

Development of a novel real-time method to study the erythrocytic life cycle of *Plasmodium falciparum* using Quartz Crystal Microbalances

Entwicklung einer neuen Echtzeit-Methode zur Untersuchung des erytrozytärer Lebenszyklus von *Plasmodium falciparum* mit Schwingquarzbiosensoren

DISSERTATION

der Fakultät für Chemie und Pharmazie der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines Doktors der Naturwissenschaften

2010

Vorgelegt von

ROSA ELENA BUSTOS CRUZ

Tag der mündlichen Prüfung:

Dekan: 1. Berichterstatter: 2. Berichterstatter: 25. Februar 2010

Professor Dr. L. Wesemann Professor Dr. H. Northoff Professor Dr. S. Laufer

This doctoral thesis was written during my work on 1.08.2006-15.02.2010 within the Biosensors Group (AG Gehring) of the Institute of Experimental and Clinical Transfusion Medicine under the guidance of Dr. rer. nat. Frank K. Gehring in cooperation with Dr. Mordmüller (Institut of Tropical Medicine, University of Tübingen). The evaluation was organized by Prof. Dr. Northoff, Institute of Clinical and Experimental Transfusion Medicine University of Tübingen, and Prof. Dr. Laufer of Institut of Pharmacy, University of Tübingen.

ABSTRACT

Development of a novel real-time method to study the erythrocytic life cycle of Plasmodium falciparum using Quartz Crystal Microbalances (QCM)

Previous studies carried out by the Biosensor Research Group of the Institute of Clinical and Experimental Transfusion Medicine at the Tübingen University had successfully demonstrated determination of various blood types through the interaction of erythrocytes with immobilised antibodies on a QCM. These studies have opened the possibility to test new applications of this technique for the study of infectious diseases. In our case, studies of the erythrocyte life cycle of *P. falciparum*, particularly during the last six hours preceding the merozoite release and studies related to reinfection of by merozoites were the focus of our investigation.

Release of malaria parasites of *P. falciparum* from infected erythrocyte at the end of their asexual erythrocyte cycle occurs approximately every 48 hours, asynchronously in parasite culture and synchronously *in vivo*. This process is poorly studied due to: (I) merozoite release is a very short event (<60 S), (II) schizont stages have high sensitivity for culture conditions like pH, medium, osmotic pressure, gas atmosphere and temperature. (III) Schizont conditions are not easy to maintain under the miscrocope, making miscroscopical real time observation of the release difficult.

The aim of the presented project was to study the release of *Plasmodium falciparum* merozoites from erythrocytes with the QCM sensor technique. In this way, the frequency shift due to the change of mass associated to the merozoite release and, on a second QCM, the reinfection of healthy erythrocytes are monitored in real time. Our QCM experiments included the following stages: (I) Adaptation and optimisation of the immobilisation of biological layers to capture the erythrocytes on the quartz. (II) Optimisation of parasite culture conditions in a QCM chamber. (III) Observation of the frequency signal both for infected and non-infected erythrocytes samples and correlation of the signal with the release of merozoites. (IV) Reinfection of healthy erythrocytes on a second quartz within one QCM system. (V) Test of inhibition of merozoite release and reinfection by antimalarial compounds.

The results showed that there was significant increase of ~1000 Hz for QCM with infected erythrocyte compared to QCM with healthy erythrocytes, where the frequency remained stable. Microscopical observation of the quartz surface at different times during the experiment (TEM and optical) demonstrated a correlation between the increase in frequency and merozoite release. At this point, approximately more than 80% of the infected erythrocytes on the quartz are involved in the release. Reinfection of new erythrocytes was observed on a second QCM. pH of the system (7.2), Temperature (37°C+/-0.1), flow of the medium (9 μ L/min), sterility of the process (BactAlert), gas atmosphere (O₂ 5%, residual N₂) were established to ensure parasite development and survival. External controls using flow cytometry 24 hours after the reinfection show a parasitemia percentage of >1% in the erythrocytes infected in situ.

Our results show, that the QCM technique is an appropriate and important new tool to elucidate the biology of the re-invasion process of Plasmodia.

ACKNOWLEDGEMENT

I want to express my gratitude to all those who in so many different ways have helped me take this ship to shore. In particular, I would like to thank:

This thesis would not have been possible had it not been for the guidance, suggestions, support and encouragement provided by Prof. H. Northoff, chief of Institute of Clinical and Experimental Transfusion Medicine University of Tübingen. His understanding, encouragement and personal guidance have provided a good basis for the present thesis. I wish to express my gratitude to my second thesis advisor Prof. S. Laufer, director of the Pharmacy Institute University of Tübingen for the follow-up, care and suggestions kindly provided for my project.

I would like to thank Dr. F.K. Gehring, chief of the Biosensor Research Group for his kind guidance, valuable comments and encouragement. Their ideals and concepts have had a remarkable influence on my entire career in the field of Biosensors

I am grateful with Dr. B. Mordmüller of the Institute of Tropical Medicine, University of Tübingen, who introduced me to the field of Human parasitology. His encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. I wish to extend my thanks to Serena, Jana, Rolph, Tanja of the human parasitology group for assisting me in many different ways

During this work I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work in the Biosensor Research Group of Tubingen University

I am grateful to Prof. Schweizer and Mr. Jürgen of the Max Planck Institute for their support in Transmission Electron Microscopy.

This PhD work could not have been carried out without the support provided by the institution KAAD, who awarded me a scholarship for my doctoral stay in Germany. Similarly, their valuable assistance and support for me and my family were significant.

My sincere thanks are due to the official referees, Dr. E. Ninci M.D., and Dr. M. Desimonne, Ph.D, for their detailed review, constructive criticism and excellent advice during the preparation of this thesis.

I gratefully thank Dr. S. Quintero, PhD. for his constructive comments on this thesis.

I thank my friends in Tübingen, Hamburg and Colombia for their continuous moral support

I owe my deepest gratitude to my husband, Hugo Hernán, and my daughter, María Helena. Without their encouragement, tolerance, love and understanding, it would have been impossible for me to finish this work.

I cannot finish without saying how grateful I am with my family: grandparents, brothers, uncles, aunts, cousins and nephews who have given me a loving environment to develop.

Finally, I would like to thank everybody who was important to the successful realization of thesis, as well as to express my apology to those I could not mention personally one by one.

ABRREVIATIONS

ABRA	Acid Basic Repeat Antigen
AMA-	Apical Membrane Antigen
AO	Acridine Orange
ATCC	American Type Culture Collection
BAW	Bulk Acoustic Wave
CCD	Charge coupled device
CSA-	Chondroitin sulfate A
DARC	Duffy Antigen Receptor for Chemokines
DGs	Dense Granules
DHA	Dihydroartemisin
EBA-	Erythrocyte Binding Antigen
EPM	Erythrocyte Plasma Membrane
ER	Endoplasmic reticulum
FACS	Fluorescense Activated Cell Sorting
GA	Glutaraldehyde
GMEP	The Global Malaria Eradication Program
GPI-	Glycosylphosphatidylinositol
IC	Inhibitory concentration
ICAM-	Intracellular Adhesion Molecule
MACS	Magnetic Cell sorting
mH	Motional inductance
MR4	Malaria Research and Reference Reagent Resource Center
MSP-	Merozoite Surface Protein
MW	Molecular weight
PBS	Phosphate buffered saline
PF	Paraformaldehyde
Pf	Plasmodium falciparum
PfEMP-	P. falciparum Erythrocyte Membrane Protein
PfRBL	P. falciparum reticulocyte binding protein homolog (PfRh)
PLL	Poly-L-Lysine
PVM	Parasitophorus Vacuole Membrane
QCM	Quartz Crystal Microbalance
RAP	Rhoptry Associated Antigen
RBC	Red Blood Cells
RBCM	Red Blood Cell Membrane
RBL	Reticulocyte binding-like
RCD	Red Cell Deformability
RESA	Ring Erythrocyte Surface Antigen
Rhop	Rhoptries
RIMA	Ring Membrane Antigen
RPMI	Roswell Park Memorial Institute
RT	Room Temperature
SAMs	Self-assemble monolayers

Sera Repeat Antigen
Sarco-endoplasmic reticulum Ca ⁺
Sarcoplasmic reticulum
Thick Blood Film
Transmission Electron Microscopy
Thin Blood Film
Thickness Shear Mode resonator
World Health Organisation

LIST OF FIGURES

Figure 2-1.	Principle of the function of a biosensor
Figure 2-2.	Mass-sensitive devices and acoustic wave propagation modes
Figure 2-3.	The piezoelectric effect
Figure 2-4.	The orientation of the polar axes of the crystal
Figure 2-5.	Cuts of α -quartz
Figure 2-6.	Geographical distribution of Malaria 2008
Figure 2-7.	Life cycle of <i>Plasmodium falciparum</i>
Figure 2-8.	Structure of Merozoite (Plasmodium falciparum)
Figure 2-9.	Merozoite invasion
Figure 2-10.	The asexual blood stages of <i>Plasmodium falciparum</i>
Figure 2-11.	Models for the release of Plasmodium merozoites from their host
0	erythrocytes
Figure 2-12.	Receptor of P. vivax and P. falciparum
Figure 2-13.	Typical interfaces in biosensing
Figure 2-14.	Mechanism of oscillator biosensor
Figure 3-1.	Sensor platform Fidget-Type
Figure 4-1.	Schematic representation of the immobilisation of Poly-L-Lysine (PLL)
0	over the gold electrode
Figure 4-2.	Frequency change of the resonance of Quartz coated with PLL
Figure 4-3.	Immobilised erythrocytes over the gold electrode
Figure 4-4	Effect of incubation time and temperature
Figure 4-5	Effect of washing and storage of the quartz before use
Figure 4-6	Effect of regeneration
Figure 4-7	Effect of molecular weight of PLL
Figure 4-8.	Comparison of the different films of PLL on gold electrode
Figure 4-9.	Graphic representation of the biosensor system used for the observation
	of the erythrocytes
Figure 4-10.	External observation of the erythrocytes on the quartz for 48 hours
Figure 4-11.	Microscopical optical pictures
Figure 4-12.	Observation of the frequency signal of non-infected vital erythrocytes for
	48 hours
Figure 4-13.	Experiment design for the observation on infected and non-infected
	erythrocytes
Figure 4-14.	Comparison of signal changes with different concentrations of parasitemia
Figure 4-15.	Comparison of the measurement of the frequency differential for infected
	and non-infected erythrocytes
Figure 4-16.	Photographs of the quartz at the end of the experiment
Figure 4-17.	Comparison of signal changes with >80% schizonts haemolysed and non
	infected erythrocytes
Figure 4-18.	Controls performed to establish the validation between the frequency
	measurement for the infected erythrocytes and the non-infected
	erythrocytes
Figure 4-19.	Validation of the frequency measurement for the infected erythrocytes
	and the non-infected erythrocytes inside the biosensor system
Figure 4-20.	Photographs of Quartz with infected and non-infected erythrocytes
Figure 4-21.	Illustration of reinfection on the quartz in the biosensor system and their
	external control

Figure 4-22.	Reinfection of healthy erythrocytes on a second quartz within one QCM
	system
Figure 4-23.	Apical interaction and tight junction of merozoite on erythrocyte
Figure 4-24.	Photographs of Quartz re-infected
Figure 4-25.	Validation by flow cytometry
Figure 4-26.	Re-infection control
Figure 4-27.	Merozoite viability
Figure 4-28.	Chemical structure of Artesunate
Figure 4-29.	Inhibition with Artesunate of the merozoite release
Figure 4-30.	Validation of Artesunate test
Figure 4-31.	Chemical structure of Chlorotonil
Figure 4-32.	Inhibition test of Chlorotonil
Figure 4-33.	Validation of Chlorotonil test
Figure 4-34.	Chemical structure of the protease inhibitors E64
Figure 4-35.	Inhibition of the merozoite release using protease inhibitors E64
Figure 4-36.	Validation of the test with protease E64
Figure 4-37.	Chemical structure of the protease inhibitors Leupeptin
Eigure / 38	Inhibition merozoite release using protease inhibitors I eupentin

- Figure 4-38. Figure 4-39. Figure 4-40
- Inhibition merozoite release using protease inhibitors Leupeptin Validation test with Leupeptin Photographs of quartz with exposure of protease inhibitors

TABLE OF	CONTENTS
----------	----------

1.	INTRODUCTION AND OBJECTIV OF THE RESEARCH	1
2.	THEORY	3
2.1	BIOSENSOR	3
2.1.	Mechanism of Biosensor	3
2.1.1.	Analytical of piezoelectric crystal microbalance	5
2.1.2.	Piezoelectric effect	5
2122	The piezoelectric Crystal	8
2.1.2.3.	Relationship between added mass and frequency shift	9
2.1.3.	Biosensor in cell biology and pharmacy	10
2.2.	MALARIA	12
2.2.1.	Epidemiology	12
2.2.2.	Biology of parasite	13
2.2.2.1.	Invasion of merozoite	16
2.2.2.1.1	. Structure of merozoite	16
2.2.2.1.2	Process of invasion	18
2.2.2.2.	Release of merozoite	20
2.2.3.	Chemotherapy and drug resistance	24
2.2.4.	IMMOBILISATION OF ERYTHROCYTES FOR THE ANALYSIS WITH QCM	27
3.	METHODS	31
3.1.	PREPARATION GOLD SURFACE	31
3.1.1.	Cleaning and adhesion of Quartz	31
3.1.2.	Coating with Poly-L-Lysine	31
3.2.	PREPARATION OF INFECTED ERYTHROCYTES	31
3.2.1.	Malaria culture	31
3.2.2.	Giemsa staining and parasitemia estimation	31
3.2.3.	Dilution of malaria parasites	32
3.2.4.	Synchronisation of parasites	32
3.2.5.	Separation of schizont stages	33
3.2.6.	Sample preparation for use with the biosensor	34
33	EXPERIMENT WITH OCM	35
331	Disinfection of the biosensor system	37
332	Sterility test for materials and reagents	38
3.3.3.	Microscopic control of the quartz	39
3.4.	CYTOMETRIC ANALYSE	39

Pages

4.	RESULTS AND DISCUSSIONS	40
4.1.	CHARACTERISATION AND OPTIMISATION OF THE POLY-L- LYSINE LAYER	40
4.2. 4.2.1. 4.2.2.	OBSERVATION OF THE BIOSENSOR SIGNAL FOR 48 HOURS Sterility Stability of the PLL-erythrocyte layer over 48 hours	51 51 52
4.3.4.3.1.4.3.2.4.3.3.	OBSERVATION OF INFECTED AND NON-INFECTED ERYTHROCYTES INSIDE THE BIOSENSOR SYSTEM Concentration of the infected cells Handling the erythrocytes infected with <i>P. falciparum</i> Experiment controls	56 56 59 60
4.4.	VALIDATION OF THE FREQUENCY MEASUREMENT FOR THE INFECTED ERYTHROCYTES AND THE NON-INFECTED ERYTHROCYTES INSIDE THE BIOSENSOR SYSTEM.	E 68
 4.5. 4.5.1. 4.5.1.1. 4.5.1.2. 	REINFECTION OF THE HEALTHY ERYTHROCYTES INSIDE THE EQUIPMENT Re-infection control and optimisation Efficiency of the re-infection method Viability of merozoites	74 82 82 85
4.6. 4.6.1. 4.6.2. 4.6.3.	STUDY OF THE MEROZOITE INHIBITION Test with Artesunat Test with Chlorotonil Test with proteases inhibitors	89 89 95 101
5. <u>S</u>	UMMARY	<u>115</u>
6. <u>B</u>	IBLIOGRAPHY	<u>120</u>

TABLE OF CONTENTS (continued)

Appendix 1. Relationship Between Added Mass and Frequency Shift	
Appendix 2. Properties of Some Important Merozoite Proteins in P. falciparum	136
Appendix 3. Clinical correlation of parasitemia	138
Appendix 3. Reagents and Equipments	139