
Improving Business Process Visualizations

Philip E�nger, Martin Siebenhaller, Michael Kaufmann

WSI-2009-02

ISSN 0946-3852

Arbeitsbereich Paralleles Rechnen
Prof. Dr. Michael Kaufmann
Wilhelm-Schickard-Institut für Informatik
Fakultät für Informations- und Kognitionswissenschaften
Eberhard-Karls-Universität
Sand 13, 72076 Tübingen, Germany
Email: {e�nger,siebenha,mk}@informatik.uni-tuebingen.de

c©WSI, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/56756365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Abstract

Business processes are at the core of today's business world. They state precisely how
given challenges are to be handled. Most of the e�ort put into business processes is
either the task of designing a new process or the task of improving an existing process.
In both cases, visualizations of the process supports the user in achieving his objectives.
However, even visualizations of complex structures are in danger of becoming complex
themselves. Thus, readability often is the victim of large visualizations.
In this report, we propose an approach for increasing the readability of process vi-
sualizations. The approach is based on a graph-geometric algorithm that performs
constrained cuts on given visualizations. A side constraint of the approach is not to
hide the inherent complexity of the business process. As modeling notation for busi-
ness processes, the business process modeling notation BPMN is state of the art and
it is primarily supported by our approach. Besides increasing readability of existing
visualizations, we will also show how to �nd an initial visualization.

Keywords: Business processes, BPMN, Business Process Visualization, Graph Draw-
ing

1 Introduction

In 2007, request for proposal (RFP) of version 2.0 of the business process modeling
notation (BPMN ) was opened by the object management group (OMG). The working
title became �business process model and notation�. This stands for the growing impor-
tance by BPMN in not only providing a comprehensive notation repository. BPMN
2.0 will also be capable of modeling meta models. However, there are only minor
syntactical changes from BPMN 1.1 to 2.0.
Version 1.1 is used by more than 54 companies according to bpmn.org. While writing
this report, BPMN version 1.2 was published in January 2009. However, changes from
1.1. to 1.2 merely include minor bug �xes or improved formatting.
Version 1.1 is used both in simulation tools and as a teaching language for beginners
in the �eld of business processes. Many of these tools provide interfaces for the design
of diagrams with BPMN elements. Unfortunately, they often lack the possibility of
using computer-aided or automatic layouts. If the tool provides layout support, the
results are often unsatisfactory since the algorithm used in place are not su�cient.

Our goal is to show an approach that both �nds a new visualization for a given dia-
gram and improves existing visualizations modeled with BPMN.

In this paper, we assume that the reader is familiar with the concept of graphs, dual
graphs and planarity (see [5] for an overview).
In section 2, we give a short introduction into BPMN version 1.1. The techniques used
for calculating an automatic layout are shown in section 3. In the following section 4,
the approach for improving business process visualizations is presented.
The report closes with a demonstration and evaluation (section 5) as well as a conclu-
sion (section 6).

3



2 BPMN

In order to be able to model a complete business process, we chose to support BPMN
(business process modeling notation) [7]. BPMN 1 is a modeling notation that is
propagated by the OMG (Object Management Group2). It o�ers a way to create
graphical models that contain all information necessary for an optional subsequent
implementation of the process model.
Currently, BPMN is undergoing a standardization process for version 2.0. Standard-
ization will not be passed before the year 2010. In this report, we used version 1.1
which is still the most widespread version. BPMN consists of di�erent categories of
elements:

1. Flow objects control the �ow in a process. They can be considered as nodes in
a graph. The largest group among �ow objects are Events, denoted as shown
in Figure 2(a). Events can trigger actions during a process or initiate/terminate
a (sub-)process. Therefore there are start events, intermediate events and end
events.
A task that has to be performed in a process is represented by an Activity, see
Figure 2(b). Activities can be repeated once or several times (loop activity). In
order to take decisions regarding the actual �ow status, Gateways are introduced,
see Figure 2(c). Gateways can join/fork �ows depending on logical conditions.

2. Connecting objects are used to connect �ow objects. Thus, they correspond to
edges in a graph. There are three di�erent connecting objects, see Figure 2(d):

• A Sequence �ow object is the most common object to determine the process
�ow. It is used to de�ne the direction of the �ow and thus the process'
sequence of �ow objects.

• A Message �ow denotes the exchange of messages during a process' execu-
tion. The message exchange can be directed inward into the process �ow
or outward, e.g. for a status information or error message.

• An Association represents a weak relationship among �ow objects. It has
no impact on the process �ow.

3. Swimlanes are used to de�ne a higher order among �ow objects. They can be
interpreted as a partitioning of �ow objects into logical units, e.g. departments of
a company. They are represented by vertical or horizontal stripes as depicted in
Figure 2(e). So-called pools are hierarchically one step above swimlanes, and are
used to group related swimlanes or to model external participants in a process.

4. Artifacts are a group of BPMN-elements that cannot be sorted into the categories
already mentioned.

• Annotations o�er the possibility to add comments to �ow objects as well
as connecting objects, see Figure 2(f). Annotations are attached to the

1For most recent developments, see http://www.bpmn.org
2see also: http://www.omg.org

4



corresponding object by an association. In a graph model annotations can
be handled like common nodes.

• Data objects represent data that is available to the process or produced by
executing the process �ow.

• A Group represents a symbolic composition of BPMN-elements. It has no
semantic meaning to the process �ow, but it o�ers a way to document or
analyze process properties. In the area of graph drawing those groups are
known as clusters.

(a) Start/Intermediate/End Events (b) Task / Multiple Instance

(c) Gateways in extracts
(fork/join and complex)

(d) Connecting objects (sequence, message and
association)

(e) Pool/Lanes (f) Annotation

Figure 1: Overview of BPMN-elements, see also [7].

In this report, we consider graphs that consist of BPMN-elements:

De�nition 1 (BPMN-graph) A BPMN-graph is a graph G = (V,E) with the fol-
lowing additional information:

• A mapping node_type : V → T , where T denotes the set of types of a BPMN-
element. Each node n ∈ V is mapped to exactly one type t ∈ T .

• A mapping edge_type : E → C, where C denotes the set of connecting objects.
Each edge e ∈ E is assigned exactly one connecting object c ∈ C.

3 Layout algorithm

An automatic layout approach for BPMN-graphs has to support the speci�c require-
ments given by the BPMN notation, e.g. it has to support groups and swimlanes.
BPMN-graphs are usually drawn using orthogonal edge routes, i.e. each edge is drawn
as a sequence of horizontal and vertical line segments. Hence, we use an orthogonal
layout approach for calculating the initial layout of a given BPMN-graph.

5



More precisely, our approach employs the implementation described in [4] that in-
corporates di�erent constraints needed for the automatic layout of activity diagrams
which are related to business process diagrams. The supported constraints include
partitions (a generalization of swimlanes), clusters (groups) as well as a common �ow
direction of edges which is especially important for such diagrams. Thus, all require-
ments demanded by BPMN-graphs are already included.

4 Divisions

In cases where process models become very complex and cannot easily be overlooked,
it is desirable to divide the resulting diagram into smaller pieces. In the following, we
give an algorithm that divides BPMN-graphs subject to constraints, e.g. the size of
sheets the BPMN-graph is to be printed on or the number of parts to be computed.

De�nition 2 (Division of BPMN-Graphs) A Division of a BPMN-Graph G =
(V,E) with given constraints C partitions G into node sets V1, . . . , Vk with k ≥ 2 such
that Vi ∩ Vj = ∅ ∀i 6= j. The subgraphs induced by Vi on G have to satisfy C. Edges
of A = {(v, w) ∈ E | v ∈ Vi, w ∈ Vj and i 6= j} are called division edges.

A division does not necessarily correspond to a min-cut, i.e. the cuts induced by a
division mainly depend on the given constraints C.
In BPMN-graphs, as for ratio-cuts in e.g. [6], the aim of a division is to minimiza A
and to obtain subgraphs of nearly equivalent size in terms of nodes or area. Thus, we
have to �nd suitable routes for the cuts.

4.1 Description of the division approach

In order to �nd appropriate routes, we introduce the term center band. The center
band is a rectangular space in the graph through which a cut runs, see Figure 2(a).

We now describe how to perform a horizontal cut, a vertical cut is performed analo-
gously. For a horizontal cut the width of the center band is set to the width of the
bounding box surrounding the graph. Height of the center band is set to a prede�ned
value yo − yu around the midpoint center ym of the center band, see Figure 2(a). The
prede�ned value may be given by the user or can be preset with a fraction of the
graph's height. In our evaluations, we found that a value that corresponds to 10%
of the graph's height is a good choice for most graphs. The center band should have
an area size that contains at least two possible routes. The placement of the center
band depends on how often the graph is to be divided. With two desired parts of the
graph, the vertical center of the graph is chosen. With more than two desired parts,
the center bands are inserted in geometrically equivalent distances from each other.
The core of the division algorithm is a dual graph routing inside the center band. The
dual graph G′

D is constructed over the cut graph G′ = (V ′, E′) ⊆ G induced by the
center band. The embedding of G′ which is needed for the construction of G′

D can be
computed by means of a sweep line algorithm. Additionally we introduce two vertices
s and t. Vertex s is connected to the vertex of G′

D which represents the inner face

6



(a) Placing a horizontal center band on the
underlying graph. The red box denotes the
center band. Swimlanes are depicted by dot-
ted lines.

(b) Determining a cut using the dual graph. The
dashed blue edges denote a shortest path from
s to t and thus induce a cut with a minimum
number of split edges in the center band.

Figure 2: Determining a cut in a graph.

containing the left border edge of the center band and vertex t to the vertex which
represents the inner face containing the right border edge of the center band, see Fig-
ure 2(b). Hence, a shortest path from s to t in G′

D induces a cut inside the center
band with the lowest number of cut edges (cut edges correspond to division edges).
The edges of the dual graph are weighted as follows: edges leaving the center band
are set to in�nite weight since we want to obtain a route inside of the center band.
Alternatively, we could remove those edges. The two edges incident to s and t are set
to weight 0 and the remaining edges of G′

D to weight 1. Since there is a one-to-one
relation between edges of E′ and edges of E′

D, a possible extension is to set higher
weights for speci�c edges of E′ that should not become division edges, if possible.
Those speci�c weights can be set by the user. The weights are then passed to the
corresponding edges of E′

D.
An example of a horizontal cut can be found in Figure 2(b). Since the weights of
the edges have to be taken into account when the shortest path is calculated we use
Dijkstra's algorithm [2].
Analogously to horizonal cuts, a vertical cut is performed by using a vertical center
band, see extended example in section 5.

Performing a shortest path computation on the dual graph, we obtain the division
edges for the original graph. Those edges have to be removed in order to split the
graph. However, an edge removal causes information loss. Thus, we insert two re-
placement nodes for each such edge. Replacement nodes are a well-known construct

7



in the UML and they are also known as connectors. The �rst replacement node is con-
nected to the source of a division edge and the second to the target. The replacement
nodes are placeholders for the former edge and are marked with the name of the node
they point to, e.g. the replacement node at the source is marked with the target's
name and vice versa. Examples for the insertion of replacement nodes as placeholders
can be inspected in section 5.

After performing a cut, the computed subgraphs are relayouted using the sketch-driven
approach described in [1]. It reduces the area of the drawing without changing the
user's mental map, i.e. it preserves the given embedding and shape of the edges in
the subgraph. The implementation of the sketch-driven approach for BPMN can be
inspected in existing works, e.g. in [3].

4.2 The algorithm in detail

For a given graph we �rst determine if a vertical and/or horizontal cut is needed
to satisfy the given constraints, e.g. the prescribed size of the subgraph. If both is
required we apply the cut (horizontal or vertical) which splits the lowest number of
edges.

Algorithm 1: BPMN-Divisions with constraints

Data: BPMN-Graph G, constraints C
Output: Array of Graphs [Gsub]

Step 1: if (C is NOT ful�lled) then1

GOTO Step 2;2

else GOTO Step 3;3

Step 2:4

- derive center band by calculating barycentric x- and y-position(s) and set it to5

the prede�ned size
- calculate cut graph G′ by means of a sweep-line algorithm6

- calculate dual graph G′
D7

- perform shortest path computation8

- create the resulting subgraphs9

- perform sketch-driven layout on each subgraph10

- insert replacement nodes for divison edges11

- [Gsub].add{subgraphs};12

GOTO Step 1 with subgraphs and constraints C as input;13

Step 3:14

return [Gsub];15

To perform a cut with prescribed number of parts, multiple non-overlapping center
bands are introduced to search for cutting edges. Therefore, as mentioned in 4.1, the
center bands are inserted in geometrically equivalent distances from each other.
If we want to split a drawing of a graph into sheets of �xed size, the algorithm itera-
tively cuts subgraphs until they �t onto a sheet. The runtime of a cut is dominated by

8



calculating the sketch-driven layout and thus by solving a min-cost �ow problem on
the planarized graph. A description of the algorithm can be inspected in Algorithm 1.

5 Evaluation

In this section we demonstrate the bene�ts of our visualization and the improvements
on two real-world examples.

In the �rst case, we applied our software to the input graph shown in Fig. 3 which was
drawn with the help of the tool developed in [3]. The graph considers the work�ow in
left-to-right perspective. The core layout produced the drawing given in Figure 4(b).
The work�ow is preserved and it is now drawn in the top-to-bottom perspective. All
edges have orthogonal routes.
Assuming the process in Figure 4(b) is to be split, the division could be done by, for
example, performing a division onto two sheets. In Figure 4(c), the center band is
visualized by a red rectangle. Edges that are contained in the cut graph are marked
(in yellow color). The corresponding cut graph is shown in Figure 4(a). In Figure 4(d)
one can inspect the two resulting subgraphs. The replacement nodes are inserted and
appear as blue smaller nodes. Blue nodes have no semantic in BPMN such that there
are no interferences with the BPMN standard.

Figure 3: A sketch of a BPMN-graph showing a process model of noti�cation of claim.

Figure 5(a) is an extended example of Figure 4(b). We added the role of the insur-
ant (in a new swimlane). The former example described only the role of the insurer.
The sequence is equivalent to the former example. First, we derive a layout (see Fig-
ure 5(b)) from the sketch. In this example, a vertical division (see Figure 5(c)) is
performed since the roles (insurer/insurant) of the process represent an intuitive sep-
aration.
Finally, the divided subgraphs are shown in Figure 5(d).

Note, that although all �gures use the same scale, the sum of the area of the resulting
subgraphs is signi�cantly smaller than that of the input graph. This positive e�ect is
attributed to the application of the sketch-driven layout algorithm after cutting the
graph.

9



6 Conclusion

In this report, we showed how to enhance a basic orthogonal layout approach in order
to visualize business processes modeled with BPMN. Therefore, we applied the concept
of divisions.

As demonstrated in the evaluation section, the approach o�ers an e�ective way to im-
prove a given orthogonal layout by reducing its complexity and increasing interactivity
with the user in the, in general, static �eld of layout computation. In combination
with sketch-driven layout, see [1], interactivity can even reach a level for high usability
that enables a user to model and layout in one comprehensive and e�cient tool.

Future research might comprise the support of higher user interactivity for drawing
business processes as well as more sophisticated concepts for improving visualizations
and simultaneously reducing complexity of visualizations.
Exploiting the modeling language's semantics, layouts can be computed tighter to the
needs of a speci�c modeling language as BPMN.

References

[1] U. Brandes, M. Kaufmann, D. Wagner, and M. Eiglsperger. Sketch-driven orthog-
onal graph drawing. Lecture Notes In Computer Science, 2528, 2002.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Second Edition. The MIT Press, September 2001.

[3] P. E�nger. Automatisches layout von geschäftsprozessen. Diplomarbeit, Eberhard-
Karls-Universität Tübingen, Wilhelm-Schickard-Insitute, Sand 13, May 2008.

[4] M. Siebenhaller and M. Kaufmann. Drawing activity diagrams. Technical report,
Wilhelm-Schickard-Institut, 2006.

[5] R. Tamassia, G. DiBattista, P. Eades, and I. Tollis. Graph Drawing. Prentice Hall,
1999.

[6] S. Wang and J. Siskind. Image segmentation with ratio cut. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(6):675�690, 2003.

[7] S. A. White. Introduction to bpmn. bpmn.org, May 2004.

10



(a) Cut graph for example in Figure 4(c) (b) Layouted graph.

(c) Process before divison; the center band is
marked red.

(d) Subgraphs after divison; Replacement nodes (blue) are inserted for re-
moved division edges.

Figure 4: Example for a BPMN-Layout and division for an insurance process for
noti�cations of claims.



(a) A sketch showing a BPMN notation with two
roles in noti�cation of claim.

(b) Computed layout graph.

(c) Layout graph before vertical divison;
the center band is marked red.

(d) Subgraphs after divison; Again, replacement nodes (blue)
are inserted for division edges.

Figure 5: Example of a BPMN-Layout and a vertical division for a two-role (in-
surer/insurant) insurance process for noti�cations of claims.


	Introduction
	BPMN
	Layout algorithm
	Divisions
	Description of the division approach
	The algorithm in detail

	Evaluation
	Conclusion

