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Abstract

Application of genetic distances to measure phenotypic relatedness is a challenging task, reflecting 

the complex relationship between genotype and phenotype. Accurate assessment of proximity 

among sequences with different phenotypic traits depends on how strongly the chosen distance 

is associated with structural and functional properties. Here, we present a new distance measure 

(MIH, Mutual Information and entropy H) for categorical data such as nucleotide or amino 

acid sequences. MIH applies an information matrix (IM), which is calculated from the data and 

captures heterogeneity of individual positions as measured by Shannon entropy and coordinated 

substitutions among positions as measured by mutual information. In general, MIH assigns low 

weights to differences occurring at high entropy positions or at dependent positions. MIH distance 

was compared to other common distances on two experimental and two simulated datasets. 

MIH showed the best ability to distinguish cross-immunoreactive sequence pairs from non-cross-

immunoreactive pairs of variants of the hepatitis C virus hypervariable region 1 (26,883 pairwise 

comparisons), and MHC (Major Histocompatibility Complex) binding peptides (n=181) from non-

binding peptides (n=129). Analysis of 74 simulated RNA secondary structures also showed that 

the ratio between MIH distance of sequences from the same RNA structure and MIH of sequences 

from different structures is 3 orders of magnitude greater than for Hamming distances. These 

findings indicate that lower MIH between two sequences is associated with greater probability of 

the sequences to belong to the same phenotype. Examination of rule-based phenotypes generated 

in silico showed that: (i) MIH is strongly associated with phenotypic differences, (ii) IM of 

sequences under selection is very different from IM generated under random scenarios, and 

(iii) IM is robust to sampling. In conclusion, MIH strongly approximates structural/functional 

distances and should have important applications to a wide range of biological problems, including 

evolution, artificial selection of biological functions and structures, and measuring phenotypic 

similarity.
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1. INTRODUCTION

When analyzing categorical data, e.g., protein, DNA or presence/absence data, with a 

constant number of dimensions across observations, e.g., in a multiple sequence alignment, 

a common task in bioinformatics and data science is to compare two sequences or strings. 

The underlying intuition for this comparison is that genetically close sequences are more 

likely to encode similar structural and functional properties (or phenotype) than more distant 

sequences. Thus, various types of distances among sequences are frequently used to create 

similarity trees or networks, examination of which is expected to identify natural clusters 

that reflect similarity among encoded phenotypic traits and eventually allow for research on 

the underlying causes of such similarity.

Several distance measures have been developed for analyzing sequence similarity including 

such simple similarity-type Hamming and Jaccard indices applicable to any type of 

categorical data. Although these indices measure sequence similarity or difference, they 

do not fully capture phenotypic differences, owing to certain limitations:

(i) Simple distances assign equal weight to all substitutions, discounting differential effect 

of substitutions on phenotype. Application of amino acid physicochemical properties 

seemingly solves this problem for protein comparison. However, uncertainty in relevance 

of particular physicochemical properties to a specific phenotypic trait does not allow for the 

efficient measurement of functional differences among protein sequence variants. Capturing 

differential effects of substitutions on phenotypes is fundamental to study of evolution. 

One of the most frequently used measures used for protein comparison is BLOSSUM-62, 

which is based on substitution matrices empirically identified for proteins over a pre-defined 

evolutionary range. Considering that specific substitution may affect a particular domain or 

phenotype differently from the expected general trends observed over evolutionary scales, 

custom-made substitution models have been developed to replace general-purpose models 

(Goonesekere and Lee, 2008). Nevertheless, these approaches are not applicable to data 

science or ecology problems that involve other types of categorical data such as presence/

absence rather than protein sequences.

(ii) Equal weight of substitutions at different positions (site or variable) is another limitation 

of simple distances. Although different positions have different conservation levels, a 

reflection of their differential contribution to phenotype, this information is not usually 

considered to improve the resolution of sequence comparisons using these distances.

(iii) Finally, the most insidious problem is that positions are rarely independent, a fact that 

is frequently underestimated, e.g., in phylogenetic reconstructions. A phenotype is not only 

affected by state of each site, but by interaction among states of different sites. Regarding 

proteins, their activities and properties are the result of interactions among constitutive 
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amino acids (aa). Effect of substitutions that tend to destabilize a particular structure and/or 

function is compensated by substitutions at other sites resulting in stability restoration 

(Pollock and Taylor, 1997). For example, a substitution involving a reduction of volume 

in protein core might cause a destabilizing pocket, which only one or a few spatially 

adjacent residues would be capable of filling. Structurally or functionally linked sites tend to 

evolve in a correlated fashion due to the compensation process (Pollock and Taylor, 1997). 

Abundant experimental evidence indicates that proteins contain pairs of covariant sites. 

Such sites have been identified both by analysis of families of natural proteins with known 

structures (Altschuh et al., 1988, Bordo and Argos, 1990, Chothia and Lesk, 1982, Mateu 

and Fersht, 1999, Oosawa and Simon, 1986) and by site-directed mutagenesis (Armstrong et 

al., 2006, Baldwin et al., 1993, Lim and Sauer, 1989).

Functional constraints integrate all protein sites in a very specific structure, which restricts 

independence of mutations. In such integrated structure, individual mutations are frequently 

disadvantageous. The detrimental effect of these mutations can be compensated by 

mutations at other functionally linked sites (Govindarajan et al., 2003), making all these sites 

covariable. Genetically close sequences of proteins sharing a common evolutionary path 

should contain the vestiges of these effects in the form of covariant pairs of sites (Clarke, 

1995). These interactions should manifest themselves in covariation between pairs of sites in 

a multiple sequence alignment. Analysis of covariation has been used in viral evolutionary 

studies (Campo et al., 2008), protein engineering (Voigt et al., 2001), detection of sequence-

function correlations (Atchley et al., 2000, Fukami-Kobayashi et al., 2002), protein structure 

prediction (Afonnikov et al., 2001, Altschuh et al., 1988, Benner et al., 1997, Chen and 

Wang, 2005, Clarke, 1995, Göbel et al., 1994, Larson et al., 2000, Nagl et al., 1999, Neher, 

1994, Nemoto et al., 2004, Shackelford and Karplus, 2007, Shindyalov et al., 1994, Taylor 

and Hatrick, 1994) and identification of important motifs in viral proteins (Altschuh et al., 

1987, Amon et al., 2005, Kolli et al., 2006, Korber et al., 1993). Several studies confirmed 

that highly coordinated sites are often functionally and/or spatially coupled, with coevolving 

positions being frequently located in regions critical for protein function, such as active sites 

and surfaces involved in molecular interactions with other proteins (Atchley et al., 2000, 

Benner et al., 1997, Gloor et al., 2005, Poon and Chao, 2005, Yeang and Haussler, 2007 ). 

Recently, information on covariation observed among protein sites in sequence alignment 

was successfully used in the AlphaFold algorithm for identification of contacting aa residues 

(Jumper et al., 2021).

Thus, coordinated mutations at more than one protein site contribute to phenotypic 

variations and must be taken into consideration for measuring functional and structural 

similarity among proteins. Here, we propose application of coordinated substitutions as 

measured by Mutual Information (MI) in addition to heterogeneity of individual positions 

as measured by Shannon Entropy (H) to approximate structural/functional distances among 

naturally or artificially selected sequence variants. The novel MIH (Mutual Information and 

Entropy H) distance was evaluated using two experimental and two simulated datasets and 

showed better performance than other commonly used distances.

Campo et al. Page 3

J Comput Biol. Author manuscript; available in PMC 2023 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. METHODS

2.1 Datasets

2.1.1. MHC-binding dataset: A dataset of 310 peptides, for which the MHC (Major 

Histocompatibility Complex) class I (Kb) binding activity was measured in a binary (yes/no) 

fashion (Hofmeyr, 2001, Milik, 1998), was used in this study. The dataset of 181 binders and 

129 non-binders was originally obtained by random sampling from a large (>107) library 

of peptides. Multiple sequence alignment of the peptide sequences was generated using 

ClustalW with the BLOSUM protein weight matrix (as implemented in MEGAX) (Kumar 

et al., 2018). Two distance sets were defined by measuring distances within the binding 

phenotype (binders to binders) and between binding and non-binding phenotypes (binders to 

non-binders).

2.1.2. HVR1 cross-immunoreactivity dataset: HVR1 (Hyper-Variable region 1) is 

a 27aa hypervariable region located at the N-terminus of the E2 protein of hepatitis C 

virus. The dataset contains information on cross-immunoreactivity of 26,883 pairs among 

262 HVR1 variants (Campo et al., 2012). Two distance sets were established: (1) distances 

between cross-immunoreactive HVR1 variants (antibody against one variant bind peptide 

containing another HVR1 variant) and (2) distances between non-cross-immunoreactive 

variants (no antibody binding). Considering that each 27 aa HVR1 peptide likely contains 

more than one epitope, these HVR1 sequence was divided into 20 possible overlapping 

8-mers (step = 1). Distances were calculated for each 8-mer subregion. Only best results 

obtained for each distance in any subregion are reported here.

The information matrix (see section 2.2) for this region was calculated from 12,245 HVR1 

nucleotide sequences obtained from the Virus Pathogen Database and Analysis Resource 

(ViPR)(Pickett et al., 2012). HVR1 nucleotide sequences were translated into protein 

sequences. Only one sequence per patient was used and sequences with insertions, deletions 

or stop codons were removed from analysis.

2.1.3. RNA secondary structure dataset: The RNA secondary structure is an 

essential phenotypic trait, as documented by its conservation in evolution and by convergent 

in vitro evolution toward a similar secondary structure when selecting for a specific function 

(Ekland and Bartel, 1996, van Nimwegen et al., 1999). RNA secondary structure prediction 

based on free-energy minimization is a standard tool in experimental biology and has 

been shown to be reliable (Huynen et al., 1997). We generated the full sequence space 

of AD sequences, where A=2 (C and G only, to reduce the computational burden) and 

D = 13. Prediction of the minimum free energy structure for each sequence was done 

using seqFold (v0.7.14, https://pypi.org/project/seqfold/). Seqfold is an implementation of a 

commonly used dynamic programming algorithm (Zuker and Stiegler, 1981). The number of 

sequences in each structure was calculated and only structures with ≥4 sequences were used. 

Finally, two groups of distances among all sequences for each phenotypes were defined: (1) 

Inside: for distances between sequences forming the structure and (2) Outside: for distances 

between sequences forming the structure and those sequences that do not belong to the 

structure.
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2.1.4. Rule-based random phenotypes: We wanted to generate thousands of in 
silico datasets, each with sequences satisfying different randomly generated constraints:

1. Space generation: The full sequence space of AD sequences was generated. For 

D=12 and A=2, a total of 4,096 sequences were generated.

2. A set of rules for this phenotype was defined. First, a random set of “conserved” 

positions (from 1 to D) was chosen. For each conserved position, a random set of 

states (from 1 to A-1 states) allowed in this position was defined. In addition, a 

random set of pairs of “linked” positions (from 0 to the number of combinations 

of 2 positions) was identified. For each linked pair, we define randomly its 

polarity as “positive” or “negative” (see next step).

3. Every sequence in the full space is evaluated by measuring how many of the 

rules it satisfies. For the “conserved” rules, we simply check if the sequence 

presents an allowed state in the specified position. For the “linked” pairs, we 

check the states at the two specified positions: if the pair is “positive”, the states 

should be identical; if the pair is “negative”, the states should be different.

4. Finally, each sequence has a measure of fitness that is the ratio between the 

number of satisfied rules and the total number of rules.

Only sequences with fitness equal 1 (all rules are matched) were considered to be members 

of the phenotype. This process was repeated to create 1,000 different random phenotypes, 

and for each one we defined two groups of distances among all sequences: (1) Inside: for 

distances between sequences that belong to this phenotype and (2) Outside: for distances 

between sequences that belong to this phenotype and those sequences that do not.

2.2. The MIH distance

The intuition behind MIH distance is the same as for the Mahalanobis distance for 

continuous data. The Mahalanobis distance was used to account for the fact that the variance 

of each variable is different and that there may be covariance between variables. This 

distance is commonly used to detect outliers (Etherington, 2021). The Mahalanobis distance 

is reduced to the Euclidean distance for uncorrelated variables with unit variance.

MIH distance can be applied to any type of categorical data, considering variability of each 

position as measured by entropy and existence of coordinated substitutions as measured 

by mutual information. The MIH distance between two sequences x and y is given by the 

following formula:

MIH x, y = xyT . I−1 . xy

Where xy is the mismatch vector (with 1 where the symbols are different and 0 where 

they are the same) and xyT is its transposed form. I is the symmetric information matrix 

(IM), with Shannon entropy (H) in the diagonals and mutual information (MI) between 

position pairs in all other entries. Formulation of Shannon entropy and mutual information is 

described elsewhere (Cover and Thomas, 2006). Logarithm was calculated using base equal 

to the number of states to ensure it ranges from 0 to 1.
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For each dataset considered in this paper, IM was calculated using all available sequences. 

Each sequence had frequency equal to 1.

2.3 Comparison with other distances

2.3.1. Other distances: The MIH distance was compared with (i) Hamming distances: 

the number of mismatches divided by the sequence length; (ii) BLOSSUM62 distance: 1 

minus the normalized similarity scores (from 0 to 1), (iii) Mahalanobis distances between 

vectors of dummy binary variables, and (iv) Minkowski distances (p=1, the Manhattan 

distance) between physiochemical vectors (see section 2.3.2).

2.3.2. Physiochemical vectors: There are many reported aa properties. Selection of 

suitable properties for a particular problem is a difficult task. A solution to this problem 

was proposed by Atchley et al. (Atchley et al., 2005) who used multivariate statistical 

analyses on 494 aa properties (Kawashima and Kanehisa, 2000) to produce a small set of 

highly interpretable numeric patterns of aa variability that can be used in a wide variety of 

analyses directed toward understanding the evolutionary, structural, and functional aspects 

of protein variability. This transformation summarizes the high level of redundancy in the 

original physicochemical attributes and produces much smaller, statistically independent, 

and well-conditioned variables for subsequent statistical analysis (Atchley and Zhao, 2007). 

The resultant five factors are linear functions of the original data, fewer in number than the 

original, and reflect clusters of covarying traits that describe the underlying structure of the 

variables (Atchley et al., 2005). Atchley et al. (Atchley and Zhao, 2007) showed how the 

transformation into one of the five multidimensional factors of physicochemical properties 

was useful in the analysis of Basic Helix-Loop-Helix proteins that bind DNA.

2.3.3. Statistical comparison between groups: To establish whether there were 

differences between the mean distances of the two groups in each examined dataset, 

we applied a Multi-Response Permutation procedure (MRPP). MRPP is a non-parametric 

permutation test for testing the hypothesis of no difference between two or more groups of 

entities (McCune and Grace, 2002). Permutation tests represent the ideal situations where 

one can derive the exact probabilities associated with a test statistic, rather than approximate 

values obtained from common probability distributions, such as t, F and Χ2 (Cai, 2004). 

In most studies, the population distribution is unknown and assuming a normal distribution 

is inappropriate for many biological datasets, which often are skewed, discontinuous, and 

multi-modal. The distance-functions that form the basis of the MRPP are used to detect 

differences in distributions, sensitive to both dispersion and shifts in central tendency (Cade 

and Richards, 2001). In this study, we applied the MRPP test to the different groups of 

distances, with 10,000 permutations.

All calculations in this paper were performed with Python 3 and all programs are available 

upon request.
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3. RESULTS

3.1 MIH shows superior performance on all datasets

The MIH distance weighs changes according to a symmetric information matrix (IM) 

calculated from all sequences under consideration, with Shannon entropy (H) being in 

diagonals and mutual information (MI) between position pairs in the corresponding entries. 

The intuition is that differences between two sequences at positions with high entropy 

are expected to be less essential for the phenotypic trait and accordingly receives low 

weight. Similarly, differences at a pair of highly associated positions also receive low weight 

since these positions are not independent and thus should not add their contribution ot the 

final distance. In the absence of selection constraints, the MIH distance is reduced to the 

Hamming distance when positions have maximum entropy, and every pair of positions has 

mutual information equal to zero (the null IM).

On the experimental datasets, MIH was compared to the Hamming, BLOSSUM62, 

Mahalanobis (dummy variables) and physiochemical distances. On the simulated datasets, 

MIH was compared only to Hamming distance. These distances were measured among all 

sequence variants to generate two sets, one for distances among sequence variants belonging 

to a phenotypic trait and another for distances among variants from two different phenotypic 

traits. There were significant differences between the two sets for all distances (MRPP test, 

p < 0.0001), indicating that sequence relatedness do captures differences in the phenotypic 

traits separating them. However, there were substantial variations in the magnitude of these 

differences.

Comparison among the distances was conducted using ratio (R) between the distance 

sets; R≈1 indicates lack of differentiation between presence or absence of the measured 

phenotypic trait. For the MHC dataset, R was greater for MIH than for any other distance, 

with the mean R=3.52 and the median R=7.08 (Figure 1A), indicating that low MIH 

between two sequences is a strong indication that both bind MHC molecules. For the HVR1 

cross-immunoreactivity dataset, the mean R=1.89 and median R=1.40 were again greater 

than for other distances (Figure 1B), indicating that the lower MIH between two sequences 

is associated with the higher probability of them being cross-immunoreactive.

The simulated RNA dataset contained 79 different secondary structures (or phenotypes), 74 

of which were represented with ≥4 sequences and analyzed further. The MIH showed a 

ratio 3 orders of magnitude greater than for Hamming distances (Figure 1C), indicating that 

lower MIH between two sequences is associated with greater probability of the sequences to 

belong to the same RNA structure.

For the rule-based simulated phenotypes (n=1,000), each phenotype was defined by 

sequences that do not break any of the randomly defined rules. Distance sets were generated 

for each of 1,000 phenotypes, with one set for within phenotype and another between the 

phenotype and all other phenotypes. As shown in Figure 1D, mean MIH ratio is consistently 

higher than the mean ratio of Hamming distances, with the value being proportional to the 

size of selected datasets, reaching R=30.91. However, the mean ratio of Hamming distance 

followed the opposite trend, with its value being inversely proportional to the size of the 
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selected dataset, quickly approaching R=1.18. Thus, the lower the MIH distance between 

two sequences, the higher the probability that they belong to the same rule-based phenotype.

3.3 Properties of the rule-based phenotypes

IM of each phenotype was compared to the null IM, which is the identity matrix (1s in 

diagonals and 0s everywhere else). The null IM can be obtained in absence of selection 

when all possible sequences in the space are used to calculate IM. The use of the null IM 

reduces MIH to Hamming distances because all positions are maximally heterogenous and 

independent from each other.

To study whether the differences between the observed IM in each of the 1,000 phenotypes 

of constant size (n=32) and the null IM can be randomly obtained, two random scenarios 

were considered: (i) a random sample of the entire space and (ii) a connected sample 

generated from one seed by randomly choosing a neighbour sequence, which is in turn used 

to select a random neighbour, and iterating the procedure until the desired size is reached. 

Figure 2A shows that the rule-based constraints generate phenotypes with IM being more 

different from the null IM (mean RMSE, Root Mean Squared Error = 0.3140) than IM from 

the random (mean RMSE = 0.0389) or connected scenarios (mean RMSE = 0.1612).

These results show that IM, as a foundation for MIH, is associated with phenotypic 

differences. However, simulations considered here allow for using all possible sequences 

that belong to a certain phenotype, which is hardly attainable experimentally. To simulate the 

effect of sampling on the IM calculation, 1,000 replica subsamples (for each level ranging 

from 5% to 95%) of the members of 1,000 phenotypes of the same size (n=256) were 

generated. First, we measured the RMSE between the subsampled IM and the null IM 

(Figure 2B), showing that even at very low levels of sampling (5%) RMSE=0.2408 is only 

6.2% greater than RMSE=0.2266 obtained without sampling. Second, we measured RMSE 

of each subsampled IM vs the full IM obtained without sampling. Although it takes a sample 

of ~20% to get close to the full IM, even at very low sample levels, the sampled IM is 

2.5-times closer to the full IM (RMSE=0.0970) than to the null IM at that sampling level. 

These results suggest that the IM calculation is robust to sampling variations.

3.4. Fitness and MIH distances in rule-based phenotypes

The rule-based constraints provide opportunity to measure fitness values as a fraction of 

satisfied rules for every sequence in the space, and thus allow to explore strength of 

association between MIH and phenotype differences.

Between-phenotype analysis: Comparison of 499,500 phenotype pairs was conducted 

using RMSE between the fitness values of all sequences. The fitness RMSE were compared 

to the mean distances. A small association was found with Hamming distances (Pearson 

correlation, r = 0.2611, p value = 0) (Figure 3A). It is important to consider that MIH 

between two sequences belonging to different phenotypes can be calculated in three ways: 

(i) MIH-1 using IM of phenotype 1; (ii) MIH-2 using IM of phenotype 2; and (ii) MIH-3 

using a joint IM calculated from the union of both sequence sets. A strong association was 

found with the average of MIH-1 and MIH-2 (r = 0.8861, p = 0) (Figure 3B), maximum of 
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MIH-1 and MIH-2 (r = 0.8415, p = 0), and minimum of MIH-1 and MIH-2 (r = 0.6374, p = 

0) but no association was found using the joint MIH (r = −0.0009, p = 0.5535).

Within-phenotype analysis: Within a single rule-based phenotype (n=1,000), the 

standard deviation of all fitness values is inversely proportional to the RMSE between 

MIH and Hamming distances (r = 0.9305, p = 0). Thus, higher discrepancy between 

MIH and Hamming distances is strongly associated with greater heterogeneity of fitness 

values (Figure 3C). Furthermore, correlation between distance and difference in fitness for 

each pair of sequences is always positive and proportional to the phenotype size for all 

distances (Figure 3D). However, the correlation value is much higher for MIH than for 

Hamming distance at all phenotype sizes (average ratio = 2.00). It is important to note 

that this correlation between MIH and fitness difference is even greater locally among 

one-step neighbors than globally among all possible pairs as described above (average ratio 

= 5.86), especially at a small phenotype size. This local correlation cannot be calculated for 

Hamming distances because all distances are identical (d=1).

4. DISCUSSION

The MIH distance is a novel measure of differences among genetic variants that have been 

naturally or artificially selected. The process of selection creates profound constraints on the 

sequence variability, while keeping constant the selected structure or function. In both our 

experimental datasets, MIH provided a better separation between sets than other distances. 

However, it was surprising that simple Hamming distance performed equally well to more 

complex measures specific to proteins (BLOSSUM62 and physiochemical properties of 

amino acids). As the Mahalanobis distance shares many of the properties of MIH, we 

expected a better performance, but at least in these two datasets the change from categorical 

(20aa) to dummy variables seems to make a substantial difference.

Although it is important to have validation with experimental and/or biologically inspired 

datasets (such as the RNA secondary structures), these are only three examples out of 

the immense space of possible phenotypes and experimental datasets suitable for such 

validation are not readily available. Therefore, here we devised a new in silico framework to 

generating datasets of sequences under strong constraints to demonstrate application of MIH 

to evaluation of differences among artificially selected phenotypes. This framework extends 

the intuition behind the NK model for generating random fitness landscapes (Kauffman and 

Weinberger, 1989). The NK model could be adapted to create datasets of sequences by 

using a threshold fitness and tunable epistasis level (parameter K, the number of positions 

associated with each position). However, the pairs of associated positions considered by this 

model are fixed and fully linked, whereas the Rule-based model offers a greater flexibility 

in the strength of association between pairs of positions and in the structure of epistatic 

networks. In addition, the model provides a complete control over the allowed heterogeneity 

levels at each position, which is lacking in the NK model. Thus, the Rule-based model 

affords a strong control over heterogeneity of individual positions, strength of epistatic 

interactions and structure of epistatic networks, while providing a ruleset allowing easy 

interpretability of results and simple computational implementation.
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There are three practical issues associated with calculation of MIH. (i) In rare cases, the 

determinant of the IM is equal to zero, preventing calculation of the inverse matrix required 

for measuring MIH. In these cases, addition of one over the number of sequences to a 

random number of entries in IM (making sure of keeping the matrix symmetric) resolves this 

numerical problem but simultaneously adds slight variation to distances calculated at every 

run, which could be potentially problematic when the phenotypic differences are small. (ii) 

MIH distances can have a very broad range, reaching very high values, as shown here for 

the RNA structure dataset. A rank transformation mitigates this issue. However, it seems 

important to examine other ways to normalize MIH distances. (iii) MIH distance performs 

best when comparing sequences within a single simple phenotype (for instance, to detect 

true phenotypic clusters or merge apparent but equivalent clusters) or when comparing 

related sequences encoding a certain phenotypic trait against sequences that do not encode 

this trait. However, when comparing sets of sequences that encode different phenotypes, the 

task is to choose one of possible distances depending on the used IM as we have experienced 

here for the between-phenotype comparisons using the rule-based simulations. Although 

our results showed that MIH is more correlated with phenotypic differences than Hamming 

distances, the choice of IM for one of the compared phenotypes or another, average IM for 

both phenotypes, and joint-phenotype IM may potentially cause interpretation problems in 

some settings where there is not an evidence-based way of choosing one. We found in this 

study that using the average was the best option, followed by the maximum.

Application of MIH offers several advantages: (i) it is better associated with phenotypic 

differences than other evaluated distances, (ii) IM of sequences under selection is very 

different from IMs generated under random scenarios, thus potentially allowing novel 

applications for evaluation of selection pressures of genomic regions, and (iii) IM is robust 

to sampling. If a given phenotype is the target of natural or artificial selection, IM for the 

viable sequences under this constraint is fundamentally different from IM of a sample 

of random sequences as we have observed here using rule-based datasets. This result 

suggests that deviation of the observed IM from the null IM (built using all sequences 

without constraints) can be used as a measure for the strength of selection. With further 

validation, this property can allow comparison between sequence sets (e.g., viral populations 

from different patients) to estimate differences in the selective constraints acting on both 

populations, even at the equal or comparable levels of heterogeneity for both sets. This is 

particularly important for analyzing noncoding regions where dN/dS ratio is not applicable.

One of the most important goals of data visualization is to assess proximity of data points. 

As was shown here, MIH is greatly associated with the underlying structural or functional 

differences. This important property of MIH is invaluable for visualization of genetic 

proximity and phenotype similarity. Simulation experiments presented in this study show 

that MIH is highly correlated with fitness differences. As fitness values and phenotypic 

differences are almost always unknown, MIH provides a simple approximation that can 

be used for cluster detection or other exploratory analyses. It is noteworthy that the 

MIH distance is calculated with the IM coming only from the sequences with maximum 

fitness that did not break any rule, but it still provides information about the fitness of all 

other sequences. With further evaluation and development, this important property offers 

applications of MIH to unsupervised analysis of the data, e.g., for building networks or 
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similarity trees to identify phenotypic clustering of sequences. Recently, this MIH property 

was used to detect previously undetectable clusters of Hepatitis C Virus HVR1 variants to 

guide development of broadly cross-neutralizing vaccine candidates (Mosa et al., 2021).

The results shown here suggest that MIH is a useful addition to the field of supervised 

machine learning, specifically by improving the k-nearest-neighbor algorithm. This is a 

simple but powerful approach for classification that stores all the available cases and 

classifies the new data based on a similarity measure. However, this similarity is obtained 

using all variables, even though some are obviously more important than others. Although 

the problem is alleviated by performing feature selection prior to this step, the problem 

persists as the remaining variables are likely to differentially contribute to traits and 

are not independent from each other. Application of MIH, which is associated with 

differences in structural, functional, or phenotypic traits, could improve performance of the 

nearest-neighbor approach, which warrants further investigation. Given that MIH distance 

is correlated with fitness differentials among close neighbors, the selection of neighbors 

itself could be more meaningful as well. In addition, it is well known that as dimensionality 

increases, the distance from a given point to the nearest data point approaches the distance 

to the farthest data point (Beyer et al., 1999). Thus, distances lose discriminatory power very 

rapidly in a phenomenon known as the dimensionality curse. Consideration of coordinated 

substitutions implemented in IM reduces dimensionality of data vs. application of null IM 

with as many dimensions as many positions in sequences. As MIH effectively reduces the 

dimensionality, it may help mitigate this common problem.

In conclusion, a new distance based on information theory presented here for categorical 

data such as nucleotide and amino acid sequences approximates underlying structural/

functional distances and could have important applications to a wide range of biological 

problems, including evolution, artificial selection of biological functions and structures, and 

measuring phenotypic similarity.
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Figure 1. 
Distance comparison among four datasets. A) MHC-binding dataset, comparing 5 different 

distance types. B) Cross-reactivity dataset, comparing 5 different distance types. C) RNA 

secondary structure dataset, comparing Hamming and MIH and showing a boxplot of all 

the ratios. D) Rule-based dataset, comparing Hamming and MIH depending on the size of 

the selected phenotypes (x-axis). The error bars show the standard deviation among 1000 

phenotypes.
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Figure 2. 
Information matrix of rule-based phenotypes. A) Boxplot of the RMSE between the IM of 

observed samples and the null IM with three scenarios: rule-based, random and connected. 

C) RMSE (Root Mean Squared Error) between the IM of subsamples and the null IM or the 

full IM. The x-axis shows the different sampling levels.
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Figure 3. 
Fitness and rule-based phenotypes. A) Between-phenotype comparison: Scatterplot between 

fitness RMSE and Hamming distance. B) Between-phenotype comparison: Scatterplot 

between fitness RMSE and Hamming distance. C) Within-phenotype scatterplot of 

RMSE (between hamming and MIH distances) and the fitness standard deviation of the 

entire space. D) Within-phenotype scatterplot of the Pearson correlation between fitness 

differentials and three distance types: Hamming, MIH global and local MIH (including 
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only one-step neighbors). The x-axis shows the different sizes of the selected rule-based 

phenotypes.
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