problem even

before the UAVs took the limelight. As told in the previous chapters, the continuous

facility location problem introduced by Drezner et al. [40] and Plasteria [85] tries to

locate one facility without candidate positions. Berman et al. [14] named the con-

tinuous, multi-facility location problem on the xy-plane as a “planar version” of the

set covering problem.

The planar version of the variable radius covering problem is closely related to the

set covering approach of the UAV operation problem. Not only for the naturalness

of the UAV altitude-coverage radius relation but also the altitude-cost relation are

similar to the variable radius covering model. When UAVs are being operated, the

thrust and performance of their propellers decreases in higher altitudes [73]. The

hovering and maneuvering energy consumption rate increases in higher altitudes

because of the lower air density [82]. Also, the maximum flight speed on the vertical

flight is significantly slower than on the horizontal flight and requires substantial

energy consumption, too. Thus, the cost of the flight to higher altitudes increases not

only because of the longer flight distance but also because of inherent difficulty. The

monotonic increase of the cost for larger coverage distances is a realistic assumption,

even in the case of UAV operation. The cost function of the sum of the fixed cost

per facility and the quadratically increasing cost related to the coverage distance is

also valid and used in this research.

The planar version of the covering problem is considered in this research. How-

ever, the term “planar” represents one aspect of the problem among many, so the

term “USCP” and “Euclidean formation” defined in Chapter 2 is used throughout

this chapter, instead. In the USCP, we modeled the UAV location problem with a
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covering-based approach. The coverage radius of the homogeneous UAV is given as

a parameter, and the UAV can locate on the xy-plane without any restriction. The

objective of the problem is to cover every demand point with a minimum number

of UAVs. In this research, we extended the USCP by allowing the decision on the

coverage radius of the UAV. The term “extended” is used because the problem con-

siders an extra decision from the USCP, and the solution algorithms designed for

the USCP cannot solve the problem in this research. The objective is minimizing

the total cost of the UAV operation, which is the sum of the fixed cost related to

the number of the UAVs and the operation cost related to the coverage radius of

each UAV. For the unity of logic, we relate the problem to the USCP and rename

it as UAV variable radius set covering problem (UVCP).

As the set covering approach of the facility location problem discretizes the deci-

sion and optimizes it over the given candidate locations, the ordinary UAV operation

problems, such as set covering and routing, limit the location decision on the dis-

crete levels of altitudes [38, 122]. The model proposed in this research decides the

coverage radius over the continuous domain, which signifies the continuous decision

of the UAV altitude. This approach can improve the solutions of the aforementioned

research and the possible applications introduced in Chapter 2, which will provide

more efficient operations in realistic applications.

Even though Berman et al. [14] introduced the variable radius set covering prob-

lem, they claimed that they could not provide a mathematical formulation explicitly

stated to be solved by mathematical programming solvers. In this research, we mod-

eled the UVCP in the mixed-integer quadratically constrained quadratic program

with the techniques proposed in Chapter 2 and the USCP. By the Dantzig-Wolfe
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decomposition, the UVCP is reformulated to the extended formulation. From each

UAV point of view, the demand points covered by a UAV are treated in a bundle,

which allows the branch-and-price algorithm to solve the exact problem efficiently.

In particular, we could use the “minimal subset” concept which Berman et al. [14]

proposed but could not use in their solution algorithm. To find every minimal subset

of the UVCP, they had to use the brute force procedure, checking the exponential

number of subsets. In this research, we could consider only requiring a minimal

subset by using the column generation algorithm.

However, we could not use the techniques of the USCP as they stood. In the

UVCP, the coverage radius is modeled as a continuous decision variable, so the con-

tinuous relaxation of the problem provides a non-convex feasible set, which makes

solving the problem with a commercial solver impossible. We proposed a solvable

equivalent subproblem that consisted of the linear constraints by the Heron’s for-

mula and the minimal covering circle. The equivalent subproblem required a larger

number of constraints and could be challenging to solve with a large-sized problem.

Thus, we proposed in this paper a heuristic that discretizes and fixes the coverage

radius and solves with the USCP. The proposed algorithms outperformed the ge-

netic algorithm (GA) of Berman et al. [14] in the computational experiments. The

remainder of this chapter is organized as follows: Section 3.2 defines the problem

and proposes the mathematical model. Section 3.3 presents the reformulation of

the UVCP and the corresponding branch-and-price algorithm. Section 3.4 proposes

the solvable equivalent subproblem and describes its equivalence. The fixed cover-

age radius-based heuristic is introduced in Section 3.5. The proposed algorithms are

compared with the computational experiments in Section 3.6. Finally, the chapter
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is summarized in Section 3.7.

3.2 Problem definition

This section presents a detailed description of the UVCP. As in the USCP, the UAVs

construct wireless networks to cover demand points. The set covering approach is

used, so the battery constraint and the flight to each location are not considered

because of the simplification. The problem focuses on covering every demand point

by minimizing the use of resources. As was assumed in the USCP, the problem,

too, is designed for response planning in disaster situations. Therefore, it needs to

be robust enough to respond to every possible demand. Even though the objective

is to minimize the total use of resources, this is not done for profit maximization

in emergency situations. As the USCP minimizes the cardinality of UAVs, efficient

operation is essential to securing additional responsiveness. By minimizing total

resource usage, authorities can ensure maximum responsiveness in rapidly changing

environments. The assumptions of the presented problem are defined as follows,

which has only one difference from the USCP:

(1) The information on the positions of demand points is already known.

(2) There is no restriction on a UAV’s hovering position in the xy-plane.

(3) A demand point is covered if it is in the coverage circle.

(4) There is no transmission capacity limitation on the wireless network.

(5) There is no overlap interference between UAVs or shadowing effects incurred

by buildings.
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(6) UAVs have different coverage distances.

Only the last assumption is different from the USCP. Every UAV can fly at

any altitude, which provides the various coverage distance of the wireless network.

The minimum and maximum limit of the coverage distance is not considered, yet

those constraints are easy to consider in the solution algorithm. The existing work

of Berman et al. [14] did not consider the limitation of the coverage radius because

it was somewhat challenging to implement in the GA. In order to compare the per-

formance of the solution algorithm, they are not considered in the UVCP. However,

those limitations do not complicate the solution algorithm’s structure and are rather

advantageous from the standpoint of computation speed.

As assumed in the USCP, the information of the demand points is given as

primary data and can be updated later with the operation of the UAVs. The UAVs’

resource consumption is defined as a summation of the fixed cost and the coverage

radius-related cost. It is natural to minimize the number of UAVs operated, as

introduced in the USCP. Furthermore, it is also important to minimize the flight

altitude of each UAV and the corresponding coverage radius in order to maintain

the flight capability of the UAVs.

Figure 3.1 (below) presents an overview of the UVCP. UAVs can be located freely

on the xy-plane, so they are not bounded in the predefined candidate positions. The

coverage radius of the wireless network can be decided without a restriction. Note

that the network areas in Figure 3.1 provide tight circles around the demand points

assigned to the UAVs. Compared to Figure 2.1, which assumes the fixed-radius

coverage, the UVCP tries to minimize the resource usage, so the networks form a

tight circle while covering every demand assigned to each UAV. This relates to the
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concept of a minimal subset, which is introduced later.

𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡

𝑈𝐴𝑉

𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

Figure 3.1: Overview of the UVCP

3.2.1 Mathematical model

Berman et al. [14] proposed a mathematical model of the UVCP and named it as the

planar variable radius covering problem. For the unity of the research, the notations

are modified as follows:

Set

N set of demand points.
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Parameters

ax̂i position of demand point i on x-coordinate. ∀i ∈ N

aŷi position of demand point i on y-coordinate. ∀i ∈ N

F fixed cost of operating one UAV.

Decision variables

yj =


1, if UAV j is operated.

0, otherwise.

∀j ∈ {1, ..., |N |}

cx̂j ∈ R, position of UAV j on x-coordinate. ∀j ∈ {1, ..., |N |}

cŷj ∈ R, position of UAV j on y-coordinate. ∀j ∈ {1, ..., |N |}

rj ∈ R, coverage radius of UAV j. ∀j ∈ {1, ..., |N |}

xij =


1, if demand point i is allocated to UAV j.

0, otherwise.

∀i ∈ N ,

∀j ∈ {1, ..., |N |}

Note that the decision variable yj was not used in the original problem of [14].

Instead, they claimed that the number of the operating facilities (in this research,

UAVs) should be a decision variable, p, and the index of the j should be an element

of the set, {1, ..., p}. The self-dependence of the index and the decision variable

precluded the usage of the mathematical programming solver. However, as stated

in Chapter 2 and the USCP, the number of UAVs operated in the UAV covering

problem does not exceed the number of demand points, |N |. We propose a binary

decision variable yj which indicates the operation of the UAV j, and use the set,

{1, ..., |N |}. Berman et al. [14] defined di
(
(cx̂j , c

ŷ
j )
)

as the Euclidean distance between

demand point i and UAV j, and the corresponding cost, φ(r), as a variable operation

cost of a UAV of the coverage radius r. They referred to Drezner [39] and Fernández
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et al. [45] to define a proper cost structure related to the coverage distance, and chose

the quadratic relation, φ(r) = r2. The original formulation proposed by Berman et

al. [14] is presented as follows:

[Original formulation of Berman et al. [14]]

min pF +

p∑
j=1

φ

(
max
i∈N

{
xijdi

(
(cx̂j , c

ŷ
j )
)})

, (3.1)

s.t.

p∑
j=1

xij ≥ 1, ∀i ∈ N (3.2)

xij ∈ B, ∀i ∈ N, j ∈ {1, ..., p} (3.3)

Berman et al. [14] claimed that the UVCP is not suitable for a mathematical

optimization approach because of the self-dependence of the index and the inexplicit

expression of the coverage radius, di
(
(cx̂j , c

ŷ
j )
)
. However, based on the approaches

proposed in Chapter 2, an explicit formulation is designed in the form of the mixed-

integer quadratically constrained quadratic programming.

[Explicit Reformulation of the UVCP]

min

|N |∑
j=1

yjF +

|N |∑
j=1

φ
(
rj
)
, (3.1′)

s.t. xij ≤ yj , ∀i ∈ N, ∀j ∈ {1, ..., |N |} (3.4)

|N |∑
j=1

xij ≥ 1, ∀i ∈ N (3.2′)

(ax̂i − cx̂j )2 + (aŷi − c
ŷ
j )2 ≤ r2

j + M̃(1− xij), ∀i ∈ N, ∀j ∈ {1, ..., |N |} (3.5)

xij ∈ B, ∀i ∈ N, ∀j ∈ {1, ..., |N |} (3.3′)
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yj ∈ B, ∀j ∈ {1, ..., |N |} (3.6)

cx̂j , c
ŷ
j , rj ∈ R ∀j ∈ {1, ..., |N |} (3.7)

The explicit reformulation of UVCP looks similar to the Euclidean standard (ES)

formulation of the USCP except for two different points. First, the objective function

is different. As modeled in Berman et al. [14], we assume the variable operation

cost, φ(r), to be r2. Thus, the problem becomes quadratic programming. Second,

the coverage distance is modeled as a parameter in the USCP but is a continuous

decision variable in the UVCP.

Even though the problem is modeled in an explicit mathematical formulation,

because of Constraint (3.5), the feasible set of the continuous relaxation of the ex-

plicit reformulation is not convex. Therefore, unlike the ES formulation, the explicit

reformulation cannot be solved by the commercial solvers, which utilize the linear

programming (LP) relaxation-based branch-and-cut algorithms for the optimization.

Furthermore, in the USCP, the ES formulation could not even solve the smallest

instances within an applicable computation time because of the weak continuous

relaxation bounds and the symmetries of the problem. Considering that the UVCP

has an extra decision on the coverage radius r, it would be extremely difficult to

solve the explicit reformulation in its current form. To solve the problem, first, we

decomposed the explicit reformulation of the UVCP to the extended formulation.

As in the USCP, we used the fact that it is easy to find the optimal position and

the size of the minimum covering circle if the set of demand points is given. By us-

ing similar generating sets as in the USCP, the UVCP is decomposed based on the

decision variable xij . In the explicit reformulation of the UVCP, it is only necessary

75



to show that Constraint (3.5) can be formulated linearly. In Section 3.4, the pricing

subproblem II consists of mixed-integer linear constraints and has a polyhedral fea-

sible set. Section 3.4.2 proves that two pricing subproblems are equivalent so that

the UVCP can be solved by the branch-and-price (B&P) algorithm.

3.3 Branch-and-price approach to the UVCP

We reformulate the problem into the set-partitioning extended formulation. Column-

wise decisions on demand points that are covered by a UAV are modeled by the

Dantzig-Wolfe decomposition. Because a set of demand points can define a unique

minimum covering circle, Berman et al. [14] defined this as a minimal subset, which

consists of xij and the corresponding rj and (cx̂j , c
ŷ
j ). Each minimal subset is fully

described by the decision of the set of the demand points, xij . Berman et al. [14]

showed that there is an optimal solution of the UVCP that consists of the minimal

subsets. While using the Dantzig-Wolfe decomposition, the decision on the set of the

demand points can describe a column to consist of an extended formulation. When

the set of demand points is chosen, a unique minimum covering circle is defined.

Because the coverage radius, rj , equals the radius of the minimum covering circle,

the cost of the column, gk, is defined as F +φ(rk). Let Ω be the set of every column

that defines a feasible set of demand points covered by one UAV. A binary decision

variable zk identifies the usage of column k, and an allocation of demand point i to

column k is described by a binary parameter wik. The extended formulation of the

UVCP is defined as follows:
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[Extended formulation]

min
∑
k∈Ω

gkzk, (3.8)

s.t.
∑
k∈Ω

wikzk ≥ 1 ∀i ∈ N (3.9)

zk ∈ B ∀k ∈ Ω (3.10)

The extended formulation of the UVCP consists of the same constraints as the

USCP and a slightly different objective function (3.8), which minimizes the total

resources required to operate UAVs to cover every demand point. Constraint (3.9)

forces the problem to cover every demand point at least once. Berman et al. [14]

showed that there exist, at most, |N |(|N |2 + 5) minimal subsets. Even though there

are 2n − 1 possible subsets, which means 2n − 1 feasible columns defining set Ω,

only a part of the subset is required for the extended formulation to describe the

original UVCP. However, Berman et al. [14] did not have a mathematical tool to

find the required minimal subsets and claimed that one should use the brute force

search. Instead of enumerating every possible column, which is exponential, the

column generation (CG) algorithm can provide new columns, which might improve

the solution from the current set of columns. The pricing subproblem only provides

solutions that are minimal subsets and will likely produce only a minimum number of

columns to describe the solution set of the UVCP fully. Is introduced in the previous

chapters, in the CG algorithm, the LP relaxation of the extended formulation with

the current columns is called the restricted master problem (RMP). Let πi be a dual

price of Constraint (3.9) in the RMP. By solving the pricing subproblem, one can find
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a set of demand points with a minimum reduced cost. If the objective value provides

a negative reduced cost, the new column is generated and included in the set Ω.

The pricing subproblem I has the same decision variables defined in the Euclidean

branch-and-price (EBP), except a coverage radius r.

[Pricing subproblem I]

min F + φ
(
r
)
−
∑
i∈N

πixi (3.11)

s.t. (ax̂i − cx̂)2 + (aŷi − c
ŷ)2 ≤ r2 + M̃(1− xi), ∀i ∈ N (3.12)

xi ∈ B, ∀i ∈ N (3.13)

r ∈ R, (3.14)

cx̂, cŷ ∈ R (3.15)

Because the dual variable πi has a nonnegative value, the pricing subproblem

I, which is a minimization problem, only provides a solution as circle-defining de-

mand points with every demand point included in the circle. Thus, the solution of

the pricing subproblem I is always a minimal subset. The subproblem I has an in-

tuitive structure. Particularly, it is known that in the case of the fixed radius–the

USCP–the subproblem of the EBP is solved efficiently by the commercial solver.

However, as mentioned in Section 3.2.1, the continuos relaxation of the feasible set

is nonconvex because of Constraint (3.12). Therefore, the optimization solver cannot

find the optimal solution of the pricing subproblem I. Instead, an equivalent pric-

ing subproblem can be defined based on the knowledge of Heron’s formula and the

minimum covering circle.
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3.4 Minimum covering circle-based approach

3.4.1 Formulation of the pricing subproblem II

The coverage constraint of the pricing subproblem I is modeled in a mixed-integer

quadratic formulation. Constraint (3.12) relates a circle and a demand point by the

distance between the center of the circle and the demand point and the radius of

the circle. However, a circle can also be defined by two or three points. A minimum

covering circle of two points is a circle whose diameter is the line connecting two

points. When covering three points, if three points form an obtuse triangle, two

points on the obtuse angle can define a minimum covering circle. If three points form

a right or an acute triangle, a circumcircle defined by three points is a minimum

covering circle. When a set of demand points is fixed, it is obvious that a minimum

covering circle of the set has the largest radius among the minimum covering circles

of its subsets. Thus, the constraint is valid for every two-element and three-element

subset. On the other hand, because there exists a two-element or three-element

subset that defines the minimum covering circle, by modeling the constraint for

every two-element and three-element subset, the coverage distance constraint can

be defined.

To model the minimum covering circle-based formulation, we define a parameter

dab := ||a−b||2 as a distance between two demand points. Also, the distance between

a demand point i and the UAV j, dij , can be defined as a decision variable instead

of as the distance function, di
(
(cx̂j , c

ŷ
j )
)
, used in Berman et al. [14]. However, if a

position of a UAV j, (cx̂j , c
ŷ
j ), is given, dij can be calculated as being in between

two demand points. For demand points a, b, and c, without loss of generality, let
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dab ≥ dbc and dab ≥ dca. Based on what we know of the minimum covering circle, a

radius of the covering circle, Rabc, is defined as:

Rabc :=


dab/2, if d2

bc + d2
ca ≤ d2

ab

dabdbcdca

4
√
Sabc(Sabc − dca)(Sabc − dbc)(Sabc − dab)

, otherwise,

where Sabc := (dab + dbc + dca)/2.

The pricing subproblem II is defined based on the same decision variables x and

r of pricing subproblem I, but without cx̂ and cŷ.

[Pricing subproblem II]

min (3.11)

s.t. r ≥ Ri1i2i3 + M̃ ′(xi1 + xi2 + xi3 − 3), ∀i1, i2, i3 ∈ N (3.16)

r ≥ di1i2/2 + M̃ ′(xi1 + xi2 − 2), ∀i1, i2 ∈ N (3.17)

(3.13), (3.14)

The pricing subproblem II has the same objective function as the pricing sub-

problem I. As mentioned above, the constraint relating to the minimum coverage

radius and the set of demand points can be defined by the constraint over every

two-element and three-element subset. The radius of the minimum covering circle,

Ri1i2i3 , is defined for every three-element subset of I. Constraint (3.17) ensures that

the minimum coverage radius should be the same or larger than the radius of the

minimum covering circle of any three demand points chosen in the solution of the

subproblem. Constraint (3.16) relates the minimum coverage radius to the radius of
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the minimum covering circle defined by two demand points.

In the subproblem II, the coverage distance is modeled by the intersection of the

multiple mixed-integer linear constraints instead of by the mixed-integer quadratic

constraint. Most importantly, the subproblem II has a polyhedral feasible set, and

the LP relaxation of the subproblem is convex. It implies that the UVCP has a

polyhedral feasible set as well and can be modeled in Minkowski representation.

Accordingly, the UVCP can be solved by the B&P algorithm, and at the same time,

the subproblem can be solved by the optimization solvers. One coverage constraint

of subproblem II corresponds to one minimal subset defined in Berman et al. [14]. As

claimed in Berman et al. [14], there exists an optimal solution of the UVCP that is a

union of the minimal subset, and each minimal subset can be defined from a solution

of the pricing subproblem II. Berman et al. [14] could not model the concept of the

minimal subset in a mathematical model and claimed that every instance of the

power set should be checked by the brute force approach. Instead of the exponential

enumeration, they proposed heuristic approaches, including GA.

However, the subproblem II requires a larger number of constraints to define the

same problem than does the subproblem I. The subproblem I requires |N | constraints

to define the coverage distance, whereas the subproblem II requires |N |(|N |2 + 5)/6

constraints. The same technique can be applied to the reformulation of the standard

problem, but there are two limitations. As analyzed in Chapter 2, the continuous

relaxation neutralizes the coverage distance constraint and makes meaningless value

of the continuous relaxation bound. The only difference is that in the ES in the

USCP, the objective is to minimize the number of UAVs, and the continuous relax-

ation bound is 1, whereas in the UVCP, the continuous relaxation bound equals the
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fixed cost, F .

Another limitation is the size of the problem. Because it requires |N |2(|N |2+5)/6

constraints to define coverage distance constraints, the size of the problem increases

quickly as the number of the demand points increases. For example, if |N | is equal

to 50 and 100, then 1,043,750 and 16,675,000 constraints are required, respectively.

It was observed that the problems of more than 50 nodes could not even be loaded

to the commercial solver. Even for problems with only ten nodes, the commercial

solvers could not solve the problem within one hour because of the weak lower

bounds and the symmetries of the branching tree.

3.4.2 Equivalence of the subproblem

The equivalence of two subproblems is analyzed in this section. Although the feasible

regions of the continuous relaxation of two subproblems are different, the integer

decision variable bounds the feasible region, making them equivalent.

Theorem 3.1. Pricing subproblems I and II are equivalent.

Because the two problems have the same objective function, it is only necessary

to show that the feasible set of both problems is the same. Let a feasible set of the

pricing subproblem I be SI and a feasible set of the pricing subproblem II be SII .

Proof. (⇒) We show that SI ⊆ SII . Let a feasible solution ψ = (cx̂, cŷ, r,x) ∈

SI . Using the proof of contradiction, let us assume that ∃ i1, i2, i3 ∈ J such that

r, xi1 , xi2 , xi3 /∈ SII . We are focused on the case of i1 6= i2 6= i3, because if there are

identical points, it is self-evident that xi1 , xi2 , xi3 ∈ SII . There are two cases related

to the distances between the demand points.
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(Case 1) d2
i1i2
≥ d2

i2i3
+ d2

i3i1
(Demand points are on the same straight line or

form an obtuse triangle). By the assumption, the following holds:

r + M̃ ′(2− xi1 − xi2) <
di1i2

2
.

Because xi1 , xi2 ∈ B and r ≥ 0, xi1 = xi2 = 1 and r ≤ di1i2
2 .

di1j ≤ r, di2j ≤ r (∵ ψ ∈ SI) =⇒ di1j + di2j ≤ 2r < di1i2 , which is false by the

triangle inequality.

(Case 2) d2
i1i2

< d2
i2i3

+ d2
i3i1

. Similar to Case 1, the following holds:

r + M̃ ′(3− xi1 − xi2 − xi3) < Ri1i2i3 =⇒ xi1 = xi2 = xi3 = 1, r < Ri1i2i3 .

However, for i1, i2 satisfying di1j ≤ r, di2j ≤ r, di3j > Ri1i2i3 holds, which proves

the false assumption.

(⇐) We show that SII ⊆ SI . Let a feasible solution ν = (r,x) ∈ SII . For set of

demand points that satisfies xi = 1 in a solution ν, there exists a unique minimum

covering circle, and the circle can be defined by at most three points in the set.

If the circle is defined by two points, i1 and i2, (cx̂, cŷ, r,x) satisfies Constraint

(3.12), where the position (cx̂, cŷ) is defined as:

cx̂ =
ax̂i1 + ax̂i2

2
, cŷ =

aŷi1 + aŷi2
2

.

If the circle is defined by three points, i1, i2, and i3, the solution is defined as:

cx̂ =
((ax̂i1)2 + (aŷi1)2)(aŷi2 − a

ŷ
i3

) + ((ax̂i2)2 + (aŷi2)2)(aŷi3 − a
ŷ
i1

) + ((ax̂i3)2 + (aŷi3)2)(aŷi1 − a
ŷ
i2

)

2[ax̂i1(aŷi2 − a
ŷ
i3

) + ax̂i2(aŷi3 − a
ŷ
i1

) + ax̂i3(aŷi1 − a
ŷ
i2

)]

cŷ =
((ax̂i1)2 + (aŷi1)2)(ax̂i3 − a

x̂
i2

) + ((ax̂i2)2 + (aŷi2)2)(ax̂i1 − a
x̂
i3

) + ((ax̂i3)2 + (aŷi3)2)(ax̂i2 − a
x̂
i1

)

2[ax̂i1(aŷi2 − a
ŷ
i3

) + ax̂i2(aŷi3 − a
ŷ
i1

) + ax̂i3(aŷi1 − a
ŷ
i2

)]
.

Both SI ⊆ SII and SII ⊆ SI are shown and proves the claim.
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One can solve the CG of the UVCP with the pricing subproblem II by Theorem 3.1.

3.5 Fixed-radius heuristic

The pricing subproblem II has an LP relaxation with a convex feasible set. Also,

the subproblem consists of linear constraints so that the commercial solver can han-

dle the problem in a more numerically stable procedure. Thus, the corresponding

B&P algorithm is an exact algorithm that can solve the problem in a short com-

putation time. However, as mentioned above, the pricing subproblem II required

|N |(|N |2 +5)/6 constraints to model the coverage distance constraint for N demand

points. The size of constraints can rapidly increase in the case of a large number of

demand points. On the other hand, the pricing subproblem I required one constraint

per one demand point, so the size of the subproblem does not drastically increase

uncontrollably. In a similar vein, the formulation of the subproblem II can be utilized

to solve the USCP if the fixed coverage radius is used instead of the variable coverage

radius. However, this formulation is developed to overcome the nonconvexity of the

UVCP, so it would be better to avoid the unnecessary risk of the larger number of

constraints.

In order to utilize the findings of the USCP that the subproblem of the EBP could

provide to the solution of the large-sized problem in a short computation time, we

developed a heuristic. The pricing subproblem I is not solvable by itself. The fixed-

radius heuristic (FRH) proposed in this research solved the subproblem I by fixing

the coverage radius, which had the same feasible set of the subproblem of the EBP.

In one iteration of the CG algorithm, the FRH investigated various radius r in a

discrete manner and choose the radius that provided the most negative reduced cost
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to generate a new column. To put it succinctly, the FRH solved the approximation

of the original pricing subproblem I by the decomposition over the various radius r.

The continuous relaxation of each decomposed problem has the convex feasible set,

and can be solved by the optimization efficiently. The mathematical formulation of

the decomposed problem of radius R is provided as follows:

min (3.11)

s.t. (2.17)− (2.19)

The solution of the decomposed problem includes the set of demand points that

is covered by one UAV. When the cost is realized to calculate the reduced cost and

generate the column, the radius of the minimum covering circle of the chosen demand

points is used instead of the originally fixed radius, which has the same or a smaller

value. Let a set N̄ be the demand points chosen in the solution of the decomposed

problem. Welzl’s algorithm [110] can be used to derive the radius of the minimum

covering circle. Also, a modified optimization problem of the pricing subproblem I,

which is related to the continuous single facility location problem, can be used:

min r (3.18)

s.t. (ax̂i − cx̂)2 + (aŷi − c
ŷ)2 ≤ r2, ∀i ∈ N̄ (3.19)

(3.14), (3.15)

Because the original problem of the FRH, pricing subproblem I, has the non-

convex feasible set, the FRH or the hybrid algorithm of the FRH and the Newton’s

method cannot find every optimal solution of the original problem. However, as
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mentioned above, the actual radius r is changed to be locally optimal after fixing

the demand points to be covered, so it is tentatively expected that the heuristic

can work as a sieve under the appropriate decomposition interval that can find the

most of the effective solutions. In one iteration of the CG, the FRH can stop when a

solution with the negative reduced cost is found or can check every possible radius

r and generate a column with the most negative reduced cost. The procedure of the

FRH is presented in Figure 3.2 (below).

Also, the FRH can be implemented in the hybrid algorithm to speed up the CG

algorithm for large-sized problems. In the initial stage of the CG, the FRH can be

used instead of the subproblem to provide decent columns rapidly, and when the

FRH cannot find a negative reduced cost, pricing subproblem II is used for the CG

to converge to the optimal. The performance of the FRH and the hybrid algorithm

are compared in Section 3.6.

3.6 Computational experiments

The computational experiments were conducted to compare the performances of

the proposed solution algorithms to the benchmark genetic algorithm proposed

in Berman et al. [14]. The dataset used in the computational experiment is in-

troduced in Section 3.6.1. The B&P algorithm and the FRH were developed in

FICO Xpress 8.5 and solved with Xpress-Optimizer 33.01.02. Because the coverage

distance-related cost function was modeled as a quadratic function, the pricing sub-

problem II was solved by the Xpress MIQP solver. The FRH was operated in Xpress

MIQCQP solver using the barrier method. The genetic algorithm was developed

and solved in Python 3.6. Experiments were performed with an AMD Ryzen TM 7
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Figure 3.2: The procedure of the fixed-radius heuristic
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2700X 8-Core CPU at 3.70GHz and 32GB of RAM running on a Windows 10 64-bit

operating system.

3.6.1 Datasets used in the experiments

In the experiment, the fixed cost of a UAV, F , is set to be 100 and the variable

operation cost function is set to be φ(r) = r2, following Berman et al. [14]. We

experimented with the algorithms for the randomly generated problems, following

Berman et al. [14]. Two types of problems were generated, whose uniformly dis-

tributed demand points were plotted on a 100× 100 square and a 200×100 rectangle,

respectively. Four sizes of demand points were tested: 10, 20, 50, and 100. In total,

eight problem classes were generated, and ten instances were generated for each

problem class. Even though Berman et al. [14] tested datasets with larger sizes of

demand points, we decided to limit the size of the problem because the best feasible

solutions found in Berman et al. [14] were not realistic, and we observed that even

in the problems we tested in this research, the GA did not converge to the optimal.

The problem of Berman et al. [14] is that the research compares the performances

of the heuristics, so does not have decent benchmark solutions. For example, Berman

et al. [14] reported that the GA could find the best-known solutions even for the

large-sized problem classes, including 5,000 and 10,000 demand points. However,

the proposed solutions have one UAV being operated, and every demand point is

covered by the UAV, which is unrealistic. Even in the smallest problems, we found

that the GA proposed by Berman et al. [14] could not find optimal solutions. Figures

3.3 and 3.4 (below) show the example solutions of the UVCP.

88



0 25 50 75 100
x

0

25

50

75

100

y

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

5.0

13.1

7.5

14.4

3.6

(a) B&P sol. of 1× 1, |N | = 20

0 25 50 75 100 125 150 175 200
x

0

25

50

75

100

y
1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24 25
26

27

28

29

30

31

32

3334

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

9.5

6.7

4.2

4.03.8

2.7

9.6 7.4

7.4

8.6

6.2

4.5

13.1

3.2
15.2

8.3

(b) B&P sol. of 2× 1, |N | = 50

Figure 3.3: Example of the solution for small-sized problem.
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Figure 3.4: Example of the solution for large-sized problem.
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3.6.2 Solution algorithms

In the computational experiments, the GA proposed in Berman et al. [14] is used

as a benchmark. To minimize the information held on each chromosome, the chro-

mosome only consists of the position of the UAV and does not contain information

of the allocation decision. The GA consists of three parts–local optimization, neigh-

borhood search, and mating and evaluation. The local optimization part deletes the

UAV that might not be used and relocates the UAVs to the local-optimal positions.

Based on the current positions of the UAVs, each demand point is allocated to the

closest UAV, and the UAVs without any demand point are removed. The remaining

UAVs are relocated by solving the continuous single facility location problem. The

procedure iterates until there are no more UAVs changing their locations. The local

optimization is incorporated when a new individual is generated, including within

the initial population, within the neighborhood search, and within the mating and

producing of offspring. The neighborhood search part also finds a possible removal

of a UAV that improves the objective function. By randomly removing one UAV,

the improvement of the objective function is tested. The mating for a new offspring

is done by merging two individuals and the repetition of the neighborhood search

to the local optimum.

The B&P algorithm, the FRH, and the hybrid algorithm using FRH in the B&P

algorithm (FRH-B&P) are compared in the experiment. The B&P and the FRH-

B&P are the exact algorithms, and the FRH is an approximation algorithm.

We used the hybrid approach for the B&P algorithm itself to speed up the CG

procedure. If the maximum coverage distance was limited, the feasible region of the

subproblem II decreased, and so did the computation time. Also, when the CG was
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solved to the optimal, the solution tended to have only a limited number of UAVs

covering too large an area. In the early stage, the coverage distance was limited

to the realistic size in the subproblem II. We denoted this as a limited-coverage

subproblem. The limited-coverage subproblem contained an additional constraint,

r ≤ Rlim. When the limited-coverage subproblem could not find a solution with a

negative reduced cost, the subproblem II without the limit of the coverage distance

was used in the CG. For convenience, we denote the original subproblem II as a

full-coverage subproblem in this section.

Because the limited-coverage subproblem provided the lower bound in the CG, if

the lower bound and the primal bound satisfied the termination condition, the CG of

the node could be terminated without solving the full-coverage subproblem. In the

experiment, there were many instances in which the CG with the limited-coverage

subproblem generated most of the columns required. In those cases, after the switch

to the full-coverage subproblem, the full-coverage problem could not find the im-

proving columns, or the CG was finished after a few iterations. This tendency and

the proper value of the Rlim might be changed when a different objective function

is employed. The CG algorithm of the hybrid approach is presented in Figure 3.5

(below). Note that the CG of the FRH-B&P shares a similar structure if the FRH

replaces the limited-coverage subproblem.

In the problems of |N | = 50 and 100, we generated the initial columns based

on the solution of the GA. An individual of the GA could be translated to several

columns by allocating each demand point to the nearest UAV. After 200 generations

or 200 seconds of the GA, 20 best individuals were generated as the initial columns

and were included in the FRH and the FRH-B&P for the fast convergence.
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Furthermore, the restricted master heuristic (RMH) was used for the large-sized

problems that could not find the optimal solution within the time limitation. The

RMH is one of the most widely used heuristics related to the B&P algorithm. Based

on the current variables (columns), one could solve the problem with the extended

formulation using the MILP solvers. This algorithm is also called the price-and-

branch, especially when it is executed after the termination of the root node CG,

because the columns are generated first, and the branching takes place later. The

UVCP does not consider the capacity constraint and assumes homogeneous UAVs.

Thus, the RMH solved a small-sized, basic set partition problem and did not require

a computation time longer than 0.01 seconds, even for the largest problems we

experimented with. For the comparison of the RMH with other primal heuristics,

one can refer to Section 4.4.6.

3.6.3 Algorithmic performances

We compared the performances of the B&P, the FRH, and the FRH-B&P. The

GA proposed by Berman et al. [14] is used for the benchmark. The limitation of

maximum computation time was set to 3,600 seconds.

First, the algorithmic performances were compared based on the computation

speed and the optimality. Second, a further analysis of the performances of the CG

and the B&P was conducted. Third, the performance of the additional techniques,

including the initial columns and the limited-coverage subproblem, were analyzed.

For the first analysis, the computation speed of the B&P algorithm, the FRH,

and the hybrid FRH-B&P algorithm were compared against each other and also

compared against the benchmark GA. For the instances solved within the time
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limitation, the computation time was recorded, and for the unfinished instances,

the final gap between the primal bound and the best lower bound was compared, in

order to measure the convergence of the algorithm. The optimality of results could be

resolved in two ways. First, for the problems solved to the optimal, the limitation of

the approximation algorithm, FRH, could be shown. For the unfinished problems, the

feasible solutions and the primal bounds found by each algorithm could be compared.

For each algorithm, the number of instances that were solved to the optimal were

counted. The algorithms that could be found to be the best feasible solution for the

unsolved instances were identified, and the optimality gap was compared. Also, the

number of UAVs operated in the best feasible solution was compared.

In Tables 3.1 – 3.3 (below), the results are summarized by the average of 10

instances of each problem class. The columns in these tables are defined as follows:

• Dim: the dimension of the xy-plane. 1× 1 and 2× 1 represent 100× 100 and

200× 100 planes, respectively.

• |N |: the number of demand points.

• #solved: the number of the solved instances, not necessarily to the optimal.

• Time: the average of the computation time. For the problems not solved within

the time limitation, the time limit was used to calculate the average, and was

marked with an asterisk (*).

• GapL: the average of the gap between the primal bound (the best feasible

solution: BFS) and the best lower bound (BB). GapL was used to evaluate

the algorithm’s convergence speed for the instances not solved within the time
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limit.

GapL =
(BFS)− (BB)

(BFS)
× 100%

• #Opt: the number of instances for which the algorithm provided the optimal

solution.

• #Best: the number of instances for which the algorithm provided the BFS,

including the optimal solution.

• Gap: the average of the gap between the objective value of the BFS among

every algorithm and the current algorithm.

Gap =
(obj. value of an algorithm)− (obj. value of the BFS)

(obj. value of the BFS)
× 100%

• #UAV : the average of the number of UAVs operated in the BFS.

As mentioned in Chapter 2, the rapidly changing environment of UAV operation

demands fast decisions. Table 3.1 shows that the proposed algorithms outperform

the benchmark GA from the standpoint of computation speed. For the smallest

problems of |N | =10 and 20, the B&P algorithm without any heuristic and GA

initial columns could solve the problem with the fastest computation time among

the algorithms while providing the optimal solution. The B&P solved 33 out of 40

of the smallest problems within one second, which enabled the algorithm to be used

for rapidly changing situations. Every solution algorithms could solve most of the

small-sized instances with less than 50 demand points. Even though the possible

number of the minimal subset had the dimension of |N |3, and Berman et al. [14]

anticipated that the exponential number of the power set had to be checked, in
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the optimal solution, only a limited number of the columns were used. Because of

the strong LP bound of the extended formulation of the B&P algorithm, the CG

required only a minimum number of iterations to find the optimal solution. One

of the essential characteristics of the UVCP is that the CG provided the integer

solutions. That means that the branching is not required while solving the problem,

a point that will be introduced in the second analysis, with Table 3.4 (below).

Because the FRH and the FRH-B&P algorithms are proposed for large-sized

problems, we focused on the problem class of |N | = 100 when comparing the per-

formances of those algorithms. Even though the exact algorithms, the B&P and the

FRH-B&P, could not solve the large-sized problems within the time limits, the FRH

could solve the eight instances within the time limits. In Table 3.2, it can be observed

that the FRH could find the best feasible solution from ten out of 20 instances and

that the FRH-B&P algorithm could find the BFS from 18 instances. Furthermore,

the gap between the BFS and the FRH was less than one percent, which shows the

effectiveness of the initial columns and the FRH as heuristics to provide a feasible

solution. Still, to ensure or measure the optimality, the following B&P algorithm was

required. Moreover, there are instances in which the FRH-B&P converged almost to

the optimal. For example, in four instances of the 2 × 1 dimension, the GapL were

lower than 0.001 percent. The Gap between the optimal solution and the solution of

the FRH decreased as the size of the problem increased. This meant that the lim-

itation of the approximation algorithm could be diluted when solving a large-sized

problem.

Even though the GA could find the optimal solutions for some small-sized prob-

lems, it required a longer computation time for the convergence. The GA might
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have found the optimal solution earlier than the finished time reported in Table 3.1.

However, because the GA did not have a lower bound to measure the true conver-

gence of the solution algorithm, it required additional computation to distinguish

the termination. Thus, it was observed that in the small-sized problems, the B&P

algorithm without any initial columns and heuristics could be the best choice that

could solve the optimal solution in a short computation time. For the large-sized

problems of |N | = 100, the FRH-B&P algorithm with the GA initial columns could

be the best choice. If the computation time provided a hard limitation while solv-

ing the large-sized problem, the FRH with the GA initial columns could provide

time-efficient solutions.

In Chapter 2, it was observed that the B&P can solve more sparse USCP in

the shorter computation time. The problems with the 2× 1 dimension have a more

sparse distribution of the demand points than the 1 × 1 dimension problems. The

similar structure of the UVCP allows the faster convergence of the B&P in the 2×1

dimension, which is observed in Table 3.1. Table 3.3 shows the number of UAVs

operated in the solution of each algorithm. There was no distinct tendency in how the

number of UAVs was related to the optimality gap. However, when solving the large-

sized problem with the B&P algorithm, if the CG was not converged, then there were

cases in which the generated columns had small coverage distances, which caused a

large number of UAVs to be operated compared to other algorithms. We also could

see the result that under this cost structure, the number of UAVs provided a larger

impact than a larger coverage area. A more detailed analysis of the number of UAVs

in relation to the operating objective, along with more realistic cost information,

could be helpful when implementing the UAV system in real applications.
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Table 3.1: Results related to the computation speed

Dim |N | #solved T ime(s) GapL(%)

B&P FRH FRH-B&P GA B&P FRH FRH-B&P GA B&P FRH FRH-B&P

1× 1 10 10 10 10 10 0.12 0.55 0.68 70.04 0.0 0.0 0.0
20 10 10 10 10 1.14 7.02 8.38 517.44 0.0 0.0 0.0
50 10 10 9 9 754.69 308.31 1,105.51* 2,679.13* 0.0 0.0 < 0.05

100 0 8 0 0 3,600* 2,337.18* 3,600* 3,600* 213.5 0.1 114.1

2× 1 10 10 10 10 10 0.08 0.43 0.52 56.21 0.0 0.0 0.0
20 10 10 10 10 0.63 2.16 2.85 367.43 0.0 0.0 0.0
50 10 10 10 8 84.43 162.73 229.85 1,933.28 0.0 0.0 0.0

100 0 8 0 0 3,600* 1,623.80 3,600* 3,600* 79.5 0.0 7.4

*: There are instances not solved within the time limit.

Table 3.2: Results related to the optimality (objective value)

Dim |N | #Opt/#Best Objective value Gap(%)

B&P FRH FRH-B&P GA B&P FRH FRH-B&P GA B&P FRH FRH-B&P GA

1× 1 10 10/10 5/5 10/10 10/10 823.2 862.7 823.2 823.2 0.0 5.4 0.0 0.0
20 10/10 3/3 10/10 9/9 1,375.1 1,486.4 1,375.1 1,375.8 0.0 8.4 0.0 0.1
50 10/10 4/4 10/10 2/2 2,312.1 2,321.8 2,312.1 2,332.4 0.0 0.4 0.0 0.9

100 0/0 0/7 0/9 0/2 3,645.2 3,059.9 3,035.4 3,092.0 19.3 0.1 < 0.05 7.4

2× 1 10 10/10 9/9 10/10 10/10 911.2 916.0 911.2 911.2 0.0 0.6 0.0 0.0
20 10/10 5/5 10/10 10/10 1,668.7 1,696.2 1,668.7 1,668.7 0.0 1.7 0.0 0.0
50 10/10 10/10 10/10 7/7 3,084.8 3,084.8 3,084.8 3,095.5 0.0 0.0 0.0 0.4

100 0/0 0/3 0/9 0/2 4,590.5 4,419.8 4,064.4 4,436.1 4.5 0.7 < 0.05 1.1
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Table 3.3: Results related to the optimality (# of UAVs)

Dim |N | #UAV

B&P FRH FRH-B&P GA

1× 1 10 7.0 7.0 7.0 7.0
20 9.5 8.6 9.5 9.5
50 11.8 12.2 11.8 12.9

100 15.4 12.7 12.8 12.5

2× 1 10 8.3 8.2 8.3 8.3
20 13.5 13.3 13.5 13.7
50 20.4 20.4 20.4 20.2

100 23.8 22.6 22.9 23.7

For the second analysis, the number of iterations and the number of generated

columns were compared through the B&P and the heuristic-related algorithms. The

branching and the nodes in the branching tree were also analyzed. In the B&P

algorithms, the basic initial columns were generated, where one UAV covered one

demand point. Thus, the cost of the basic initial column only consisted of the fixed

cost of a UAV, 100. The FRH-B&P algorithm started with the FRP. After the FRP

was finished, the full B&P algorithm was started, based on the columns generated

in the FRP. The number of iterations and the columns of the FRP-B&P were the

summation of the one executed in the FRP and the following B&P. The columns in

Table 3.4 are defined as follows:

• #Nodes: the average number of the nodes generated in the branching trees.

For the problems not solved within the time limitation, the current value was

used to calculate the average, and was marked with an asterisk (*).

• #Iter: the average number of the iterations executed in the CG and the B&P
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algorithm.

• #Columns: the average number of the columns generated in the CG and the

B&P algorithm.

In the experiment, it was observed that for the exact algorithms of the B&P

and the FRH-B&P, the root node CG provided the optimal integer solution. Thus,

without any corresponding branching, the optimization algorithm was terminated.

In Table 3.4, only the FRH had the column of the average number of nodes generated

in the branching trees. Furthermore, even the FRH had the small value of #Nodes.

Compared to the results in the USCP, this identified one of the most important

characteristics of the UVCP.

The difference of the nodes between the UVCP and the USCP did not originate

from the structure of the objective function, which shows that the branching still

happened in the FRH. Also, unlike in the EBP of the USCP, the columns provided

by the FRH were still “tight.” Therefore, it is difficult to say that the columns that

are not tight caused the difference.

The only possibility left is that the subproblem of the UVCP solved the CG

to the optimal without any restriction of the coverage distance. As mentioned in

Berman et al. [14], there exists an optimal solution of the UVCP that is a union of

the minimal subsets. Because each minimal subset corresponds to a column in the

extended formulation, there exists an optimal solution of the UVCP that is a union

of the columns. Our conjecture is that in the UVCP, both the fractional solution

and the negative reduced cost are related, and if the restricted master problem has

every column used in the optimal solution of the UVCP, then the subproblem does

not have a new column with a negative reduced cost. Also, every minimal subset is
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feasible in the subproblem, so the root node CG will be able to find every minimal

subset required in the optimal solution of the UVCP. This characteristic of the

UVCP highlights the advantages of the speed-up techniques of the CG.

As mentioned above, the FRH-B&P solved the original B&P algorithm after

finishing the FRH. Therefore, in the FRH-B&P, the iterations already executed in

the FRH were added when calculating its number of iterations. In the problem class

of |N | = 50, the number of generated columns in the FRH-B&P was larger than

the number generated in the B&P algorithm, even though the FRP-B&P required

fewer numbers of iterations. This was originated by the GA initial columns, which

were generated before the FRH. The FRH, admittedly, can provide efficient columns

rapidly; those columns are not the columns with the most negative reduced cost,

which are solved in the original pricing subproblem. Thus, the number of columns

generated in the FRH and the FRH-B&P tended to be larger than in the B&P.

As mentioned above, it was easier to solve the sparse problems, so the problems

with the 2× 1 dimension required fewer iterations than the problems with the 1× 1

dimension, and required fewer columns. Note that the B&P algorithm required only

a minimum number of columns while solving the problems to the optimal. Compared

to the total number of the minimal subset, which had the dimension of |N |3, the

number of the iterations and the columns stayed less than 1,000, even for the largest

problems. Thus, when the RMH was used for the largest problems that were not

solved within the time limit, the computation time of the RMH stayed less than 0.01

seconds for every problem.

For the third analysis, additional techniques to speed up the computation were

analyzed. As mentioned in Section 3.6.2, the FRH and the FRH-B&P started with
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Table 3.4: Results related to the CG & branching

Dim |N | #Nodes #Iter #Columns

FRH B&P FRH FRH-B&P B&P FRH FRH-B&P

1× 1 10 1.0 5.2 4.5 9.9 13.3 13.9 17.3
20 1.0 15.5 17.2 32.1 33.5 37.1 50.0
50 1.0 131.2 77.1 125.1* 179.2 154.9 201.4*

100 1.1* 192.2* 572.7* 631.8* 292.2* 733.6* 765.8*

2× 1 10 1.0 3.7 2.9 6.8 11.7 12.0 13.9
20 1.0 9.1 8.9 18.0 27.1 28.4 35.5
50 1.0 50.4 27.8 50.7 98.4 104.0 124.9

100 2.3 160.0* 204.8 256.6* 260.0* 380.3 432.1*

*: There are instances not solved within the time limit.

the initial columns generated by the GA for the problems of |N | = 50 and 100.

Although the GA required a long computation time to find good individuals, the

embedded heuristic inside of the GA could help find the local optimal subset of

demand points. A solution of the GA was decoded into the mathematical model and

divided into multiple columns to be included in the solution algorithms. In the anal-

ysis, the B&P with the GA initial columns was also tested to see the improvement

of the lower bound.

Also, the effect of the limitation of the coverage was analyzed. In the hybrid

algorithm of the limited and full-coverage subproblems, the time spent for each

subproblem, along with the number of iterations, was compared. The columns in

Tables 3.5 and 3.6 (below) are defined as follows:

• B&P w. clm.: the B&P algorithm starting with initial columns generated by

the GA.

• Timelim: the average of the computation time spent on the limited-coverage
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subproblem. For the problem class in which the limited-coverage subproblem

was not finished within the time limitation, the time limit was used to calculate

the average, and was marked with an asterisk (*).

• #Iterlim: the average of the number of iterations executed in the limited-

coverage subproblem.

By generating multiple initial columns with the GA, the B&P could improve

both primal and lower bounds when solving the large-sized problems. The effective

initial column decreased the number of iterations required for the column generation.

However, for the small-sized problems, the advantages did not show up because the

B&P algorithm without initial columns did not require a large number of iterations

by itself. In Table 3.6, the difference between the number of iterations was not

significant in the problem class of |N | = 10 and 20. The effective GA initial columns

contained the columns covering a larger distance than the limit set in the limited-

coverage subproblem. In the B&P algorithm using a hybrid approach without initial

columns, when the size of the problem exceeded a certain level, it became harder to

solve the last few iterations of the full-coverage subproblem. This originated from

two reasons. First, the full-coverage subproblem took a longer computation time

than the limited-coverage subproblem. Second, it became more challenging to solve

the subproblem when the CG algorithm converged. Thus, in the problem class of

|N | = 50, the ratio between timelim and time stayed very low. Especially in the

instances with the dimension of 2 × 1, it took an extra 30 seconds to execute one

iteration of the full-coverage subproblem. However, the B&P with GA initial columns

started with columns of a large coverage distance. Thus, the ratio of the computation

time of the two subproblems stayed very high, meaning that there was less effort
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required for handling the full-coverage subproblems.

In the problem class of |N | = 100, both B&P and B&P with GA initial columns

could not solve the problem to the optimal. Therefore, the performances were com-

pared based on the lower bound and the GapL. The advantages of the FRH have

already been mentioned in the previous analysis. However, some of the advantages

originated from the usage of the GA initial columns. The improvement of the lower

bounds by each technique was observed, and the FRH-B&P, which used both tech-

niques, performed the best.

The advantage of the hybrid approach of the limited-coverage and full-coverage

subproblems was shown in the comparison of the number of iterations. In most

of the iterations in the CG, only columns with the limited coverage radius were

produced. Because the full-coverage subproblem took a longer computation time

while providing the same solution, it was more useful to focus on the smaller feasible

region.

Table 3.5: Results related to the lower bounds

Dim |N | Lower bounds GapL(%)

B&P B&P w. clm. FRH-B&P B&P w. clm.

1× 1 10 823.2 823.2 823.2 0.0
20 1,375.1 1,375.1 1,375.1 0.0
50 2,312.1 2,304.0 2,312.1 0.4

100 -4,142.9 -623.4 -407.2 120.5

2× 1 10 911.2 911.2 911.2 0.0
20 1,668.7 1,668.7 1,668.7 0.0
50 3,084.8 3,084.8 3,084.8 0.0

100 912.8 3,760.5 4,064.4 14.3
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Table 3.6: Comparison of the hybrid algorithm and initial column

Dim |N | B&P B&P w. clm. B&P B&P w. clm.

Timelim Time Ratio T imelim Time Ratio #Iterlim #Iter #Iterlim #Iter

1× 1 10 0.09 0.12 75.1 31.98 32.02 99.9 4.2 5.2 1.9 3.0
20 0.93 1.14 81.1 127.11 127.35 99.8 14.5 15.5 6.7 7.8
50 160.54 754.69 34.7 275.72 924.41* 54.3* 122.5 131.2 68.1 73.1*

100 3,600* 3,600* 100* 3,600* 3,600* 100* 192.2* 192.2* 183.2* 183.2*

2× 1 10 0.04 0.08 51.1 20.98 21.01 99.8 2.7 3.7 1.2 2.2
20 0.41 0.63 63.5 63.42 63.65 99.5 8.1 9.1 2.7 3.7
50 54.79 84.43 66.1 139.55 170.58 82.3 49.2 50.4 24.4 25.5

100 3,600* 3,600* 100* 3,600* 3,600* 100* 160.0* 160.0* 123.8* 123.8*

*: There are instances that the limited-coverage subproblem is not finished within the time limit.
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3.7 Summary

Based on the results of the USCP, the problem of developing a flight plan of a UAV

while taking into account the variable coverage area was proposed in this chapter.

The problem was modeled from existing problem that focused on the planar version

of the variable radius covering problem, which is defined by Berman et al. [14].

The UVCP was modeled as a set covering problem without a limitation of the

predefined candidate position and with an extra decision of the variable coverage

distance. The mathematical model was defined in an explicit formulation. Due to

the nonconvex feasible set of the continuous relaxation, the problem was not solv-

able by the optimization software. An extended formulation and a corresponding

B&P algorithm were proposed to utilize the concept of the minimal subset. Based

on the minimum covering circle, we reformulated the subproblem into the solvable

mixed-integer linear quadratic programming model and proved the equivalence of

two formulations. Based on the equivalence, it was also shown that the UVCP can

be solved by Dantzig-Wolfe decomposition and the B&P algorithm. The fixed-radius

heuristic solved multiple fixed-radius problems of the UVCP, which had the same

feasible set of the USCP. A hybrid approach using FRH and the original B&P was

developed to accelerate the computation speed of the large-sized instances. The

computational results showed that the proposed B&P algorithms outperformed the

benchmark GA proposed by Berman et al. [14] whenever they could find the optimal

solution with the shorter computation time for the small-sized problems. The pro-

posed B&P algorithms had better primal bounds for the large-sized problems and

could measure the convergence of the optimization by the gap between the primal

and the lower bounds. One characteristic observed in the computational experiment
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was that the root node column generation of the B&P algorithm provided an integer

solution, so that the branching was not required in the UVCP. That characteristic

emphasized the need for the fast convergence of the CG, which could be accelerated

by the effective initial columns, heuristics, and hybrid approaches proposed in this

chapter.
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Chapter 4

Facility location-allocation problem for unmanned
aerial vehicle emergency medical service

4.1 Introduction

The medical system plays an essential role in modern society by protecting human

life and health. Among the various components that constitute the medical system,

the emergency medical service (EMS) system is important in connecting communi-

ties directly to the healthcare system. As a point of contact between patients needing

urgent care and the medical system, the EMS provides basic diagnosis and treatment

services to patients in the field or on the road while transporting them to the hos-

pital. The EMS consists of transport, trained professionals, and medical equipment.

The development of and investment in the EMS system have focused on increasing

the number of resources and implementing advanced equipment. Expanding from

the transport-only EMS, which only transported patients to the hospital, the EMS

system has augmented its services with first aid equipment, basic medications, de-

fibrillators, and emergency oxygen tanks in basic life support (BLS) ambulances. It

also has added intravenous treatments, electrocardiograms, airway intubations, and

capnography in advanced life support (ALS) ambulances. In recent years, air medical

services operated by physicians, nurses, and paramedics with ALS ambulance have
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been used in remote areas with sparse populations or in complex metropolises with

heavy traffic. However, there is a limit to expanding the number of vehicles and the

human resources invested in EMS. Thus, modern society’s healthcare system tries

to spread primary medical devices widely in public areas. One example of this is

the automated external defibrillator (AED) placed in public areas. AEDs regulate

the heartbeats of individuals experiencing sudden cardiac arrest and play a central

role in the “chains of survival.” Because rapid intervention with AEDs can secure

the survival rate of patients [70], AEDs can be used to extend the “golden hour”

of ambulance arrival. Thus, AEDs have been widely installed in modern cities. For

example, in Korea, there is a law to keep AEDs in every building and transportation

facility with a large number of people.

In the company with the development of UAV technology, several attempts have

been made to utilize UAVs in public security and healthcare services [120, 94, 109].

In the same manner of the commercial UAV-operated logistics [68, 74], UAVs can be

operated as multipurpose emergency medical resources providing rapid and flexible

responses. It is difficult to maintain a responsive EMS system in remote areas, such as

hamlets and isolated dwellings, and in city centers with heavy traffic [29]. However,

if UAVs can augment the EMS system, they can be used to access demand points

through the air, thereby avoiding traffics. Multiple projects are trying to implement

UAVs to search for and identify patients, provide information [94], and transport

emergency medicine, blood, and AEDs. One of the most rapidly developing areas is

a UAV EMS (UEMS) known as an “ambulance drone.” A UAV with a built-in AED

can reach sudden cardiac arrest patients faster than an ambulance. As introduced

above, making defibrillators publicly available boosts survival rates. For detailed
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information on the necessity of UEMS and the current status of the implementation,

one can refer to Wankmüller et al. [109].

To learn how the EMS system can operate more efficiently, researchers have been

related the EMS location to the facility location models. Daskin [33] subdivided fa-

cility location models into four categories–analytic, continuous, network, and discrete

models–based on the problem’s space. As emphasized in Daskin [33], the discrete

models are dominant for healthcare facility locations because they focus on the dis-

crete decisions of opening, operation, and assignments of demand points for the

facilities. There are two approaches to the discrete facility location models for the

healthcare facility planning, which are introduced in Section 1.2. In the covering-

based approach, under the given candidate locations of facilities and demand points,

the feasibility of a coverage between a facility and a demand point can be considered

as binary. In the covering problem, the actual distance is binarized, and the demand

point is considered to be “covered” if it is in the critical coverage distance from a

facility. Thus, the distance between the facility and the demand point is considered

as a constraint of the problem.

In the median-based approach, the distance between the facility and the demand

point is considered as a cost in the objective function, instead of a constraint. In

other words, there is no limitation on the coverage distance of a facility. Any demand

point can be assigned to a facility as a decision. One of the famous models of this

concept is the location-allocation problem, which decides the facility’s opening and

the assignment of each demand point to that facility. The distance-weighted cost is

accumulated to the objective function, in the company with the facility’s opening

cost. The main difference between the two approaches is based on the way the
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distance between a facility and a demand point is considered. In the covering-based

approach, the distance is binarized with the coverage distance limitation of a facility.

Conversely, in the median-based approach, the demand point is allocated without

any restriction, as long as the cost is valued as high enough.

However, when operating multiple UAVs in the UEMS system, the existing ap-

proaches cannot apply the characteristics of UAVs. One of the major characteristics

is the physical limitation of a UAV’s flight distance. Due to its payload limitation,

UAVs can only cover a bounded area around the facility [109, 68, 74, 67, 57]. Another

characteristic is that multiple UAVs are operated in one facility within the UEMS,

while only one or two ambulances are operated in one facility in the ordinary EMS

system. When considering the bounded coverage distance in the existing literature,

the problem is modeled with a covering-based approach. In that case, resource ca-

pacity and availability are hardly considered, so it is hard to model the effect of

the number of UAVs assigned to one facility. If a location-allocation model is em-

ployed, the resource availability affected by the distribution of the demand points is

considered in the cost parameter, instead of a constraint.

To locate the UEMS facility and assign multiple UAVs efficiently to facilities,

the coverage distance limitation has to be considered in detail, so that the num-

ber of UAVs determines the resource availability. From the classical approaches of

maximum expected covering location model [32] and maximum availability location

problem [88], the busy-fraction of one unit of the resource was used to calculate

the total resource availability by measuring the chance that at least one resource is

available. With the predefined coverage area and the busy-fraction of each resource,

one could calculate the expected amount of the covered demand and, on the con-
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trary, the number of the resource required to fulfill the α-reliability. We approached

the busy-fraction concept from another angle. When the number of the resource

increases, the coverage area can be also increased without the loss of the reliability,

regardless of the increased busy-fraction. In the literature of operating UAV system,

Shakhatreh et al. [96] showed that if the UAV requires a setup such as recharge be-

tween flights, the coverage distance of the system increases along with the number

of UAVs.

The decision of the coverage area is modeled as the variable coverage distance

in this research, and the number of UAVs assigned to a UEMS facility define the

coverage distance as well as the capacity of the facility, which is introduced for the

first time in this research. The location and operation problem of the UEMS system

is defined and named as a UEMS location-allocation problem (ULAP). The ULAP

includes the characteristics of both covering-based and median-based approaches.

The variable coverage distance constraint is modeled as a quadratic function based

on the proximity of resource availability and the size of the covered area, and then

reformulated into the equivalent linear formulation. Also, the allocation decision of

the uncertain demand is considered with the capacity of the UEMS facility, as in

the median-based approaches. A cost-minimization problem, while fulfilling every

demand of the UEMS system, is modeled with a robust optimization approach.

In the robust optimization approach, the demand is modeled with the cardinality-

constrained uncertainty set, and the nonlinear capacity constraints are linearly re-

formulated. However, the reformulation model contains integer and continuous de-

cision variables and has highly fractional solutions in the LP relaxation of the prob-

lem. Because of the weak LP relaxation bound, the commercial optimization solvers
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have difficulty solving realistically-scaled problems. If the original problem is decom-

posed into smaller problems, taking into account individual facilities, each decom-

posed problem is related to the robust and integer knapsack problems. To utilize

the knowledge of the knapsack problem, an extended formulation (EF) based on

the Dantzig-Wolfe decomposition is proposed and solved by the branch-and-price

(B&P) algorithm. The EF provides a better LP relaxation and decreases symme-

tries of the branching tree. With the B&P algorithm, the subproblem was solved

by two approaches–mixed-integer linear programming (MILP) reformulation and

decomposed dynamic programming (DP) approaches–each of which has its own ad-

vantages. Furthermore, a restricted master heuristic based on the B&P algorithm is

proposed to provide a time-efficient feasible solution to large-sized problems.

The rest of this chapter is structured as follows: Section 4.2 briefly introduces

literature related to the healthcare facility location problem. Section 4.3 proposes

the problem definition, mathematical formulation, and linear reformulation of the

mathematical model. Section 4.4 presents detailed information on the B&P algo-

rithm of the ULAP. The extended formulation, branching strategies, structure of

the subproblem, and the solution approaches of the subproblem are introduced. In

addition, the restricted master heuristic for the primal solution is presented. The

proposed algorithms are compared with the computational experiments in Section

4.5. Finally, Section 4.6 concludes the chapter.

4.2 Related literature

Previous literature related to the ULAP is introduced in this section. As mentioned

above, there are covering-based and median-based approaches in the healthcare fa-
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cility location problem. The coverage distance used in the covering-based approach

was quantified by Daskin [32] based on the term busy-fraction, which measures the

availability of the resource. ReVelle and Hogan [88] measured the site-specific busy

fraction of a particular site. To overcome the limitation of the digitized all-or-nothing

coverage distance, a concept of double coverage [47] was proposed, which forced the

system to cover every demand point within a large radius and, at the same time,

to cover a certain proportion of the demand point within a small radius. Backup

coverage [55] maximizes the number of demand points covered by more than two

facilities while covering every demand point at least once.

One limitation of the covering-based approach is the disregard of the quantity of

the demand and the facility’s capacity, which requires the allocation decision of the

demand points to the facilities as in the location-allocation approach. In the recent

works of the location-allocation approach, the demand uncertainties are investigated

thoroughly with the stochastic and robust models considering the probabilities of the

demand satisfaction [118]. The intractabilities of the stochastic and robust models

were tackled by limiting the set of feasible facilities for each demand point or fixing

policies for allocations [12]. We refer readers to the recent research of Bertsimas

and Ng [16], who reviewed the probabilistic models of ambulance deployment and

modeled ambulance deployment with recourse actions. In the location-allocation

approach, the distance between the facility and the demand point is considered in

the objective function or only filters the impossible pairs of the facility-demand point,

as in Wankmüller et al. [109]. Although the existing location-allocation approaches

consider probabilistic constraints of the demand satisfaction, resource availability is

not yet related to the decision of the size of the covered area as constraints.
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Two directions consider allocation decisions in the company with the covering-

based approach. In the gradual cover model [15, 41, 60, 16], the demand of each

demand point is “partially” satisfied by a function that decays according to the dis-

tance from a facility. In the gradual cover model, the partial satisfaction of demand

[15] or the quality of service [41] are modeled in the objective function. Even though

the allocation is considered as decisions in the gradual cover model, the coverage

distance of a facility is not modeled as constraints and cannot be treated as deci-

sions. Another direction is the variable cover model [14]. The coverage distance of

a facility is treated as a decision variable, and the cost of a facility is decided by

a monotonically increasing function of a coverage distance. However, the variable

cover model is still bounded in the covering-based approach because the facility’s

capacity and the size of the demands are not considered. Thus, the demand uncer-

tainties are hardly considered, and it is relatively simple to provide efficient feasible

solutions with heuristics and metaheuristics.

To the best of the authors’ knowledge, there is one existing study related to

the capacity and the coverage distance [3]. However, Akl et al. [3] determined the

capacity of a wireless network and used this to allocate clients to facilities, so the

coverage distance and the capacity were assumed to be related inversely. Thus, the

solution approaches proposed in [3] cannot be used in the ULAP. For literature

focusing on healthcare facility location problems, we refer readers to the related

review papers [13, 10, 1]. Table 4.1 compares this research to the existing literature.
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Table 4.1: Comparison of this research and existing literature

Author (year) Type
Coverage
distance

constraint
Demand

Gendreau et al. (1997) [47] Set cover double coverage binary
Hogan and ReVelle (1986) [55] Set cover backup coverage binary
ReVelle and Hogan (1989) [88] Set cover single coverage binary
Choi and Chaudhry (1993) [28] Median single coverage binary

Calik et al. (2015) [23] Median unconstrained binary
Eiselt and Marianov (2009) [41] Set cover, Median gradual coverage partial

Jang and Lee (2015) [60] Median gradual coverage partial
Beraldi and Bruni (2009) [12] Median unconstrained uncertain
Zhang and Jiang (2014) [118] Median unconstrained uncertain

Zhang and Li (2015) [119] Median unconstrained uncertain
Bertsimas and Ng (2019) [16] Median unconstrained uncertain
Daskin and Maas (2015) [34] Median unconstrained binary

Wankmüller et al. (2020) [109] Median single coverage deterministic
Berman et al. (2009) [14] Set cover, Median variable coverage deterministic

Akl et al. (2015) [3] Median variable coverage deterministic

This dissertation (Chapter 4) Set cover variable coverage uncertain

4.3 Location-allocation model for UEMS facility

This section provides a detailed definition of and assumptions about the UEMS

location-allocation problem. To relate the known information of demand and its

uncertainty to resource availability, the UEMS is modeled as a location-allocation

problem with uncertain demands. Also, the allocation of a demand point to a facility

is constrained with a variable coverage distance of the facility, which is bounded with

the number of UAVs assigned to a facility. The number of UAVs assigned to a facility

determines the capacity and the coverage of the facility with a positive relation.

The proposed ULAP provides a strategic operation plan of a UEMS system, which

consists of the decision of opening the UEMS facilities, the number of UAVs assigned

to each UEMS facility, and the allocation of demand points to the facilities.
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4.3.1 Problem definition

The ultimate goal of the UEMS system is to respond to medical emergencies while

incurring minimum casualties. Thus, the ULAP tackles the demand uncertainty

with a robust approach. The demand uncertainty is modeled on the well-known

cardinality-constrained uncertainty set, which is proposed by Bertsimas and Sim

[18]. In the cardinality-constrained uncertainty set, the information of the demand

is given with a nominal value and symmetric distribution that is bounded as an

interval. The approach focuses on the robust decision, which protects the feasibility

of the solution against the targeted number of perturbations.

In the ULAP, the number of UAVs assigned to a facility defines the capability

of the facility in two ways: (1) the total capacity and (2) the coverage distance, and

restricts the allocation of the demands as in Akl et al. [3]. Like ordinary capacitated

facility location problems, the capacity limits the accumulated demands. Simultane-

ously, the capacity of a facility has to consider the individual demand point because

the capacity limits the maximum distance between the facility and the allocated

demand points.

While modeling the resource availability based on the variable coverage distance,

we followed the basic concept of the variable coverage distance proposed by Berman

et al. [14] and Akl et al. [3]. The method of measuring the resource availability based

on the busy-fraction and the number of the resource has already been used before

in the maximum availability location problem [88]. In this research, the variable

coverage distance is modeled as a maximum coverage distance assuring a certain level

of resource availability. Given the assumption that the demand is evenly distributed

over the plane, the amount of covered demand increases along with the expansion of
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the covered area. To maintain the same resource availability, the required capacity

of the facility must increase quadratically when increasing the coverage distance.

These are comprised in the mathematical models in Section 4.3.2.

The assumptions of the presented problem are defined as follows:

(1) The locations of the demand point and candidate facility are already known.

(2) The facility’s opening cost and the purchase and operation cost per UAV of

the UEMS facility are known.

(3) The coverage distance of a facility is defined based on the number of the UAVs

assigned to the facility.

(4) The capacity of a facility is defined based on the number of UAVs assigned to

the facility.

(5) Every demand has to be satisfied.

(6) Each demand point has to be allocated to a certain facility. In other words, a

partial allocation of a demand to multiple facilities is prohibited.

(7) There is an upper limit to the number of UAVs assigned to a facility.

(8) A demand is known with a nominal value and a value of the maximum per-

turbation. The uncertain demand obeys symmetric distribution, where the

support is given as an interval.

Figure 4.1 presents an overview of the ULAP. The objective of the ULAP is to

minimize the total cost to fulfill every demand while also considering uncertainties.

The capacity of a UEMS facility is decided by the assignment of the UAVs, which
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requires the opening of the facility. The demand uncertainty is protected in the

capacity constraint with a limited conservatism. That is, the ULAP considers the

capacity constraint while limiting the number of the demand points with maximum

perturbations. The uncertainty of the cardinality of the demand points is considered

for each UEMS facility. Thus, the authority can control the conservatism of the

individual facility.

demand point

UEMS facility (operated)

UEMS facility (not operated)

coverage of a UEMS facility

allocation of a demand point to a facility

Figure 4.1: Overview of the ULAP.

4.3.2 Mathematical formulation

The following notations are used to formulate a mathematical model of the ULAP.

Sets

I set of candidate UEMS facilities.

J set of demand points.
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Parameters

fi fixed cost of opening UEMS facility i.

pi assignment cost per unit UAV at UEMS facility i.

ni maximum number of UAVs operated at UEMS facility i.

r0i minimum insured coverage distance of UEMS facility i.

µi variable coverage distance ratio per UAV of UEMS facility i.

sij distance between UEMS facility i and demand point j.

d̃j uncertain demand of demand point j.

Decision variables

yi =


1, if UEMS facility i is opened.

0, otherwise.

∀i ∈ I

xij =


1, if demand point j is allocated to UEMS facility i.

0, otherwise.

∀i ∈ I,

∀j ∈ J

ui ∈ Z+, number of UAVs assigned at UEMS facility i. ∀i ∈ I

The information of the candidate UEMS facilities is given as parameters. It in-

cludes the amortized cost related to the facility and the UAV. Also, the upper limit

of the UAVs to be assigned to each facility is known. In our model, the assignment

of UAVs provides a minimum insured coverage distance around a facility, and the

implementation of multiple UAVs increases the coverage distance with a given vari-

able coverage distance ratio. The ULAP models the demand uncertainty based on

the cardinality constrained uncertainty set. The demand, d̃j , of a demand point, j, is

modeled to take value in the interval [d0
j − d̂j , d0

j + d̂j ] with symmetric distributions,

where d0
j is a nominal value and d̂j is a maximum perturbation. Γi ∈ [0, ni] is defined
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for each facility, i, that controls the level of conservatism. There are three types of

decision variables: two binary decision variables of the ULAP and one integer vari-

able deciding the capacity of a facility. The standard formulation (SF) is a compact

formulation with a nonlinear constraint.

[Standard formulation]

min
∑
i∈I

fiyi +
∑
i∈I

piui (4.1)

s.t. niyi ≥ ui, ∀i ∈ I (4.2)

yi ≥ xij , ∀i ∈ I, ∀j ∈ J (4.3)

ui ≥
∑
j∈J

d̃jxij , ∀i ∈ I (4.4)

r0i +
√
µiui ≥ sijxij , ∀i ∈ I, ∀j ∈ J (4.5)∑

i∈I
xij ≥ 1, ∀j ∈ J (4.6)

xij ∈ B, ∀i ∈ I, ∀j ∈ J (4.7)

yi ∈ B, ∀i ∈ I (4.8)

ui ∈ Z+, ∀i ∈ I. (4.9)

Constraint (4.2) relates the assignment decision of UAVs to the opening of the

UEMS facility and Constraint (4.3) links the location (opening) and allocation deci-

sions. Constraint (4.6) ensure every demand to be covered. Constraint (4.4) bounds

the allocation of the demand to the capacity of the facility. The value of the demand

is calculated as the number of UAVs required. The uncertainty of the demand is not

described in the controllable format yet. In the cardinality constrained uncertainty
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set, we optimize the objective function against every scenario in which the uncertain

demand is realized, as long as the number of demand points with extreme pertur-

bation is lower than the target protection level Γi. According to Bertsimas and Sim

[18], Constraint (4.4) can be modeled for each facility, i, as:

ui ≥
∑
j∈J

d̃jxij

=
∑
j∈J

d0
jxij + max

N⊆J,|N |=Γi

∑
j∈N

d̂jxij (4.4′)

Note that Constraint (4.4′) is still nonlinear. Constraint (4.5) is a quadratic

constraint that defines the variable coverage distance around a facility. The coverage

distance is defined as a summation of a minimum insured coverage distance and the

variable distance related to the number of UAVs and the variable coverage ratio.

Although we modeled the variable coverage as a quadratic constraint because of its

simplicity, other monotonic non-decreasing (e.g., linear or piecewise-linear) functions

can be utilized instead of the quadratic function. One can refer to the literature

related to resource availability and the busy-fraction [71, 87, 102, 60].
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4.3.3 Linearization of the quadratic variable coverage distance func-

tion

Let a parameter CVij denote the coefficient of coverage distance between facility i

and demand point j:

CVij :=


0, if r0 ≥ sij .

(sij − r0i)
2

µi
, otherwise.

Considering Constraints (4.7) and (4.9), an equivalent linear reformulation of Con-

straint (4.5) is proposed:

Proposition 1. The following inequality ui ≥ CVijxij is equivalent to Constraint

(4.5) for the ULAP.

Proof. We only have to consider facility i and demand point j which satisfies sij ≥

r0i.

(⇒) Let µiui ≥ (sij − r0i)
2xij for facility i and demand point j. (i) xij = 1,

µiui ≥ (sij−r0i)
2 =⇒ µiui ≥ (sijxij−r0i)

2. (ii) xij = 0, µiui ≥ 0 =⇒ r0i +
√
µiui ≥

0.

(⇐) Let µiui ≥ (sijxij − r0i)
2. (sijxij − r0i)

2 ≥ xij(s
2
ijxij + r2

0i − 2sijxijr0i)

(∵ xij ≤ 1). In both cases of xij ∈ B, µiui ≥ (sij − r0i)
2xij holds.

Based on Proposition 1, Constraint (4.5′) can be substituted for Constraint (4.5):

ui ≥ CVijxij , ∀i ∈ I, ∀j ∈ J. (4.5′)
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4.3.4 Linear reformulation of standard formulation

The standard formulation with nonlinear constraint can be reformulated into an

equivalent linear formulation using the dual of the inner optimization problem [18].

The reformulation is provided as follows:

[Reformulated standard formulation]

min (4.1)

s.t. (4.2), (4.3), (4.5′), (4.6), (4.7)− (4.9)

ui ≥
∑
j∈J

d0
jxij + αiΓi +

∑
j∈J

βij , ∀i ∈ I (4.10)

αi + βij ≥ d̂jxij , ∀i ∈ I, ∀j ∈ J (4.11)

αi ≥ 0, ∀i ∈ I (4.12)

βij ≥ 0, ∀i ∈ I, ∀j ∈ J. (4.13)

The decision variable βij is an auxiliary variable used for the linearization of

the inner optimization problem of Constraint (4.4′). αi is the dual variable of the

linearized inner optimization problem. Constraint (4.10) defines the capacity con-

straint of a facility, which uses a protection function to linearize Constraint (4.4′).

Constraint (4.11) is the dual of the linearized inner optimization problem. For de-

tailed information on the reformulation procedure, one can refer to Bertsimas and

Sim [18]. Note that the reformulated standard formulation (RSF) consists of linear

constraints with binary, integer, and continuous decision variables. The problems in

the RSF can be solved with commercial optimization solvers (e.g., Cplex, Xpress, and

Gurobi). However, the commercial solvers that utilize LP relaxation-based branch-

and-cut algorithms have difficulty solving the large-sized problems in the RSF within
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a short computation time, even though the solvers can handle relatively large-sized

nominal problems within reasonable computation times. This is because the com-

bination of the integer and continuous decision variable generally causes the highly

fractional solution of the LP relaxation and have a weak LP relaxation bound [7].

4.4 Solution algorithms

4.4.1 An extended formulation of the ULAP

The solution of the ULAP consists of individual decisions about each facility, which

constructs a set-partitioning structure. Based on the Dantzig-Wolfe decomposition,

one can reformulate the decisions of the SF with column-wise decisions. Each column

in the extended formulation defines a set of demand points covered by a facility and

the minimum number of UAVs required for the allocation. In other words, based

on each facility, several feasible allocation of the set of demand points are given in

advance, along with the required number of UAVs. Ωi is a set of feasible columns

for a facility, i. A column is defined as a combination of the subset of the demand

points that can be allocated to a facility and the number of UAVs required to

cover the demand points. The parameters and the decision variables of the extended

formulation are presented as follows:

Parameters

cik cost associated to column k of facility i.

wk
ij indicate whether demand point j is covered by facility i in column k.

uki number of UAVs assigned to facility i in column k.

126



Decision variables

zik =


1, if column k is used by facility i.

0, otherwise.

∀i ∈ I,

∀k ∈ Ωi

The cost of each column is defined as cik := fi + piu
k
i . The extended formulation

(EF) model of UEMS is represented in the following integer program:

[Extended formulation]

min
∑
i∈I

∑
k∈Ωi

cikzik (4.14)

s.t.
∑
i∈I

∑
k∈Ωi

wk
ijzik ≥ 1 ∀j ∈ J (4.15)

∑
k∈Ωi

zik ≥ 1 ∀i ∈ I (4.16)

zik ∈ B ∀i ∈ I, ∀k ∈ Ωi (4.17)

The extended formulation only remains the set-partitioning structure, while the

capacity-related and coverage-distance-related constraints are considered implicitly

in the column. Let us call the LP relaxation of the extended formulation the master

problem. The LP dual of the master problem can be viewed as the Lagrangian dual.

Thus, the master problem can provide the Lagrangian dual, which is better than

the LP bound of the standard formulation. By Minkowski’s theorem, every solution

of the compact formulation can be represented in the extended formulation. If Ωi

contains every feasible column for every facility i, then the solution set of the master

problem defines the convex hull of the ULAP. However, this requires an exponential

number of columns. To avoid maintaining a very large number of variables, the
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column generation (CG) technique can be implemented to solve the Lagrangian

dual. The CG iterates between the restricted master linear problem (RMLP) and the

pricing subproblem while generating new variables that might improve the current

solution. Let πj and σi be dual prices associated with Constraints (4.15) and (4.16).

The pricing subproblem can be defined for each facility i:

[Pricing subproblem]

min fi + piu−
∑
j∈J

πjxj + σi (4.18)

s.t. u ≥
∑
j∈J

d0
jxj + max

N⊆J,|N |=Γi

∑
j∈N

d̂jxj , (4.19)

u ≥ CVijxj , ∀j ∈ J (4.20)

u ≤ n0 (4.21)

xj ∈ B, ∀j ∈ J (4.22)

u ∈ Z+. (4.23)

The pricing subproblem of ULAP can be defined as a robust integer knapsack

problem. Pochet and Wolsey [86] and Ceria et al. [25] defined the integer knapsack

constraint as a knapsack constraint, which is including integer decision variables

in the capacity constraint. The integer decision variable acts as a supplementary

capacity that can be purchased additionally from the original capacity. Constraint

(4.19) is nonlinear and can be reformulated as in the RSF. If Constraint (4.19) is

reformulated with the robust counterpart, the pricing subproblem gets a charac-

teristic of a robust mixed-integer linear knapsack problem because of the integer

decision variable ui and the continuous variables αi and βij . Constraint (4.20) hunts
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down the demand points that cannot be covered by the given coverage distance,

and zeroes out the decision variable, xj , of the demand points. On the other hand,

when the number of UAVs assigned to a facility is fixed, it becomes a robust 0-1

knapsack problem. Therefore, the pricing subproblem can be solved by a decom-

posed approach that solves multiple 0-1 robust knapsack problems. The number of

the decomposed 0-1 robust knapsack problems equals to ni, the maximum number

of UAVs to be operated at the UEMS facility i.

4.4.2 Branching strategy

The column generation iterates between the restricted master problem and the pric-

ing subproblem. The solution of the master problem can be translated into the

solution space of the original (standard formulation) variable. However, because the

master problem is the LP relaxation of the extended formulation, the translated

solution is not necessarily an integer when the column generation process is solved

to the optimal. The branch-and-price algorithm applies the CG to solve each node

in the branch-and-bound procedure, and can execute branching when the solution

of the CG is fractional.

The branching in the B&P algorithm can be executed with various strategies [8].

First, the branching can be executed over the variables of the extended problem.

However, it is generally difficult to formulate the branching decision explicitly in the

variables of the pricing problem, and can complicate the solution algorithm. Also,

binary fixing of one among many columns provides an unbalanced branch-and-bound

tree, which weakens the effect of the branching.

In the second strategy, branching over the original variables of the standard
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formulation can be used. In the ULAP, for a facility i, if the decision variable xij is

decided for every demand point j, then the minimum value of ui can be calculated

subsequently:

ui = max

{⌈∑
j∈J

xij d̃j

⌉
,
⌈
[(xijsij − r0

i )+]2/µ
⌉}
.

Thus, the branching can be defined based on the decision variable xij . When the

CG provides a fractional solution of the original variable xij , the branching cre-

ates two children nodes separated by the allocation between a demand point and a

facility. The second strategy shows a more balanced branch-and-bound tree, so it

is commonly used for various applications (e.g., generalized assignment problems).

One strength of the branching on original variables is that the branching decision

does not complicate the pricing subproblem. In the robust knapsack problem, fixing

the allocation of a demand point can be applied by adjusting the remaining capac-

ity of the facility. Thus, the branching only changes the parameters of the pricing

subproblem while maintaining the structure of the problem. However, in the ULAP,

binary fixing of one decision variable xij still provides an unbalanced branching and

has a small impact. In the computational experiments in Section 4.5, we observed

the inefficiency of the branching on original variables.

The third strategy is the Ryan-Foster [89] branching rule. When the master

problem has a set-partitioning-like characteristic over a pure binary subproblem, the

branching decision can be made based on the coexistence of two elements [107]. We

applied the Ryan-Foster branching rule, which showed the best performance based on

the model of the balanced branching tree. However, if the problem does not originally

include conflict constraints, unlike edge coloring and bin packing with conflict [90],
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the implementation of the Ryan-Foster branching rule may change the structure of

the pricing subproblem. Thus, in order to apply the Ryan-Foster branching rule to

the ULAP, we redefined the pricing subproblem, especially in order to implement

the special-purpose solver for the subproblem. In the Ryan-Foster branching rule,

the fractional solution of the restricted master problem denotes the (fractional)

employment of a feasible column. Based on the fractional solution of the CG, the

degree of the coexistence of a pair of demand points, vj1,j2 , can be measured. If a

column, k ∈ Ωi, includes both demand points j1 and j2, then the optimal solution of

the column, z∗ik, can be added to measure the degree of the coexistence of the pair

of demand points j1 and j2. One can calculate it for every pair of demand points

in the same way: vj1,j2 :=
∑

k∈Ωi,wk
i,j1

=wk
i,j2

=1 z
∗
ik. When the degree of coexistence is

nearest to 0.5, then the pair of demand points is chosen for the branching.

4.4.3 Robust disjunctively constrained integer knapsack problem

As mentioned in Section 4.4, the pricing subproblem of the ULAP is related to the

robust integer knapsack problem. Under the determined number of UAVs assigned

to a facility, the coverage distance is fixed and can be used to define the feasible set

of demand points based on Constraint (4.20). The subproblem with the remaining

feasible demand points forms a robust 0-1 knapsack problem.

The Ryan-Foster branching provides two children, one forcing and the other

forbidding the coexistence of two demand points. The former is called same-child,

and is easy to be considered in the special-purpose solver by introducing an aux-

iliary demand point merging two demand points. However, the latter differ-child

destroys the special structure of the knapsack problem. The conflict, or disjunctive

131



constraint, in the knapsack problem is notorious for its simple shape and difficulty.

The disjunctively constrained knapsack problem (DCKP) was defined by Yamada

et al. [113]. However, the DCKP drew more attention because of its equivalence [90]

to the pricing subproblem of the bin packing problem with conflict (BPPC). The

DCKP was further investigated by Elhedhli et al. [43] and Sadykov and Vanderbeck

[90] while solving the BPPC.

In Section 4.4.5, the generic branching scheme [105] was used to implement the

Ryan-Foster branching in the ULAP and consider the following arbitrary conflict.

Based on the conflict relation between demand points defined by the branching, we

defined the feasible set and solved the pricing subproblem individually.

As a matter of convenience, we call the subproblem of the ULAP a robust dis-

junctively constrained integer knapsack problem (RDCIKP). In this chapter, two

solution approaches are proposed to solve the RDCIKP. In Section 4.4.4, we find

linear reformulation of the RDCIKP and solve with the MILP solver. In Section

4.4.5, the RDCIKP is decomposed into multiple 0-1 knapsack problems and solved

with the dynamic programming algorithm. In the computational experiment, we

used a hybrid algorithm using both approaches alternately.

4.4.4 MILP reformulation approach

By using the reformulation of Bertsimas and Sim [18], we derived the linear refor-

mulation of the RDCIKP for a facility i:

[Linear reformulation of RDCIKP]

min (4.18)

s.t. (4.20)− (4.23)
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u ≥
∑
j∈J

d0
jxj + αΓi +

∑
j∈J

βj , (4.24)

α+ βj ≥ d̂jxj , ∀j ∈ J (4.25)

α ≥ 0, (4.26)

βj ≥ 0, ∀j ∈ J. (4.27)

When branching happens in a node of the branching tree, if the demand points

j1 and j2 are chosen, then an additional constraint, xj1 = xj2 , is added to every

subproblem of the same-child node, regardless of the facility. On the other hand,

a more complicated constraint, xj1 + xj2 ≤ 1, is added to every subproblem of

the differ-child node. As in the reformulated standard formulation, the nonlinear

capacity constraint is linearized using the dual variable of the inner optimization

problem. Thus, the model can be solved with the MILP solver. The formulation

consists of the binary, integer, and continuous decision variables, which give rise to

the weak LP bound. In the early stages of the CG process, linear reformulation of the

RDCIKP can be solved within a short computation time with a commercial solver.

However, as the CG progresses and the dual bound converges to the optimal dual

solution of the master problem, it gets difficult and takes time to solve the pricing

subproblem. Thus, a decomposed DP approach is designed to use a special-purpose

solver to solve the RDCIKP, as presented in the next section.

4.4.5 Decomposed DP approach

The 0-1 knapsack problem is one of the most studied problems and is well known to

be solved by dynamic programming in pseudo-polynomial time. To take advantage of
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the knowledge of the knapsack problem, we propose a decomposed-based approach in

this research. From the ideas of Bertsimas and Sim [17], the RDCIKP is decomposed

into nominal 0-1 knapsack problems, based on the combination of the feasible sets.

Bertsimas and Sim [17] showed that the robust 0-1 knapsack problem could be

solved by solving |J | + 1 nominal 0-1 knapsack problems. Lee et al. [72] reduced

the number of nominal problems into |J | − Γ + 1. On the other hand, as shown

in Section 4.4.3, if the number of UAVs assigned to a facility is fixed, then the

RDCIKP becomes a robust disjunctively constrained 0-1 knapsack problem. Thus,

the RDCIKP can be decomposed by the number of UAVs, u. For the disjunctive

constraint, Pferschy and Schauer [84] proposed a pseudo-polynomial algorithm for

the DCKP with chordal conflict graphs. However, the ULAP consists of the arbitrary

conflict relation, which requires the enumeration of the feasible set. Let us consider

the feasible set of a RDCIKP of facility i defined as:

S =
{
x ∈ Bm, u ∈ Z+

∣∣∣u ≥∑
j∈J

d0
jxj + max

M⊆J,|M |=Γi

∑
j∈N

d̂jxj , u ≤ n0,

u ≥ CVijxj , for all j ∈ J, x ∈ B
}

=
{
x ∈ Bm, u ∈ Z+

∣∣∣u ≥∑
j∈J

d0
jxj +

∑
j∈J ′

d̂jxj , u ≥ CVijxj , u ≤ n0,

for all j ∈ J, for all J ′ ⊆ J with |J ′| = Γi, x ∈ B
}

where B is the family of all the subsets of demand points that are not in conflict.

In practical implementation, we developed independent sets of the given conflict

graph with enumeration. The demand points, without any disjunctive constraint,

were then added to each independent set, which formed a feasible set, B.

134



Following the notations of Lee et al. [72], let us define sets L = {Γi,Γi+1, ...,m−

1,m + 1} and Sul = {x ∈ Bm|u − Γid̂l ≥
∑

j∈J d
0
jxj +

∑
j∈Jl(d̂j − d̂l)xj , u ≥

CVijxj , for all j ∈ J}, where J+ = J ∪ {m + 1}, l ∈ J+, and Jl = {j ∈ J+|j ≤

l}. By the following proposition, the RDCIKP can be solved by solving at most

2Eni(|J | − Γi + 1) nominal 0-1 knapsack problems, where E is the number of the

disjunctive constraints of the RDCIKP.

Proposition 2. The RDCIKP

Z∗ = max
{∑

j∈J
πjxj − fi − σi − piu

∣∣∣(x, u) ∈ S, x ∈ B
}

can be solved by solving at most ni(m − Γi + 1) nominal disjunctively constrained

0-1 knapsack problems

Z∗ul = max
{∑

j∈J
πjxj − piu

∣∣∣(x, u) ∈ Sul, x ∈ B
}
,

for all u ∈ {0, ..., ni}, l ∈ L

Proof. Note that fi and σi are given parameters. For every u ∈ {0, . . . , n0}, let

us define a set Su = {x ∈ Bm|u ≥
∑

j∈J d
0
jxj + maxM⊆J,|M |=Γi

∑
j∈N d̂jxj , u ≥

CVijxj , for all j ∈ J} which is a subset of S. Because S =
⋃ni

u=0 Su, Z∗ can be solved

by solving at most ni robust disjunctively constrained 0-1 knapsack problems. By

Lee at al. [72], each robust disjunctively constrained 0-1 knapsack problems can be

solved by solving at most |J |−Γi+1 nominal disjunctively constrained 0-1 knapsack

problem.

The feasible set, B, used in the proposition is defined based on the independent
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set, which has cardinality at most 2E . By the rule of product of the nested loop, the

RDCIKP can be solved in O(2En2
i |J |2).

4.4.6 Restricted master heuristic

Despite the better LP bound of the CG and the fast computation speed of the

pricing subproblem, the B&P algorithm can take a long enumeration of branching

on the large-sized problem, resulting in a long computation time. To solve the large-

sized problem in a feasible computation time, we implemented the restricted master

heuristic (RMH), as in the UVCP. It is not guaranteed that all the values required

are found before starting to solve the master integer problem, so the optimal solution

of the heuristic can only be used to find the primal bound of the ULAP. Note that

the RMH can be initiated in any stage of the B&P algorithm, especially before the

termination of the root node CG.

Although there are advanced heuristics, including the diving heuristic [91], de-

veloped for the B&P algorithm, they are challenging to implement in the ULAP.

Note that the best-first search strategy is implemented in the B&P algorithm to

maximize the advantage of the Lagrangian dual bound. The diving heuristics are

developed based on the depth-first search, which complicates the utilization of the

heuristics in the ULAP. One alternative is the relax-and-fix algorithm on the orig-

inal variables. It also has difficulty with the highly fractional solution of the LP

relaxation induced by the robust counterpart and the following continuous decision

variables. As mentioned in Section 4.4.2, fixing one decision variable, xij , did not

provide a dramatic effect on the residual problem. Also, there is a feasibility issue

using the relax-and-fix algorithm in the ULAP because of the capacity constraint.
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The RMH can be implemented inside of the B&P algorithm to provide the primal

bound. Furthermore, if there is a substantial restriction on the computation time,

the heuristic can be used to provide a feasible solution, which is presented in Section

4.5.

4.5 Computational experiments

Computational experiments were conducted to compare the performance of the pro-

posed solution algorithms. The models were developed in FICO Xpress 8.5 and solved

with Xpress-Optimizer 33.01.02. Experiments were performed with an AMD Ryzen

TM 7 2700X 8-Core CPU at 3.70GHz and 32GB of RAM running on a Windows 10

64-bit operating system.

4.5.1 Datasets used in the experiments

Small and large-sized datasets were randomly generated for computational experi-

ments, using the simple plant location problem on a Euclidean plane, with bench-

mark data from the Benchmark Library [4]. Two small-sized and three large-sized

problem classes were tested, and 10 instances are generated for each problem class.

The demand points were distributed randomly on the interior of a given size of a

square on the Euclidean plane. In order to achieve the realistic distribution of candi-

date locations of UEMS facilities, the Euclidean plane was divided into a lattice. The

plane was divided into the largest number of squares, which was smaller than the

number of candidate locations of the UEMS facilities |I|. For example, if |I| = 20,

the plane was divided into 16 cells. The candidate locations were first distributed on

each cell. After filling every cell, the rest of the candidate locations (four candidate
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locations in this example) were distributed without any restriction. Figure 4.2a and

Figure 4.2b show solutions of a small and large-sized problem, respectively.

For each problem class, the maximum number of UAVs operated at the UEMS

facility, the minimum ensured coverage distance, and the variable coverage distance

ratio per UAV were determined for the realistic UEMS system in regard to both

capacity and coverage distance, both of which can affect the number of UAVs as-

signed to a facility. The parameters related to the number of UAVs, capacities, and

coverage distances are presented in Table 4.2. In the table, NI and NJ represent

the number of candidate facilities and the demand points, respectively. Slim refers

to the size of the plane.

The demand for each demand point was randomly generated based on uniform

distribution. The nominal value of the demand d0
j and its maximum perturbation

d̂j are generated following U[0, 3] and U[0, d0
j/1.3], respectively. The opening cost

and operation (assignment) cost per unit UAV were generated based on Shavarani

et al. [97], which followed U[300,000, 400,000] and U[30,000, 40,000], respectively.

Table 4.2: Parameters of the problem classes.

Problem Class NI NJ Γ ni r0i µi Slim

C11 10 10 3 20 500 200,000 5,000
C13 10 30 4 15 300 25,000 3,000
C23 20 30 4 12 300 25,000 3,000

C210 20 100 10 20 1200 20,000 3,000
C320 30 200 10 20 500 200,000 5,000
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(a) RSF solution of C130.
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(b) RMH solution of C2100.

Figure 4.2: Example of the solution.
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4.5.2 Algorithmic performances

First, we compared the algorithmic performances of the two formulations, the RSF

and the EF. The tightness of the LP relaxation bounds and the induced lower

bounds were compared, along with the optimality of the primal bounds. Second, a

further analysis of the B&P algorithm was conducted. Third, the performances of

the restricted master heuristics were analyzed.

For the first analysis, the computation speed was compared based on the compu-

tation time and the final gap between the best value of the feasible solution (BFS)

and the best lower bound (BB). The optimality of the BFS was compared. The

strength of the formulation was compared based on the tightness of the LP relax-

ation and the final BB. In the computation, the maximum time limit was set to

3,600 seconds. In Tables 4.3 – 4.5, the results are summarized by the average of 10

instances of each problem class. The columns in these tables are defined as follows:

• #solved: the number of the instances in the problem class, solved by each

algorithm.

• Time: the average of the computation time. For the problems not solved within

the computation time limit, the limit was used as the computation time while

calculating the average, and was marked with an asterisk (*).

• GapL: the average of the gap between the primal bound (the best feasible

solution) and the best lower bound. GapL is used to evaluate the algorithm’s

convergence speed, especially for the problems not solved to optimal within

the time limit.

GapL =
(BFS)− (BB)

(BFS)
× 100%
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• RatLP : the average of the ratio between the LP relaxation bounds of the

reformulated standard formulation and the extended formulation.

RatLP =
(LP bound of the EF)

(LP bound of the RSF)
× 100%

The pricing subproblem is identical to the Lagrangian relaxation subproblem,

and each iteration of the column generation provides a Lagrangian dual bound,

which can be used as a lower bound of the RMLP [107]. Thus, in the CG of the

root node, the dual bound of a pricing subproblem can be used as a lower bound

of the problem, regardless of the termination of the CG. On the other hand, in the

B&P algorithm, we implemented the best-first search (BS) for the search strategy.

Because the lower bound of the head node of the active node queue always has the

worst lower bound in the BS, it can be used as a lower bound of the problem. For

the problems that the B&P algorithm has not finished within the time limit, the

lower bound calculated by the BS was used for the comparison in Table 4.4. In the

same table, if the root node CG was not finished, the lower bound of the RMLP was

used as the LP relaxation bound and marked with an asterisk (*).

In the small-sized problems, the commercial solver’s root cutting and heuristic

techniques showed powerful performances while solving the RSF. Even the integer

feasible solutions provided by the root cutting and heuristics were optimal solutions

in several small-sized problems. The B&P algorithm could solve the problem within

a short computation time without both a heuristic and a valid inequality, due to the

advantage of the LP relaxation bound. Even though the B&P algorithm generally

could not solve the small-sized problems faster than the RSF solved by the com-
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mercial solver, it could solve nine instances of the problem class C13 in the average

computation time of 0.75 seconds and solve the other instance in 78.49 seconds. In

the problem class C23, two instances were not solved within the time limit, but the

rest of the instances were solved in the average computation time of 318.42 seconds.

The average of the overall instances of each problem class is calculated in Table 4.3.

In the large-sized problems, the root node CG of the problem class C210 was

solved within the time limitation, but the overall B&P was not finished as well as the

RSF. If an algorithm failed to solve every instance in a problem class, the average

computation time was marked to be the time limit 3,600. The size of the problem

class C320 was too big to be solved by any algorithm. However, the progress of the

optimization, including the CG and the RMH algorithm, was compared later.

GapL compares the convergence between the BFS and the BB of algorithms. In

the problem classes C210 and C320 of the B&P algorithm, the BFS was not provided,

so it was impossible to calculate the GapL. As mentioned above, the commercial

solver could provide effective feasible solutions of the RSF with root cutting and

heuristics. When implemented in real-world cases, those techniques could be utilized

in the B&P algorithm by providing the feasible columns and the primal bounds. In

this computational experiment, we investigated the advantages of the EF in the

BB perspective. Thus, the LP bound and the lower bound provided by the following

branching are compared in Table 4.4, without consideration of additional techniques,

such as valid inequalities and heuristics.

As mentioned in Section 4.4.1, the LP bound of the EF was always the same

or better than the LP bound of the RSF. Indeed, as illustrated in Table 4.4, the

LP relaxation bound of the EF was better than the RSF from 1.7% to 81.1%, and
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the overall average of the RatLP was 138.8%. In the problem class C320, the LP

bound has the same value of the BB because the root node column generation was

not solved to the optimal. It was expected that the gap of the LP bound between

the RSF and the EF would increase when the CG was finished. As the optimization

process continued, the Gap of the BB was marked as zero if both algorithms found

the optimal solution. There was a minus gap of the lower bound in the problem class

C23, which took place because of the two unfinished instances of the B&P algorithm.

As the size of the problem increased, the gap of the lower bound between the RSF

and the B&P algorithms deepened.

In the optimality perspective of the small-sized problems, in Table 4.5 there is no

gap between the two algorithms because both algorithms found the optimal solution

for every problem. In the large-sized problems, the B&P algorithm could not find

feasible integer solutions. In this research, the B&P algorithm employed the best-first

search to utilize the advantage of the lower bound. The depth of the branching tree

does not deepen fast in the BS, so it is difficult to find the primal solution. Although

the primal heuristic, such as the RMH, can help to find the feasible solution, it was

not used in this experiment to examine the primary performance of the EF and the

B&P themselves. The performance of the RMH will be investigated in the latter

part of this paper.

For the second analysis, the nodes and the columns generated in the B&P al-

gorithm are summarized in Table 4.6. The effectiveness of the EF and the column

generation algorithm are analyzed in Table 4.7. The columns in the tables are defined

as follows:

• Cols: the average number of columns generated in the CG and the B&P algo-
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Table 4.3: Results related to the computation speed.

Problem
Class

# solved T ime (s) GapL (%)

RSF CG B&P RSF CG B&P RSF B&P

C11 10 10 10 0.06 0.05 0.44 0.0 0.0
C13 10 10 10 0.25 0.47 8.52 0.0 0.0
C23 10 10 8 1.15 0.79 974.36* 0.0 0.6

C210 0 10 0 3,600* 1,294.63 3,600* 7.1 -
C320 0 0 0 3,600* 3,600* 3,600* 34.3 -

∗ : There are instances not solved within the time limit.
− : There is no instance that provided a BFS within the time limit.

Table 4.4: Comparison of LP relaxation.

Problem
Class

LP relaxation bounds Lower bounds

RSF EF (CG) RatLP (%) RSF B&P Gap (%)

C11 770,575 993,507 127.7 1,029,704 1,029,704 0.0
C13 1,878,139 3,082,336 164.4 3,125,399 3,125,399 0.0
C23 2,108,738 3,069,304 146.4 3,202,811 3,184,722 -0.6

C210 4,968,062 6,269,128 126.1 6,037,631 6,269,589 3.8
C320 9,252,454 11,975,240* 129.4 9,894,785 11,975,240* 21.0

∗ : There are instances with the unfinished root node CG.

Table 4.5: Results related to the optimality.

Problem
Class

RSF B&P

BFS BFS Gap (%)

C11 1,029,705 1,029,704 0.0
C13 3,125,400 3,125,399 0.0
C23 3,202,813 3,202,813 0.0

C210 6,507,051 - -
C320 15,484,665 - -

− : No BFS is found within the time limit.

rithms. If a problem class contains instances not solved within the computation

time limit, the number of the columns generated up until the time limit was
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used to calculate the average and marked with an asterisk (*).

• Nodes: the average number of nodes generated in the B&P algorithm. For

problem classes with problems not solved within the computation time limit,

the number of the nodes generated up until the time limit were used and

marked with an asterisk (*).

• # CGopt: the average number of problems that the root node CG provided

integer solutions.

• Gapint: the average of the integrality gap between the optimal solution and

the LP bound of the EF provided by the CG algorithm. For the problems by

which we do not have optimal solutions, the best feasible solutions found from

any algorithm are used and marked with an asterisk (*). If the root node CG

is not finished, the lower bound of the RMLP is used as the LP relaxation

bound, and the problem class is marked with a dagger symbol (†).

Gapint =
(Optimal solution)

(LP bound of the EF)
× 100%

• # Gapint: the number of problems that have values of Gapint less than a certain

criteria. That is, the value of the Gapint should be less than 100.5% or 105%

to be counted in the columns “< 0.5%” or “< 5%,” respectively.

In Table 4.6, it is shown that as the size of the problem increased, the number

of columns and nodes required followed. Note that the optimization process of the

large-sized problems was not fully terminated, and the additional columns and nodes

would be generated afterward. In the RSF model, C210 and C320 consisted of 4,060
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and 12,090 variables, respectively. Compared to the variables generated in B&P

algorithms, the RSF models tended to be larger in sizes.

In Table 4.7, the performance of both the EF and the CG algorithm was analyzed

from the integrality gap point-of-view. In the small-sized problems, the CG algorithm

provided an integer optimal solution for 13 out of 30 instances, which did not require

the additional branching process. The integrality gap is the ratio between the optimal

integer solution and the LP relaxation bound provided by the CG algorithm. The

smaller integrality gap indicates the advantage of the EF. In the problem classes

C11 and C13, 15 out of 20 instances had an integrality gap of less than 0.5%. In

the larger problems, the integrality gap increased. However, it should be considered

that in these problems, the BFS was used instead of the optimal solution because

the large-sized problems were not solved to the optimal. Besides, for the class C320,

the LP bound would also be improved when the CG is solved to the optimal.

Table 4.6: Results related to the CG and B&P algorithm.

Problem
Class

Cols Nodes

CG B&P B&P

C11 75.9 131.8 5.9
C13 173.6 271.2 14.0
C23 252.1 1,089.5* 351.8*

C210 1,682.5 2,214.2* 14.0*
C320 4,902.1* 4,902.1* -*

∗ : There are instances not solved within the time limit.
− : There is no instance with the finished root node CG.

The performances of the restricted master heuristics were tested in the third

analysis. The RMH was proposed to solve the large-sized problem in a real-world

situation in a time-efficient manner. As mentioned in Section 4.4.6, the RMH could
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Table 4.7: Results related to the EF and the CG algorithm.

Problem
Class

# CGopt Gapint (%)
# Gapint

< 0.5% < 5%

C11 7 104.7 8 8
C13 6 101.5 7 9
C23 0 104.4 1 7

C210 0 103.8* 0* 8*
C320 - 122.2*† 0*† 0*†

∗ : There are instances that used the BFS to calculate the integrality gap.

† : Lower bound of the RMLP is used to calculate the integrality gap.

be initiated at any stage of the B&P algorithm. The feasibility of the RMH was

secured based on the initial columns, which were generated according to every pos-

sible pairing of a demand point and a facility. In the computational experiment, we

compared three initiation points of the RMH. The first point was the well-known

price-and-branch, where the RMH started after solving the root node CG. The sec-

ond and third points were defined based on the computation time. In this research,

because the computation time limit is set to 3,600 seconds, we tested to start the

RMH 1,200 and 2,400 seconds after the beginning of the B&P algorithm. Three

initiation points are named in Tables 4.8 and 4.9 as “RT,” “1200,” and “2400,” re-

spectively. In Table 4.9, column “# (same, better) BFS” represents the number of

problems that the RMH algorithm provided the same or better BFS than the RSF.

Note that in the small-sized problem classes in Table 4.9, the BFS of the RSF is the

optimal solution.

In the RMH with the second and third starting points, there were problems

solved by the B&P before the RMH was initiated. Every instance in problem classes
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C11 and C13, and eight instances in problem class C23 were solved before the RMH

was started at 1200. In class C23, because the CG generated around 250 columns,

the RMH with the starting point RT (RMH RT) solved the set partition problem

with 250 decision variables. Compared to the B&P algorithm with an average com-

putation time of 974.36 seconds, the RMH RT provided the solution faster with the

average computation time of 0.86 seconds. Even for the RMH, problem class C320

was hard to solve within the time limitation of 3,600 seconds, however. Nevertheless,

the RMH had relatively smaller GapL than did the RSF, where the CG provided a

better LP bound, and the heuristic provided a decent feasible solution.

Table 4.9 compared the optimality of the RMH to the RSF. In the RMH with the

starting point of 1,200 seconds (RMH 1200), the optimal solution was found for every

instance of the small-sized dataset. For the large-sized problem class, C210 and C320

had 4.5 and 8.5 percent of an average optimality gap, respectively. Furthermore, in

problem class C320, RMH 1200 provided better BFS than RSF in four instances.

As mentioned above, the size of the problem was smaller in the RMH than the RSF,

and the RMH starts with the better LP relaxation bounds. However, if the starting

time of the RMH was overdue, the RMH started with too many columns, and it

became hard to find the feasible solution for the RMH. In an instance of problem

class C320, RMH 2400 could not provide a feasible solution. The average of GapL

and Gap were calculated without the instance, and the problem class was marked

with a dagger symbol (†). The effective starting point of the RMH would be affected

by each problem situation, and a further investigation is required when implemented

in the applications.

To summarize, the EF provided a strong LP relaxation bound. The LP relax-
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Table 4.8: Results of the RMH related to the computation speed.

Problem
Class

# solved T ime (s) GapL (%)

RT 1200 2400 RT 1200 2400 RT 1200 2400

C11 10 10 10 0.08 0.44 0.44 0.0 0.0 0.0
C13 10 10 10 0.79 8.52 8.52 0.0 0.0 0.0
C23 10 10 10 0.86 370.29 735.22 0.0 0.0 0.0

C210 7 8 7 2,169.55* 2,319.65* 2,998.55* 1.2 0.9 2.2
C320 - 0 0 - 3,600* 3,600* 19.2 27.1†

∗ : There are instances not solved within the time limit.
† : There is an instance that a feasible solution is not found within the time limit.

Table 4.9: Results of the RMH related to the optimality.

Problem
Class

Gap (%) # (same, better) BFS

RT 1200 2400 RT 1200 2400

C11 0.9 0.0 0.0 (7, 0) (10, 0) (10, 0)
C13 0.3 0.0 0.0 (8, 0) (10, 0) (10, 0)
C23 1.6 0.0 0.0 (2, 0) (10, 0) (10, 0)

C210 4.2 4.5 3.2 (0, 0) (0, 0) (0, 1)
C320 - 8.5 14.9† - (0, 4) (0, 3)

† : There is an instance that a feasible solution is not
found within the time limit.

ation bound of the EF had a competent integrality gap, so the B&P algorithm was

expected to show a good performance in the lower bound point-of-view. In the large-

scale problems, it was observed that the RMH could provide time-efficient solutions.

The RMH could be implemented in the B&P algorithm to find primal bounds used

in the branching. The other heuristic algorithms could be used alongside of the RMH

and provide initial columns of B&P algorithms for solving real-life problems. It was

observed that the algorithms compared in the computational experiments could not

solve the large-scale problems of C210 and C320 to the optimal within 3,600 sec-
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onds. When implementing the ULAP to the real large-scale applications, one can

implement existing techniques of demand point aggregation [60] or divide the overall

problem for the applicable scales.

4.5.3 Analysis of the branching strategy and the solution approach

of the pricing subproblem

First, we compare two branching strategies introduced in Section 4.4.2. In the com-

putational experiments, the Ryan-Foster branching rule was used for the balanced

and efficient branching trees. To compare the two branching strategies, we selected

the instances that required branching in the B&P algorithm. In Tables 4.10 and

4.11, the Ryan-Foster branching rule and the branching over the original variable

are named as “RF.” and “Org.,” respectively. Table 4.10 compares the computation

speed and the lower bound of two branching rules, and Table 4.11 compares the

number of columns and nodes generated by each branching rule and the maximum

depth of the branching trees. The designation “#inst.” represents the number of

instances in the problem class for which the CG algorithm provided fractional so-

lutions and in which the branching was executed. The designations “#solv.” and

“#feas.” denote the number of instances for which each strategy found the optimal

solution and the feasible solution, respectively. As mentioned above, when branching

over the original variable, the branching divides over an allocation between a UEMS

facility and a demand point, which provides an unbalanced tree. This impedes the

improvement of the lower bound in the best-first search and the discovery of the

feasible integer solution, which can be observed in the table below. When branch-

ing over the original variable, even in the smallest problem class, C11, the optimal

150



solution was found in only two instances among four. Especially in problem C113,

more than 150 nodes were generated in 3,600 seconds but could not even find a

feasible solution. On the contrary, by applying the Ryan-Foster branching rule, all

four instances were solved within the average computation time of 1.04 seconds.

In the small-sized problems, the Ryan-Foster branching rule could solve eight

out of 18 instances within 2 seconds, and could solve 16 instances within 3,600

seconds. In the node point-of-view, six and 11 instances were solved using nodes

below 10 and 100, respectively. The average of the maximum depth of the Ryan-

Foster branching tree was 8.6. By applying the rule of the branching over the original

variable to the small-sized problems, four and six instances were solved within 2 and

3,600 seconds, respectively. The remaining 12 instances were not solved within the

time limitation. In the node perspective, six out of 18 instances were solved within

100 nodes, and the average of the maximum depth of the branching trees was 15.7.

Among 18 instances in the small-sized problems, the branching over the original

variables could find the optimal solution faster than the Ryan-Foster branching rule

in only two instances, and the Ryan-Foster branching could solve these instances in

less than 2 seconds. In the large-sized problems, we tested 10 instances of the problem

class C210. Both branching rules could not solve the problems to the optimal. In the

lower bound perspective, the branching over the original variables achieved slightly

superior results in three out of 10 instances, and the Ryan-Foster branching rule

achieved better results in seven instances.

There was no conclusive distinction observed in the size of the nodes. However,

for the instances solved to the optimal, the branching over the original variable

required the same or bigger number of nodes. It is carefully speculated that the
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branching over the original variable would have a larger branching trees when solved

to the optimal. Also, the branching over the original variables was relevant to the

deeper maximum depth of the branching trees, induced by the unbalanced branching.

Although the subproblem of the Ryan-Foster branching is more complicated because

of the disjunctive constraints, it had an advantage in branching efficiency. Thus, the

Ryan-Foster branching is more suited in the ULAP.

Table 4.10: Computation speeds and lower bounds of the branching strategies.

Problem
Class

# inst.
# (solv., feas.) Time Lower bounds

RF. Org. RF. Org. RF. Org.

C11 4 (4, 0) (2, 1) 1.04 1,800.54 1,028,045 925,282*
C13 4 (4, 0) (1, 3) 20.52 1,882.31 3,151,723 3,097,290*
C23 10 (8, 2) (2, 1) 974.36* 2,882.20* 3,184,722* 3,091,663*

C210 10 (0, 0) (0, 0) 3,600* 3,600* 6,269,589* 6,269,521*

∗ : There are instances not solved within the time limit.

Table 4.11: Search tree of the branching strategies.

Problem
Class

# inst.
Cols Nodes Max depth

RF. Org. RF. Org. RF. Org.

C11 4 225.0 85.3* 13.3 119.5* 5.3 9.3*
C13 4 406.0 162.0* 33.5 106.5* 5.8 21.0*
C23 10 1,089.5* 252.1* 351.8* 132.2* 11.0* 16.2*

C210 10 2,214.2* 1,682.5* 14.0* 15.0* 5.3* 5.0*

∗ : There are instances not solved within the time limit.

In Sections 4.4.3 - 4.4.5, the subproblem of the ULAP and the two solution ap-

proaches are proposed. In the computational experiments, a hybrid approach using

both MILP reformulation and decomposed DP approaches were used in the B&P

algorithm. In the initial stage of the CG process, it was easy to solve the RDCIKP
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with the MILP reformulation approach because a large gap existed between the op-

timal solution of the RMLP and the Lagrangian dual bound. Thus, when the CG

was started, the cost-reducing column could be found rapidly with the MILP refor-

mulation approach solved by the commercial solver. The decomposed DP approach

took advantage of the special-purpose solver of the knapsack problem. By decom-

posing the RDCIKP into several nominal 0-1 knapsack problems, we could solve the

subproblem with a dynamic programming approach. The decomposed DP approach

can provide the solution in a robust manner because the computation time was con-

sistent, regardless of the progress of the CG and the corresponding convergence of

the bound.

To benefit from both approaches, a hybrid algorithm was used in this research.

In the early stage of the CG process, the MILP reformulation approach was used to

solve the pricing subproblem. When the subproblem is solved by the MILP refor-

mulation approach, there was a tendency of the computation time of each iteration

to increase in accordance with the CG process. Thus, after each iteration of the CG

algorithm, the time was measured. If the time of an iteration exceeded a predefined

criterion, the solution algorithm of the subproblem was switched into the decom-

posed DP approach. The limitation of the time for the change of the solver was

chosen arbitrarily to be 100 seconds in the experiment.

In Table 4.12, the average and maximum computation time of iterations in the

CG algorithm and the total number of iterations executed within 3,600 seconds

are presented. The MILP reformulation approach is named “IP,” and the hybrid ap-

proach of the “IP” and the decomposed DP approach is named “Mix.” We conducted

an experiment with 10 instances of problem class C320. During the experiment, the
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last iteration started before the time limitation (3,600 seconds) was finished without

an interruption. Thus, the maximum computation time can be longer than the time

limit.

In Figure 4.3, the progress of the iteration time over the CG process is presented.

In the early stage (∼ 5 iterations), the iteration time was plotted on a linear scale,

and in the rest of the CG process, a log scale was used. In the figure, the time per

iteration of the IP approach increased exponentially as the CG processed. Around

the 20th to 25th iteration, instances with the Mix approach switched the solution

algorithm from the MILP reformulation approach to the decomposed DP approach.

After the conversion, the iteration time became steady, with the similar value of

the average computation time of iterations given in Table 4.12. There was a signifi-

cant difference in the number of the total iterations executed before the time limit

between the two approaches, so the corresponding performance of the CG showed

an enormous difference. The result showed the necessity of the DP approach solv-

ing the subproblem. Also, the hybrid approach was employed in the computational

experiments.
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Table 4.12: Comparison of the solution approaches of the pricing subproblem.

Avg. time (s) Max time (s) Iters

Problem IP Mix IP Mix IP Mix

C3200 274.42 51.79 3,603.37 116.10 25 70
C3201 161.55 43.07 2,274.74 146.42 26 84
C3202 220.30 43.05 3,900.40 257.56 24 84
C3203 601.87 44.90 12,874.05 392.17 26 81
C3204 151.89 43.72 2,999.24 157.20 25 83
C3205 305.94 48.29 5,838.34 560.62 30 75
C3206 1,062.06 48.62 24,121.49 487.44 24 75
C3207 521.88 48.85 10,285.82 644.72 21 74
C3208 166.00 47.27 1,773.10 303.17 22 77
C3209 240.01 43.57 4,356.96 206.74 28 83
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Figure 4.3: Time per iteration of the CG.
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4.6 Summary

The advancement of UAV technology is accelerating the introduction of UAVs into

various elements of the social system. This paper introduced the location and alloca-

tion problem of UAVs in the emergency medical service system considering demand

uncertainties. A UAV-operated system would seemingly lead to new operation prob-

lems, which would make applying the solution approach from existing literature

difficult. The UEMS system, instead of using one or two UAVs, could use a fleet of

UAVs operating from a facility. Furthermore, the number of UAVs employed plays

an essential role in defining the capability of a facility. The resource availability is

modeled to increase gradually along with the number of UAVs, which is considered

when allocating demand points to a facility. In the ULAP, both the variable cover-

age distance and the capacity of the UEMS facility are modeled as functions of the

number of UAVs. First, the quadratic constraint of the variable coverage distance is

equivalently linearized. The demand is modeled based on the cardinality-constrained

uncertainty set, and the resultant nonlinear capacity constraint of the model is re-

formulated to the MILP model.

However, because of the highly fractional solution of the LP relaxation, the

reformulated standard formulation of the ULAP has a weak LP relaxation bound and

is challenging to solve with a commercial solver. An extended formulation and a B&P

algorithm was proposed in this paper to improve the LP bound and utilize it. Two

branching strategies were compared, and the Ryan-Foster branching strategy showed

a better performance than the branching over the original variables. This was because

of more balanced branching trees achieved through the application of the Ryan-

Foster branching strategy. However, the Ryan-Foster branching strategy requires a

157



disjunctive constraint in the subproblem of the B&P algorithm. The subproblem is

defined as a robust disjunctively constrained integer knapsack problem. Based on

the existing knowledge about various types of knapsack problems, a decomposed

DP approach was proposed as a special-purpose solver. A hybrid approach changing

the solution algorithm of the subproblem between the MILP formulation and the

decomposed DP approach was also introduced. A restricted master heuristic was

proposed for a primal solution based on the EF.

In the computational experiment comparing the performance of the RSF and

the EF and the corresponding B&P algorithm, the EF showed stronger LP bounds.

Despite the weak LP bound, in the small-sized problems, the RSF could find the

optimal solution in a short computation time by virtue of root cutting and heuristics.

In the larger problems, the RSF reported a large GapL, which represented a slow

convergence of the algorithm. Even though the EF showed a better bound, the

B&P algorithm could not provide feasible solutions for large-sized problems because

the algorithm depended on the best-first search. The restricted master heuristic

could provide time-efficient feasible solutions. Mostly the RMH could be initiated

regardless of the progress of the B&P algorithm. It was observed that the RMH

that started 1,200 seconds after the beginning of the B&P algorithm could provide

an efficient solution within a short computation time. In the largest problem class,

C320, the RMH could find an even better feasible solution than RSF.

In this research, the RMH was initiated after the discontinuation of the B&P

algorithm to measure the sole performance of the RMH. However, it was expected

that the RMH could provide the primal bounds if implemented in the middle of

the B&P algorithm, and could thereby help the searching process. Also, because
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the heuristics in the commercial solver provided effective feasible solutions for RSF,

they could be used for the initial columns. Furthermore, other heuristics related to

the robust knapsack and the facility location problem with variable coverage could

be useful.
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Chapter 5

Conclusions and future research

5.1 Summary

The UAV is becoming an essential component of future logistics, which can be

operated as a link connecting individual components to the central system. It can

be operated as a multipurpose agent in various industry fields, owing to its low

price, rapid speed, and flexible operation by the aerial operation. Not only in the

logistics but also the public service sector, there are attempts to utilize UAVs. In

this dissertation, we proposed two operation problems to construct an emergency

wireless network in a disaster situation and one location-allocation problem of the

UAV EMS facility. Three problems were modeled based on the set covering approach

and solved based on the branch-and-price algorithm.

In Chapter 2, to utilize the advantage of the UAV, the location of the UAV

was not bounded to the predefined candidate positions. However, the additional

decision on the position weakens the continuous relaxation bound of the problem

because the continuous relaxation neutralizes the coverage radius constraint. Despite

the quadratic coverage constraint and the continuous decision variable, the generic

framework of Dantzig-Wolfe decomposition can be used for the USCP. Based on

Dantzig-Wolfe decomposition, the extended formulation and the branch-and-price
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algorithm is proposed. The reformulation model could consider the coverage con-

straint implicitly in the variables, so had improved lower bounds. Based on Jung’s

theorem, the sufficient condition of a pair of demand points which could be covered

by the same UAV is provided. The approximation model could avoid the numerical

instability caused by the quadratic coverage constraint. The approximation ratio

of the approximation model is provided, along with an approximation model based

on the discretization of every lattice point over the plane. The algorithmic perfor-

mances of the proposed algorithms are compared, and the branch-and-price and its

approximation algorithm could solve the realistic-scaled problem within reasonable

computation time.

Chapter 3 considered an extra decision on the radius in the coverage constraint.

Even though the literature [14] failed to model the problem in explicit mathematical

formulation and claimed that a brute force search is required, an explicit mathe-

matical model is proposed with the analysis of its feasible region. Because of the

nonconvex feasible set of the continuous relaxation, the extended formulation was

not able to be solved by itself. A solvable equivalent problem in mixed-integer lin-

ear programming is proposed based on the minimum covering circle, which allowed

the implementation of the B&P algorithm. To accelerate the computation speed, a

heuristic based on the USCP and a hybrid approach of the heuristic and the exact

branch-and-price were provided. Unlike to Berman et al. [14], it is shown that at

most (|N |3) iterations of column generation is required to define every minimal sub-

set, and the experiment showed that much fewer iterations were required to solve the

problem. In the computational experiment, the proposed algorithms outperformed

the genetic algorithm proposed by Berman et al. [14].
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In Chapter 4, the coverage distance of a UAV EMS facility is modeled as a hard

constraint to reflect the flight distance constraint of UAVs. The coverage distance

is modeled as a function of the number of UAVs assigned to the facility, with a

modification of the concept of busy-fraction. The variable coverage distance is set

to be the radius of the area that the assigned number of the UAVs can provide a

certain level of resource availability, and with the assumption of the demand evenly

distribution of the plain, the variable coverage distance was modeled to have a

quadratic relation to the number of UAVs. The robust optimization approach of the

cardinality-constrained uncertain demand and the capacity related to the number

of UAVs resulted in the weak LP bound. The extended formulation and the corre-

sponding branch-and-price algorithm is designed, with a comparison of the various

branching strategies. The pricing subproblem was modeled as a robust disjunctively

constrained integer knapsack problem, and two solution approaches for the subprob-

lem, mixed-integer linear programming reformulation and the decomposed dynamic

programming approaches, were proposed and showed better LP relaxation bounds.

For the time-efficient solution of the large-sized problems, a heuristic based on the

extended formulation is proposed.

The results of the research can be implemented not only in the UAV application

but also in the abstracted problems of clustering and categorization. If the informa-

tion of the multidimensional data is given and the distance between the data points

is defined, the USCP can be used to cluster the data into the minimum number of

subsets, where each subset is bounded within a given diameter. In a similar way,

the UVCP can categorize the data by minimizing the cost of total subsets. Vari-

ous possible applications that can utilize the solution approaches proposed in this
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dissertation are also suggested for future research.

5.2 Future research

There are several future research on the UAV set covering problem and UAV vari-

able radius set covering problem in Chapters 2 and 3. To use the full capacity of

UAVs, practical restrictions and possible extensions should be applied in the USCP.

The overlap interference among UAVs, transmission capacity, and shadowing effects

by obstacles should be considered when creating the flight plan. For the UVCP,

the realistic constraints on the flight altitudes can define the minimum and max-

imum coverage radius. The effects of the size limitations on the coverage radius

should be investigated when implementing the system in real applications because

the computation speed can drastically change when the coverage distance is limited.

Although the battery constraint was not considered in this research, and the prob-

lems were approached with the set covering models, it is still one of the essential

characteristics of the UAV operation. The routing model, cost structure considering

the detailed battery consumption, and scheduling model considering the recharges

can be more realistic approaches for the problem. Recent researches are considering

location-routing models and inventory-routing models, which can be the possible

future researches. In Chapter 3, it is observed that the root node column generation

provided the integer solution for every instance we experimented. The solution struc-

ture and the progress of the column generation should be investigated for insightful

research.

In Chapter 4, more realistic problems could be solved with actual datasets. For

an actual cost-benefit analysis, complex cases could be modeled with triage [98],
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patient behaviors [59], and multiple levels of hospitals [98]. One could draw input

from the existing literature by using more advanced busy-fraction models while

defining the function of the variable coverage distance. In this research, a commercial

solver was used to solve the subproblem with the MILP reformulation approach

without using the structural knowledge. Polytope-associated approaches and cutting

plane algorithms could be utilized while solving the RDCIKP. One can refer to Ben

Salem et al. [11], who studied the polytope and the facet defining inequalities of

the disjunctive-constrained knapsack problem. Atamtürk [6] studied the inequalities

on covers and packs of the integer knapsack sets, and Atamtürk [7] focused on the

convex hull of the robust knapsack problem. Another research extension related to

the healthcare facility location problem is the data-driven and dynamic relocation

of UAVs among the UEMS facilities. Cooperation of the UEMS with the existing

EMS system would require a detailed analysis before implementing the UEMS in a

real-world environment.
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Appendices
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A Comparison of the computation times and objective

value of the proposed algorithms

Figures A.1, A.2, A.3, and A.4 illustrate the effects of the DA model’s grid size on the

computation times and objective value. In each figure, either nine or six problem

classes are arranged in matrices, showing the performance of the DA model over

the different grid sizes; that are juxtaposed with the outputs of the EBP and the

PCBP. The computation times increase exponentially when the grid size decreases.

As is shown, it is difficult to find a universal value or a standardized way to decide

an appropriate grid size. However, for dense problems, the DA model with a grid

size of one-fourth of the coverage radius could find near-optimal solutions within a

reasonable time.
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Figure A.1: Computation time of small-sized artificial problems
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Figure A.2: Objective value of small-sized artificial problems
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Figure A.3: Computation time of realistic-scale problem
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Figure A.4: Objective value of realistic-scale problem
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국문초록

현재, 지역 감시에서 물류까지, 무인항공기의 다양한 산업에의 응용이 주목받고 있다.

특히, 스마트 시티의 개념이 대두된 이후, 무인항공기를 공공 서비스 영역에 활용하

여 개별 사회 요소를 연결, 정보와 물자를 교환하고자 하는 시도가 이어지고 있다. 본

논문에서는 공공 서비스 영역에서의 무인항공기 운영 문제를 집합덮개문제 관점에서

모형화하였다. 설비위치결정 및 집합덮개문제 영역에 많은 연구가 진행되어 있으나, 무

인항공기를운영하는시스템의경우무인항공기가갖는자유도를충분히활용하면서도

무인항공기의물리적한계를고려한운영계획을필요로한다.우리는본문제와관련된

기존 연구와 현장이 필요로 하는 기술의 괴리를 인식하였다. 이는 다시 말해, 무인항

공기가 가지는 새로운 특성을 고려하면 기존의 문제 해결 방법을 통해 풀기 어렵거나,

혹은 새로운 관점에서의 문제 접근이 필요하다는 것이다.

본 논문에서는 재난이 발생한 지역에 무인항공기를 이용하여 긴급무선네트워크를

구성하는 두가지 문제와, 무인항공기를 이용하여 응급의료서비스를 제공하는 시설의

위치설정 및 할당문제를 제안한다. 확장문제로의 재공식화와 분지평가법을 활용하여,

무인항공기의 활용으로 인해 발생하는 문제 해결 방법의 한계를 극복하고 완화한계를

개선하였다.

공공 서비스 영역에서의 무인항공기 운영, 관련된 기존 연구와 본 논문에서 사용하

는 대규모 최적화 기법에 대한 개괄적인 설명, 연구 동기 및 기여와 논문의 구성을 1

장에서 소개한다. 2장에서는 무인항공기 집합덮개문제를 정의한다. 무인항공기는 미리

정해진 위치 없이 자유롭게 비행할 수 있기 때문에 더 효율적인 운영이 가능하나, 약한

완화한계를갖게된다. Dantzig-Wolfe분해와분지평가법을포함한대규모최적화기법

을 통해 완화한계를 개선할 수 있으며, 분지나무의 대칭성을 줄여 실제 규모의 문제를
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실용적인 시간 안에 해결할 수 있었다. 수치적 불안정성을 피하기 위하여, 두 가지 선

형 근사 모형이 제안되었으며, 이들의 근사 비율을 분석하였다. 3장에서는 무인항공기

집합덮개문제를 일반화하여 무인항공기 가변반경 집합덮개문제를 정의한다. 분지평가

법을 적용하면서 해결 가능한 평가 부문제를 제안하였으며, 휴리스틱을 설계하였다.

제안한 풀이 방법들이 기존 연구에서 제안한 벤치마크 유전 알고리즘을 능가하는 결

과를 나타내었다. 4장에서는 무인항공기 응급의료서비스를 운영하는 시설의 위치설정

및 할당문제를 정의하였다. 2차 가변반경 범위제약이 선형의 동치인 수식으로 재공식

화되었으며, 강건최적화 기법으로 인해 발생하는 비선형 문제를 선형화하였다. 대규모

최적화 기법을 적용하면서, 평가 부문제의 구조를 분석하여 두 가지 풀이 기법과 휴리

스틱을 제안하였다.

본 연구의 결과는 무인항공기와 비슷한 특징을 가지는 실제 사례에 적용될 수 있으

며, 추상적인 문제로써 다양한 분야에 그대로 활용될 수도 있다.

주요어:강건최적화,긴급무선네트워크,무인항공기,분지평가법,설비위치결정문제,열

생성기법, 응급의료서비스, 위치설정 및 할당문제, 집합덮개문제

학번: 2014-21815
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and forth between our countries. Yohanes and Mukund, I will never forget the days

and nights you helped me writing my first conference paper. 성인경 박사님, 바쁘신

와중에도, (부끄럽게도 차마 다 반영하지 못한) 중요한 코멘트들을 주셔서 감사합니다.

앞날에 항상 건승하시기를 기원합니다.

연구자의 꿈을 키운 요람이었던 카이스트 산업 및 시스템 공학과의 교수님들께도

감사의 말씀을 올리고 싶습니다. 최병규교수님께서 말씀해주신 “쓰레기통을 뒤지는 연

구를 해서는 안 된다”는 것을 가슴에 깊이 새기고, 부끄러움을 느끼지 못하는 연구자가

되는 것을 끊임없이 경계하겠습니다. 언제나 그리운 카이스트의 모든 소중한 인연들께

도 감사드립니다.

서로다른여러분야에서공부하고일하고있는고등학교친구들과의이야기는산업

공학이라는 분야를 넘어 넓은 시각으로 세계를 볼 수 있게 해주었습니다. 이런 훌륭한

친구들과 꿈과 우정을 함께 키울 수 있도록 가르쳐주신 고등학교 선생님들, 황석규

선생님께 감사의 말씀을 전하고 싶습니다.

고마운 연구실 친구들, 먼저 졸업한 상윤이, 영철형, 여러분의 부재가 저를 졸업할

수 있도록 끊임없이 채찍질하였습니다. 광형, 오랫동안 저의 핸드폰 배경화면을 장식

했던 꾸짖음 잊지 않겠습니다. 형의 행복을 기원합니다. 어쩌다 보니 함께 졸업하게 된

동료들, 마지막 학기 서로 속도 많이 썩였지만 너무 많은 도움 또한 받았습니다. 포기하

지 않고 함께 해주어 고맙습니다. 정말 오랜 시간동안 연구실에서 함께 먹고 자고 밤을

샌 친구들, 졸업한 모두들, 서로의 고민을 들어주고 일을 기꺼이 나누고, 모르는 것을

알려주고, 지치고 나태해지면 꾸짖어주며 기쁨과 슬픔을 나누었던 소중한 시간을 평생

잊지 않겠습니다. 자랑스러운 후배들, 제가 연구실의 메인이었던 시절보다 다들 공부도

열심히 하고, 일도 잘 해주어 연구실에 대한 한 점의 걱정 없이 졸업할 수 있습니다.

어려울 수 있는 대학원 생활을 최고의 연구실에서 행복하게 보내게 해주어 고맙습니다.
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모두의 앞날에 기쁨과 성공만이 있기를 기원합니다. 서울대에서 만난 모든 분들께서

대가 없는 수 많은 호의와 도움을 주셨습니다. 감사한 마음을 지니고 저도 사회에서

모든 이에게 이 은혜를 갚으며 살아가겠습니다.

마지막으로 30년의 시간동안 흔들림 없이 저를 지지하고 지원해주셨던 사랑하는

가족들에게 감사의 마음을 전합니다. 긴 세월이 지나 이제야 큰아들로, 큰형으로 한 사

람의 몫을 할 수 있을 것 같습니다. 부모님의 짐을 나눠 지고, 동생들이 멋지게 나아갈

길을 앞에서 조금이라도 틔울 수 있는 든든한 첫째가 되겠습니다. 감사합니다.

2021년 1월

박영수 올림
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