
Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77
https://doi.org/10.1186/s12920-020-0722-1

RESEARCH Open Access

Privacy-preserving approximate GWAS
computation based on homomorphic
encryption
Duhyeong Kim, Yongha Son, Dongwoo Kim, Andrey Kim, Seungwan Hong and Jung Hee Cheon*

From 7th iDASH Privacy and Security Workshop 2018
San Diego, CA, USA. 15 October 2018

Abstract

Background: One of three tasks in a secure genome analysis competition called iDASH 2018 was to develop a
solution for privacy-preserving GWAS computation based on homomorphic encryption. The scenario is that a data
holder encrypts a number of individual records, each of which consists of several phenotype and genotype data, and
provide the encrypted data to an untrusted server. Then, the server performs a GWAS algorithm based on
homomorphic encryption without the decryption key and outputs the result in encrypted state so that there is no
information leakage on the sensitive data to the server.

Methods: We develop a privacy-preserving semi-parallel GWAS algorithm by applying an approximate
homomorphic encryption scheme HEAAN. Fisher scoring and semi-parallel GWAS algorithms are modified to be
efficiently computed over homomorphically encrypted data with several optimization methodologies; substitute
matrix inversion by an adjoint matrix, avoid computing a superfluous matrix of super-large size, and transform the
algorithm into an approximate version.

Results: Our modified semi-parallel GWAS algorithm based on homomorphic encryption which achieves 128-bit
security takes 30–40 minutes for 245 samples containing 10,000–15,000 SNPs. Compared to the true p-value from the
original semi-parallel GWAS algorithm, the F1 score of our p-value result is over 0.99.

Conclusions: Privacy-preserving semi-parallel GWAS computation can be efficiently done based on homomorphic
encryption with sufficiently high accuracy compared to the semi-parallel GWAS computation in unencrypted state.

Keywords: Homomorphic encryption, Privacy, GWAS, Fisher scoring

Background
After the successful completion of the Human Genome
Project in the early 21st century, high throughput technol-
ogy on genetic variations has been rapidly developed and
widely studied. In particular, through the development of
microarray chip with rather small computational cost, it
became possible to determine the genotype of millions of

*Correspondence: jhcheon@snu.ac.kr
Department of Mathematical Sciences, Seoul National University, 1,
Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea

single nucleotide polymorphism (SNP), a variation in a
single nucleotide that occurs at a specific position in the
genome, for each individual. With those statistical data of
genotypes, many researches are proposed that investigate
associations between SNPs and phenotypes like major
human disease, and especially Genome-wide association
study (GWAS) aims to find top significant SNPs relevant
to a certain phenotype.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-0722-1&domain=pdf
mailto: jhcheon@snu.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 2 of 12

Motivation
Since genome analysis uses genomic data that are very
sensitive and irreplacable, privacy on genomic data has
come up to be one of the most important issues in genome
analysis including GWAS. The usual privacy-preserving
methodology in data analysis is anonymization, perturba-
tion, randomization, and condensation [1]; however, those
methods leverage the quality of data with privacy result-
ing in an inaccurate analysis to some extent. The dilemma
regarding the balance between personal privacy and ana-
lytical efficiency has been resolved by applying many
cryptographic primitives, while homomorphic encryp-
tion (HE) is noticed as one of the ultimate cryptographic
solutions for privacy-preserving data analysis. Conceptu-
ally, HE is an encryption scheme which allows compu-
tations over encrypted data without decryption. HE not
only fundamentally prevents the leakage of input data dur-
ing the analysis phase, but also provides an accurate result
of analysis since it preserves the original data intactly.
However, HE causes a significant blowup of computa-
tional cost for analysis, and optimization and modification
of algorithm for efficient computation in HE is the main
problem of applying HE in data analysis.

Since 2014, there has been an annual biomedical pri-
vacy competition hosted by Integrating Data for Analysis,
Anonymization and SHaring (iDASH), a national center
for biomedical computing in the United States. One of
three tasks in iDASH 2018 [2] was to develop a solution
for privacy-preserving GWAS computation based on HE,
and we participated in this competition with our delicately
constructed algorithms.

Summary of results
In this study, we propose approximate HE algorithms for
privacy-preserving GWAS computation. To be precise,
we transform well-known Fisher scoring and semi-parallel
GWAS algorithm into HE-friendly algorithms so that we
can efficiently evaluate them in encrypted state. Note that
the HE-friendly modified Fisher Scoring algorithm can be
generally used for logistic regression, not only for GWAS.

The main challenges in transforming the semi-parallel
GWAS algorithm (Algorithm 1) to an HE algorithm
are complex matrix operations such as multiplication
and inversion. Since matrix inversion in HE is compli-
cated and costly, we substitute it by computation of the
adjoint matrices and determinant. With this approach,
the original Fisher scoring algorithm can be successfully
modified to compute encrypted data efficiently. For the
efficient computation of semi-parallel GWAS computa-
tion based on HE, moreover, we reduced the number of
matrix multiplications as many as possible, and modi-
fied the original algorithm into an approximate version

which requires much less computational cost. The details
of our optimization methodologies are well described in
“Our optimization methodology” section.

We exploited an approximate HE scheme HEAAN
[3, 4] with a publicly available library [5] for the imple-
mentation of our modified semi-parallel GWAS algorithm
based on HE. The HE algorithm takes about 40 minutes
for 245 samples each containing a binary phenotype, 3
covariates, and 14,841 SNPs on Linux with a 2.10GHz
processor using 8 threads (4 cores).

Related works
Some works on HE-based genome analyses has been stud-
ied over the past years: Lauter et al. [6] studied application
of HE on basic genomic algorithms such as the Pearson
Goodness-of-Fit test, and Wang et al. [7] performed an
exact logistic regression on small datasets based on HE.
More recently, some solutions [8–11] submitted to task
3 of iDASH 2017 [12] competition dealt with training
the logistic regression model of genomic data based on
HE. Some works [13, 14] studied the privacy-preserving
GWAS based on HE, but they performed rather simple χ2

test on quite small numbers of SNPs, which is quite dif-
ferent from iDASH 2018 task; logistic regression on large
numbers of SNPs.

There are some other alternative tools to deal with pri-
vacy issues in real-world applications. One of them is a
cryptographic tool called secure Multi-Party Computa-
tion (MPC). In MPC, computations are done online by
multiple parties without revealing any information of the
result to each party. There have been several remarkable
works on privacy-preserving genome analysis based on
MPC. In 2017, Jagadeesh et al. [15] proposed privacy-
preserving solutions for several genomic diagnose meth-
ods based on MPC with practical implementation over
real patient data. Recently, Cho, Wu and Berger [16] suc-
cessfully constructed a practical MPC-based protocol for
privacy-preserving GWAS computation over large-scale
genomic data. There have been several previous works
[14, 17–19] on privacy-preserving GWAS computation
based on MPC; however, they had some limitations to
be applied in practice since they either require infeasible
computational cost or greatly streamlined the task.

Meanwhile, in 2016, Chen et al. [20] proposed a
hardware-based solution for privacy-preserving genome
analysis with Software Guard Extensions (SGX) [21],
the security-related instruction built in Intel CPU which
allows secure computations in a private region which
cannot be accessed without the private key. They imple-
mented a SGX-based framework for secure transmission
disequilibrium test on Kawasaki disease patients with high
scalability on the number of SNPs.

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 3 of 12

Methods
Approximate homomorphic encryption scheme HEAAN
For privacy-preserving GWAS computation, we applied
an HE scheme called HEAAN proposed by Cheon et al.
[3, 4], which supports approximate computation of real
numbers in encrypted state. Efficiency of HEAAN in the
real world has been proved by showing its application
in various fields including machine learning [8, 22, 23]
and cyber physical system [24]. The winning solution of
iDASH competition in 2017 also applied HEAAN as an
HE scheme for privacy-preserving logistic regression on
genomic data.

At high-level, for a HEAAN ciphertext ct of some mes-
sage polynomial m, the decryption process with a secret
key sk is done as

Decsk(ct) = m + e ≈ m

where e is a small error attached to the message poly-
nomial m. Furthermore, for ciphertexts ct1 and ct2 of
message polynomials m1 and m2, the homomorphic eval-
uation algorithms C.Add and C.Mult satisfy

Decsk (C.Add(ct1, ct2)) ≈ m1 + m2,
Decsk(C.Multevk (ct1, ct2)) ≈ m1 · m2,

i.e., addition and multiplication can be internally done
even in encrypted state.

For formal definitions, let L be a level parameter, and
q� := 2� for 1 ≤ � ≤ L. Let R := Z[X] /

(
XN + 1

)
for

a power-of-two N and Rq be a modulo-q quotient ring
of R, i.e., Rq := R/qR. The distribution χkey := HW(h)

over Rq outputs a polynomial of {−1, 0, 1}-coefficient hav-
ing h number of non-zero coefficients, and χenc and χerr
denote the discrete Gaussian distribution with some pre-
fixed standard deviation. We denote the rounding func-
tion by �·�, which outputs the nearest integer of a real-
number input. For a = ∑N−1

i=0 aiXi ∈ R[X] /
(
XN + 1

)
,

then �a� := ∑N−1
i=0 �ai�Xi ∈ R. Finally, [·]q denotes a

component-wise modulo q operation on each element
of Rq. Note that those parameters N, L and h satisfying
a certain security level can be determined by Albrecht’s
security estimator [25, 26]. The scheme description of
HEAAN is as following:

• KeyGen(params).

- Sample s ← χkey. Set the secret key as
sk ← (1, s).

- Sample a ← U
(
RqL

)
and e ← χerr. Set the

public key as pk ← (b, a) ∈ R2
qL where

b ←[−a · s + e]qL .
- Sample a′ ← U

(
Rq2

L

)
and e′ ← χerr. Set the

evaluation key as evk ← (
b′, a′) ∈ R2

q2
L

where
b′ ← [−a′s + e′ + qL · s2]

q2
L
.

• Encpk(m). For a message m ∈ R, sample v ← χenc

and e0, e1 ← χerr. Output the ciphertext
ct = [v · pk + (m + e0, e1)]qL .

• Decsk(ct). For a ciphertext ct = (c0, c1) ∈ R2
q�

, output
a message m′ =[c0 + c1 · s]q�

.
• C.Add

(
ct, ct′

)
. For ct, ct′ ∈ R2

q�
, output

ctadd ← [
ct + ct′

]
q�

.
• C.Sub

(
ct, ct′

)
. For ct, ct′ ∈ R2

q�
, output

ctsub ← [
ct − ct′

]
q�

.
• C.Multevk

(
ct, ct′

)
. For

ct = (c0, c1), ct′ = (
c′

0, c′
1
) ∈ R2

q�
, let

(d0, d1, d2) = (
c0c′

0, c0c′
1 + c1c′

0, c1c′
1
)
. Output

ctmult ←
[
(d0, d1) +

⌊
q−1

L · d2 · evk
⌉]

q�

.

For more details of the scheme including the correctness
and security analysis, we refer the readers to [3].

The above-mentioned scheme deals with message poly-
nomial m in some integer polynomial ring R. To encrypt
real (or complex) value, HEAAN use a (field) isomorphism
τ : R[X] /

(
XN + 1

) → C
N/2 called canonical embed-

ding. A plaintext vector
m = (m0, ..., mN/2−1) is first
transformed into τ−1 (
m) ∈ R[X] /

(
XN + 1

)
, and then

rounded off to an integer-coefficient polynomial. How-
ever, the naive rounding-off

⌊
τ−1 (
m)

⌉
can derive quite

large relative error on the plaintext. To control the error,
we round it off after scaling up by p bits for some inte-
ger p, i.e.,

⌊
2p · τ−1 (
m)

⌉
, so that the relative error is

reduced. Clearly, a decoding algorithm for m would be
2−p · τ(m):

• Ecd (
m; p). For
m = (m0, ..., mN/2−1) in C
N/2 and a

precision bit p > 0, output a polynomial
m ← ⌊

2p · τ−1 (
m)
⌉ ∈ R where the rounding �·� is

done coefficient-wisely.
• Dcd(m; p). For m ∈ R, output a plaintext vector

m′ = 2−p · τ(m) ∈ C
N/2.

To sum up, to encrypt a plaintext vector of real (complex)
numbers
m, we first encode
m into m ← Ecd (
m; p) with
a certain precision bit p, and then generate a ciphertext
ct ← Encpk(m) with the public key pk.

Now consider ct1 and ct2 be ciphertexts of
m1 and
m2
in C

N/2. Since our encoding method scales each plain-
text vector up by 2p, the plaintext vector of a cipher-
text ct′ ← C.Multevk (ct1, ct2) is (approximately) 2p ·

m1 �
m2, not
m1 �
m2, which will result in exponential
growth of plaintexts. To deal with this problem, we adjust
the scaling factor by the following procedure so-called
rescaling:

• RS�→�′(ct). For a ciphertext ct ∈ R2
q�

, output
ct′ ← [�(q�′/q�) · ct�]q�′

.

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 4 of 12

After the rescaling procedure ctmult ← RS
(
ct′

)
, the

plaintext vector of the output ctmult is (approximately)

m1 �
m2, and the ciphertext modulus qL is reduced by
2p. As a result, the level parameter L should be carefully
chosen according to the multiplicative depth of a target
computation. In order to present our algorithm in a sim-
ple form, we will not describe these rescaling procedures
for the rest of the paper, but we remark that in the actual
use of HEAAN, there should be delicate consideration on
scaling of message.

To deal with a plaintext vector of the form
m ∈ C
k hav-

ing length K ≤ N/2 for some power-of-two divisor K
of N/2, HEAAN encrypts
m into a ciphertext of an N/2-
dimensional vector (
m|| · · · ||
m) ∈ C

N/2, where
(
v||
w)

denotes the concatenation of two vectors
v and
w. This
implies that a ciphertext of
m ∈ C

K can be understood
as a ciphertext of (
m|| · · · ||
m) ∈ C

K ′ for powers-of-two K
and K ′ satisfying K ≤ K ′ ≤ N/2 .

Finally, the HEAAN scheme provides the rotation oper-
ation on plaintext slots, i.e., it enables us to securely
obtain an encryption of the shifted plaintext vector(
mr , . . . , mN/2−1, m0, . . . , mr−1

)
from an encryption of(

m0, . . . , mN/2−1
)
. It is necessary to generate an additional

public information rk, called the rotation key. We denote
the rotation operation as follows.

• Rotrk(ct; r). For the rotation key rk, output a
ciphertext ct′ encrypting the (left) rotated plaintext
vector of ct by r(> 0) positions as above example. If
r < 0, it denotes the right rotation by (−r) positions.

We omit a subscript of each algorithm of HEAAN for
convenience if it is obvious.

Matrix packing method and rotate function
In this subsection, we describe an encoding method to
encrypt a matrix structure in a ciphertext which was also
introduced in [8]. Consider an n × m matrix Z

Z =
⎡

⎢
⎣

z0,0 · · · z0,m−1
...

. . .
...

zn−1,0 · · · zn−1,m−1

⎤

⎥
⎦ .

We first pad zeros to set the number of rows and columns
to be powers-of-two, say n and m, and assume that log n+
log m ≤ log(N/2). Then we pack the whole matrix in a
single ciphertext ctZ in a column-by-column manner. As
described above, the algorithm Rot (ctZ ; r) can shift the
encrypted vector by r positions. In particular, we can per-
form row and column rotations of an encrypted matrix
with this operation. When r = n · j, and the result will be
the (left) column rotation of the encrypted matrix Z by j
columns.

For the row rotation of an encrypted matrix, we use so-
called masking approach. Consider n×m matrices Mi and

Mi, where the first n − i rows of Mi (resp. Mi) are filled
with 1 (resp. 0) and the last i rows of Mi (resp. Mi) are
filled with 0 (resp. 1). Let mski and mski be the ciphertext
of Mi and Mi, respectively.

Mi =

⎡

⎢
⎢
⎢
⎣

1 · · · 1
1 · · · 1
...

. . .
...

0 · · · 0

⎤

⎥
⎥
⎥
⎦

, Mi =

⎡

⎢
⎢
⎢
⎣

0 · · · 0
0 · · · 0
...

. . .
...

1 · · · 1

⎤

⎥
⎥
⎥
⎦

To rotate Z by i rows in encrypted state, we first com-
pute ct1 ← Rot (ctZ , i) and ct2 ← Rot (ctZ , i − n).
Then, we mask them as ct1 ← C.Mult (ct1, mski) and
ct2 ← C.Mult

(
ct2, mski

)
. As a result, the output of

C.Add (ct1, ct2) is a ciphertext of upper row rotation of Z
by i rows.

Those row and column rotations of an encrypted matrix
are denoted as follows:

• C.ColumnRot
(
ctZ , j

)
. For a ciphertext ctZ of a

matrix Z and an integer j, output a ciphertext ct of
left column rotation of Z by j columns.

• C.RowRot (ctZ , i). For a ciphertext ctZ of a matrix Z
and an integer j, output a ciphertext ct of upper row
rotation of Z by i rows.

Semi-parallel GWAS algorithm
A naive application of GWAS analysis can be done by
running a logistic regression for each SNP, which result-
ing in high computational cost since the number of SNPs
can be usually hundred thousands or more. To overcome
this problem, Sikorska et al.[27] proposed a semi-parallel
GWAS algorithm which reduces the required computa-
tion time from 6 hours to 10-15 minutes using projections.

Let n be the number of samples each of which consists
of m (binary) SNP data and k′ covariate data. Then the
whole SNP data and covariate data can be organized as
an n × m matrix S and an n × k′ matrix X0, respectively.
For k := k′ + 1, we define a matrix X as the concatena-
tion of a vector whose components are 1 and X0, denoted
by X = (
1||X0

)
. Let
y be a target binary phenotype vector

of length n. With these inputs, the semi-parallel GWAS
algorithm outputs the m-dimensional vector

−−→
pval which

indicates the p-value of each SNP with respect to the tar-
get phenotype. The detail of the algorithm is described in
Algorithm 1.

The semi-parallel GWAS algorithm involves logistic
regression on (X,
y) in the first step, and Fisher Scor-
ing [28] described in Algorithm 2 is one of the most
highly efficient algorithm for logistic regression. In both
algorithms, σ(x) := 1/(1 + exp(−x)) is called sig-
moid function. For both algorithms, if the input of

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 5 of 12

Algorithm 1 The Original Semi-Parallel GWAS

Input: SNP matrix S ∈ {0, 1}n×m, covariate matrix X ∈
Q

n×k , phenotype vector
y ∈ Q
n, and # iteration iter.

Output: p-value vector
−−→
pval = (

pval1, · · · , pvalm
) ∈ Q

m.
1: (
β ,
p, W) ← FisherScoring(X,
y; iter)

� FisherScoring(·) is described in Algorithm 2
2:
v ← log

(
p/
(
1 −
p)) + (
y −
p)/diag(W)

3: S∗ ← S − X
(
XT WX

)−1 XT WS
4:
v∗ ←
v − X

(
XT WX

)−1 XT W
z
5:
c ← S∗T W
v∗ ∈ Q

m

6:
d ← diag
(

S∗T WS∗
)

∈ Q
m

7: for i = 1 to m do
8: ai ← −|ci/

√
di|

9: pvali = 2 · ∫ ai
−∞ ρ(x)dx � ρ(x) := 1√

2π
exp

(− 1
2 x2)

10: end for
11: return

−−→
pval

functions such as logarithm (log), division (/) and sig-
moid (σ) is a vector, then it means to apply the func-
tion component-wisely resulting in the output vector
of the same length. The notation T in the superscript
denotes the matrix transpose. The operation � denotes
the Hadamard (component-wise) multiplication of two
vectors, and the notation diag(·) with an input of a square
matrix means the diagonal vector of the input.

Our optimization methodology
The aim of this study is to construct an HE algorithm
for privacy-preserving semi-parallel GWAS computation.
Since non-polynomial operations such as matrix inverse
or real number inversion is a challenging stuff in HE, we
need to modify the original semi-parallel GWAS algo-
rithm into HE-friendly form for efficiency. Moreover, the

Algorithm 2 FisherScoring

Input: Covariate matrix X ∈ Q
n×k , phenotype vector
y ∈

Q
n, and # iteration iter.

Output: Coefficient vector
β ∈ Q
k , fitted vector
p ∈ Q

n,
weight matrix W ∈ Q

n×n

1:
β(0) =
0 ∈ Qk ,
p(0) = −→0.5 ∈ Q
n, W (0) = 0.25 · In

2: for t = 0 to iter − 1 do
3:
v(t) ← log

(
p(t)/
(
1 −
p(t))) +(
y −
p(t)) /diag

(
W (t))

4:
β(t+1) ← (
XT W (t)X

)−1 XT W (t)
v(t)

5:
p(t+1) ← σ
(

X
β(t+1)
)

6: W (t+1) ← diagonal matrix of
p(t+1) � (
1 −
p(t+1)
)

7: end for
8: return (
β(iter),
p(iter), W (iter))

super-large data size of GWAS requires too much com-
putational cost in encrypted state, and this issue should
be resolved. In this regard, we introduce our optimization
methodology to the algorithm.

Modification of fisher scoring
The main obstacle of Fisher Scoring (Algorithm 2) is a
matrix inversion for U = XT WX ∈ Q

k×k . To overcome
this problem, we exploit the adjoint matrix adj(U) and the
determinant det(U) of U. For (i, j)-minor Mi,j ∈ Q of U,
adj(U) and det(U) are obtained from basic linear algebra:

adj(U) = [
(−1)i+j · Mi,j

] ∈ Q
k×k , (1)

det(U) =
k−1∑

i=0
ui,0 · (−1)i · Mi,0. (2)

We express the inverse matrix U−1 as U−1 = 1
det(U)

·
adj(U). To be precise, observe that

v(t) = log
(

p(t)

1 −
p(t)

)

+
y −
p(t)

diag
(
W (t))

= X
β(t) +
y −
p(t)

diag
(
W (t)) ,

from which we obtain an iterative updating equation on

β(t) as follows:

β(t+1) = U−1XT W (t)
(

X
β(t) +
y −
p(t)

diag
(
W (t))

)

=
β(t) + U−1XT
(

y −
p(t)

)

=
β(t) + 1
det(U)

· adj(U)XT
(

y −
p(t)

)
.

Here one needs to compute the inverse of det(U), but
this non-polynomial operation is rather expensive in HE.
The key observation on this equation is that the sec-
ond term U−1XT (
y −
p(t)) essentially converges to 0 as
t → ∞ since
β(t) converges to some point. From this,
we may expect that the convergence would be still valid
even when we neglect the term det(U)−1 and substitute it
by some appropriate constant. Namely, we can modify the
equation as

β(t+1) =
β(t) + α · adj(U)XT
(

y −
p(t)

)
.

for some constant α > 0. In practice, this approximate
version of the Fisher scoring algorithm works quite well
with slightly slower convergence rate.

Computing diag
(

S∗T WS∗
)

without S∗

The main observation of this subsection is that compu-
tation of n × m matrix S∗ in Algorithm 1 is superfluous
for obtaining p-values. Rather than computing S∗, we
directly compute det(U) · diag

(
S∗T WS∗

)
, which can be

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 6 of 12

obtained without computing (matrix) inversion. To be
precise, using the fact that S∗ = S − XU−1V for V :=
XT WS, we get

S∗T WS∗ = (
S − XU−1V

)T W
(
S − XU−1V

)

= ST WS − V T U−1V .

Based on this observation, we compute det(U) ·
diag

(
S∗T WS∗

)
by following:

1 Compute U = XT WX and V = XT WS.
2 Compute adj(U) and det(U).
3 Compute det(U) ·diag

(
ST WS

)−diag
(
V T adj(U)V

)
.

Approximate computation of S∗T W �v∗
We also take the main observation of the previous subsec-
tion so that we do not compute S∗. From the definition of
S∗ and
v∗, it holds that S∗T W
v∗ = ST W
v∗. Then we have
the following equations:

ST W
v∗ = ST W
(

I − XU−1XT W
)

v

= ST W
(

I − XU−1XT W
)
y −
p

diag(W)

= ST (
y −
p) − ST WXU−1XT (
y −
p)

� ST (
y −
p)

where the last approximation is valid since the term
XT (
y −
p)

is sufficiently close to the zero vector, which
is resulted from the Fisher Scoring. For example, each
component of XT (
y −
p)

was approximately 10−30 in our
experiment with 4 iterations in Fisher scoring. Refer to
“Dataset description” section for the specific description
of datasets. Therefore, we compute det(U) · ST (
y −
p)

which is a reliable approximation of det(U) · S∗T W
v∗, in
much less computational costs.

Our modified semi-parallel GWAS algorithm
To sum up all our algorithmic optimization techniques
described in above, we have Algorithm 3 and 4, which are
modified Fisher Scoring and semi-parallel GWAS algo-
rithms, respectively.

In Algorithm 3, the constant α takes a similar role to the
learning rate in gradient descent algorithm [29], which can
be adjusted if necessary.

We remark that step 8 of Algorithm 4, a conversion pro-
cedure from the squared z-score zi to the p-value pvali, is
done in unencrypted state. Namely, we decrypt the cipher-
text of zi for 1 ≤ i ≤ m after step 7 so that zi’s are
publicized. We stress that the squared z-score has exactly
the same information as the p-value, so publishing squared
z-scores does not leak any additional information more
than publishing p-values.

Algorithm 3 ModifiedFisherScoring

Input: Covariate matrix X ∈ Q
n×k , phenotype vector
y ∈

Q
n, # iteration iter, and constant α > 0.

Output: Coefficient vector
β ∈ Q
k , fitted vector
p ∈ Q

n,
weight matrix W ∈ Q

n×n

1:
β(0) =
0 ∈ Qk ,
p(0) =
0.5 ∈ Q
n, W (0) = 0.25 · In

2: for t = 0 to iter − 1 do
3: U(t) ← XT W (t)X
4:
β(t+1) ←
β(t) + α · adj

(
U(t)) XT (
y −
p(t))

5:
p(t+1) ← σ
(

X
β(t+1)
)

6: W (t+1) ← diagonal matrix of
p(t+1) � (
1 −
p(t+1)
)

7: end for
8: return
β(iter),
p(iter), W (iter)

Homomorphic evaluation of the modified semi-parallel
GWAS algorithm
Upon HE-friendly algorithms discussed in the previous
section, there still remain computational issues regard-
ing more fundamental operations. Recall that HEAAN
basically supports component-wise addition and multipli-
cation along with data slot rotations. However, we encrypt
the data matrix by column-by-column manner, and our
algorithms include complex operations such as matrix
multiplication, evaluation of the adjoint matrix, a sigmoid
function, and so on. In this regard, we specify how we can
deal with such operations efficiently, reducing the num-
ber of multiplications or the total depth of multiplications
required which are the main bottleneck of HE.

Note that this section consists of rather technical con-
tents related to HE, since it includes HE algorithms of all
building blocks for Algorithm 3 and Algorithm 4. One can
simply embrace the fact that every operation required in

Algorithm 4 Modified Semi-Parallel GWAS

Input: SNP matrix S ∈ {0, 1}n×m, covariate matrix X ∈
Q

n×k , phenotype vector
y ∈ Q
n, # iteration iter, and

constant α > 0.
Output: p-value vector

−−→
pval = (

pval1, · · · , pvalm
) ∈ Q

m.
1:
β ,
p, W ← ModifiedFisherScoring (X,
y; iter, α)

2: U ← XT WX, and compute adj(U), det(U)

3: V ← XT WS
4:
c ← ST (
y −
p)

5:
d ← det(U) · diag
(
ST WS

) − diag
(
V T adj(U)V

)

6: for i = 1 to m do
7: zi ← det(U) · c2

i /di

8: pvali = 2 · ∫ −√zi
−∞ ρ(x)dx � Done in unencrypted

state
9: end for

10: return
−−→
pval

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 7 of 12

Algorithm 3 and Algorithm 4 can be efficiently done based
on HE, if not really interested in the details.

Hereafter, [a]k with an integer a denotes a residue
number in [0, k − 1] modulo k. An n-dimensional vec-
tor
a = (a1, · · · , an) is simply denoted by (ai)1≤i≤n, and
an n × m matrix A having (i, j)-entry ai,j is denoted by
[ai,j]1≤i≤n,1≤j≤m . For both cases, if the size is obvious from
context, we simply write a vector by (ai), and a matrix by
[ai,j] . Every vector and matrix in this section is assumed
to be of size power-of-two, which is in line with our pack-
ing method introduced in “Matrix packing method and
rotate function” section.

Adjoint matrix and determinant
In step 4 of Algorithm 3 and step 2 of Algorithm 4, we
need to compute the adjoint matrix and the determinant
of the matrix U =[ui,j]i,j = XT WX.

We recall Eqs. 1 and 2 for adjoint matrix and determi-
nant. Given an encryption of U , denoted by CU , we gen-
erate (k − 1)2 ciphertexts Ci,j for 1 ≤ i, j ≤ k − 1 from CU ,
whose plaintext is an i-row (upper) rotation and j-column
(left) rotation of U. We first consider the 0-th plaintext
slot, i.e., the (0, 0)-position of the plaintext matrix, of the
ciphertexts. Since every ua,b for 1 ≤ a, b ≤ k−1 is a (0, 0)-
entry of plaintext matrix for one and only one ciphertext
Ca,b, we can compute a ciphertext whose (0, 0)-entry of
the plaintext matrix is M0,0 from Ca,b’s, by homomorphi-
cally evaluating the polynomial f which outputs M0,0 with
input ua,b’s.

Now observe that Ma,b and Ma′,b′ have a formula of the
same form where the subscript indices of ui,j are shifted
by

(
a′ − a, b′ − b

)
modulo k. Thanks to this index-shifting

property, the homomorphic evaluation of the polynomial f
with input Ca,b’s essentially outputs a ciphertext of which
the plaintext matrix is [Mi,j].

After computing the ciphertext of [Mi,j] as above, we
can obtain the ciphertext Cadj of adj(U) by multiplying a
ciphertext Csgn of

[
(−1)i+j]. Finally, the ciphertext Cdet

of determinant det(U) is easily obtained from the homo-
morphic multiplication of CU and Cadj, followed by log k
rotations and summations.

In case of k = 4, for example, the polynomial f is
defined as f

(
[ui,j]1≤i,j≤3

) = u1,1u2,2u3,3 − u1,1u2,3u3,2 −
u2,1u1,2u3,3+u2,1u1,3u3,2+u3,1u1,2u2,3−u3,1u1,3u2,2. Then,
the homomorphic evaluation to obtain Cadj is done as
Algorithm 5.

Matrix multiplications
Let A =[ai,j] be an n × k matrix with n ≥ k and B =[bi,j]
be an n × m matrix. We use an Algorithm 6 computing
a ciphertext CAT B of AT B from ciphertexts CA and CB of
A and B, which is inspired from the hybrid method by
Juvekar et al. [30].

Algorithm 5 C.Adj
(
CU ; Csgn

)
for k = 4

Input: Ciphertexts CU of U and Csgn of
[
(−1)i+j]

0≤i,j≤3
Output: Ciphertext Cadj of adj(U)

1: for i = 1 to 3 do
2: Ci,0 ← C.RowRot(CU , i)
3: for j = 1 to 3 do
4: Ci,j ← C.ColumnRot(Ci,0, j)
5: end for
6: end for
7: C1 ← C.Mult

(
C.Mult

(
C1,1, C2,2

)
, C3,3

)

8: C2 ← C.Mult
(
C.Mult

(
C1,1, C2,3

)
, C3,2

)

9: C3 ← C.Mult
(
C.Mult

(
C2,1, C1,2

)
, C3,3

)

10: C4 ← C.Mult
(
C.Mult

(
C2,1, C1,3

)
, C3,2

)

11: C5 ← C.Mult
(
C.Mult

(
C3,1, C1,2

)
, C2,3

)

12: C6 ← C.Mult
(
C.Mult

(
C3,1, C1,3

)
, C2,2

)

13: for i = 2 to 6 do
14: if i is even then
15: C1 ← C.Sub(C1, Ci)
16: else
17: C1 ← C.Add(C1, Ci)
18: end if
19: Cadj ← C.Mult(C1, Csgn)

20: end for
21: return Cadj

As the first step, we compute k ciphertexts of

diagt(A) = (
ai,[i−t]k

)
0≤i≤n−1

for 0 ≤ t ≤ k−1. For this, we use ciphertexts dmskt of n×
k masking matrix, of which the (i, j)-entry is δ[i+t]k ,j. Here
δi,j denotes the Kronecker Delta. By summing column
rotations of A�dmskt, we get ciphertexts of n×m matrices
Expdiagt(A) having m identical columns diagt(A). Then,
we compute the following matrix M:

M =
k−1∑

t=0
ρt

(
Expdiagt(A) � B

)

=
k−1∑

t=0
ρt

([
ai,[i−t]k · bi,j

])

=
k−1∑

t=0

[
a[i+t]n,[i]k · b[i+t]n,j

] ∈ Q
n×m,

where ρt is an (upward) t-rotation of matrix by row.
Thus, by properly summing rows of M, we obtain AT B =∑n−1

t=0 [at,i · bt,j] ∈ Q
k×m. The detail of this algorithm is

described in Algorithm 6.
Indeed, our GWAS algorithm contains several matrix

multiplications of the form AT DB for the diagonal matrix
D. For this, we first compute B′ = DB by Expdiag0(D) �
B, and then obtain AT DB by computing AT B′ with the

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 8 of 12

Algorithm 6 C.MatMul(CA, CB)
Input: Ciphertexts CA of A ∈ Q

n×k and CB of B ∈ Q
n×m

with n ≥ k, and masking ciphertexts {dmskt}t
Output: A ciphertext of AT B.

1: CM ← 0
2: for t = 0 to k − 1 do
3: Ct ← C.Mult (dmskt , CA)

4: for i = 0 to log k − 1 do
5: Ct ← C.Add

(
Ct ,C.ColumnRot

(
Ct , 2i))

6: end for
7: CM ← C.Add (CM,C.RowRot

(C.Mult (Ct , CB) , t))
8: end for
9: for i = 0 to log(n/k) − 1 do

10: CM ← C.Add
(
CM,C.RowRot

(
CM, 2i · k

))

11: end for
12: return CM

above method. Note that this requires only one additional
Hadamard multiplication.

Matrix-vector multiplications
By understanding a vector by an one column matrix, we
can perform all matrix-vector multiplications in our algo-
rithms, except X
β that appears in step 5 of Algorithm
3.

In fact, we can also compute X
β by changing Algorithm
6 a little bit. Recall that X =[xi,j] is an n · k matrix and

β = (βi) is a k-length vector, and it holds that n ≥ k. We
now again compute k ciphertexts of diagt(X), and then
compute

k−1∑

t=0
diagt(X) � ρ−t

((
β|| · · · ||
β
))

=
k−1∑

t=0

(
xi,[i−t]k

) � (
β[i−t]k

)

=
k−1∑

t=0

(
xi,[i−t]k · β[i−t]k

) = X
β ,

whose algorithm is described by Algorithm 7.
We remark that there is another simple method

for matrix-vector multiplication that we use for
c =
ST (
y −
p)

. For simplicity, let
x = (xi) :=
y −
p. Then
by rotating and summing all rows of S � [
x|| · · · ||
x] =[
si,j · xi

]
, we obtain a matrix having the same size with S

and consisting of identical rows
c = ST
x. This requires
only one Hadamard multiplication and log n rotations.
However, strictly speaking, this resulting ciphertext is not
a ciphertext of ST
x, since it encrypts a matrix having
c
row-wisely, not column-wisely. Thus we can only use this
simple method only for ST
x, where this row-wise packing

Algorithm 7 C.MatVecMul(CX , Cβ)
Input: Ciphertexts CX of X ∈ Q

n×k and C
β of
β ∈ Q
k

and masking ciphertexts {dmskt}t
Output: A ciphertext of Xβ .

1: CM ← 0
2: for t = 0 to k − 1 do
3: Ct ← C.Mult(dmskt , CX)

4: for i = 0 to log k − 1 do
5: Ct ← C.Add

(
Ct ,C.ColumnRot

(
Ct , 2i))

6: end for
7: CM ← C.Add (CM,C.Mult (Ct ,C.RowRot(

C
β , −t
)))

8: end for
9: return CM

does not matter after then. The detail of this algorithm is
described in Algorithm 8.

Fast diag
(

AT BA
)

computations
To obtain diag

(
AT BA

)
, one can perform matrix multipli-

cation followed by diagonal extraction, but it is obviously
not optimal since this computes unnecessary entries of
AT BC other than diagonal entries. Thus we use another
method that only compute the diagonal entries.

Let A = [
ai,j

]
be an n × m matrix. As an incremental

step, we first consider diag
(
AT DC

)
where D = [

di,j
]

is an
n × n diagonal matrix and C = [

ci,j
]

is an n × m matrix.
Then it holds that diag

(
AT DC

)
j = ∑n−1

i=0 di,i · ai,j · ci,j.
Now, from an encryption of D, we compute an encryption
of n × m matrix Expdiag0(D) and then by rotating and
summing

A � Expdiag0(D) � C = [
di,i · ai,j · ci,j

]
i,j

through all rows, we obtain a matrix consisting of identical
rows diag

(
AT DC

)
. One can easily check that Algorithm

8 with input CA and C.Mult
(
Cdiag(D), CC)

)
exactly per-

forms this computation, and then we omit the explicit
algorithm. Note that this can be directly applied for
diag

(
ST WS

)
computation of step 5 of Algorithm 4.

Algorithm 8 C.MatVecMul2(CS, C
x)
Input: Ciphertexts CS of a matrix S ∈ Q

n×m and C
x of a
vector
x ∈ Q

n

Output: A ciphertext of a matrix having identical rows
ST
x.

1: CM ← C.Mult (CS, C
x)
2: for i = 0 to log n − 1 do
3: CM ← C.Add

(
CM,C.RowRot

(
CM, 2i))

4: end for
5: return CM

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 9 of 12

Toward our goal diag
(
AT BA

)
with a full matrix B, we

exploit the above diagonal-case method after decompos-
ing B into diagonal matrices. Let Bt be a diagonal matrix
with the diagonal diagt(B) for 0 ≤ t ≤ n − 1, then it holds
that

diag
(

AT BA
)

=
n−1∑

t=0
diag

(
AT · Bt · ρt(A)

)
.

Therefore, after obtaining encryptions of Expdiagt(B) and
ρt(A) from encryptions of B and A, we can directly apply
the diagonal-case method on each diag(AT · Bt · ρt(A))

computation for 1 ≤ t ≤ n and finally obtain the
encryption of diag

(
AT BA

)
.

Here we again remark that, since these methods use
Algorithm 8, they also ruin the column-wise packing as we
already pointed out. Hence after applying these methods,
it would be hard to perform another matrix operation.
Indeed, one can check that the diagonal extractions are
required for step 5 of Algorithm 4, which is the last part of
algorithm that uses matrix structure.

Approximate computation of sigmoid
Since the sigmoid function σ(x) = 1/(1 + exp(−x)) is
not a polynomial, we exploit an approximate polynomial
of the function to evaluate based on HE. Following the
methodology of [8, 22], we used least square approxima-
tion method over the interval [−8, 8]. The approximate
polynomials g(x) of degree 7 is computed as

0.5+1.735·x
8
−4.194·

(x
8

)3+5.434·
(x

8

)5−2.507·
(x

8

)7
.

The maximal error between σ(x) and g(x) is approxi-
mately 0.032.

Inverse of real numbers
In step 7 of Algorithm 4, we need to compute the inverse
of di for 1 ≤ i ≤ m. To compute the inverse of real
numbers, we exploit the Goldschmidt’s division algorithm
[31], which outputs an approximate value of the inverse
through iterative polynomial evaluations. Refer to [32] for
more details of the algorithm.

Results
In this section, we present the experimental results of
our modified semi-parallel GWAS algorithm based on
HEAAN with a publicly available library [5]. All experi-
ments were implemented in C++ 11 standard, and per-
formed on Linux with Intel Xeon CPU E5-2620 v4
at 2.10GHz processor with multi-threading (8 threads)
turned on.

Dataset description
We used a dataset of 245 samples where each sam-
ple contains a binary phenotype, 3 covariates (height,
weight, age), and 25,484 SNP data provided by iDASH
2018 competition. The dataset is divided into two sets
named by iDash_Test and iDash_Eval each composed of
245 samples containing common phenotype and 3 covari-
ates but different number of SNPs; 10,643 and 14,841
SNPs, respectively. We used iDash_Test to set optimal
parameters, and iDash_Eval was used to evaluate our algo-
rithm in the competition. Note that the first column of
the covariate matrix X ∈ Q

n×k is a vector of which
all the components are 1. Therefore, the parameters are
(n, m, k) = (245, 10643, 4) for iDash_Test and (n, m, k) =
(245, 14841, 4) for iDash_Eval.

Experimental setting and parameter selection
We propose two HEAAN parameter sets achieving 128-
bit or higher security for two experiments denoted by Exp
I and Exp II in Table 1. The security levels of HEAAN
parameter sets were estimated with Albrecht’s security
estimator [25, 26] of which inputs are the ring dimension
N, the modulus Q, the Hamming weight h of a secret poly-
nomial, and the error distribution χerr. Note that since
the modulus of the evaluation key evk is 22L, the security
of HEAAN is estimated with input

(
N , Q = 22L, h, χerr

)
.

Exp I is a streamlined version operating Algorithm 4 only
until step 5; that is, it does not perform the last division
process. Note that Exp II that includes the division process
(step 7 of Algorithm 4) naturally requires larger L than Exp I.

We first set the scaling parameter p to be sufficiently
large so that errors derived from HEAAN do not effect
on significant bits of plaintexts. The level parameter L is
chosen by considering the fact that p levels are consumed
for each homomorphic multiplication. See “Approximate
homomorphic encryption scheme HEAAN” section for
specific definitions of HEAAN parameters. Besides thoese
HEAAN parameters, one also needs to select an appropri-
ate constant α > 0 in Algorithm 3. After experimenting
on several values, we set α = 8. Note that the choice of α

merely depends on the size of X, but not on S.

Experimental results and evaluation
We demonstrated our modified semi-parallel GWAS algo-
rithm in encrypted state, and evaluated the accuracy

Table 1 Parameters for HEAAN, and running time of KeyGen,
Enc and Dec

Exp HE params Time (sec)

log N L p h KeyGen Enc Dec

I 17 1300 50 56 157 68 0.28

II 17 1700 50 78 197 90 0.15

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 10 of 12

Fig. 1 Comparison of p-values on iDASH datasets: a the left figure represents Exp I for iter = 1, 2, 4 on iDash_Test, b the right figure represents Exp I
and Exp II for iter = 4 on iDash_Eval

of our algorithm comparing it to that of the original
algorithm which is performed in unencrypted state. The
comparison result of p-value is described as a (log-scale)
graph in Fig. 1. We plotted each SNPs according to the p-
values computed by original algorithm and ours denoted
by True and Enc, respectively. The diagonal line represents
the line y = x, and closer distribution of points to this
line implies higher accuracy. The Fig. 1a shows that the
accuracy of our algorithm increases with the number of
iterations for Fisher scoring, where the data set iDash_Test
is used. The Fig. 1b shows that the accuracy of Exp II,
which includes a division procedure, is comparable to that
of Exp I without the division, where the data set iDash_Eval
is used. Comparing Exp I and Exp II, there exists a trade-
off between computational time and information leakage.
The output of Exp I is the vector of squared statistics
(zi)1≤i≤m which has exactly same information with the
p-value vector pval, but it takes 20 minutes longer than
Exp I. On the other hand, since Exp I outputs the numer-
ator det(U) · c2

i and the denominator di (in Algorithm 4)
separately, it leaks some information more than p-values.
However, it still seems to be very hard to extract any
important information of input data from the numerator
and denominator.

For more concrete evaluation, we classified each SNP
as positive or negative depending on whether the cor-
responding p-value is larger or smaller than the given
threshold (e.g. 10−2, 10−5, or 10−12). Then, the accuracy
of our algorithm compared to the original algorithm can
be checked by a well-known statistical measure called
F1 score. The F1 score of our algorithm is calculated

by regarding the positive SNPs classified by the origi-
nal GWAS algorithm to be the correct positive samples.
For the formal definition of F1 score, we refer readers
to [33].

The performance of our algorithm including the com-
putation time and the F1 score on each parameter
set is described in Table 2, where iter denotes the
number of iterations in Fisher Scoring, Comp. time
denotes the running time of our algorithm in encrypted
state, and TH denotes the threshold of p-values for
classification.

As we have seen in Fig. 1, more iterations of Fisher
scoring provides higher accuracy measured by higher F1
score. Note that 4 iterations suffice to provide high F1
score even in a very small threshold such as 10−12. Also,
Exp II calculating approximate inverse in encrypted state
provides almost similar F1 score to Exp I without such
approximation. It implies that the error of inverse approx-
imation does not seriously impact the whole approxi-
mation. Furthermore, Exp II shows even higher F1 score
than Exp I due to the cancellation of errors from our
algorithmic approximation and that from the inverse
approximation.

For about 15,000 SNP data, our algorithm works
in less than 40 minutes when we exclude step 7 of
Algorithm 4 in encrypted state, or in about 60 minutes
otherwise. We emphasize that each iteration of Fisher
scoring takes about 3 minutes while the Goldschmidt’s
division algorithm takes less than 30 seconds. Exp II takes
much longer time than Exp I due to the larger level
parameter L.

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 11 of 12

Table 2 Experimental results for each parameter set

Data Params Comp. time Memory F1 Score

Exp iter (GB) TH: 10−2 TH: 10−5 TH: 10−12

iDash_Test I 1 13 min* 9.3 0.960 0.969 0.243

I 2 27 min 16.7 0.985 0.985 0.955

I 4 32 min 16.7 1.000 0.999 0.997

II 4 52 min 22.0 1.000 0.999 0.998

iDash_Eval I 4 38 min 19.4 0.998 0.995 0.992

II 62 min 25.4 0.998 0.996 0.994

*: We used more streamlined parameter; log N = 16, L = 950, p = 50, h = 91

Discussion
Scalability
Our algorithm is executed and evaluated with about hun-
dreds of samples each containing ten thousand SNPs,
and 3 covariates which can be seen as a small-size data
in usual GWAS analysis. We emphasize that our algo-
rithm is highly scalable in the number of samples or SNPs,
since we circumvent the naive execution of large-sized
matrix operations through the proper algorithmic modifi-
cation. To test the scalability of our algorithm in practice,
we randomly generated 500 samples each of which con-
sist of 3 covariates and 30,000 SNPs. Each column of
the covariate matrix was uniform randomly generated in
the interval [150, 200], [40, 100] and [20, 80] considering
height, weight and age, respectively. Each element of the
SNP matrix was uniform randomly chosen as a binary
matrix. The experiment Exp 1 on this random dataset
encrypted with properly chosen hyperparameters iter = 4
and α = 2−7 still showed quite accurate p-value result
compared to the result obtained by running Algorithm 2
in unencrypted state within 2 h.

Fisher Scoring
Our HE-friendly modified Fisher scoring (Algorithm 3)
works quite well in practice, but there still remains to
obtain some theoretical results on the convergence of the
algorithm with respect to the new parameter α. Further-
more, we should consider an error in every operation
derived from HEAAN when homomorphically evaluate
the algorithm. As a result, research on the convergence of
the erroneous version of our modified Fisher scoring algo-
rithm should be very interesting topic as a further work.
In addition, we note that our modified Fisher scoring algo-
rithm can be generally used for logistic regression, not
restricted to GWAS algorithm.

Conclusions
Interest on privacy-preserving genome data analysis
based on HE has grown up very rapidly since the annual
iDASH competition was launched, and GWAS is one
of the most important technologies in this area which

was also selected as one of three tasks in iDASH 2018
competition. Our HE-friendly modified semi-parallel
GWAS algorithm was successfully implemented based
on an approximate HE scheme HEAAN, and we could
obtain the p-value result in about 30–40 minutes for
10,000–15,000 SNP data with sufficiently high accu-
racy compared to the result obtained in unencrypted
state.

Abbreviations
HE: Homomorphic encryption; SNP: Single nucleotide polymorphism; GWAS:
Genome-wide association study; TH: threshold

Acknowledgements
We thank Kyoohyung Han for the help on finding an error point of our code
implementation. We also thank Minki Hhan for giving us helpful discussion on
designing efficient algorithms.

About this supplement
This article has been published as part of BMC Medical Genomics Volume 13
Supplement 7, 2020: Proceedings of the 7th iDASH Privacy and Security Workshop
2018. The full contents of the supplement are available online at https://
bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-
supplement-7.

Authors’ contributions
DH designed the overall algorithms for this study. YH and DW transformed the
algorithms into homomorphic encryption algorithms. AD and SW contributed
to the implementation of our HE algorithms. JH contributed in writing the
manuscript. DH takes final responsibility for the manuscript. All author(s) have
read and approved the final manuscript.

Funding
This work was supported in part by the Institute for Information &
Communications Technology Promotion (IITP) Grant through the Korean
Government (MSIT), (Development and Library Implementation of Fully
Homomorphic Machine Learning Algorithms supporting Neural Network
Learning over Encrypted Data), under Grant 2020-0-00840, in part by the
National Research Foundation of Korea (NRF) Grant funded by the Korean
Government (MSIT) (No. 2017R1A5A1015626), and in part by the LG
Electronics (LGE) grant.

Availability of data and materials
The dataset was available to participants registered to iDASH 2018
competition.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-13-supplement-7

Kim et al. BMC Medical Genomics 2020, 13(Suppl 7):77 Page 12 of 12

Competing interests
The authors declare that they have no competing interests.

Published: 21 July 2020

References
1. Malik MB, Ghazi MA, Ali R. Privacy preserving data mining techniques:

current scenario and future prospects. In: Third International Conference
on Computer and Communication Technology (ICCCT). Allahabad: IEEE;
2012. p. 26–32.

2. IDASH 2018. http://www.humangenomeprivacy.org/2018/. Accessed 15
Jan 2019.

3. Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for
arithmetic of approximate numbers. In: Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the
Theory and Application of Cryptology and Information Security. Cham:
Springer; 2017. p. 409–37.

4. Cheon JH, Han K, Kim A, Kim M, Song Y. Bootstrapping for approximate
homomorphic encryption. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Cham: Springer;
2018. p. 360–84.

5. Han K, Kim A, Kim M, Song Y. Implementation of HEAAN. https://github.
com/snucrypto/HEAAN. Accessed 12 July 2018.

6. Lauter K, López-Alt A, Naehrig M. Private computation on encrypted
genomic data. In: International Conference on Cryptology and
Information Security in Latin America. Cham: Springer; 2014. p. 3–27.

7. Wang S, Zhang Y, Dai W, Lauter K, Kim M, Tang Y, Xiong H, Jiang X.
Healer: homomorphic computation of exact logistic regression for secure
rare disease variants analysis in GWAS. Bioinformatics. 2015;32(2):211–8.

8. Kim A, Song Y, Kim M, Lee K, Cheon JH. Logistic regression model
training based on the approximate homomorphic encryption. BMC Med
Genet. 2018;11(4):83.

9. Chen H, Gilad-Bachrach R, Han K, Huang Z, Jalali A, Laine K, Lauter K.
Logistic regression over encrypted data from fully homomorphic
encryption. BMC Med Genet. 2018;11(4):81.

10. Crawford JL, Gentry C, Halevi S, Platt D, Shoup V. Doing real work with
FHE: The case of logistic regression. In: Proceedings of the 6th Workshop
on Encrypted Computing & Applied Homomorphic Cryptography. New
York: ACM; 2018. p. 1–12.

11. Bonte C, Vercauteren F. Privacy-preserving logistic regression training.
BMC Med Genet. 2018;11(4):86.

12. IDASH 2017. http://www.humangenomeprivacy.org/2017/. Accessed 15
Jan 2019.

13. Lu W, Yamada Y, Sakuma J. Efficient secure outsourcing of genome-wide
association studies. In: 2015 IEEE Security and Privacy Workshops. USA:
IEEE; 2015. p. 3–6.

14. Bonte C, Makri E, Ardeshirdavani A, Simm J, Moreau Y, Vercauteren F.
Towards practical privacy-preserving genome-wide association study.
BMC Bioinformatics. 2018;19(1):537.

15. Jagadeesh KA, Wu DJ, Birgmeier JA, Boneh D, Bejerano G. Deriving
genomic diagnoses without revealing patient genomes. Science.
2017;357(6352):692–5.

16. Cho H, Wu DJ, Berger B. Secure genome-wide association analysis using
multiparty computation. Nat Biotechnol. 2018;36(6):547.

17. Kamm L, Bogdanov D, Laur S, Vilo J. A new way to protect privacy in
large-scale genome-wide association studies. Bioinformatics. 2013;29(7):
886–93.

18. Constable SD, Tang Y, Wang S, Jiang X, Chapin S. Privacy-preserving
GWAS analysis on federated genomic datasets. BMC Med Inform Decis
Making. 2015;15:2. BioMed Central.

19. Bogdanov D, Kamm L, Laur S, Sokk V. Implementation and evaluation of
an algorithm for cryptographically private principal component analysis
on genomic data. IEEE/ACM Trans Comput Biol Bioinforma. 2018;15(5):
1427–32.

20. Chen F, Wang S, Jiang X, Ding S, Lu Y, Kim J, Sahinalp SC, Shimizu C,
Burns JC, Wright VJ, et al. Princess: Privacy-protecting rare disease
international network collaboration via encryption through software
guard extensions. Bioinformatics. 2016;33(6):871–8.

21. Anati I, Gueron S, Johnson S, Scarlata V. Innovative technology for cpu
based attestation and sealing. In: Proceedings of the 2nd International

Workshop on Hardware and Architectural Support for Security and
Privacy vol. 13. New York: ACM; 2013.

22. Kim M, Song Y, Wang S, Xia Y, Jiang X. Secure logistic regression based
on homomorphic encryption: Design and evaluation. JMIR Med Inform.
2018;6(2):e19.

23. Cheon JH, Kim D, Kim Y, Song Y. Ensemble method for
privacy-preserving logistic regression based on homomorphic
encryption. IEEE Access. 2018;6:46938–48.

24. Cheon JH, Han K, Hong SM, Kim HJ, Kim J, Kim S, Seo H, Shim H, Song
Y. Toward a secure drone system: Flying with real-time homomorphic
authenticated encryption. IEEE Access. 2018;6:24325–39. https://doi.org/
10.1109/ACCESS.2018.2819189.

25. Albrecht MR, Player R, Scott S. On the concrete hardness of learning with
errors. J Math Cryptol. 2015;9(3):169–203.

26. Albrecht MR. A sage module for estimating the concrete security of
learning with errors instances. https://bitbucket.org/malb/lwe-estimator.
Accessed 15 July 2018.

27. Sikorska K, Lesaffre E, Groenen PF, Eilers PH. Gwas on your notebook: fast
semi-parallel linear and logistic regression for genome-wide association
studies. BMC Bioinformatics. 2013;14(1):166.

28. Longford NT. A fast scoring algorithm for maximum likelihood estimation
in unbalanced mixed models with nested random effects. Biometrika.
1987;74(4):817–27.

29. Ruder S. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747. 2016.

30. Juvekar C, Vaikuntanathan V, Chandrakasan A. Gazelle: A low latency
framework for secure neural network inference. In: 27th USENIX Security
Symposium (USENIX Security 18). Berkeley: USENIX Association; 2018.

31. Goldschmidt RE. Applications of division by convergence. PhD thesis,
Massachusetts Institute of Technology. 1964.

32. Markstein P. Software division and square root using goldschmidt’s
algorithms. Proc 6th Conf Real Numbers Comput (RNC’6). 2004;123:
146–57.

33. Chinchor N. Muc-4 evaluation metrics. In: Proceedings of the 4th
Conference on Message Understanding. USA: Association for
Computational Linguistics; 1992. p. 22–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://www.humangenomeprivacy.org/2018/
https://github.com/snucrypto/HEAAN
https://github.com/snucrypto/HEAAN
http://www.humangenomeprivacy.org/2017/
https://doi.org/10.1109/ACCESS.2018.2819189
https://doi.org/10.1109/ACCESS.2018.2819189
https://bitbucket.org/malb/lwe-estimator

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Motivation
	Summary of results
	Related works

	Methods
	Approximate homomorphic encryption scheme HEAAN
	Matrix packing method and rotate function
	Semi-parallel GWAS algorithm
	Our optimization methodology
	Modification of fisher scoring
	Computing diag(S*TWS*) without S*
	Approximate computation of S*TW
	Our modified semi-parallel GWAS algorithm

	Homomorphic evaluation of the modified semi-parallel GWAS algorithm
	Adjoint matrix and determinant
	Matrix multiplications
	Matrix-vector multiplications
	Fast diag(ATBA) computations

	Approximate computation of sigmoid
	Inverse of real numbers

	Results
	Dataset description
	Experimental setting and parameter selection
	Experimental results and evaluation

	Discussion
	Scalability
	Fisher Scoring

	Conclusions
	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

