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Abstract

Objective: A computer vision method was developed for estimating the trunk flexion angle, 

angular speed, and angular acceleration by extracting simple features from the moving image 

during lifting.

Background: Trunk kinematics is an important risk factor for lower back pain, but is often 

difficult to measure by practitioners for lifting risk assessments.

Methods: Mannequins representing a wide range of hand locations for different lifting postures 

were systematically generated using the University of Michigan 3DSSPP software. A bounding 

box was drawn tightly around each mannequin and regression models estimated trunk angles. 

The estimates were validated against human posture data for 216 lifts collected using a laboratory-

grade motion capture system and synchronized video recordings. Trunk kinematics, based on 

bounding box dimensions drawn around the subjects in the video recordings of the lifts, were 

modeled for consecutive video frames.

Results: The mean absolute difference between predicted and motion capture measured trunk 

angles was 14.65°, and there was a significant linear relationship between predicted and measured 

trunk angles (R2 = 0.80, p < 0.001). The training error for the kinematics model was 2.34°.

Conclusion: Using simple computer vision extracted features, the bounding box method 

indirectly estimated trunk angle and associated kinematics, albeit with limited precision.

Application: This computer vision method may be implemented on hand-held devices such as 

smartphones to facilitate automatic lifting risk assessments in the workplace.

PRÉCIS

A practical lifting assessment method was developed to estimate trunk kinematics using simple 

computer vision bounding box features from video recordings. Results showed good agreement 

with motion capture measurement.
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INTRODUCTION

Low-back disorders (LBDs) are a major occupational health problem. Accounting for 

38.5% of all work-related musculoskeletal disorders, LBDs were the most prominent among 

all work-related musculoskeletal disorder cases in 2016 (BLS, 2018). LBDs also has a 

significant socioeconomic impact, costing over $100 billion per year through direct costs, 

such as medical expenses, and indirect costs such as lost productivity and wages in the U.S. 

(Katz et al., 2006).

The risk factors of LBDs are multifactorial, consisting of personal, workplace psychosocial, 

and job physical factors (Bernard and Putz-Anderson, 1997; da Costa and Vieira, 2010). 

Epidemiological studies have identified heavy physical work (Eriksen et al., 1999; Engkvist 

et al., 2000; Kerr et al., 2001), awkward static and dynamic working postures (Homstrom 

et al., 1992; van Poppel et al., 1998; Myers et al., 1999), and manual material handling 

(Spengler et al., 1986; Snook et al., 1989; Hoogendoorn et al., 2000; Peek-Asa et al., 2004; 

Bigos, et al., 1986) as physical risk factors for LBDs. Particular task-level physical risk 

factors include work intensity, poor posture, frequent bending and twisting, and repetition 

(Marras et al., 1995; Kuiper et al., 1999).

The association between trunk kinematics (e.g. trunk flexion, lateral bending, and twisting 

velocities) and lower back pain in manual materials handling activities has been reported 

in many studies. Trunk dynamics during a lift are associated with significantly increased 

loading of the spine (Frievalds et al., 1984; McGill and Norman, 1986). Specifically, 

increased trunk velocity was related to increased spinal compression, shear, and torsional 

loading (Marras and Sommerich, 1991). Lavender et al. (2003) found speed was also a 

significant contributing factor for spine loading at the L5/S1 disc during lifting. Marras et al. 

(1993) examined the association between trunk dynamics and risk of LBDs and found that 

trunk kinematics including lateral trunk velocity, twisting trunk velocity, and sagittal flexion 

angle could be used to identify jobs associated with high risk for LBDs. It is therefore 

important to consider trunk kinematics to comprehensively evaluate the risk of LBDs.

In a recent study that investigated the popularity of the observational risk assessment 

methods used by certified professional ergonomists in five English speaking countries, Lowe 

et al. (2019) found that the revised NIOSH lifting equation (RNLE) was the most popular 

observational method used for assessing lifting risks in the U.S and ranked among top three 

in the United Kindom, Canada, New Zealand and Australia, respectively. To use the RNLE, 

several lifting, parameters are needed, including the horizontal and vertical distances of the 

loaded hands relative to the feet during lifting, trunk asymmetry angle; hand coupling for the 

load at the origin and destination of each lift; the displacement of load for each lifting task; 

and the frequency of performing each lifting task (Waters, et al. 1993). Trunk kinematics 

are not explicitly accounted for in the RNLE, but have been recommended as additional 

parameters for improving the risk predictability of the RNLE for highly dynamic lifting 
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tasks (Lavender et al., 1999; Marras et al., 1999; Arjmand et al., 2015). The RNLE lifting 

frequency parameter may serve a surrogate measure for trunk speed, as lifting tasks with 

higher frequencies are likely to require faster trunk movements, however this relationship 

has not been fully studied. Additionally, the biomechanical criterion used to develop the 

RNLE were based on static models that may not be valid for dynamic lifting motion (Waters 

et al., 1994). Another widely used observational method, the Rapid Entire Body Assessment 

(REBA), includes the trunk flexion angle as part of the postural analysis (Hignett & 

McAtamney, 2000). To assess ergonomic risk information by the observational methods, 

intensive labor and lengthy processing time may be required. This is because observational 

methods require information collection of the whole body postural specification, such as 

angles and speed of each body segment. Moreover, observational risk assessment methods 

are oftern conducted based on short sampling periods to minimize the labor intensive 

observation process, and are therefore unable to characterize the all-day risk exposure 

for constantly changing lifting conditions, that have now become common in distribution 

centers and jobs involving handling objects of varying shapes and weights (Callaghan et al., 

2001; Lavender et al., 2012; Lu et al., 2015).

Direct measurement can provide high-volume and accurate measurements of trunk 

kinematics (David, 2005). Inertial measurement unit (IMU) sensors are small, inexpensive 

and wearable, and possess great potential for assessing postures and measuring kinematics at 

work (Breen et al., 2009). Recent studies have demonstrated the application of IMU sensors 

on the measurement of body joint angles (Battini et al., 2014; Dahlqvist et al., 2016) and 

lifting task factors such as lifting duration and hand horizontal and vertical positions (Barim 

et al., 2019; Lu et al., 2019). In addition to IMUs, another method used to measure trunk 

kinematics is the lumbar motion monitor (LMM). The LMM is an exoskeleton of the spine 

attached to the shoulder and hips using a harness, which has been found to provide reliable 

measurements of the position, velocity, and acceleration of the trunk (Marras et al., 1992). 

Many research studies have used LMMs for quantifying trunk kinematics as lifting risk 

factors (e.g. Ferguson et al., 2011; Lavender et al., 2017; Norasi et al., 2018). Efforts have 

been made to improve the wearability and usability of the direct measurement device for 

trunk motion to facilitate their application in the industry. For example, Nakamoto et al. 

(2018) demonstrated the prototype of an LMM with lightweight, stretchable-strain sensors. 

Direct measurement, however, has many limitations. Instrumentation such as the LMM may 

not be readily available for job analysis (Marras et al., 1999). Although application in the 

field is possible, it is often difficult to identify the context of complex signals without relying 

on external measures such as synchronized video. Although used for research, the practical 

application of such direct measurement devices may be limited for practitioner use due to 

training and expertise required, and the interruption imposed on the worker’s regular tasks 

(Patrazi et al., 2016). According to an international survey of professional ergonomists, 

electrogoniometers such as the LMM had the lowest percentage of users (Lowe et al., 2019).

With the advantages of low-cost, non-intrusiveness and ease of use, computer vision has 

become a popular technology for measuring body postural angle and task repetition. Seo et 

al. (2016) demonstrated extracting silhouette information using computer vision to classify 

postures for ergonomics applications. Mehrizi et al. (2018) used a computer vision method 

to assess joint kinematics of lifting tasks. Ding et al. (2019) proposed a computer vision 
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method for real-time upper-body posture assessment using features directly extracted from 

video frames. However, when applied to the industrial setting, computer vision methods 

are prone to various sources of noise in the workplace, such as obstructions, clothing, 

lighting, occlusion, and dynamic backgrounds. Optimal camera placement for computer 

vision in the industrial setting can be challenging. Some computer vision methods require 

markers attached to the worker for creating a skeleton figure for further motion analysis. The 

attachment of the markers, however, can be time-consuming and can interfere with the work.

We have previously developed an efficient computer vision lifting monitor algorithm that 

segments the subject’s silhouette from the background and applies a rectangular bounding 

box tightly around the silhouette (Wang et al., 2019). Based on the spatial and temporal 

characteristics of the segmented foreground and background, the algorithm also detects 

lifting instances and estimates hand and feet locations. Rather than fitting skeleton models 

to the worker’s image, our approach uses extracted simple features from videos. This 

method does not depend on tracking specific body linkages or measuring joint locations. 

Wang et al. (2019) demonstrated the application of the lifting monitoring algorithm for 

measuring task factors and computing the recommended RNLE weight limit (RWL). The 

horizontal and vertical dimensions of a tightly bounded and elastic rectangular bounding 

box were also used by Greene et al. (2019) for classifying lifting postures. Rather than 

obtaining precise measurements of posture based on joint angles, this method relaxed the 

need for high-precision tracking so that it was more tolerable of the variations that could be 

encountered in the workplace.

The current study describes a computationally efficient method that leverages simple video 

features, including bounding box dimensions and hand locations, obtained using computer 

vision to predict the angle, velocity, and acceleration of the trunk in the sagittal plane during 

two-handed symmetrical lifting. This study explores indirect estimation of both trunk flexion 

angle (T) and spine flexion angle (S). Trunk flexion is defined as the forward bending of 

the trunk from the vertical line and the center of motion about the hip. Spine flexion is the 

forward bending of the spine around the L5/S1 disc, accounting for sacral rotation. Since the 

L5/S1 disc incurs the greatest moment during lifting, this disc is often used as a landmark to 

represent lumbar stress (Chaffin et al., 2006). Anderson et al. (1986) reported a function to 

calculate the spine flexion around L5/S1 using the trunk and knee angles. With the benefits 

of non-invasiveness, objectiveness and low-cost, the computer vision method may measure 

trunk kinematics and facilitate more comprehensive lifting assessment by incorporating 

these risk factors in lifting analysis.

METHODS

Trunk Angle at the Lifting Instance (Static Model)

Modeled data.—The lifting postures of simulated human images (mannequins) were 

generated using the 3D Static Strength Prediction Program Version 7.0.0 (3DSSPP) from the 

University of Michigan (2019). To include a wide range of lifting postures, the American 

Conference of Governmental Industrial Hygienists (ACGIH) manual lifting Threshold 

Limit Value (TLV) zones were used to determine the lifting locations of the mannequins 

(ACGIH, 2018). The TLV classifies lifting postures into twelve distinct zones including 
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three horizontal and four vertical zones. The horizontal zones were determined by the 

horizontal distance of the hands using cutoff lines of 30 cm, 60 cm, and 80 cm. The vertical 

zones are determined by the vertical distance of the hands to the ground using landmarks 

of mid-shin, knuckle, shoulder, shoulder height – 8 cm, and shoulder height + 30cm. These 

landmarks are calculated based on the subject’s anthropometry. To account for the variation 

in lifting among different anthropometries, data of the 5th, 50th, and 95th percentile male and 

female from the 2012 Anthropometric Survey of U.S. Army Personnel was used to calculate 

the locations of the 20 intersection points of the zone markers in the TLV diagram (Gordon 

et al., 2014). A representation of the 20 zone intersections is shown in Figure 1.

The hand locations were subsequently entered into 3DSSPP based on the mannequin’s 

anthropometry, and the posture prediction feature was applied to generate lifting postures 

(Chaffin, 2008; Hoffman, Reed, & Chaffin, 2007). After right-facing the mannequins, the 

bounding box dimensions (height and width) and the horizontal and vertical hand locations 

relative to the ankles of the mannequins in the images were measured using the University 

of Wisconsin MVTA software (Yen & Radwin, 1995). Since these features were measured 

in pixels, which was dependent on the variation across different anthropometries and image 

output from 3DSSPP, they were converted into centimeters based on the ratio of each 

measurement to the mannequin’s standing height. Each ratio was then multiplied by the 

mannequin’s standing height in centimeters.

The trunk flexion angle T and spine flexion angle S for each mannequin were recorded 

from the body segment angles window in 3DSSPP. After excluding 15 data points where the 

hand locations were unreachable by the corresponding anthropometry, data on bounding box 

dimensions and hand locations of 105 distinct lifting postures across six anthropometries 

remained in the training dataset.

Algorithm development.—To estimate trunk angle T at lifting the instance, a regression 

model was created based on various geometric features of the bounding box. The features 

in the training dataset included bounding box height (BH), bounding box width (BW), 

hand horizontal location (H), hand vertical location (V), and the ratio of BH to BW (R). 

A correlation matrix of all features was first calculated to investigate which features were 

redundant. If the correlation between the two features was greater than 0.8, the features 

were considered highly correlated. The variable with a higher mean absolute correlation 

with all other variables was removed from the dataset, and H, V, and BW remained in the 

training data. After inspecting the distribution of the features, log transformation was applied 

to H and V. A second-degree polynomial regression was then generated for T and S using 

the aforementioned features. Residual plots of the model were investigated to verify model 

validity. The trunk flexion model was validated by comparing the bounding box estimates 

obtained for the 216 lifting instances for videos from the laboratory experiments conducted 

by NIOSH against the trunk angles measured using 3D motion capture. Due to the absence 

of appropriate validation data, the spine flexion model was not tested for human lifting tasks.
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Trunk Kinematics for Consecutive Video Frames (Dynamic Model)

Modeled data.—Since the mannequin lifting posture simulation in 3DSSPP does not 

account for the dynamic aspects of lifting, the model developed in the previous section 

was not sufficient for estimating trunk angles over a series of consecutive video frames 

and for calculating trunk kinematics such as trunk speed and acceleration. Therefore, video 

recordings and motion tracking data from a study conducted at NIOSH were utilized to 

model the trunk angle based on their temporal features. Videos of symmetrical lifts in which 

hand locations were defined by centers of the twelve ACGIH TLV lifting zones performed 

by six participants were recorded. For every lifting zone, each participant performed three 

repeated trials.

Whole-body motion data was recorded by a motion capture system (Optritrack 12 IR camera 

system, model Flex 13 with the Motion Monitor data acquisition program, Innovative 

Sports, Inc., Chicago, USA). Before data collection, a stylus was used to identify joint 

locations relative to the markers placed on the subject (Innovative Sports, 2019). The trunk 

was represented by the C7-T1 segment, and the trunk flexion angle T relative to the earth 

vertical line was calculated by subtracting the trunk angle at the neutral position from the 

measured trunk angle. Wang et al. (2019) previously detailed the laboratory experiment 

protocol and participant information. An observation window of 0.67s (20 frames) after each 

lifting instance captured the characteristics of each lift without including motions such as 

twisting, turning, and walking. The mean stature of the study participants was within 0.8 

cm difference from that of the 2012 US Army Anthropometric Survey (Gordon et al., 2014) 

for both males and females while the standard deviation of stature in the NIOSH study was 

smaller.

To determine lifting instances and to calculate H, V, BH, BW, and R, the videos were 

processed using the lifting monitor algorithm described in Wang et al. (2019). This 

algorithm detects dynamic scenes from the background resulting in a “ghost effect”. The 

“ghost effect” indicates the very instance when an object is lifted or released, which 

subsequently identifies hand and feet locations at the origin and destination of a lift. The 

lifting monitor algorithm creates a rectangular bounding box tightly around the subject 

and calculates the dimensions of the bounding box while it changes during a lift. A 

demonstration of the processing output of this computer vision algorithm is presented in 

Figure 2.

Some of the video recordings were not included due to inconsistent camera auto-focusing 

for some participants in the study. A total of 216 recordings of six subjects (36 recordings 

for each subject) without auto-focusing were analyzed using the lifting monitor algorithm to 

test the models. Trunk angles T were derived from marker locations in the motion capture 

data.

Algorithm development.—The algorithm for estimating trunk angles consecutively 

consists of three steps: 1) subtracting the trunk flexion angle at frame 0 to mitigate the 

variability of motion tracking between trials; 2) fitting each series of trunk flexion angle over 

20 frames as an exponential function of time in the form:
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T = α ⋅ eβx
(1)

where x is the frame number from the lifting instance; 3) developing a linear regression 

model to estimate the coefficients α and β for each series, based on H, V, BH, BW, and 

R, and features derived from these measurements. The initial trunk angle was estimated 

using the static trunk angle estimation model, and was then added back to the predicted 

series of trunk angles. The variables in the training set are summarized in Table 1. A visual 

representation of the features used in the models is presented in Figure 3. The variables 

for predicting exponential equation parameters are the average, maximum, and standard 

deviation of the values of these features and their respective speed and acceleration over the 

20 frames.

To account for the variability between different lifting postures, the dataset was first 

classified into stoop, squat, or stand postures based on the trunk and knee angles measured 

by motion tracking at frame 0 using the following rules: a squat was classified when the 

included knee angle between the thigh and lower leg (K) was K < 130 degrees; a stoop was 

classified when the trunk angle (T) was T > 40 degrees flexion from the vertical. If neither of 

these conditions was true, the posture was classified as a stand. If both K < 130 degrees and 

T > 40 degrees, the posture was classified as a squat (Greene, et al., 2019). The definitions 

of trunk and knee angles are illustrated in Figure 4. For each subset of postures, a linear 

regression model was created to predict α and β respectively (Equation 1) using variables 

listed in Table 1. The optimal set of variables was determined using stepwise regression. 

A backward elimination approach was adopted and the Akaike Information Criterion (AIC) 

was used as the evaluation criteria (Venables & Ripley, 2002).

For each of the 216 lifts, the exponential function parameters α and β (Equation 1) were 

estimated using the regression model for the posture associated with the lift. Trunk flexion 

angles over the 20 frames were subsequently calculated based on the predicted exponential 

function parameters α and β (Equation 1).

RESULTS

Trunk Angle Estimation at the Lifting Instance (Static Model)

The videos were processed using the lifting monitor algorithm to determine lifting instances 

and calculate H, V, BH, BW and R at these time instances. A summary of the features of the 

regression model to estimate trunk flexion is presented in Table 2.

The regression model for trunk flexion T (Adjusted R2 = 0.88, F(6,98) = 176.9, p < 0.001) 

was:

T = 76.42 − 2.14 ⋅ ln(H) − 1.12 ⋅ (ln(H))2 − 7.97 ⋅ ln(V) − 1.32 ⋅ (ln(V))2 + 0.16
⋅ BW (2)

A summary of the features of the regression model to estimate spine flexion S is presented in 

Table 3.
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The regression model for spine flexion S (Adjusted R2 = 0.72, F(6,98) = 43.02, p < 0.001) 

was:

S = 85.63 − 2.12 ⋅ (ln(H))2 − 5.34 ⋅ ln(V) − 0.62 ⋅ (ln(V))2 + 0.58 ⋅ BW (3)

A plot of predicted trunk flexion angles versus motion capture measured trunk angles is 

presented in Figure 5. The overall mean absolute error of prediction on the validation set 

was 14.65°. The linear relationship between the model prediction and the measured trunk 

angle is plotted in Figure 5 (R2= 0.80, p < 0.001). The prediction errors summarized for each 

10-degree increment of measured trunk angles are presented in Table 4.

Trunk Kinematics Estimation for Consecutive Video Frames (Dynamic Model)

The resulting mean absolute error between trunk angles fitted using exponential equations 

(Equation 1) and those measured through motion tracking was 1.00 (N = 216, SD = 0.11) 

degrees. A plot of comparison between fitted and measured trunk flexion angles of one lift 

in the dataset is presented in Figure 6.

Regression models were created for predicting α and β (Equation 1) to approximate the time 

series of trunk angles for stoops (adjusted R2 = 0.37, p < 0.001for α model; adjusted R2 = 

0.11, p = 0.05 for β model), squats (adjusted R2 = 0.40 p = 0.13 for α model; adjusted R2 

= 0.72, p = 0.01 for β model), and standing lifts (adjusted R2 = 0.30 p< 0.001 for α model). 

Beta of each fitted exponential curve of standing lifts is a constant (0) since minimum trunk 

flexion is involved in standing lifts. A total of six models were developed. A summary of 

the regression models to predict parameters of exponential equations α and β (Equation 1) to 

estimate trunk flexion angles over consecutive lifting frames is presented in Table 5.

The mean absolute differences between the predicted and fitted trunk angles for each frame 

was 2.34 degrees (N = 216, SD = 2.52). Based on the predicted trunk flexion angles and 

video frame rate (30 frames/s), trunk speed and acceleration in each frame were calculated. 

The comparisons between predicted and fitted trunk flexion angle, speed, and acceleration 

for a stoop lift are presented in Figure 7. A summary of the differences between predicted 

and measured trunk kinematics is provided in Table 6. Histograms of the differences 

between predicted and measured values are presented in Figure 8.

DISCUSSION

The objective of the current study was to develop a computer-vision method for predicting 

trunk angles, speed, and acceleration using simple features that can be extracted from 

videos. Without requiring direct instrumentation on the worker or fitting skeleton models of 

the image, the method may be tolerant of a range of visual intererrence while capable of 

objective lifting measurements with reasonable precision.

The lifting monitor algorithm used in this study can extract features including bounding 

box dimensions and hand locations in a series of consecutive video frames. The computer 

vision-based direct reading system can continuously acquire trunk kinematics information 
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for comprehensive lifting risk assessments, which may lead to new risk models based on 

cumulative risk information that has not been adequately investigated in previous studies.

This study utilized the posture prediction feature of 3DSSPP which generated simulated 

postures according to the locations of the TLV zone intersections without extensive time 

and necessity of recruiting human participants for training data. There are limitations as a 

result of training the algorithm with simulated postures. The simulated postures may not be 

representative of the full range of variations in lifting motion. Additionally, the full range 

of lifting motion may be influenced by factors such as the worker’s training, individual 

preferences, and environmental constraints (University of Michigan Center for Ergonomics, 

2019).

The videos of real-life lifting tasks were recorded in a laboratory setting and the only lifting 

feature that varies is the hand location. In these videos, the lighting and camera angle were 

well-controlled, the movement patterns of the subjects were designed before the experiment, 

and the object lifted was the same across all experiments. Therefore, the tasks in the test 

dataset may lack sufficient variation for comprehensive validation. Furthermore, to ensure 

the performance of the motion tracking system, the object used in the experiments was a 

hollow rectangular frame that was small and lightweight. The pattern of lifting for such an 

object may be different from those that are found in manual material handling tasks in the 

industry. For improved validity, the lifting monitor algorithm needs to be tested on videos in 

actual industrial settings. Additionally, large between-trial differences (up to 27.35 degrees) 

were observed in the trunk flexion angles measured using motion capture for the three 

repeated trials performed by each subject at each lifting location (M = 7.19, SD = 5.85). To 

mitigate the between-trial differences, we subtracted the initial trunk angle before modeling 

trunk angles over consecutive frames, and then added the predicted initial angle back in 

the prediction. Deep learning models may serve as an alternative means of measuring trunk 

angles by identifying joint locations in video frames (Xiao et al., 2018). Our future work 

will explore the application of deep learning on measuring trunk angles in video data of the 

laboratory study and compare the difference of measurements provided by motion capture 

and deep learning.

The bimodal distribution of the trunk flexion angles in both the 3DSSPP dataset 

(demonstrated in Figure 5) and laboratory study dataset is another concern. The frequency 

of observations reaches the local minimum between 30 and 40 degrees. There are no 

observations for trunk flexion angles in the validation dataset in the range from 30 to 40 

degrees. Furthermore, differences in the range are also present between the two datasets. The 

ranges in centimeters were 0–93.03 in the 3DSSPP dataset and 2–83.93 in the laboratory 

study dataset for hand horizontal location (H), 0–154.82 in the 3DSSPP dataset and 0 – 

175.25 in the laboratory study dataset for hand vertical location (V), and 36.24 – 114.34 in 

the 3DSSPP dataset and 48.76 – 124.46 in the laboratory study dataset for box width (BW).

A linear relationship between the static model predicted and measured trunk flexion angles 

T was present, indicating that the model discussed in the current paper can reproduce 

the results of a motion tracking system that requires enormous setup, operation, and data 

processing to some extent. In the current model, a discrepancy (15.85°) exists between the 
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predicted trunk angles and the angles measured through motion capture. After summarizing 

the prediction error for each 10-degree increment of measured trunk angle, it was revealed 

that increased errors occur at very small (<30°) and extreme trunk flexion angles (> 100°). 

The large error at small trunk flexion angles may be attributed to the lack of training data 

in this range in the static model, and we anticipate that the model accuracy in this range 

will improve when additional training data is collected. Overestimating small trunk flexion 

angles may misclassify low-risk tasks as high-risk, however this model favors the safe 

side and avoids overlooking high-risk tasks. Trunk postures greater than 90° are not often 

observed in the industry, as indicated by previous studies on industrial lifting jobs by Marras 

et al (1993) and Lavender at al. (2012). Therefore, the overall accuracy of the model is 

anticipated to improve for assessing most lifting conditions in the workplace. Although high 

precision measurement of trunk angle is desirable, defining a range for the trunk angle is 

usually what is necessary in current ergonomic assessment methods. For example, in the 

REBA, the trunk angle only needs to be classified into extension, 0°–20°, 20°–60°, and 

greater than 60°. Another highly used lifting assessment tool, the NIOSH Lifting Equation, 

also only requires classifying each factor into a range. Trunk angle is not a factor for 

the NIOSH Lifting Equation. However, the asymmetry angle, the only body angle that is 

incorporated into the NIOSH Equation, needs to be classified into a 15-degree interval 

ranging from 0 to 135 degrees. Although the current model has not reached the accuracy 

of various laboratory studies, it possesses the potential to provide data input for ergonomic 

assessment methods such as the REBA.

The static model for estimating spine flexion angle S revealed a statistically significant 

relationship (p < 0.001) between the spine flexion and the computer vision extracted 

features. However, the relatively low R2 (adjusted R2 = 0.72) suggests that this model 

does not explain some of the variance in the spine flexion data. One possible explanation 

is that the included knee angle, a factor that contributes to the spine flexion, is not 

well-captured by the current set of variables in the model. Additionally, due to the lack 

of spine flexion data available to us, this model was not validated using human lifting 

tasks. Since the disc between L5 and S1 incurs the greatest potential during lifting and is 

susceptable for force-induced injuries, estimating the biomechanical stress for the L5/S1 

disc could provide valuable information for lifting analysis (Waters et al., 1993). If the spine 

flexion around L5/S1 can be estimated using variables measured by our lifting monitor 

algorithm which is fast and does not require instrumentation, the difficulty for quantifying 

the biomechanical stress at L5/S1 may be significantly reduced. Future work will investigate 

the relationship between included knee angle and computer vision measured variables. 

Additional experiments will be conducted to collect spine flexion data during human lifting 

tasks to collect data for model validation.

Exponential functions closely approximated the progression of trunk flexion angle for 

each lift, and exponential equation parameters were estimated using regression models 

to predicted trunk angle, speed, and acceleration over consecutive video frames with 

reasonable errors (Table 6). Despite the small differences between predicted and measured 

trunk kinematics, further improvements of the models are crucial. Although small p-values 

(p < 0.05) were found for four out of the six dynamic models indicating a high probability 

of linear relationships between the variables and the exponential equation parameters, the 
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low R2 values suggest a large amount of variance in these parameters were not explained by 

the models. One possible explanation for this is the measurement variability of the motion 

capture system between trials. Furthermore, due to the lightweight of the object lifted in 

the experiments, the lifting movements may not be fully representative of typical lifting 

tasks performed in the industrial setting, and the range of trunk speed in the dataset is very 

limited.

The computer vision method used in automating measurements of lifting risk factors in 

this study may save practitioners substantial time for data collection. This computer vision 

method is also able to address the inability of many observation-based postural classification 

methods to quantify trunk kinematics. The consistency and objectivity of the computer 

vision method are particularly important in today’s work conditions where lifting occurs in 

numerous locations involving varying body postures throughout the workday. Video image 

processing is non-invasive and does not necessitate putting instruments or sensors on the 

worker so it will not interfere with the work. The algorithm developed for this research is 

designed to be insensitive to occlusion from the objects handled and other variabilities in 

the workplace, such as obstructions, clothing, lighting, and dynamic backgrounds. These 

workplace constraints often impede the ability of skeletal models to recognize the whole 

body posture and measure joint angles effectively (Seo et al., 2016; Mehrizi et al., 2018).

Compared to deep learning methods, the simple feature computer vision method we used 

relaxes the need for precise tracking of human joint locations. However, as a result of 

analyzing fewer features and estimating trunk kinematics indirectly, this method yields 

less precision than human posture analysis which requires identifying joint locations 

and overlaying a skeleton on the human image (e.g. Mehrizi et al., 2019). While being 

able to offer relatively high-precision measurements, deep learning involves matching a 

large number of feature points and is computationally intensive. Compared to methods 

that require precise tracking of joint locations, our method requires significantly less 

computation power and can be implemented on devices like smartphones and personal 

computers. The aim of our method is to provide fast and reliable estimations for surveillance 

purposes in the industrial setting . For this purpose, the current level of precision may 

be sufficient. The method ultimately needs to be tested for industrial lifting tasks with 

associated health outcomes to determine whether the estimated trunk kinematics are 

sufficient to identify high-risk lifting tasks.

Future work will improve model external validity. Lifting tasks performed by workers in 

industry will be utilized to train the model. This will not only be more representative of 

human lifting in the workplace than lifts in the laboratory study but incorporate a larger 

variety of lifting tasks, objects lifted, and lifting postures.

The current research has demonstrated the feasibility of predicting trunk flexion angles 

for various lifting postures using simple computer vision extracted features from video 

recordings. Findings from this study expand the application of the bounding box computer 

vision method in the area of manual lifting analysis. We anticipate implementing the method 

on portable handheld devices making it widely accessible to practitioners.
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KEY POINTS

• Models were developed for estimating trunk kinematics using simple 

bounding box computer vision features from video recordings.

• Trunk kinematics calculated using the models showed agreement with those 

measured by a research-grade motion capture system.

• The computer vision-based method is automated, non-intrusive, 

computationally efficient, and with the potential to serve as a practical lifting 

assessment method over extended periods.
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Figure 1. 
Representation of intercepts of 3 Horizontal and 4 Vertical Zones.
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Figure 2. 
Video image (A) and image processed by the lifting monitor algorithm (B) of a subject 

lifting a small object from a shelf. A rectangular bounding box encloses the subject. The 

hands and the ankles are identified and represented by green asterisks.
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Figure 3. 
Visual representation of features used in the models estimating trunk angles over consecutive 

video frames.
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Figure 4. 
3DSSPP mannequins demonstrating (A) trunk angle(T) and (B) knee angle (K).
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Figure 5. 
Predicted trunk flexion angles (calculated by the computer vision algorithms) vs. ground 

truth trunk flexion angles (calculated by the motion capture system). ACGIH lifting zones 

are represented by colors and shapes.
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Figure 6. 
Comparison between fitted trunk flexion angles (calculated using exponential equations, 

represented by dashed lines) and measured trunk flexion angles (calculated using the motion 

capture data, represented by solid lines) over 10 consecutive frames.
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Figure 7. 
Fitted trunk kinematics (calculated using exponential equations, represented by solid lines) 

and measured trunk kinematics (calculated using the motion capture data, represented by 

dashed lines) over 20 consecutive frames.
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Figure 8. 
Histograms of differences between predicted and measured average trunk angles (A), 

maximum trunk angles (B), average trunk speed (C), maximum trunk speed (D), average 

trunk acceleration (E), and maximum trunk acceleration (F).
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Table 1:

Variables of the Training Set for Estimating Trunk Angles During Consecutive Frames

Variable Description Method Determined

H Hand horizontal location relative to feet Lifting Monitor Algorithm

V Hand vertical location relative to feet Lifting Monitor Algorithm

BH Bounding box height Lifting Monitor Algorithm

BW Bounding box width Lifting Monitor Algorithm

DUL Displacement of bounding box upper-left corner Lifting Monitor Algorithm

DUR Displacement of bounding box upper-right corner Lifting Monitor Algorithm

R Ratio of BH to BW R = BH
BW

DA Angle between bounding box diagonal and the bottom DA = arctan BH
BW

DL Bounding box diagonal length DL = BH2 + BW 2

HA Angle between the line segment between hands and feet and the floor HA = arctanH
V

HD Length of the line segment between hands and feet HD = H2 + V 2
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Table 2:

Summary of the Regression Model for Static Trunk Flexion T.

Variable Beta Standard Error t Value p-Value

ln(H) −0.11 11.92 −3.58 <0.001***

(ln(H))2 0.09 17.77 2.10 0.04*

Ln(V) 0.53 12.33 16.23 <0.001***

(Ln(V))2 0.35 12.80 10.35 <0.001***

BW −0.52 19.17 −10.13 <0.001***

BW2 −0.05 11.34 −1.79 0.08

*
p < .05.

***
p < .001.
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Table 3:

Summary of the Regression Model for Static Spine Flexion S.

Variable Beta Standard Error t Value p-Value

ln(H) −0.02 38.11 −0..23 0.82

(ln(H))2 0.19 28.22 2.51 0.01**

Ln(V) 0.52 22.30 8.90 <0.001***

(Ln(V))2 0.18 28.49 2.40 0.02*

BW −0.72 36.10 −7.49 <0.001***

BW2 −0.05 22.32 −0.84 0.4

*
p < .05.

**
p<0.01.

***
p < .001.
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Table 4:

Prediction error summarized for 10-degree increments of measured trunk angles.

Measured Trunk Angle (Degrees) Mean Absolute Prediction Error (Degrees) Standard Deviation of Prediction Error (Degrees)

(−∞, 0) 24.35 8.23

(0,10] 18.96 9.86

(10,20] 19.23 8.57

(20,30] 19.63 8.67

(40,50] 5.59 7.73

(50,60] 11.51 12.44

(60,70] 16.05 18.81

(70,80] 10.51 13.70

(80,90] 5.92 5.35

(90,100] 11.49 15.04

(100,110] 17.96 20.98
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Table 5:

Summary of regression models for estimating exponential parameters to predict trunk angles over consecutive 

video frames.

Variables Estimates CI p

Coefficient (α)

stoop (Intercept) 2.37 −1.48 – 6.22 0.222

SD DA speed 14.79 3.45 – 26.14 0.012*

Mean DL acceleration −0.07 −0.18 – 0.04 0.198

SD DL speed 0.07 −0.03 – 0.16 0.161

Mean HA speed −4.71 −8.43 – −0.99 0.014*

Mean DA acceleration −0.91 −1.78 – −0.05 0.039*

Max DA acceleration −0.13 −0.22 – −0.04 0.004**

SD DL acceleration 0 0.00 – 0.00 <0.001***

Mean HA acceleration −0.33 −0.69 – 0.03 0.069

SD HA acceleration 0.04 −0.02 – 0.10 0.148

Mean HL acceleration −0.01 −0.01 – 0.00 0.1

DUR −0.02 −0.05 – 0.01 0.143

squat (Intercept) 13.54 4.39 – 22.69 0.01**

SD DA acceleration −0.24 −0.53 – 0.05 0.088

Mean DL acceleration 0.02 0.00 – 0.04 0.048*

SD DL acceleration 0 −0.00 – 0.00 0.066

Max HA acceleration −0.1 −0.19 – −0.00 0.046*

SD HD acceleration 0.2 −0.06 – 0.47 0.111

stand (Intercept) 1.37 −2.80 – 5.54 0.514

Mean DL speed 0.06 −0.00 – 0.12 0.062

Max HA speed 0.06 0.03 – 0.10 <0.001***

SD HA speed −7.42 −15.51 – 0.66 0.071

Mean HA speed 0.17 −0.05 – 0.38 0.137

SD HA speed −0.31 −0.52 – −0.10 0.004**

Mean DA acceleration 1.11 −0.26 – 2.48 0.109

Mean DL acceleration 0.01 0.00 – 0.02 0.016*

Max HD acceleration 0.09 0.01 – 0.16 0.021*

DUL −0.02 −0.05 – 0.01 0.18

Coefficient (β)

stoop (Intercept) 0.1 0.05 – 0.15 <0.001***

Mean DA acceleration 1.57e−2 0.00 – 0.03 0.034*

Max DA acceleration 2.26e−3 0.00 – 0.00 0.035*
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Variables Estimates CI p

SD DA acceleration 4.36e−3 −0.01 – 0.00 0.082

Mean DL acceleration 9.40e−5 −0.00 – 0.00 0.063

SD DL acceleration −1.65e−5 −0.00 – −0.00 0.025*

squat (Intercept) −0.02 −0.11 – 0.06 0.544

Mean DA acceleration 3.52e−2 0.01 – 0.06 0.012*

Mean DL acceleration −2.94e−4 −0.00 – −0.00 0.012*

SD DL acceleration 4.21e−5 0.00 – 0.00 0.009**

Max HA acceleration 2.21e−3 0.00 – 0.00 0.002**

SD HA acceleration −5.34e−3 −0.01 – −0.00 0.004**

stand (Intercept) 1.00e−1 0.05 – 0.15 <0.001***

Note: SD refers to standard deviation.

*
p < .05.

**
p<0.01.

***
p < .001.
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Table 6:

Differences between average and maximum predicted and measured trunk flexion angle, speed, and 

acceleration during 20-frame periods.

Mean Absolute Error Standard Deviation of Error

Average Trunk Angle (degrees) 2.60 2.52

Maximum Trunk Angle (degrees) 2.37 2.35

Average Trunk Speed (degrees/s) 4.39 5.74

Maximum Trunk Speed (degrees/s) 5.36 7.5

Average Trunk Acceleration (degrees/s2) 9.8 15.85

Maximum Trunk Acceleration (degrees/s2) 13.14 21.69
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