
 

 

 
 

Redox-active Modification of Silica Surfaces  
via Silicon-Carbon Bond Formation 

 
 
 

Redox-aktive Modifizierung von 
Kieselgeloberflächen durch Bildung von 

Silizium-Kohlenstoff-Bindungen  
 
 
 
 
 

DISSERTATION  
 
 
 

der Fakultät für Chemie und Pharmazie  
der Eberhard-Karls-Universität Tübingen  

 
zur Erlangung des Grades eines Doktors  

der Naturwissenschaften  
 
 
 
 
 
 

2009  
 
 

vorgelegt von  
NICOLAS PLUMERE  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tag der mündlichen Prüfung: 30. Januar 2009 

 

 Dekan: Prof. Dr. L. Wesemann 

1. Berichterstatter: Prof. Dr. B. Speiser 

2. Berichterstatter: Prof. Dr. L. Wesemann 

3. Berichterstatter: Prof. Dr. J. Pesek  



 

 

This doctoral thesis was carried at the Institut für Organische Chemie, Fakultät für Chemie 

und Pharmazie, Eberhard-Karls-Universität Tübingen, Germany, under the guidance of Prof. 

Dr. Bernd Speiser. 

 

Foremost, I am indebted to Prof. Dr. Bernd Speiser, my supervisor, for his support and 

excellent guidance during this research work. I thank him not only for providing me with the 

lab facilities and a perfect working environment but also for his confidence and almost  

unlimited freedom he has given me. I could not have learnt more about chemistry, scientific 

research and communication during the course of this work. 

 

I thank all my working group members for valuable discussions and their friendly nature. I 

would like to specially thank Dr. K. Ludwig, Dr. W. Märkle, C. Tittel, Dr. F. Novak, A. Ruff, 

B. Sandig, S. Benthin, J. Schaefer, T. Wener, C. Muñoz, T. Reissig and B. Rochier. 

 

I would like to thank Prof. Dr. Hermann A. Mayer, for his comments and discussions which 

proved to be very valuable for several parts of this thesis. 

I thank Prof. Dr. Joseph J. Pesek for welcoming me in his laboratory at the San Jose State 

University. 

 

I thank the Deutsche Forschungsgemeinschaft (Graduiertenkolleg 441 “Chemie in 

Interphasen”) and the Max-Buchner-Forschungsstiftung for generous support of my thesis. 

I thank the members of the Graduiertenkolleg for the enriching cooperation and especially 

Pavel Levkin and Wolfgang Leis for the many useful and stimulating discussions as well as 

David Ruiz Abad, Dominik Joosten and Benjamin Dietrich for their assistance in several 

experiments. I thank Prof. Dr. Klaus Albert, Prof. Dr. Lars Wesemann, Prof. Dr. Hermann A. 

Mayer and Dr. Egelhaaf for making the successful cooperation with their working groups 

possible. 

 

I personally thank Prof. Dr. Wilbur H. Campbell for introducing me into the fascinating world 

of scientific research and for stimulating my interests for chemistry.  

 

Finally, I am thankful to my family and to Stephanie for their support and for the inspiration 

they gave me. 



 

 

Parts of this thesis are already accepted fo publication: 

 

A. Budny, F. Novak, N. Plumeré, B. Schetter, B. Speiser, D. Straub, H. A. Mayer, M. 

Reginek, Redox-active silica nanoparticles. Part 1. Electrochemistry and catalytic activity of 

spherical, nonporous silica particles with nanometric diameters and covalently bound redox-

active modifications, Langmuir 2006, 22, 10605 – 10611. 

 

N. Plumeré, B. Speiser, Redox-active silica nanoparticles Part 2. Photochemical 

hydrosilylation on a hydride modified silica particle surface for the covalent immobilization 

of ferrocene Electrochim. Acta. 2007, 53, 1244 – 1251. 

 

N. Plumeré, B. Speiser, H. A. Mayer, D. Joosten and L. Wesemann, Redox-active silica 

nanoparticles. Part 3. High-temperature chlorination-reduction sequence for the preparation of 

silicon hydride modified silica surfaces. Chem. Eur. J., 2009, 15, 936 – 946. 

 

 



 

 

Table of content 

 
Abbreviations 

 
Introduction ..............................................................................................................................1 

 
1 Stöber particles......................................................................................................................9 

1.1 Introduction .............................................................................................................. 9 

1.1.1 The Stöber process and mechanism .......................................................... 9 

1.1.1.1 Hydrolysis ................................................................................ 11 

1.1.1.2 Condensation............................................................................ 12 

1.1.1.3 Nucleation of primary particles................................................ 12 

1.1.1.4 Aggregation of primary particles ............................................. 13 

1.1.1.5 Growth by monomer addition .................................................. 14 

1.1.2 General properties ................................................................................... 14 

1.1.2.1 Shape ........................................................................................ 15 

1.1.2.2 Porosity..................................................................................... 15 

1.1.2.3 Size distribution........................................................................ 15 

1.1.2.4 Dimensions............................................................................... 16 

1.2 Synthesis of the Stöber particles ............................................................................ 18 

1.3 Characterization of the Stöber particles ................................................................. 20 

1.3.1 Particle shape........................................................................................... 20 

1.3.1.1 Optical microscopy .................................................................. 20 

1.3.1.2 Scanning electron microscopy ................................................. 21 

1.3.2 Particle size and size distribution ............................................................ 23 

1.3.2.1 SEM measurements.................................................................. 23 

1.3.2.2 Dynamic light scattering .......................................................... 25 

1.3.3 specific surface area and pore size distribution....................................... 27 

1.3.3.1 Geometrical specific surface area from SEM .......................... 27 

1.3.3.2 Physisorption isotherms ........................................................... 27 

1.3.3.2.1 Surface area from the BET method........................... 29 

1.3.3.2.2 Porosity...................................................................... 33 

1.3.3.2.2.1 Micropores from the t-method ................... 33 

1.3.3.2.2.2 Mesopores from the BJH method............... 34 

1.4 The optimal particle size ........................................................................................ 35 



 

 

2 Silicon hydride modified silica surface..............................................................................36 

2.1 Preparation of Si–H modified silica materials ....................................................... 38 

2.2 Physical properties of the Si–H modified silica materials ..................................... 40 

2.2.1 Size determination by SEM and DLS ............................................................................. 41 

2.2.2 Surface characterization by nitrogen adsorption-desorption isotherms .......................... 42 

2.3 Chemical properties of the Si–H modified silica materials.................................... 43 

2.3.1 The silicon hydride groups (Si–H) .......................................................... 43 

2.3.2 The silanol groups (Si–OH) .................................................................... 47 

2.3.3 The nature of the TH groups .................................................................... 48 

2.3.4 Nature of the Q groups ............................................................................ 50 

2.3.5 The importance of the chlorination step.................................................. 52 

2.3.6 Optimal reduction temperature................................................................ 55 

2.2 Conclusion.............................................................................................................. 55 

 

3 Silicon-carbon bond formation..........................................................................................56 

3.1 Free radical initiated hydrosilylation...................................................................... 56 

3.1.1 Photochemical hydrosilylation................................................................ 57 

3.1.1.1 Immobilization of 10-undecylenic acid via photochemical 

hydrosilylation on non-porous MSiH materials......................... 58 

3.1.1.2 Photochemical reaction of 10-undecylenic acid with the porous 

M2SiH materials ....................................................................... 61 

3.1.2 Thermal hydrosilylation .......................................................................... 61 

3.1.2.1 Immobilization of 1-octadecene  

via thermal hydrosilylation....................................................... 62 

3.1.2.2 Immobilization of  1,7-octadiene  

via thermal hydrosilylation....................................................... 65 

3.2 Base catalyzed dehydrogenative coupling of Si-H with terminal alkyne .............. 68 

3.2.1 Base catalyzed dehydrogenative coupling between triethylsilane and               

1-hexyne .................................................................................................. 70 

3.2.1.1 Kinetics..................................................................................... 72 

3.2.1.2 Mechanism ............................................................................... 74 

3.2.2 Dehydrogenative coupling on the Si-H modified silica surface ............. 75 

 

 



 

 

4 The redox-active molecules................................................................................................77 

4.1 Introduction ............................................................................................................ 77 

4.2 Synthesis of ferrocene derivatives.......................................................................... 79 

4.3 Synthesis of diamine(ether–phosphine)dichlororuthenium(II) complexes ............ 81 

4.4 Synthesis of biphenylamine derivatives 3a-c......................................................... 85 

4.4.1 1-bromo-4-(R)-benzenes (4a-c) .............................................................. 86 

4.4.2 3,5-di-tert-butyl-4-iminocyclohexa-2,5-dien-1-one (5) .......................... 88 

4.4.3 3,5-di-tert-butyl-4-imino-1-(4-R-phenyl)cyclohexa-2,5-dien-1-ol  

(6a-c) ....................................................................................................... 89 

4.4.4 3,5-di-tert-butyl-4'-R-1,1'-biphenyl-4-amine (3a-c) ............................... 89 

4.5 Conclusion.............................................................................................................. 89 

 

5 Covalent attachment of active molecules on the silica surface via the radical addition 

of Si-H to C=C bonds.............................................................................................................90 

5.1 Covalent attachment of active molecules on the silica surface via route I ............ 90 

5.1.1 Ferrocene attachment .............................................................................. 91 

5.1.2 Ruthenium complex attachment.............................................................. 92 

5.1.3 Biphenylamine attachment...................................................................... 92 

5.2 Covalent attachment of active molecules on the silica surface via route II ........... 93 

5.2.1 Immobilization of ferrocene by means of an activated carboxylic acid 

modified silica surface ........................................................................... 93 

5.2.2 Free radical induced hydrobromination of carbon-carbon double bond 

modified silica surface ............................................................................ 97 

5.3 Conclusion............................................................................................................ 101 

 

6 Applications .......................................................................................................................102 

6.1 HPLC separation with M2SiH and M2C18............................................................. 102 

6.1.1 HPLC separation of  SRM 870 with M2SiH ......................................... 105 

6.1.2 HPLC separation of  SRM 870 with M2C18.......................................... 107 

6.1.3 Conclusion............................................................................................. 109 

6.2 Electrochemical properties of material M1gFc..................................................... 110 

6.2.1 2D arrangment of silica particles on Pt surface..................................... 111 

6.2.2 Spontaneous adsorption of M1gFc on platinum electrode surfaces....... 114 

6.2.3 Electrochemistry of M1gFc.................................................................... 116 



 

 

6.2.4 Conclusion............................................................................................. 120 

 

7 Experimental part .............................................................................................................120 

7.1 General procedures............................................................................................... 120 

7.2 Materials............................................................................................................... 121 

7.3 Analytical techniques ........................................................................................... 121 

7.4 Synthetic procedures ............................................................................................ 127 

 

8 Appendix............................................................................................................................142 

8.1 Polydispersity index ............................................................................................ 142 

8.2 Geometrical specific surface area ........................................................................ 143 

8.3 Surface concentration of ferrocene on M1Fc from cyclic voltammetry ............... 143 

 

9 Conclusion..........................................................................................................................144 

 

References.............................................................................................................................149 

 

 



 

 

Abbreviations 

 

2D Two dimensional 

3D Three dimensional 

A Specific surface area  

Å Ångström 

AAS  Atomic absorption spectroscopy 

ACF Autocorrelation function 

aq.  Aqueous 

arom.  Aromatic 

As Peak asymmetry 

BET Brunauer-Emmet-Teller 

BJH Barett-Joyner-Halenda 

br Broad (NMR) 

bp Boiling point 

Bu Butyl 

C18 Alkyl chain with 18 carbon atoms  

CP Cross-polarization 

cv Coefficient of variation 

CV Cyclic voltammogram 

γ Surface tension 

Γ Surface concentration  

δ Chemical shift in ppm (NMR) 

δ Bending vibration (IR) 

δ Diffusion layer thickness (CV) 

∆Ep Peak potential separation (CV) 

d    Doublet (NMR)  

d Diameter 

D Diffusion coefficient 

DLS Dynamic light scattering 

dppf 1,1’-Bis(diphenylphosphino)ferrocene 

DRIFT Diffuse reflectance infrared Fourier transform  

E0     Formal potential   

Ep
ox      Oxidation peak potential 



 

 

Ep
red      Reduction peak potential 

EI Electron impact 

ESI Electronspray ionization 

Et Ethyl 

Et2O Diethyl ether 

F Faraday constant  

FAB Fast-atom bombardment 

Fc Ferrocene 

GC Gas chromatography 

h Planck constant 

IUPAC International Union of Pure and Applied Chemistry 

η Viscosity  

HPLC High performance liquid chromatography 

HR-MS High resolution mass spectrometry 

ip Peak current 

IR Infrared 

J Coupling constant 

k’ Retention factor 

kB Boltzmann constant 

m Multiplet (NMR) 

m Medium (IR) 

MAS Magic angle spinning 

Me Methyl 

MeOH Methanol 

MN  Number average molecular weight 

mp Melting point 

MS  Mass spectroscopy 

MW  Weight average molecular weight 

m/z Mass to charge ratio (MS) 

n Specific amount 

N Efficiency 

NA  Avogadro constant  

nm Monolayer capacity 

NMR Nuclear magnetic resonance 



 

 

ν Scan rate (CV)  

ν Stretching vibration (IR) 

ν�  Wavenumber in cm-1 (IR) 

P° Saturation pressure 

P/P° Relative pressure  

PDI Polydispersity index 

Ph Phenyl 

ppm Parts per millions 

q Quartet (NMR) 

Q Charge  

ρ Density 

R Ideal gas constant  

RT Room temperature  

s Singlet (NMR) 

s strong (IR) 

sat. Saturated 

SDP Size distribution processor 

SEM Scanning electron microscopy 

SRM Standard reference material 

STP Standard temperature and pressure 

σ Standard deviation 

T Temperature 

t Triplet (NMR) 

t Time 

t0 Void time 

TCD Thermal conductivity detector  

TEOS Tetraethoxysilane 

TES Triethoxysilane 

THF Tetrahydrofuran 

TMS Tetramethylsilane 

UV Ultraviolet 

v/v Volume to volume 

w Weak (IR) 

w/w Weight to weight 



 

 



Introduction 

1 

Introduction 

 

“Interphase” systems [1], in which active molecules are immobilized on a high surface-area 

matrix with access to a mobile liquid phase, have triggered advances in several fields of 

chemistry. This concept is based on the covalent attachment of active centers on an inert 

matrix via a flexible spacer (Scheme 1). The interphase is the region where the stationary 

phase and a mobile phase interpenetrate.  

 

 

Scheme 1: Schematic representation of an interphase [1]. 

 

In the field of catalysis, transition metal complexes are immobilized in such interphase 

systems in order to combine the advantages of homogeneous (high selectivity) [2] and 

heterogeneous (simple separation) catalysis [1]. For example, Noyori’s hydrogenation 

catalysts was successfully bound to a polysiloxane matrix with retention of its activity and the 

ability to be recycled [3]. 

 

Interphase systems are also encountered in separation science. For example, in reverse phase 

HPLC, the organic modification on the solid matrix (e.g. C18 on silica [4]) interpenetrates 

with the mobile phase and interacts with the selectands in homogeneous conditions. Similarly, 

in gas chromatography, chiral selectors are covalently attached to polysiloxane supports and 

interact with the analytes in the gaseous mobile phase [5, 6]. The realization of interphase 

systems has greatly enhanced the separation power in both HPLC and GC. 
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Within this context, our particular interest lies in redox-active modifications of interphase 

systems. The use of redox probes as models for active centers makes it possible to apply 

electrochemical tools to the interphase systems. In particular, the mobility, the accessibility 

and the interactions of the active centers, which are essential in both catalysis and separation 

science, may be investigated with electrochemical methods. For example, the kinetics of a 

charge transfer between redox centers [7] within an interphase system and the proportion of 

active molecules that are accessible to the redox reaction may be determined. Electrochemical 

redox processes may also switch catalytic activity through changes in the oxidation state of 

the catalyst’s central metal atom or the ligand [8, 9].  

 

 

 

Scheme 2: Non-porous spherical particles for electrochemical and catalytic applications of 

interphase systems. 

 

Electrochemical methods are easily applied to the investigation of homogeneous redox-active 

molecules which can diffuse to the electrode surface where the redox reaction takes place. In 

the case of an interphase system where porous matrices are used, a direct contact between the 

electrode surface and the immobilized catalysts is not straightforward. Therefore, as a 

simplified matrix for the interphase system, we will choose to use spherical non-porous 

particles of sub-micrometer diameters instead of porous or swellable materials. The presence 

of all redox centers on the outer surface of the particles provides a unique environment for the 

modifying molecules (Scheme 2). We regard nonporosity to be an important feature for our 
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current purpose: Although the possible loading with redox-active materials is inferior to that 

of highly porous materials, the binding sites are expected to be much more homogeneous, 

holding all redox-active molecules in a similar environment. Furthermore, electron transfer to 

the bound molecules should be easier as compared to the corresponding reaction of redox-

active centers embedded in bulk systems. Indeed, a direct contact between the immobilized 

redox-active centers and an electrode surface becomes possible. Finally, a controlled 

geometry (narrow polydispersity, well defined shape and dimension of particles) may allow to 

study the intermolecular charge transfer between the redox-active molecules on the particle 

surface (Scheme 2). 

Moreover, non-porous particles have additional advantages for the catalysis itself: The 

absence of pores facilitates the diffusion of the substrate to the catalytic centers, which is 

often the rate determining step for reactions in porous systems [10]. Improved accessibility of 

active centers is expected, especially for large molecules. Also, the homogeneous surface 

environment of the molecules bound by linkers to the non-porous particles may limit the 

decrease of catalytic selectivity, which is often observed when immobilizing a catalyst. 

 

Silica particles obtained from the Stöber process [11] are good candidates to fulfill the 

monodispersity, porosity, size and shape requirements for both catalytic and electrochemical 

applications. The first objective of this thesis is to synthesize particles with the optimal 

characteristics with respect to the requirements presented above. 

 

Three different types of redox-active probes were chosen for the modification of the silica 

particles: 

 

1. Ferrocene (1) is a simple one-electron redox system regarded as a standard for various 

properties, e.g. redox potential [12]. It is a convenient model for the study of redox 

interactions in an interphase. 

2. Ruthenium complexes with a diamine/diphosphine ligand set (Noyori type catalysts) 

(2) exhibit catalytic activity for the hydrogenation of unsaturated ketones and 

reversible redox properties [13]. 

3. Sterically hindered biphenyl amines (3) are an example of redox-active organic 

molecules showing stable radical cation states and may be used as electron mediators 

in redox reactions. 
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The functionalization of these redox-active molecules to make a covalent attachment with a 

silica surface possible is one of the objectives of the thesis. 

 

 

 

The design of a general method for the covalent attachment of redox-active molecules (or, in 

general, active centers) on the silica surface is another goal of this work. The basic 

requirements are as follows: 

 

1. All the synthetic steps on the silica surface are solid phase reactions. Unreacted educts 

as well as side-products bound to the silica surface can not be separated from the 

product. Therefore, high yield and selectivity for the desired product are necessary. 

2. Sources of impurities should be avoided as much as possible. In particular, the use of 

transition metals catalyst for the surface reactions is not appropriate since the metal 

may remain on the silica surface. Transition metal impurities may interfere with both 

catalytic and electrochemical experiments. 

3. The silica surface after modification should not interact with the active molecules. In 

particular, in the case of catalysis in an interphase, the catalyst is ideally expected to 

be in homogeneous conditions. Any interactions with the support would induce 

heterogeneity at the active centers. 

4. The stability of the bond must be sufficient to withstand the conditions of both the 

subsequent modification steps as well as the application of the interphase systems. 

5. The binding between the silica surface and the molecular modifiers must be well 

defined and homogeneous. Indeed, the spacer length and flexibility influences the 

mobility of the active molecules and therefore, its interactions in the interphase [1]. 

 

For the modification of the silica surface with organic modifiers, the hydrolytically stable 

silicon–carbon bond [14, 15] between the matrix and the spacer could be ideal: The low 

polarity and high strength of the Si-C bond result in good stability in a wide range of 
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conditions [16]. Five rather different approaches may be taken toward the preparation of 

organosilica derivatives via Si-C bonds (Scheme 3).  

 

 

 

Scheme 3: Retrosynthetic pathways to modified silica surfaces via Si-C links. 

 

The standard method for silica surface modification involves condensation of the surface 

silanol groups with functionalized silanes, forming siloxane bonds (silylation, Scheme 3, 

method A, reaction 1) [1, 17, 20 - 23]. This method is the most straighforward to carry out, 

and by far the most popular approach for silica modification with chromatographic selectors 

[21, 22] as well as transition metal catalysts [24, 25]. However, this approach presents several 

limitations:  

1. Because of the use of a trifunctional silane moiety [26], one to three siloxane bonds 

between the modifier molecules and the silica surface may be formed. The siloxane bonds 

resulting from silylation are prone to hydrolysis in an aqueous environment [16, 30, 31], in 

particular at extreme pH values [15, 18, 32 - 35]. The loss of active centers from the solid 

support occurs primarily by the cleavage of T1 and T2 groups (Figure 1) while the more stable 

T3 groups [36], are less sensitive due to the higher extent of cross-linking. If only one or two 

siloxane links are present, the hydrolytic stability of the molecular modification is not 

sufficient for the conditions of interphase applications. In particular, the leaching of catalysts 

[37] and HPLC selectors [33, 34] under harsh catalytic and separation conditions are 

drawbacks directly linked to the silylation method of modification.  
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2. The formation of T1 and T2, besides T3 groups from the use of trifunctional silanes also 

introduces inhomogeneities in the surface attachment. Moreover, the polymerization of the 

silane group, a second source of inhomogenities, can not be excluded if trace amounts of 

water are present. The use of a monofunctional silane [38] yields a homogeneous binding as 

polymerization is prevented and only one siloxane link can be obtained between the silica 

surface and the attached molecules. However, the resulting formation of M groups (Figure 1) 

even worsens the problem of hydrolytic stability. 

 

 

 

Figure 1: Nomenclature of siloxane species [1]. The dashed lines represent Si-O bonds to 

the silica bulk. 

 

3. The silylation is not quantitative, and unreacted acidic surface silanol groups remain on the 

silica surface [39]. These acidic groups may undergo undesired interactions with the active 

centers or with molecules from the homogeneous phase. In reverse phase HPLC, for example, 

the presence of silanol groups results in poor separation (tailing) of organic bases [32, 40, 41]. 

In catalysis, the Si-OH groups can interact with the supported catalyst [42, 43] lowering its 

specific activity and selectivity [2, 44]. In particular, enantioselectivity of the catalytic 

reaction may be lost [45, 46]. Moreover, the  Si-OH groups may coordinate to transition metal 

centers, especially to oxophilic early transition metals. For example, organometallic Zr or Ti 

complexes react with the silica surface [47]. Late transition metals (Rh for example) may bind 

to the silica surface as well [47]. As defined in the interphase concept, the active centers must 

be in (pseudo-)homogeneous conditions, and therefore no direct interaction with the matrix is 

allowed. A possible remedy, capping of the silanol groups [48], is not generally applicable 

owing to potential reactions of the active centers or ligands with the capping agent [49]. 
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In summary, the silylation method is not optimal for interphase applications due to the poor 

binding stability and heterogeneity as well as the presence of remaining Si-OH groups. 

In order to obtain a homogeneous and stable linkage via T3 groups only, it is desirable to 

produce a direct Si-C bond [14, 15, 30] between the silica matrix and the spacer (Scheme 3, 

method B). 

The reaction of Si-Cl [50] (Scheme 3, reaction 2) or strained Si-O-Si bonds [30] (Scheme 3, 

reaction 3) with organometallic reagents produces a Si-C bond. This type of bonding is also 

obtained from the addition of Si-H groups to terminal C=C bonds (hydrosilylation reaction, 

Scheme 3, reaction 4) [15, 39] as well as from the coupling of terminal C≡C bond with Si-H 

groups (dehydrogenative coupling or dehydro-condensation, Scheme 3, reaction 5) [51]. 

Reactions 2 to 4 were previously performed on silica surfaces [15, 30, 50]. On the other hand, 

reaction 5 was only described on monomeric silane species [51] so far. 

When reactions 2 and 3 are performed on modified silica surfaces (Scheme 3), the 

organometallic reagents do not yield the monoalkylated silane only. Indeed, Si-O-Si links 

may be cleaved and more than one Si-C bond per silicon atom is obtained [50]. Therefore, the 

resulting modified surface shows a poor hydrolytic stability as well as inhomogeneity. 

In the case of reaction 4, however, the hydrosilylation reaction yields a modified silica surface 

with enhanced hydrolytic stability [14]. The absence of a strong base in this reaction prevents 

the undesired cleavage of the siloxane bonds and a more homogeneous surface modification 

is expected.  

In the choice of the modification method, the presence of the remaining Si-OH must also be 

considered. These groups are produced by the cleavage of the siloxane bonds in reaction 3 or 

are produced after hydrolysis of unreacted silicon chloride groups in reaction 2. On the other 

hand, reaction 4, which consists in the addition of a silicon hydride bond to a carbon-carbon 

double bond [52] does not involve nor produce any Si-OH group. Moreover, the Si-H groups 

that might remain after the hydrosilylation reaction, are not expected to undergo interactions 

in the interphase to the same extent as the silanol groups. Because of their relative inertness, 

the Si-H groups are potentially optimal starting materials for further surface modification, 

provided that homogeneous and silanol free silica surfaces with Si-H groups linked via 3 Si-

O-Si bonds may be prepared.  

In summary, the hydrosilylation reaction, if we consider both the homogenous formation of 

T3 groups and the resulting inert matrix lacking the Si-OH group, is potentially well suited for 

the immobilization of active molecules in such interphases. A variety of methods [53], 

involving catalytic [4, 15, 55] or radical [56] mechanisms have been described to produce Si–
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C bonds from Si–H groups on silica surfaces. Considering our interest in electrochemical and 

catalytic applications, a non-catalytic hydrosilylation is desired in order to avoid metal 

impurities on the silica surface.  

 

Both the preparation of the desired Si-H starting material and the adequate hydrosilylation 

reaction need to be adapted to our purposes.  

The preparation of the silica particles, their Si-H surface modification, the functionalization of 

the redox-active molecules with C=C bonds, and the development of an adequate 

hydrosilylation reaction are the main synthetic challenges of this thesis. In parallel to this new 

modification pathway, the standard silylation route will be used for the immobilization of the 

redox-active molecules, mostly for comparison purposes. The possibility to apply a 

dehydrogenative coupling pathway starting from an alkyne for the silica surface modification 

will also be explored. 

 

As a last objective, potential applications of the synthesized materials will be studied. In 

particular, the Stöber particles redox-actively modified via the Si-C bond will be investigated 

with electrochemical tools in order to determine the redox-active molecule’s interactions in 

this model interphase system. The advantage of the Si-C modification route from a Si-H 

surface will also be evaluated for general interphase applications. In particular, the HPLC 

performance of materials resulting from these synthetic strategies will be assessed. 

 

In summary, as the basis for the application of electrochemical tools to interphase systems 

(investigation of the active centers behavior, control of redox catalysis within the interphases), 

the aim of this thesis is to synthesize and characterize the solid matrix and the model redox-

active molecules as well as to design a surface modification method via the Si-H and Si-C 

bond formation. The achievement of this goals will be verified by testing the resulting 

materials in concrete interphase applications. 
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1 Stöber particles 

 

1.1 Introduction 

 

The catalytic and electrochemical applications to be adressed in this work require spherical, 

non-porous and monodisperse particles. Particles that fulfill these geometrical requirements 

can be produced from a wide range of organic [57] and inorganic [58 - 61] materials. As a 

support for the redox-active molecules, inorganic materials are preferred for their mechanical 

and chemical stability. Within the variety of inorganic materials, silica is the support of choice 

[32]: Silica particles can be produced in the complete colloidal range and a variety of 

chemical routes are available for the silica surface functionalization, especially based on 

derivatization of the surface silanol groups [20 – 23]. 

 

Silica particles obtained from the Stöber sol/gel-process [11] are chosen as a support for the 

immobilization of redox-active molecules in the present work. The rigorous characterization 

of the particles’ physical properties is a key step. Indeed, the matrix physical properties will 

have to be well-defined for the theoretical interpretation of their electrochemical investigation. 

 

1.1.1 The Stöber process and mechanism 

 

In 1968, Stöber and coworkers reported that, under basic conditions, the hydrolysis of 

tetraethoxysilane in alcoholic solutions can be controlled to produce monodisperse, non-

porous, spherical particles of amorphous silica [11]. The main advantages of the process are 

that the size of the particles can be tuned by changing the reaction conditions and the reaction 

proceeds at high concentrations, yielding large amounts of product. 

The reaction consists of the hydrolysis of tetraethoxysilane (TEOS) in a water, ethanol and 

ammonia mixture, where the overall reaction is 

 

Si(OEt)4 + 2 H2O → SiO2 + 4 EtOH (1) 

 

The mechanism can be summarized as the hydrolysis of the alkoxysilane followed by the 

condensation of the resulting silylic acid. The base, ammonia, acts as the catalyst in both 

hydrolysis and condensation reactions. 
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In Stöber’s work, the control of the particle properties was achieved by empirical experiments. 

Since these early investigations, several growth and formation mechanisms have been 

proposed.  

The first model describes the nucleation of nanometer sized primary particles which then 

grow by the addition of silylic acid monomer on their surface (the monomer addition growth 

model [62 - 63]), in analogy to the LaMer precipitation model [64] (Figure 2).  

 

 

 

Figure 2: Schematic representation of the concentration of hydrolyzed monomers, before 

and after nucleation (LaMer diagram [64]): I. Monomer hydrolysis, II. Nucleation 

period, III. Particle growth by monomer diffusion. 

 

It mainly focuses on the hydrolysis and condensation rates, which determine the final particle 

size. This model is in accordance with only some experimental observations and accounts for 

the properties of the resulting particles (monodispersity, smooth surface, spherical shape). 

The second model, the aggregation growth model [65], states that particle growth occurs via 

the aggregation of primary particles. In this case, the final particle size is determined by the 

different parameters affecting the colloidal stability, like ionic strength, temperature, charges 

on the particle surface, pH and solvent properties. This model correlates better with  

experimental observations. However, the smoothness of the particle surface can only be 

explained by the monomer addition growth model. 

The most recent model [66 - 68] assumes that Stöber particles are first formed by an 

aggregation mechanism of nanometer-sized particles and, when the colloidal stability is 
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reached, further growth of the particles occurs via the monomer addition mechanism. This 

model is backed by all experimental observations and is currently accepted as the most 

probable mechanism. The different steps of this mechanism are hydrolysis, condensation, 

nucleation, aggregation and monomer addition. 

 

1.1.1.1 Hydrolysis 

 

Ammonia catalyses the reaction by deprotonating the water molecules. The resulting 

hydroxide ions react with the tetraalkoxysilane in a nucleophilic reaction [67, 69]. 

 

 

 

Scheme 4: Hydrolysis of TEOS. The Q j
i notation denotes Q as a tetrafunctional silicon site, 

the subscript i is the number of silanol bonds, and the superscript j the number 

of siloxane bridges on the Si atom. 

 

Subsequent hydrolysis steps yield the Q0
2, Q0

3 and Q0
4 monomers [70] (Scheme 4). 

Hydrolysis of Q0
0 is typically the rate-limiting step to particle formation [63, 71] . The 

subsequent hydrolyses of the three remaining ethoxy groups from Q01 proceed faster the more 

alkoxy groups are already removed. This increase in rate is caused by the increasing 

stabilizing effect of the hydroxy groups on the transition state and the decreasing steric 

hindrance of the ethoxy groups [69]. 

Under base-catalyzed conditions, the nucleophilic substitution in both the hydrolysis and the 

condensation (see below) reactions occurs via an associative pathway involving a penta-

coordinate transition state [69].  
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1.1.1.2 Condensation 

 

The condensation reaction is also base-catalyzed: Ammonia first deprotonates the silylic acid, 

which in turn reacts with another monomer in a nucleophilic substitution [67, 69]. As an 

example, the condensation between two Q0
4 monomers resulting in Q16 is displayed in 

Scheme 5. 

 

 

 
Scheme 5: Condensation of hydrolyzed monomers. 

 

Under the Stöber process conditions, the monomers observed in solution during the whole 

reaction are typically TEOS and the first hydrolysis product, Q01 [72, 73]. The fact that Q04 

species are not experimentally detected suggests that the condensation of the fully hydrolyzed 

monomer is faster than hydrolysis [71]. For the partially hydrolyzed monomers, hydrolysis is 

typically faster than condensation. 

The degree of hydrolysis of the monomers before condensation is controlled by the relative 

hydrolysis and condensation rate of the individual steps [74]. Under most Stöber conditions, 

the fully hydrolyzed monomers, Q0
4, are obtained [71]. In experiments using low water and 

ammonia content, for the preparation of small particles in particular [75], however, the 

hydrolysis rates are lower and partially hydrolysed monomers, Q02 and Q0
3, are detected [74]. 

 

1.1.1.3 Nucleation of primary particles 

 

When a critical supersaturation concentration of hydrolyzed monomers is achieved, the 

nucleation of primary particles takes place [68, 73, 76] (Scheme 6). 
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Scheme 6: Nucleation of primary particles. 

 

The nucleation process is included in both the aggregation and the monomer addition growth 

models. 

It is believed that the condensation of the hydrolyzed monomers and oligomers first yields  

low density expanded polymeric structures [73]. When the concentration of hydrolyzed 

monomers is above the critical supersaturation concentration [64] (Figure 2), the polymers 

reach a size and degree of cross-linking where they become insoluble. At this point, the 

intramolecular enthalpic attraction overcomes the entropic solvation forces, and the molecule 

collapses to form the primary particles [73]. The size of the primary particles depends on the 

interactions of the polymeric intermediates with the solvent [74] (thermodynamic control), 

whereas the amount that is produced depends on the concentration of hydrolyzed monomers 

and the relative rate of hydrolysis and condensation (kinetic control). 

 

1.1.1.4 Aggregation of primary particles 

 

According to the aggregation growth model, the primary particles are not stable under the 

reaction conditions and aggregate [67, 71] (Scheme 7). The aggregation yields the secondary 

particles (also called seed particles or agglomerates [77]).  

 

 

 
Scheme 7: Aggregation of primary particles. 

 

This aggregation takes place until the resulting secondary particles are large enough to 

achieve colloidal stability [67]. The size of the secondary particles is controlled by the 

parameters influencing the colloidal stability (thermodynamic control) and the size and 

amount of the primary particles (kinetic control). 
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1.1.1.5 Growth by monomer addition 

 

When colloidal stability is achieved, an important part of the monomers has been consumed. 

According to LaMer [64] and the monomer addition growth model, the nucleation of primary 

particles occurs only in the early stage of the process when the concentration of monomers is 

maximal. In the later stage, when the monomer concentration is lower, the nucleation of 

primary particles can not take place anymore. Indeed, in the base catalyzed sol-gel process of 

alkoxysilanes [78], the attacking nucleophile for the condensation reaction is a deprotonated 

silanol group. The acidity of a silanol group strongly increases if the silicon atom which it is 

bonded to is linked with other silicon atoms through siloxane bonds. This ensures that the 

monomers react preferentially with higher polymerized species [79], which prevents the 

build-up of hydrolyzed monomers in the solution. Therefore, once nucleation has ended, 

further growth of the particles only occurs via monomer addition (Scheme 8). 

 

 

 
Scheme 8: Growth by monomer addition. 

 

In summary, the formation of the Stöber particle is a balance between aggregation of primary 

particles and monomer addition, with both processes depending on the relative condensation 

and hydrolysis rates. The experimental parameters define the extent of each step, and 

therefore, the final particle properties. 

 

1.1.2 General properties 

 

Understanding the details of the mechanisms of the Stöber particle formation is expected to 

lead to a better control of the relevant particle characteristics including the shape, size, size 

distribution, and porosity of the particles. 
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1.1.2.1 Shape 

 

Amorphous colloid materials typically display spherical shapes due to the random addition of 

monomer on the primary particle surface [60], while crystalline colloid materials display 

crystal shapes [59]. The sol-gel process of TEOS under basic conditions yields amorphous 

materials [66]. Moreover, the strength of the base controls the relative hydrolysis and 

condensation rates, which will determine the subsequent nucleation. In order to ensure a 

spherical shape, a weak base like ammonia is required as the catalyst. Indeed, in the absence 

of ammonia, the silica precipitates in irregularly shaped particles [11], while the use of 

stronger bases yields a wide range of porous materials [79]. 

Moreover, a spherical shape is obtained provided that stirring of the reaction mixture is strong 

enough to avoid the sedimentation and agglomeration of large particles. 

 

1.1.2.2 Porosity 

 

The relative rate of the hydrolysis and the condensation reaction controls the degree of 

hydrolysis of the monomers, which determines the cross-linking of the silica structure. As 

shown above, the monomers are fully hydrolyzed under most conditions of the Stöber process. 

Consequently, a large proportion of Q4 structures is obtained and mesopores (Table 1) are 

absent. However, the silica particles are not fully condensed and contain micropores (Table 1) 

[69]. In particular, at low water and low ammonia concentrations, due to the slower 

hydrolysis rates, particles of high microporosity are obtained [75].  

 

Table 1: Types of pores in solid materials. 

description ethymology (greek) diameter 

micropores micro = small < 2 nm 

mesopores meso = middle 2 - 50 nm 

macropores macro = large > 50 nm 

 

1.1.2.3 Size distribution 

 

The monodispersity obtained for many colloid systems [58 - 60] has been explained by a self 

sharpening effect [60, 64, 80], consistent with the monomer addition growth model [62 - 63]. 
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A short burst of nucleation occurs when a critical supersaturation concentration of hydrolyzed 

monomers (or nucleation concentration) is reached [64]. The resulting particles then grow by 

addition of the remaining monomers. The consumption of monomers is sufficiently rapid so 

that their concentration remains below the nucleation concentration and therefore, further 

nucleation is avoided. The separation of the nucleation and growth steps is the key for the 

formation of monodisperse colloids. 

However, this mechanism is only valid for dilute solutions. If the initial concentration of 

monomer is high, several bursts of nucleation may occur and the final size of any given 

particle will depend upon when it was formed [64]. A polydisperse sol is the result in this case. 

In the Stöber process, high monomer concentrations are used ([TEOS] up to 0.5 M). 

Consequently, the soluble silica concentration is above that required for nucleation until late 

in the precipitation reaction [68, 74]. Therefore, the self sharpening effect can not explain the 

monodispersity of the Stöber particles. 

The mechanism responsible for the monodispersity of the Stöber particles is actually the 

aggregation of the primary particles into the secondary particles, which correlates with the 

aggregation growth model: The size and monodispersity of the secondary particles are 

precisely defined by the parameters controlling the colloidal stability (ionic strength, pH, 

charge on the particles, temperature, solvent viscosity and dielectric constant) [67, 81, 82]. 

Once the concentration of hydrolyzed monomers is too low for further nucleation to occur, 

the final particles are obtained by monomer addition to the secondary particles. Therefore, the 

final polydispersity is directly linked to that of the secondary particles. 

 

In order to guarantee the monodispersity of the Stöber particles, the concentration of 

ammonia, water and TEOS must be kept in a narrow range [81] and the parameters 

controlling the colloidal stability must be kept uniform in the reaction mixture. In order to 

satisfy the latter condition, adequate stirring of the reaction mixture is needed and large 

upscaling of the process should be avoided [81]. Still, it has been observed that upscaling up 

to 5 L has no significant effect on polydispersity [83]. 

 

1.1.2.4 Dimensions 

 

According to the Stöber process mechanism, the final particle size depends on the amount and 

size of secondary particles on which the remaining monomers will condense. 



1. Stöber particles 

17 

The amount of secondary particles partially depends on the mass of primary particles 

produced and therefore on the reaction kinetics (see above). Consequently, the temperature, 

the concentration of TEOS, H2O and NH3, will all contribute to determine the amount of 

secondary particles and the final particle size. Indeed, experimental observations show that 

the factors that accelerate the rates of condensation and hydrolysis reactions tend to produce 

smaller particles [82]. For example, an increase in temperature, typically between 20 and 

60 °C, yields smaller Stöber particles [84, 85].  

 

 

 

Figure 3: Conditions controlling the Stöber particle diameter; only the effects backed by 

experimental observations are displayed. 

 

On the other hand, the size of the secondary particles is controlled by the factors determining 

the colloidal stability [65, 67, 71]. For example, the addition of salts to the reaction mixture 
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results in an increase in final particle size without significant impact on the hydrolysis and 

condensation rates [67, 71].  

The effects of the reaction conditions on the final particle size are summarized in Figure 3. 

The fact that some parameters influence both the reaction kinetics and the colloidal stability, 

makes it difficult to predict which particle size will result from a given set of experimental 

conditions. It is even difficult to predict whether an increase or a decrease in particle diameter 

will result from a given modification in the experimental conditions. For example, changes in 

[H2O] and [NH3], which influence both the reaction kinetics and the colloidal stability, have a 

complex effect on the particle size: The increase in [H2O] and [NH3] first yields larger particle 

diameters until a maximum is reached. A further increase in [H2O] and [NH3] then results in 

smaller particle diameters [81]. 

In summary, the general mechanism of the Stöber particle formation and the influence of the 

experimental conditions on the particle diameter is mostly understood. However, in order to 

obtain a given particle size, empirical experiments remain necessary. 

 

Moreover, it is not possible to obtain monodisperse particles with sizes covering the whole 

sub-micrometric domain (100 - 1000 nm) by varying only one single parameter. The variation 

in [NH3] or the change of solvent alone, allows a maximum change in particle size of about 

300 nm. By varying the temperature between -20 and 60 °C, the whole colloidal range can be 

produced but the polydispersity of the particles is high for the extreme temperature values [84, 

85]. Typically, temperature, solvent and ammonia as well as water concentration are tuned 

simultaneously to obtain the desired particle size. 

On the other hand, variations in [TEOS] are not employed to control the size, since the 

highest possible concentration is usually used for which the maximum yield is obtained and 

the spherical shape is retained. 

 

1.2 Synthesis of the Stöber particles 

 

Stöber particles of low porosity, low polydispersity, and with diameters between 100 and 

800 nm are desired. The syntheses in this work were performed by adapting a known 

procedure [86]. In order to cover the desired diameter range, the water and ammonia 

concentrations were varied and various solvents were used (Table 2). We will designate the 

resulting silica materials as M1 with a suffix letter to define the different preparations. 
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Table 2: Experimental conditions for the preparation of silica particles in this work. 

    concentration  / M 

material  [TEOS] [NH3] [H2O] 

M1a[a]  0.2 0.41 15.61 

M1b [a]  0.25 0.47 9.30 

M1c[a]  0.25 0.47 9.30 

M1d [b]  0.3 0.58 8.00 

M1e[b],[c]   0.53 0.59 4.70 

[a] reaction in ethanol, [b] in isopropanol [c] prepared by D. Straub [83]. 

 

The materials M1b and M1c are two batches resulting from the same experimental conditions 

(Table 2) to test the reproducibility of the sol-gel process. 

In order to obtain smaller particle diameters, a higher temperature was used compared to 

reference [86] and kept constant for all experiments (45 °C). Besides switching the solvent 

from isopropanol to ethanol, the water concentration is the main parameter used to control the 

particle size. Typically, low water concentrations are used for the production of small 

particles [81]. In our case, the opposite strategy will be used in order to lower the porosity of 

the Stöber particles: The large water concentration employed to obtain the smallest particles is 

expected to increase the cross-linking and decrease the amount of remaining ethoxy groups 

(see B.A.A). As mentioned before, the TEOS concentration was chosen as high as possible 

and increasing [NH3] were used for increasing particle diameters. 

Moreover, after the synthesis, the materials were tempered at 600 °C under vacuum [87] in 

order to further reduce the microporosity and eliminate any remaining solvent and ammonia 

molecules from the silica matrix. The thermal treatment also induces the condensation of 

surface silanol groups [88]. This has the advantage of condensing the internal silanol groups 

into siloxane bonds, yielding a more condensed matrix, but simultaneously, the surface silanol 

groups are also lost. The surface silanol groups are later needed as functional groups for the 

subsequent chemical modification of the silica surface. In order to rehydroxylate the silica 

surface, the materials were treated with diluted hydrochloric acid after tempering. The acid is 

used as a catalyst for the hydrolysis of the surface siloxane bonds. In this process, the internal 

siloxane bonds are not accessible and remain unchanged. Consequently, the thermal treatment 

yields a condensed matrix, while the rehydroxylation regenerates the surface silanol groups 

(Scheme 9). 
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Scheme 9: Thermal treatment and rehydroxylation of Stöber particles. 

 

1.3 Characterization of the Stöber particles 

 

A variety of methods is available for the investigation of the physical properties of the Stöber 

particles. The morphology of the particles may be studied with optical or scanning electron 

microscopy (SEM). The size and size distribution may also be obtained from SEM as well as 

from dynamic light scattering (DLS). Surface area and porosity information is obtained from 

gas adsorption/desorption isotherms. 

 

1.3.1 Particle shape 

 

1.3.1.1 Optical microscopy 

 

Optical microscopy uses visible light and a series of lenses to magnify the image of a sample. 

This method enables a fast and straighforward investigation. However, the resolving power of 

an optical microscope is limited by the wavelength of visible light. In practice, objects down 

to 200 nm may be detected by this method. 

Stöber particles in the submicrometric range can be detected by optical microscopy [89] 

(Figure 4). This method is not suited for the quantitative size determination of the particles 

because the absolute scale of the micrograph can not be precisely determined. However, it 

makes it possible to check the shape of the particles immediately after the synthesis and 

compare the relative size of the particles M1a to M1e. 

For the larger particles (M1d and M1e), the optical micrographs clearly display monodisperse 

spherical particles. In the case of the smaller particles (M1a –M1c), the resolving power of 

the method is not sufficient to evaluate the polydispersity and the shape. 
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Figure 4: Optical micrographs of particles M1a – M1e before thermal treatment. 

 

1.3.1.2 Scanning electron microscopy 

 

In scanning electron microscopy, an electron beam is focused by lenses on a spot about 1 to 

5 nm in diameter [90]. The beam is deflected by electrodes in order to scan the surface of the 

sample. When the electron beam interacts with the samples, the electrons lose energy by 

random scattering and absorption. The beam current absorbed by the sample is detected and 

used to create an image of the scanned area. For conventional imaging in SEM, samples must 

be electrically conductive, at least at the surface, and electrically grounded to prevent the 

accumulation of electrostatic charge on the surface. 

SEM, due to its higher resolving power, is better suited than optical microscopy for 

investigations in the submicrometric range. Although our samples are not conducting, no 

sputtering with conducting materials (Au or Pt) was performed in order to leave the particle 
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diameter unchanged. The absence of sputtering has a drawback, i.e. a poorer definition of the 

resulting SEM images. 

The SEM pictures of M1a to M1e (Figure 5), recorded after the thermal treatment and 

rehydroxylation of the silica surface, confirm the spherical shape of the Stöber particles, 

including the smaller particles. Also, the SEM investigations do not reveal the presence of 

damaged or irregular particles, demonstrating the high uniformity in shape obtained with the 

Stöber process. 

 

 

 

Figure 5: SEM pictures of particles M1a – M1e after thermal treatment. 
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1.3.2 Particle size and size distribution 

 
1.3.2.1 SEM measurements 

 
The average particle diameters and their standard deviations are determined by measuring a 

large number of particles from the SEM pictures (Table 3).  

 
Table 3: Diameters and statistical data from SEM measurements. 

 number of number of      

material SEM pictures evaluated particles  dSEM σ cv PDI 

M1a 6 205  140 18 0.129 1.0165 

M1b 6 212  252 25 0.099 1.00984 

M1c 5 250  262 19 0.073 1.00526 

M1d 6 284  592 25 0.042 1.00178 

M1e[a] 6 210  769 27 0.035 1.00123 

[a] prepared by D.Straub and sputtered with gold [83]. 

 
As an example, the particle size distribution for M1b obtained from the measurement of 212 

particles is presented in Figure 6. The size distribution follows approximately a Gaussian 

distribution. 

 

 

 
Figure 6: Particle size distribution for M1b obtained from SEM measurements fitted to a 

Gauss function. 



1. Stöber particles 

24 

 
According to the statistical analysis of the SEM measurements, Stöber particles with a 

diameter (d) between 140 and 769 nm have been produced under the given experimental 

conditions (Table 2). The standard deviation of the particle diameter (σ) is about 25 nm 

independently of the particle size. The diameter and standard deviation from the statistical 

analysis are close to the one obtained from the Gaussian distribution (for M1b: 252 ± 25 nm 

and 260 ± 23 nm, respectively). 

 

The polydispersity of the particles is given by the relative standard deviation, also called 

coefficient of variation (cv) or g-index [91]: 

 

cv =  σ / d (2) 

 

If the particles are perfectly monodisperse, cv = 0 and an increase in polydispersity yields 

higher cv values. The cv values for the M1 materials are between 0.035 and 0.129 (Table 3). 

The polydispersity can also be characterized by the polydispersity index (PDI) [92], which is 

used in polymer chemistry. The polydispersity index is derived from the cv (see 8.1): 

 

PDI = 1 + cv2 (3) 

 

If PDI = 1, the particles are perfectly monodisperse, whereas for polydisperse systems, PDI 

becomes always greater than 1. Compared to samples in polymer chemistry, where PDI 

commonly equals 2, the Stöber particles have a very low PDI (1 < PDI < 1.02 for all M1 

materials, Table 3). Because of the low polydispersity of the Stöber particles, the cv is better 

suited to describe their polydispersity than the PDI (Table 3).  

The general trend is that the smaller particles are more polydisperse than the larger ones: M1e 

has a cv value of only 0.035 while that of M1a is 0.129. As in our materials σ is 

approximately constant, the cv value is proportional to 1/d (Equation 2). Therefore, in our 

samples, the polydispersity increases in a hyperbolic manner with the decrease in particle 

diameter. This is one of the factors preventing the synthesis of very small (< 100 nm) 

monodisperse Stöber particles. This observation agrees with previous experiments [81, 85]. 

 

Materials M1b and M1c have been produced under the same conditions. Both syntheses were 

performed with exactly the same chemicals and the same equipment within a small time scale. 
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In this case, both materials display diameters of about 250 nm (Table 3). The difference in 

diameter (∆d ≈ 10 nm) is lower than their standard deviation. This demonstrates that the 

Stöber process can yield reproducible results. It should be noted, however, that only small 

changes, including unintentional variations, in the experimental conditions can have dramatic 

effects on the particle diameter, with ∆d up to 46 nm (Table 7, page 39, M1f  and M1g). The 

two main parameters responsible for shifts in the particle diameter were identified as being 

the inaccurate control of the temperature and the concentration of the ammonia solution. A 

shift of only few degrees in the temperature directly induces a significant change in particle 

diameter [84]. Also, the concentration of the ammonia solution varies with time during 

storage due to the evaporation of NH3. A titration of the ammonia solution is necessary if a 

reproducible particle diameter is desired [85]. 

 

1.3.2.2 Dynamic light scattering 

 

Dynamic light scattering enables the determination of the diameter of any particle that may be 

suspended in a solvent. The particle diameter is obtained by measuring the rate of diffusion of 

the particles in the solvent at a constant temperature [93]. Under these conditions, the particle 

diameter is directly related to the diffusion coefficient (D) according to the Stokes-Einstein 

equation (Equation 4).  

 

                                                                                                                            Hhhhhhhhhhhhhhhhhhhh      h(4) 

 

where kB = Boltzmann constant (1.38 × 10-23 J K-1) 

 η = viscosity (1.2 × 10-3 Pa s at 293.1 K for ethanol) 

 

In order to measure the diffusion coefficient, the particles are irradiated by a laser beam. The 

light scattered by the particles is measured by a detector placed at a particular angle with 

respect to the optical axis (typically 90°). The light intensity at the detector changes as the 

particles’ position changes in the fluid due to Brownian motion. The light intensity 

fluctuations are recorded and mathematically transformed into an autocorrelation function 

(ACF) from which the diffusion coefficient and the diameter of the particles are obtained [93]. 

 

 

kBT 
D =  

3πηd 
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Table 4: Diffusion coefficient (D) and particle 

diameter (dDLS) from DLS of the M1 materials. 

material D / m2 s-1 [a]  dDLS / nm 

M1a 2.38 × 10-12 150 

M1b 1.47 × 10-12 244 

M1c 1.23 × 10-12 290 

M1d 5.60 × 10-13 639 

M1e 4.74 × 10-13 755 

[a] in ethanol at T = 293.1 K. 

 

The diameters from the DLS measurements of M1a - M1e (Table 4) correlate well with the 

values obtained from the SEM images (Table 3). Moreover, this demonstrates that the 

particles exist as single units. If the particles were aggregated, the dDLS values would 

correspond to the spherical equivalent diameter of the aggregates [94]. 

 

The ACF also provides a polydispersity index and a standard deviation for the particle 

diameter. For example, the standard deviation obtained from the analysis of the DLS data for 

M1b is 4 nm. In comparison, the measurement of a large number of particles on the SEM 

pictures followed by the statistical analysis yielded a standard deviation of 25 nm for M1b 

(Table 3). 

In the case of DLS, the particles are not physically separated nor counted at any point in the 

measurement. The light scattered from all the particles is detected simultaneously and then 

correlated. The PDI is obtained from the ACF, and the standard deviation is then calculated 

from the PDI. This is the inverse process as compared to that used for the statistical analysis 

of the measurements obtained from SEM. The standard deviation obtained from the DLS data 

analysis provides a good qualitative indication of the sample’s polydispersity [93], which is 

useful to determine whether particle agglomerates or dust particles are present during the 

measurement. So, σ can be used to check that the diameter obtained for the particles is valid. 

However, σ from DLS is not a quantitative measure for the particle size distribution. 

Therefore, only σ from SEM is used to evaluate the polydispersity. 

 

 

 



1. Stöber particles 

27 

1.3.3 specific surface area and pore size distribution 

 

1.3.3.1 Geometrical specific surface area from SEM 

 

The SEM images of materials M1 display monodisperse spherical particles (see 1.3.1.2). If 

the silica particles are considered as being perfect spheres, the geometrical specific surface 

area A can be expressed as a function of the diameter d (see 8.2): 

 

 

 

By using this relationship, the geometrical specific surface area (ASEM) is determined from the 

particle diameter obtained from SEM measurements (dSEM) (Table 6, page 31). 

The value of ρSiO2 depends on the microporosity of the silica material. The reported literature 

values for Stöber particles are between 1.6 and 2.25 g cm-3 (most often 2.0 g cm-3) [82] 

depending on the specific reaction conditions. The highest density, which corresponds to the 

literature value of amorphous silica (2.2 g cm-3 [79]), are obtained after thermal treatment. 

The synthesis of the M1 materials was performed with high water concentrations followed by 

a high temperature treatment in order to obtain a more condensed matrix. Therefore a high 

density is expected and the value of amorphous silica will be used in the calculations 

concerning the M1 materials (ρSiO2 = 2.2 g cm-3). 

Independently of its exact value, ρSiO2 is assumed to be constant for all M1. Therefore, A of 

perfectly spherical silica spheres is proportional to 1/d (Equation 5).  

 

1.3.3.2 Physisorption isotherms 

 

Gas physisorption measurements at very low temperature and under reduced pressure are 

widely used for determining the surface area and pore size distribution of solid materials [95].  

 

Known doses of an inert gas are injected into the container with the outgassed sample. The 

uptake of the gas by the solid sample is determined from the change in the partial pressure. 

The shape of the physisorption isotherms depends on the intermolecular forces between the 

adsorbent and the adsorbate, the adsorbate-adsorbate interactions as well as the surface area, 

 6 
  ρSiO2  = silica density                                 (5)              

A = 
 d × ρSiO2    d = particle diameter                               
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pore size and pore size distribution of the solid sample. Adsorption-desorption isotherms can 

be classified in six types [95, 96] (Figure 7).  

 

 

 
Figure 7: Types of physisorption isotherms [95]. 

 

Type I is typical for microporous solids with small external surface. Type II is shown by 

finely divided non-porous solids. Type III and type V are typical of weak adsorbent-adsorbate 

interactions. Type IV and type V feature a hysteresis loop generated by the capillary 

condensation in mesopores. The rare type VI, a step-like isotherm, is shown for example with 

argon on special carbon adsorbents [95]. 

Monolayer and multilayer adsorption may be differentiated from the physisorption isotherms. 

Surface area is measured by counting the number of molecules adsorbed in a monolayer. Pore 

size is determined from the gas condensation pressure into the pores. Micropores, mesopores 

and macropores (Table 1) [95] may be distinguinshed. 

An experimental determination of the specific surface area of the M1 materials was obtained 

from their low temperature nitrogen adsorption-desorption isotherms. The isotherm for M1c 

is presented in Figure 8. The shape of the isotherm of the other M1 materials is similar to that 

of M1c. 
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Figure 8: N2 adsorption/desorption isotherm for M1c at 77 °K. 

 

The adsorption-desorption isotherms of the M1 materials correspond to type II, which is the 

characteristic isotherm for finely divided non-porous materials. The isotherm is divided into 3 

main parts: From a relative pressure of 0 to point B, a monolayer of adsorbed gas molecules 

forms on the adsorbent surface. Point B indicates the stage at which monolayer coverage is 

complete and multilayer adsorption about to begin. Multilayer adsorption corresponds to the 

linear middle section of the isotherm. The sharp increase in amount of adsorbate at higher 

P/P° corresponds to the condensation of the nitrogen gas in pores of increasing diameter. The 

latter stage is not useful for the surface area determination. 

 

1.3.3.2.1 Surface area from the BET method 

 

The specific surface area may be obtained from the adsorbent’s isotherms by using the 

Brunauer-Emmet-Teller (BET) model. The BET equation may be applied for type I, II and IV 

isotherms and is valid at low pressures [97] (Equation 6). 

P 1 C - 1 
 

P 
V(P° - P) 

= 
Vm C 

+ 
Vm C  P° 

f(6) 

 

where V is the volume of gas adsorbed at the relative pressure P/P°, Vm is the volume of gas 

needed to form a monolayer on the adsorbent surface and P° the saturation pressure of the 



1. Stöber particles 

30 

adsorbate. The dimensionless value C is related exponentially to the enthalpy of adsorption in 

the first adsorbed layer and is not needed for the determination of the surface area. Moreover, 

C does not provide a quantitative measure of enthalpy of adsorption but gives an indication of 

the magnitude of the adsorbent-adsorbate interaction energy [96]. High C values are 

associated with the presence of micropores [95]. 

The adsorbent’s specific surface area (ABET in m2 g-1) is calculated from the monolayer 

capacity (nm in moles), provided that the area (am) effectively occupied by an adsorbed 

molecule in the complete monolayer is known (Equation 7). 

 

nm NA am 
ABET =                

mSiO2 
(7) 

 

NA is the Avogadro constant (6.022 × 1023 mol-1) and mSiO2 the mass of silica. For nitrogen, 

the am value is 0.162 nm2 at 77 K [95]. The nm value is directly obtained from the Vm value 

according to the ideal gas law at standard temperature and pressure (STP).  

 

 

Figure 9: BET plot for M1c in the P/P° range 0.06 – 0.2. 

 
The BET equation can be solved using a single or a multipoint method [95]. With the single 

point method, Vm is directly calculated from point B on the adsorption isotherm. In the case of 

the materials M1, there is no sharp knee in the N2 isotherm. This is due to a low Vm value 
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corresponding to a low specific surface area of these materials. Therefore, a precise 

determination of point B and the Vm value is not possible for the M1 materials from the single 

point method. Consequently, the BET multipoint method is better suited for the determination 

of the surface area in this case. For the multipoint method, the BET equation requires a linear 

relationship between P/[V(P°-P)] and P/P° (Figure 9). Since the linearity range is restricted to 

the low-pressure part of the isotherm, P/[V(P°-P)] is plotted versus P/P° for P/P° between 

0.06 and 0.2. 

As a result, Vm, as well as C values are obtained from the slope and the Y-intercept 

(Equation 6). The slope, Y intercept, C, Vm and ABET values for M1c obtained from equation 7 

are given in Table 5. 

Table 5: BET data for M1c.  

quantity value 

m 0.357 g 

slope 2.6 × 10-1 

Y-Intercept 8.6 × 10-4 

C 3.0 × 102 

Vm 3.86 cm3 g-1 (STP) 

ABET 16.8 ± 0.1 m2 g-1 

 

The same calculations were performed for all M1 materials and the resulting ABET are 

summarized in Table 6 together with dSEM and ASEM. 

 

Table 6: Specific surface areas of the M1 materials from physisorption isotherms  

as well as SEM measurements. 

dSEM ASEM
[a] ABET At ABJH 

material nm m2g-1 m2g-1 m2g-1 m2g-1 

M1a 140 19.48 33.1 7.3 26.25 

M1b 252 10.82 16.0 2.8 11.77 

M1c 262 10.41 16.8 4.7 10.8 

M1d 592 4.61 6.4 2.0 2.9 

M1e 769 3.71 4.2 1.5 2.0 

[a] geometrical specific surface area calculated from dSEM according to Equation 5. 
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The low specific BET surface areas obtained for materials M1a – M1e, between 4 and 35 m2 

g-1, correlate well with those expected for non-porous materials. In comparison, mesoporous 

silicas display specific surface areas up to 1000 m2 g-1 [98 - 100]. However, the specific 

surface area ABET is larger than that expected for a perfect sphere (ASEM) of the respective 

particle diameter. The surface area of the Stöber particles deviates from that of a perfect 

sphere probably because of surface heterogeneities or a minor presence of micro- and/or 

mesopores.  

Moreover, as expected, a decrease in dSEM results in an increase in ABET. In order to 

demonstrate the relationship between d and A,  ABET is plotted versus dSEM and versus dSEM
-1 

(Figure 10). 

 

 

 
Figure 10: Plot of ABET versus dSEM (left) and versus dSEM

-1 (right). 

 

The plot of ABET versus dSEM shows that the specific surface area as determined by BET 

increases hyperbolically with decreasing particle diameter. Furthermore, the linear 

relationship obtained for the plot of ABET versus 1/dSEM demonstrates that ABET is proportional 

to 1/dSEM.  As shown previously (see 1.3.3.1), this is the expected relationship for perfectly 

geometrical spheres and shows that, with the tuning of the experimental conditions of the 

Stöber process, it is possible to produce spheres of a precise diameter, and therefore of a 

precise surface area, as A is directly controlled by the diameter of the spheres. 
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1.3.3.2.2 Porosity 

 

The specific surface area ABET includes the surface area of micropores, mesopores and the 

external surface area [28]. The difference between ABET and ASEM (Table 6) indicate the 

presence of some pores (see 1.3.3.2.1). The shape of the physisorption model makes it 

possible to differentiate micropores and mesopores. Their specific surface area may be 

obtained from the t-method [95] and from the Barett-Joyner-Halenda (BJH) model, 

respectively [101]. 

 

1.3.3.2.2.1 Micropores from the t-method 

 

In order to obtain an estimation of the specific micropores surface area (At) of the silica 

materials, the so-called t-method is applied [95]. The t-method provides a simple means of 

comparing the shape of a given isotherm with that of a standard non-porous solid. The amount 

adsorbed is plotted against the corresponding multilayer thickness calculated from the 

standard isotherm obtained with a non-porous reference solid. Any deviation in shape of the 

given isotherm from that of the standard is detected as a departure of the 't-plot' from linearity 

and is used to estimate the surface area of the micropores At [95] (Table 6). 

The t-method confirms the presence of micropores in the M1 materials and their estimated 

specific surface areas roughly correspond to the difference between ABET and ASEM (ASEM ≈ 

ABET –At, Table 6). This indicates that no other types of pores are present on the silica surface. 

The estimation of the diameter of the micropores present on Stöber particles is possible with 

the information obtained from the N2 isotherms: First, the adsorption branch of the nitrogen 

isotherm is characteristic of an isotherm obtained for a non-porous material. However, the 

desorption branch of the nitrogen isotherm deviates slightly (for relative pressures between 

0.2 and 0.4, Figure 8) from the adsorption branch. This is characteristic of an activated 

desorption process due to the presence of micropores of openings smaller than 0.5 nm [27]. 

Moreover, this is confirmed by the large C values (~300), the approximation for the enthalpy 

of adsorption, obtained for M1c (Table 5). Adsorbent-adsorbate interactions alone can not 

explain C values larger than 100 [95]. Therefore, the adsorption of the adsorbate in very 

narrow pores is assumed.  
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1.3.3.2.2.2 Mesopores from the BJH method 

 

The specific surface area of the mesopores is obtained from the BJH model [101]. The BJH 

method is based on the Kelvin equation [102] (Equation 8) and calculates the volume (VBJH) 

and average diameter (dBJH) of mesopores.  

 

P 2 γ M 
ln 

P° 
=.. 

r ρ RT 
(8) 

 

where γ, M and ρ are the surface tension, molar mass and density of the liquid (liquid nitrogen 

in our case), respectively, and r is the radius of the pore.  

The Kelvin equation assumes a hemispherical liquid-vapor meniscus and a well-defined 

surface tension. Also in the BJH model, a cylindrical pore shape is assumed [101]. Based on 

the values of VBJH and dBJH, the BJH cumulative surface area of these pores (ABJH) is 

accessible.  

The N2 isotherms of the M1 materials display characteristic features for the presence of 

mesopores: The hysteresis observed at high relative pressures (> 0.9, Figure 8) in the 

isotherms of the M1 is associated with capillary condensation in mesopore structures. This is 

confirmed by the BJH analysis, which results in significant mesopore surface area (from 2 to 

26 m g-1, Table 6). However, it was previously demonstrated that after substraction of the 

estimated micropores surface area, ABET of the M1 materials are comparable to their 

geometrical value ASEM (see 1.3.3.2.2.1). Therefore, these mesopores are not part of the 

Stöber particle structure itself. The hysteresis and the significant mesopore surface area are 

due to the interstices between particles in larger agglomerates which allow the condensation 

of nitrogen. 

 

In summary, the only pores identified on Stöber particles are micropores of about 0.5 nm in 

diameter. These micropores are accessible for nitrogen molecules but not for the larger redox-

active molecules used in this study. Therefore, Stöber particles will, in this context, be 

considered as non-porous.  

As Stöber particles can be regarded as non-porous spheres, this implies that the geometrical 

surface area is more representative than ABET of the surface accessible to the redox-active 

molecules. Therefore, the values of ASEM will be used for the determination of the surface 

coverage of active centers on the silica surface later in this work.  
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1.4 The optimal particle size 

 

Stöber particles with various diameters in the submicrometric range were synthesized. The 

choice of a specific diameter depends on the intended application of the particles. 

 

For catalytic applications, the ideal particle size is related to the maximum amount of active 

molecules that can be immobilized in a monolayer on the particle surface. The possible 

loading of redox-active material is proportional to the specific surface area of the support. So, 

the hyperbolic increase of A with decreasing d is of critical importance: This makes the 

smaller particles advantageous for the immobilization of the redox catalysts. The limit in 

downscaling the particle size is set by the difficulty in separating extremely small particles 

from suspension after synthesis. As multiple separation cycles are needed for the recycling of 

the catalyst, the most convenient method to induce particle precipitation is centrifugation. 

However, smaller particles are very difficult to separate by centrifugation. For example, 

particles of 100 nm in diameter require centrifugation at 10000 rpm for 10 min, which is the 

limit of the available equipment for this thesis. Therefore, due to its high surface area and its 

relatively simple separation compared to smaller particles, material M1a is ideal for the 

immobilization of catalytically active complexes. 

 

The higher surface area of the smaller particles is also an advantage for their chemical 

characterization. For example, it is only for the smallest particles (M1a - M1c) that the 

specific amount of modifying molecules is high enough to successfully perform 13C solid state 

NMR spectroscopy (see 3.1.1.1). 

 

The optimal characteristics of the Stöber particles for electrochemical investigations are 

different: Cyclic voltammetry of redox-actively modified Stöber particles makes it possible to 

study the kinetics of the electron transfer between redox-active molecules on the electrode 

surface [103]. The values of the kinetic coefficients are valid and can be determined precisely 

only if the dimensions in which the electron transfer takes place are well defined. These 

dimensions are precisely known for perfect spheres of a given diameter. So, only spherical 

and monodisperse silica materials can be used for the electrochemical investigations. 

Therefore, the smallest particles (M1a), which show the highest polydispersity, should not be 

used for these applications. Also with large particles, the dimension over which the electron 

transfer takes place is larger and therefore, the time scale available to measure the kinetics of 
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this transfer is also expanded. Therefore, for large particles (M1e), standard electrochemical 

equipment can be used for these investigations[103], while the smallest particles need custom 

made equipment [7]. 

 

In conclusion, the characterization demonstrates that materials M1a to M1e can be considered 

as non-porous and monodisperse spheres. The properties of the materials (specific surface 

area, diameter, size distribution and porosity) were precisely defined. The physical 

dimensions, which are relevant for the subsequent steps, are dSEM and ASEM (Table 6). 

The non-porosity is necessary to ensure a homogeneous environment and a good accessibility 

to the redox-active (or catalytic) molecules. The monodispersity and the well-defined 

properties are required to make a quantitative analysis of electrochemical investigations 

possible. The diameter of the particles can be precisely tuned in the sub-micrometric range 

according to the need of a specific interphase application. With respect to the aim of this 

thesis (the redox-active modification of the silica surface, its characterization and 

electrochemical investigations), particles with small diameters and low polydispersity are 

preferred. Therefore, for the next steps of this work, particles of the type M1b/M1c (this 

includes M1f and M1g, see 7.4 and Chapter 2) will be used as the silica matrix. 

 

2 Silicon hydride modified silica surface 

 

The first step toward the functionalization of a silica surface (e.g. based on the Stöber 

particles discussed in Chapter 1) via a hydrolytically stable Si-C bond involves the 

preparation of  a silicon hydride (Si-H) modified surface (see Introduction). 

To take advantage of the highly stable Si–C linkage, the silicon atom connected to the organic 

molecule needs to have three siloxane links to the silica matrix [104] (T3 groups, Figure 1). 

Therefore, as a starting material, a silica surface bearing silicon hydride units connected in a 

similar manner (T3H groups, Scheme 10) is desired.  

Silicon hydride groups chemically bound to a silica surface were obtained earlier [108] by 

condensation of triethoxysilane, (EtO)3SiH (TES), with surface silanol groups. The main 

reported advantage of this reaction is the high Si–H surface coverage, especially when the 

condensation is performed in the presence of water [108]. However, this also induces the 

polymerization [21, 109] of triethoxysilane [108] in the solution, yielding a heterogeneous  

Si–H modification. As a first attempt to produce the adequate Si-H modified starting material 

for the immobilization of redox-active molecules, we will perform the hydrosilanization 
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reaction under anhydrous conditions to avoid the polymerization of TES in solution. Under 

these conditions, TES can only react with the silica surface and a monolayer of silicon 

hydride is expected.   

 

 

 

Scheme 10: Nomenclature of siloxane moieties and expected nuclear magnetic resonance 

chemical shifts for the 29Si nuclei in CP/MAS NMR spectra of silica [1, 105, 

106] and in modified silica [107, 108]. The dashed lines represent Si-O bonds to 

the silica bulk. 

 

However, this modification is also a silylation reaction and therefore the resulting materials 

may still exhibit the same drawbacks as described previously: some Si–H groups may be 

linked to the silica matrix via only 2 Si-O-Si bonds (T2
H, Scheme 10). Thus the stability 

toward hydrolysis of materials synthesized by addition of the T2H group to an alkene or alkyne 

is not expected to be higher than for materials prepared by the standard silylation method.  

 

To prevent the problems of the silylation reaction, a more adequate method could be the 

reduction of the existing silanol groups on the silica surface. One possibility is the 

chlorination of the silanol groups in solution by thionyl chloride followed by reduction with 

LiAlH 4. The resulting silica shows a high silicon hydride surface concentration [108, 110]. 
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However, the method proved to be time consuming and highly water sensitive [110]. In 

addition, reduction of the Q2 groups (Scheme 10) present on the native silica surface, yields 

T2
H groups [108]. Therefore, this hydride surface has a similar sensitivity towards hydrolysis 

than the one obtained from the triethoxysilane condensation route.  

In order to provide a fully condensed matrix, and correspondingly a high proportion of T3
H 

groups, the use of high temperatures is desired. This is the case for the direct reduction of 

silanol groups in fumed silica with hydrogen at 1000 °C [107, 111]. The reaction provides a 

clean hydride modified silica surface. However, according to our preliminary experiments 

with other silica materials, the resulting silicon hydride surface concentration is low and can 

not be used as a starting material for further surface modification.  

An ideal procedure for silicon hydride modification of a silica surface should yield a high 

silicon hydride coverage and a fully condensed surface, free of silanol groups. None of the 

previously published procedures exhibits both of these properties. However, as discussed 

above, chlorination followed by reduction yields a high Si–H coverage and the use of high 

temperatures allows for the condensation of the silanol groups in the silica matrix.  

The work presented in this chapter explores the silicon hydride modification of silica surfaces 

by a chlorination-reduction sequence at high temperatures. It is performed as a reaction 

between gaseous reactants and the surface to avoid any possible impurities and we expect to 

find a combination of the advantages in the resulting product. In parallel, an optimization of 

the TES condensation route will be performed and both Si-H modification methods will be 

compared.  

 

2.1 Preparation of Si–H modified silica materials 

 

The investigation on these new Si-H surface modification methods is performed on the Stöber 

particles surface. However, because of the shell structure of the modified silica, the maximum 

specific concentration of chemical groups introduced on the particle surface is so low that 

very sensitive methods for surface characterization are needed. Diffuse reflectance infrared 

Fourier transform (DRIFT) spectroscopy is one of the most sensitive methods for the 

characterization of organic or inorganic modifiers on the silica surface [112, 113]. On the 

other hand, the use of solid-state NMR experiments to successfully detect 13C nuclei of the 

immobilized molecules or 29Si nuclei of the modified surface will depend on the surface 

concentration of modifiers. Therefore, porous silica materials are more convenient as model 

systems to test the new surface modification method because of the high surface area. 
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Therefore, the surface modification will be performed on both Stöber particles and porous 

materials. 

Four different kinds of silica were used for the Si-H surface modification (M1 – M4; 

Table 7): The Stöber particles used here have a diameter of about 200 nm (M1f and M1g). In 

the context of the present surface modification, the well defined shape of such particles allows 

to investigate the effect of the reaction conditions on the particle structure. Kromasil (M2) is a 

commercial material consisting of spherical, porous, monodisperse silica particles with a 

diameter of 5 µm. Owing to its higher porosity and thus larger surface area, it was used for a 

precise characterization and quantification of the Si–H content of the modified surface. 

Laboratory grade column chromatography silica (M3) was also modified with Si–H to 

confirm the reproducibility of the method with other kinds of the base material. Fumed silica 

(M4) has a high surface area (~ 300 m2 g−1) useful to obtain a sufficiently high specific Si–H 

amount for 29Si CP/MAS NMR spectroscopy and was employed based on this property. 

 

Table 7: Basic characteristics of the silica materials used for Si-H surface modification. 

material description diameter surface area 

    d  A / m2 g-1 

M1f spherical non-porous particles 214 nm[a] 12.6[b] 

M1g spherical non-porous particles 222 nm[a] 12.3[b] 

M2 spherical porous materials 5 µm 115.4[a] 

M3 standard chromatography type 60 material 63-200 µm - 

M4 agglomerated silica nanoparticles 7 nm[c] 300 

[a] dSEM, determined in present work; [b] ASEM; [c] diameter of the single nanoparticle. 

 

The Stöber particles M1f  and M1g were obtained under the same conditions but from two 

different batches. 

Note that the M1 materials and M2 have a clearly defined particle structure with low 

polydispersity, while M3 and M4 are materials that are structurally less defined. For example, 

M4 is formed by a network of agglomerated particles [114]. 

 

For the introduction of the Si-H group, three modification steps were performed at high 

temperature as surface reactions in vacuo or with a gas as reactant: The silica is first 
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pretreated at 800 °C under vacuum for several hours, then chlorinated at the same temperature 

with SOCl2 and finally reduced with H2 to produce M1f SiH – M4SiH. The temperature of the 

last step is critical for a high yield of the desired surface modification, and we will discuss its 

optimization below. We refer to these reactions as the chlorination-reduction sequence 

(Scheme 11). 

 

 

 

Scheme 11: Surface chlorination-reduction sequence for Si–H formation on silica materials. 

 

For comparison, M1g and M2 were also modified with triethoxysilane (TES), by the 

silylation method, yielding materials M1gTES and M2TES (Scheme 12). The condensation of 

TES was performed under anhydrous conditions. Therefore, the maximum Si–H surface 

concentration from this procedure can not be higher than the one expected for a monolayer of 

Si–H groups on the silica surface. 

 

 

Scheme 12: TES condensation for Si–H formation on silica materials. The dashed lines 

correspond to unspecified bonds acounting for the possible formation of T2H and 

T3
H groups [108]. 

 

2.2 Physical properties of the Si–H modified silica materials 

 

The size of particles as well as the surface area and pore structure are basic physical 

properties of the synthesized materials. The high temperatures employed for the preparation 

of the MSiH materials might induce sintering of the silica matrix. To ensure that changes in 
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structure are negligible and no loss of surface area occurs during this procedure, the physical 

properties of the silica before and after Si–H modification are compared. This is done for 

materials synthesized according to the optimal conditions discussed later in paragraph 2.3.6. 

 

 

 

Figure 11: Scanning electron micrographs of M1fSiH (left) and M2SiH (right) after 

chlorination-reduction. 

 

2.2.1 Size determination by SEM and DLS 

 

Changes in particle sizes and inter-particle sintering as well as possible changes of particle 

shape might be detected by scanning electron microscopy (SEM) or dynamic light scattering 

(DLS). In the case of the Kromasil material M2SiH (d ~ 5µm), after the chlorination-reduction 

sequence the spherical shape of the particles clearly remains intact (Figure 11, right). For the 

monodisperse material M1f  with a smaller diameter of d ~ 200 nm we expected to detect even 

small changes in structure which might not be seen in the case of the larger Kromasil particles. 

According to the DLS data, however, after the chlorination-reduction treatment, the particles 

are still monodisperse and both DLS and SEM prove that no significant changes in the 

diameter have occured (Table 8). The slight decrease of d is smaller than the standard 

deviation of the average particle diameter. The chlorination-reduction sequence does not 

induce the condensation and agglomeration of individual silica particles (inter-particle 

sintering) as confirmed by SEM images (Figure 11, left). Furthermore, the particles are still 

spherical. 
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Table 8: Size characterization of M1f  before and after Si–H modification. 

  diameter d / nm 

  from DLS from SEM 

 M1f 220 214 ± 16 

 M1fSiH 212 209 ± 14 

 

2.2.2 Surface characterization by nitrogen adsorption-desorption isotherms  

 
The extent of intra-particle sintering during the chlorination-reduction sequence was 

evaluated for the porous M2 materials by nitrogen adsorption and desorption isotherms. Pore 

sizes and surface area were obtained using the Brunauer-Emmet-Teller (BET) and the Barett-

Joyner-Halenda (BJH) models. The BET model determines the specific surface area (ABET) 

including the surface area of micropores [28]. From the BJH method, the volume (VBJH), the 

average diameter (dBJH) and the specific surface area (ABJH) of the mesopores is accessible. In 

contrast to ABET, ABJH does not include the surface area of  the micropores (see 1.3.3.2.2).  

 

Table 9: BET and BJH characterization of M2 before and after Si–H modification;  

definition of symbols see text. 

  ABET / m
2 g-1 VBJH / cm3 g-1 dBJH / nm ABJH / m2 g-1 

M2 115.4 0.94 34.1 130.3 

M2SiH 103.6 0.97 33.6 130.8 

 

The difference between the absolute BET and BJH surface area values, both before and after 

the chlorination-reduction sequence (Table 9), is due to the different model assumptions of 

these methods. In general, the BET and BJH models agree fairly well for porous materials 

with a narrow pore size distribution. The overestimation of the surface area by the BJH model 

in our case is probably due to the broad pore size distribution [115] of M2.  

The decrease in ABET by ~ 10 % during surface modification shows that indeed within the 

particles some sintering of the material occurs. However, ABJH did not change. Thus, the 

decrease in ABET must be due to a structural change of the micropores. This is supported by 

the values of VBJH and dBJH, showing that the average volume and diameter of the mesopores 

did not change significantly (Table 9). Therefore, the loss of surface area is due to the 

collapse of micropores yielding a more condensed matrix, while the mesopores are preserved.  
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According to the consistent results from adsorption-desorption isotherm analysis, the SEM 

experiments and DLS measurements, no significant changes in the physical macrostructure of 

the silica takes place even under the high-temperature conditions for the chlorination-

reduction modification of the silica surface. The desired surface properties – high surface area 

as well as large pores for M2 and monodispersity as well as spherical shape for M1f  – are 

retained. The small decrease in ABET of M2SiH indicates the condensation of the micropores. 

The resulting more highly condensed matrix is advantageous, considering the need for a high 

hydrolytic stability.  

 
2.3 Chemical properties of the Si–H modified silica materials 

 
2.3.1 The silicon hydride groups (Si–H) 

 
The hydride modified silicas M1f SiH – M4SiH show Si-H-characteristic signals in diffuse 

reflectance infrared Fourier transform (DRIFT) spectroscopy (Figure 12). The stretching 

vibration of Si–H (νSiH) on silica is expected around 2270 cm−1 [107, 108, 110]. Material 

M1f SiH presents only a broad and weak signal in this region. In comparison, the large surface 

area materials M2SiH – M4SiH display strong and sharp signals for νSiH at 2283 cm-1. The large 

intensity of this band provides evidence for a high silicon hydride surface coverage. 

 

 

Figure 12: DRIFT spectra of materials M1fSiH – M4SiH after the chlorination-reduction 

sequence. 
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According to the Gaussian deconvolution (Figure 13), the νSiH band is composed of a main 

component at 2283 cm-1 and a second small component at 2250 cm-1. In principle, beside the 

main product (silicon monohydride), silicon dihydride groups (SiH2 or T2
H2, see Scheme 10) 

may also be produced. The signal for their stretching vibration (νSiH2) is expected at 

2200 cm−1 [116, 117]. However, any IR activity is absent at this wavelength in the DRIFT 

spectra. This demonstrates that SiH2 groups are not present in materials M2SiH – M4SiH. 

Consequently, only silicon monohydride groups are produced by the chlorination-reduction 

sequence. The assignment for the signals at 2283 cm-1 and 2250 cm-1 to the T3
H and T2

H 

groups is not possible at this point since only the average wavenumber for νSiH (2270 cm-1) is 

given in the literature.  

 

 

 

Figure 13: Gaussian deconvolution (top, dashed lines) with enveloppe (bottom, dotted line) of 

the νSiH signal (bottom) from the DRIFT spectrum of M4SiH. 

 

For a quantitative determination of the Si–H surface concentration (ΓSiH), the silica materials 

were treated with KOH in the presence of ethanol as a proton source. Under these conditions, 

hydrogen gas evolves [118] which is then quantified by a thermal conductivity detector 

(TCD) after gas chromatographic separation (GC-TCD). Values of ΓSiH were calculated from 

the specific Si–H amount nSiH obtained from the GC-TCD method and the BET surface area 

of the silica materials (Table 10).  

The Si–H content of non-porous M1f SiH could not be determined by this method owing to the 

very low surface area of the material and the resulting low amount of H2 produced. In the 

cases of M2SiH – M4SiH, however, the highest specific Si–H amount is obtained for M4SiH, 

while the highest ΓSiH is found for M2SiH (Table 10).  
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Table 10: Specific surface area ABET , specific Si–H amount nSiH and Si–H surface 

concentration ΓSiH after Si–H modification (reduction temperature 900 oC). 

  ABET / m
2 g-1 nSiH / µmol g-1 ΓSiH / µmol m-2 

 M1fSiH 16.9 - [a] - [a] 

 M2SiH 103.6 329 3.2 

 M3SiH 172.6 413 2.4 

 M4SiH 301.6 499 1.7 

 M2TES 115.0 309 2.7 

[a] not detected. 

 
The theoretical maximum ΓSiH might be derived from the surface concentration of silanol 

groups (ΓSiOH) in the starting material. However, both vicinal (Q3) and geminal (Q2) silanol 

groups are present on the native silica surface [88]. Since the DRIFT spectra show that only 

silicon monohydride groups but not SiH2 groups are produced, the two hydroxyl groups from 

reaction of each Q2 group results in one Si–H group only. This also applies to the Q3 groups. 

Therefore, each silanol site (Q3 and Q2) initially present [119] might yield at most one Si–H 

group. Consequently, the difference in ΓSiH between the materials might be related to the 

surface concentration of silanol sites in the starting silica and this concentration may be a 

more advantageous measure to use as a base for the calculation of the Si–H yield. The surface 

concentration of silanol sites is obtained as the sum of the surface concentrations of Q3 and Q2 

groups and is on average lower by a factor of 1.15 [119] compared to the average ΓSiOH of a 

fully hydroxylated silica surface (7.6 µmol m−2 [88]). Therefore, the maximum possible ΓSiH is 

about 6.6 µmol m−2 on average. Since the exact value of the surface concentration of silanol 

sites is not known for each of the silica materials, this average is used to estimate the yield of 

the chlorination-reduction sequence. On this basis, the Si–H yield is up to 50 %.  

It should be noted that M4SiH and M2SiH differ strongly in their ΓSiH values. According to 

infrared [120] and solid state NMR studies [121], the silica surface of M4 displays a larger 

amount of Q2 and Q4 groups and a lower amount of Q3 groups than the surface of precipitated 

silica such as M2. Therefore, fewer silanol sites are present overall [120], which explains the 

lower ΓSiH obtained for M4SiH. 

The values of ΓSiH from the chlorination-reduction sequence reported here are similar to those 

obtained from the chlorination-reduction sequence in solution with SOCl2 and LiAlH4 [108, 
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110]. Therefore, the chlorination-reduction sequence is as efficient as the previously 

published procedures for the production of a monolayer of Si–H groups on silica surfaces. 

 
The DRIFT spectra of the hydride modified silicas M1gTES and M2TES also display νSiH 

signals  (Figure 14) beside the intense νSiOH signal. However, the νSiH of the MTES materials is 

shifted to lower wavenumbers (~2240 cm-1) compared to the M SiH materials.  

 

Figure 14: DRIFT spectra of materials M1gTES and M2TES. 

 
After Gaussian deconvolution of the νSiH signals (Figure 15), M2TES displays a main 

component at 2240 cm-1 and a very small one at 2283 cm-1. Similarly to the MSiH, we may 

expect T3H and T2
H groups on the MTES materials. Moreover, MTES may also contain Si-H 

groups with unhydrolyzed ethoxy substituents. The presence of these ethoxy groups is 

consistent with the C-H stretching vibration (νCH) observed in the DRIFT spectrum of M2TES 

between 2900 and 2990 cm-1. 

 

Figure 15: Gaussian deconvolution (top, dashed lines) with enveloppe (bottom, dotted line) of 

the νSiH signal (bottom) from the DRIFT spectrum of M2TES. 
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In conclusion, the MSiH and MTES materials display different types of silicon monohydride 

groups. However, again, at this point it is not possible to clearly assign a specific Si-H group 

type to either of these materials. The ΓSiH of M2TES is similar to the one obtain for M2SiH 

(Table 10). Therefore, both methods have the same absolute yield for the formation of Si-H 

groups. 

 

2.3.2 The silanol groups (Si–OH) 

 

The DRIFT spectrum of M2 before Si–H modification (Figure 16, top) shows a strong signal 

between 3000 and 3800 cm−1, corresponding to the Si–OH stretching vibration νSiOH of 

hydrogen bonded silanol groups. After chlorination and reduction, only a signal for isolated 

silanol groups remains at 3750 cm−1 (Figure 16, M2SiH). From the ratio of the integrals of the 

signals between 3000 and 3750 cm−1 in the spectra of M2 and M2SiH we conclude that 95 % 

of the Si–OH groups have reacted. The silanol groups have been chlorinated and reduced 

and/or condensed to siloxane bonds [88] due to the high temperatures, producing water and 

siloxane bonds within the silica matrix (For the discussion of M2A and M2B, see 2.3.4). 

 

 

Figure 16: DRIFT spectra of M2 before modification, after the chlorination-reduction 

sequence (M2SiH) and after direct reduction with H2 (M2A and M2B). 
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On the other hand, both M1gTES and M2TES materials still diplay strong νSiOH of hydrogen 

bonded silanol groups after Si-H modification (Figure 14). Similar νSiOH signal intensities 

were obtained from other Si-H modified silica surfaces prepared by various low temperature 

(<150 °C) procedures [108, 110]. 

This clearly demonstrates the advantage of the chlorination-reduction sequence for the 

elimination of the silanol groups.  

 

2.3.3 The nature of the TH groups 

 

The Gaussian deconvolution of the Si–H signals in the DRIFT spectra (Figure 13) of the MSiH 

materials suggests the presence of one main type of silicon monohydride groups. These Si–H 

groups may be either of type T2
H or T3

H. According to the IR spectra, most of the Si–OH 

groups have reacted and a high ΓSiH is obtained. Since the T2
H groups would have still one OH 

substituent, this result indicates that the most likely product of the chlorination-reduction 

sequence are the desired T3
H groups. However, a direct characterization of the type of bonding 

between the silica surface and the Si–H group is not possible from the IR spectra. 

To unambiguously differentiate between the T2
H and T3

H as well as Q3 and Q4 groups on silica 

surfaces, respectively, 29Si CP/MAS NMR spectroscopy had advantageously been used [105, 

107, 108]. The main requirement to record 29Si CP/MAS NMR spectra of Si–H surface 

modified silica is a high nSiH. Therefore, in this work 29Si CP/MAS NMR spectroscopy was 

performed on the high surface area materials (M2SiH – M4SiH) modified by the chlorination-

reduction sequence (Figures 17 and 18).  

The 29Si CP/MAS NMR spectrum of M4SiH (Figure 17) confirms the presence of silicon 

nuclei in various environments (Scheme 10): In the Q region one maximum at -100 ppm, 

corresponding to Q3 groups, is observed. The main signal, however, appears in the TH region 

(-60 to -90 ppm), with a maximum at -84 ppm, corresponding to T3H groups. Overlapping of 

the signals does not allow a direct assignment of the respective other component and 

differentiation between the T3
H and T2

H groups. Optimized Gaussian deconvolution results in 

4 peaks for T3H (-84 ppm), T2H (-73.5 ppm), Q3 (-100 ppm), and Q4 (-110 ppm). The envelope 

generated by summation of the individual peaks excellently fits the measured spectrum. If a 

peak for Q2 (at −92 ppm) is added or one of the previously cited peaks is removed, a poorer fit 

is obtained. Thus, the main component of the TH signals is due to the T3
H groups. The T2H 

groups are only a minor component. The Q group identity is further discussed below. The 

spectrum of M2SiH (Figure 18) displays similar features: After Gaussian deconvolution the 
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main TH signal is clearly attributed to T3
H while only a weak component can be assigned to 

T2
H.  

 

 

Figure 17: 29Si CP/MAS NMR spectrum of M4SiH (top) with Gaussian deconvolution results 

(bottom) and envelope of Gaussian components (top, broken line). 

 

The 29Si CP/MAS NMR spectrum of M3SiH also displays the T3H signal. Thus, the 29Si 

CP/MAS NMR spectra confirm that the chlorination-reduction sequence yields T3
H groups 

whether M2, M3, or M4 is used as silica matrix. In contrast, the low temperature conditions 

used for M2TES generate considerably fewer T3
H groups than the chlorination-reduction 

sequence. The incomplete condensation of TES on the surface leads mainly to undesired T2
H 

functions in M2TES (Figure 18). Finally, although a SiH signal was observed in their DRIFT 

spectra, materials M1f SiH and M1gTES do not show any detectable NMR-signals in the TH 

domain due to their very low surface area (Table 7).  
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2.3.4 Nature of the Q groups 

 

The 29Si CP/MAS NMR spectra of M2SiH, M4SiH, and M2TES (Figures 17 and 18) only reflect 

those sections of the materials which have silicon nuclei with protons in close proximity. 

Especially the amount of the Q4 groups is not depicted correctly. In particular due to the small 

amount of surface T3H and Q3 compared to bulk Q4 groups a quantification by NMR 

techniques is difficult [122]. A single pulse excitation experiment with appropriate delay 

times will leave the T3H and Q3 groups with poor signal to noise ratio, while contact time 

variation studies will be too time consuming and inaccurate owing to the large number of 

scans required for the investigated samples. Therefore the NMR study of the Q3 groups will 

be limited to qualitative and semi-quantitative interpretations. 

Gaussian deconvolution of the 29Si CP/MAS NMR spectra gives direct evidence for the 

presence of Si–OH groups in all materials. The peaks at −100 and −110 ppm correspond to 

the Q3 and Q4 groups, respectively. On the other hand, no signals for Q2 groups are detected. 

Therefore, the remaining Si-OH groups in the material are of Q3 type. 

For the comparison of the population of the Q3 groups remaining in M2SiH and M2TES, the 
29Si CP/MAS NMR spectra of both materials were recorded with the same experimental 

parameters. Both M2SiH and M2TES materials have similar nSiH (Table 10). Therefore, the 

relative intensities of the Q3 and TH resonances in the M2SiH and M2TES spectra (Figure 18) 

demonstrate that only few Q3 groups remain in M2SiH.  

The Q4 group resonances also provide information on the degree of condensation of the silica 

matrix. Based on the condensation of the Q3 moieties to Q4 groups at high temperature as 

explained above (see 2.3.2), the spectrum of M4SiH (Figure 17) should display a large signal 

for the Q4 groups. However, only a small component of the signal in the Q region can be 

assigned in this way. This seeming contradiction is explained as follows: In solid state 29Si-

NMR, cross-polarization (CP) of the 29Si nuclei with the 1H nuclei (1H → 29Si) is needed as 

their natural abundance is only 4.7 %. As CP is based on heteronuclear dipolar interactions, it 

is sensitive to internuclear distances [122]. The signals of the Q4 groups in the spectrum of 

M4SiH have only a weak intensity due to the absence of protons in close proximity to these 

nuclei. In contrast, the spectrum of M2TES (Figure 18) exhibits a strong signal for the Q4 

groups, because the protons of the internal silanol groups which are in close proximity to the 

Q4 groups enable an efficient 1H → 29Si cross-polarization of the Q4 groups [105]. Therefore, 

the weak Q4 signal obtained for M4SiH provides further evidence that only few silanol groups 

(Q3) remain in the silica matrix. 
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Figure 18: 29Si CP/MAS NMR spectra of M2SiH (upper part) and M2TES (lower part) with 

Gaussian deconvolution results; details see Figure 17. 
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This confirms that the chlorination-reduction sequence (M2SiH) results in the condensation of 

the Si–OH groups compared to procedures where low temperature conditions are used 

(M2TES). Consequently, the 29Si CP/MAS NMR results support the surface structure model 

based on the presence of Si–H groups and only few silanol groups in the MSiH materials. This 

is in agreement with the quantitative comparison of IR spectra. In addition, the Si–H groups 

are assigned as being mostly T3
H groups, where the silicon hydride is linked to the silica 

matrix via 3 siloxane bonds. Therefore, the main component of the νSiH signal at 2283 cm-1 in 

the DRIFT spectrum of the MSiH materials can now be assigned to the T3
H groups. This is the 

desired functional group for further surface modification as it provides a strong and stable 

bonding to the modifying molecules. The presence of T3
H and the low amount of T2H groups 

is a direct consequence of the use of high temperatures as most silanol groups have condensed 

to siloxane bridges. A homogeneous surface where the main functional groups are of T3
H type 

is obtained. The matrix is condensed and mostly consists of Q4 groups. 

 

2.3.5 The importance of the chlorination step 

 

The importance of the silicon chloride intermediate for the production of a high Si–H surface 

coverage is demonstrated by processing M2 in two alternative ways missing the chlorination 

step (Scheme 13). In procedure A, M2 is treated directly with hydrogen at 1000 oC as 

described in ref. [107]. In procedure B, M2 is first pretreated at 800 oC under vacuum and 

then subjected to hydrogen at 1000 oC. Each preparation was performed twice. 

 

 

Scheme 13: Direct reduction of silica with H2 at high temperatures (top: procedure A; 

bottom: procedure B). 

 

The specific Si–H amounts in the resulting material obtained from the GC-TCD method and 

the integration of the νSiH from the DRIFT spectra for M2A and M2B are compared to the 
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values obtained for M2SiH prepared by the chlorination-reduction sequence at 1000 oC 

(Table 11, Figure 19). The DRIFT spectra of M2A and M2B (Table 11, Figure 16) display a 

considerably weaker signal for the νSiH compared to the one obtained for M2SiH. The specific 

Si–H amount of M2SiH is highest, while materials M2A and M2B display much lower values 

(Table 11, Figure 19), showing that the chlorination step is necessary to obtain a high Si–H 

coverage. 

 

Table 11: Specific Si–H amount nSiH and Si–H surface concentration ΓSiH  

after Si–H modification (reduction temperature 1000 °C). 

  nSiH ΓSiH relative νSiH 

  / µmol g-1 / µmol m-2 integral / % 

M2SiH 341.3 3.3 100 

M2A 60.7 0.58 23.6 

M2B 26.5 0.25 14.3 

 

 

Figure 19: Specific Si–H amount nSiH from GC-TCD measurements (two batches for each 

material). 

 

The Si–H groups obtained for M2A and M2B result from the reaction of hydrogen with 

siloxane bonds: The thermal treatment of silica is known to induce the condensation of the 

surface silanol groups. Below 400 °C, strained siloxane bridges are produced. At higher 

temperature, these more reactive siloxane bonds are converted into more stable siloxane 

bonds [88]. The strained bonds may act as functional groups for further silica surface 
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modification [123, 124]. In the case of M2B, the pretreatment at 800 °C has condensed the 

surface silanol groups to stable siloxane bonds [88]. The low Si–H yield obtained after 

reduction of the dehydroxylated surface shows that the stable siloxane bonds are mostly 

unreactive toward H2, even at 1000 °C. The value of ΓSiH obtained for M2B is comparable to 

the estimated surface concentration of strained siloxane groups on a silica surface treated at 

1000 °C (~ 0.25 µmol m−2) [117, 125]. This indicates that only the few highly reactive 

strained siloxane bridges remaining after the dehydroxylation treatment undergo cleavage by 

addition of hydrogen. 

In the case of M2A, the silica is directly exposed to H2. As the temperature is raised, the 

silanol groups condense into the strained siloxane bridges. If the conversion of the strained 

siloxane bonds into the stable siloxane bonds is slow, the strained ones are still present when 

the highest temperatures are reached. The higher Si–H yield obtained for M2A as compared to 

M2B (about twice as much, Figure 19) correlates with the assumption that the strained 

siloxane bonds can indeed be reduced by H2. However, compared to M2SiH, M2A still displays 

a much lower nSiH (Figure 19). The reduction of the strained siloxane bonds seems to be far 

from quantitative due to the competing conversion into stable siloxane bonds, which can not 

be reduced by H2. A low specific Si–H amount is obtained for M2A because the surface is 

only partially activated toward reduction with H2.  

On the other hand, the chlorination of the silica surface activates all surface siloxane bonds 

for reduction, resulting in a higher Si–H surface concentration (M2SiH). The following 

mechanism is proposed for the chlorination-reduction sequence: The pretreatment under 

vacuum at high temperatures induces the condensation of the silanol groups (dehydroxylation) 

accompanied by the elimination of water [88]. The resulting siloxane bonds [123, 124] and 

the remaining silanol groups are then chlorinated by thionyl chloride at 800 oC. This reaction 

is known to proceed in high yield [126]. The subsequent reduction of the activated Si–Cl 

surface with hydrogen is almost quantitative because the chlorine atoms are eliminated from 

the material in the form of HCl by the gas flow. Therefore, the equilibrium between Si–Cl and 

Si–H is constantly disturbed and the reaction is driven to completion.  

The pretreatment at high temperatures under vacuum is necessary to ensure a reproducible 

outcome of the chlorination-reduction sequence. If omitted, the elimination of water from the 

matrix occurs during the chlorination and possibly still during the reduction step when the 

highest temperatures are reached. This water can react with the silicon chloride or silicon 

hydride on the surface, regenerating silanol groups. These can not be reduced by hydrogen 

quantitatively as previously explained.  
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2.3.6 Optimal reduction temperature 

 

The optimal temperature for the chlorination of the silica surface is 800 oC [126]. To 

determine the optimal conditions for the reduction of the chlorinated surface, the reaction with 

H2 was performed at various temperatures T between 600 and 1000 oC. The Si–H coverage 

obtained after exposure of the silica to hydrogen for 2 hours is determined by DRIFT and 

quantified with the GC-TCD method as a function of T. The integral of the Si–H stretching 

vibration signal (νSiH) in the DRIFT spectrum does indeed vary with the reaction temperature 

(Figure 20, left). The Si–H coverage determined by GC-TCD (Figure 20, right) correlates 

well with the IR results. Both methods show that no significant reaction takes place below 

600 oC. Between 600 and 900 oC, the resulting Si–H surface concentration increases with 

temperature. At even higher temperatures, no further significant increase in the Si–H surface 

concentration is obtained. Thus, the optimal temperature for the reduction of the chlorinated 

silica surface with hydrogen is about 900 oC. 

 

 

Figure 20: Effect of reduction temperature on the Si–H surface concentration of M2SiH; 

normalized integrals of the DRIFT νSiH bands (left) and ΓSiH obtained from the 

GC-TCD quantification (right). Data are mean values of several batches (left) or 

experiments of several samples taken from the same batch (right). 

 

2.2 Conclusion 

 

The silica chlorination-reduction sequence at high temperatures yields a silicon hydride 

modified surfaces. The chlorination is the key step to achieve a high Si–H coverage, and the 

optimal temperature for the reduction step is about 900 oC. Under these reaction conditions, as 
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shown by the SEM and DLS measurements as well as by the BET and BJH analysis, the 

physical properties, such as shape, pore size and surface area, remain essentially unchanged. 

Only micropores are lost due to the high temperatures employed during the procedure. This 

results in a highly condensed surface, which is confirmed by DRIFT and 29Si CP/MAS NMR 

spectroscopy: Only few Si–OH groups remain and the main functional groups present on the 

silica surface are of type T3
H.  

Furthermore, this surface is dramatically different from Si–H modifications obtained from 

TES condensation where Q3 groups remain after the reaction and more T2
H groups are present 

on the surface than T3
H groups. The chlorination-reduction sequence yields a more 

homogeneous Si–H modified surface and a more condensed matrix. Simultaneously, the Si–H 

surface concentration is similar to the one obtained from the silylation with TES. Thus, the 

chlorination-reduction sequence represents an ideal strategy to provide the starting material 

for further silica surface modification by reaction of the Si–H groups.  

The extensive characterization of the Si-H modified materials was made possible by the use 

of porous, high surface area material. On the other hand, the Si-H modification on the Stöber 

materials could only be detected by the DRIFT method because of their low specific surface 

area. However, the Si-H modified Stöber materials are assumed to have a similar surface 

chemistry to the other amorphous silica materials used in this study. 

 

3 Silicon-carbon bond formation 

 

The hydrogen-terminated silica surface described in the previous chapter displays the required 

properties as starting material for further surface derivatization. The various possibilities to 

form a Si-C bond on such a surface will be explored now.  

 

3.1 Free radical initiated hydrosilylation 

 

The best documented method for the formation of a silicon–carbon bond on a silica surface is 

hydrosilylation [14, 15, 52, 110, 127, 130] (Scheme 14).  

 

 

Scheme 14: Hydrosilylation reaction with surface Si-H groups. 
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Hexachloroplatinic acid has been used successfully for the catalytic hydrosilylation of HPLC 

separation selectors on porous silica [15]. However, the use of homogeneous catalysts leads to 

metal contaminations of the surface [56]. Therefore, it is not appropriate for the 

immobilization of redox-active molecules in our context. As an alternative, the 

hydrosilylation may also be induced by free radical starters [56]. In this case, the radical 

starter may also react directly with the surface [131]. In order to fully avoid impurities from 

catalytic or radical initiator residues, such methods were not used in the present work, and a 

reagentless radical addition [127] is preferred.  

The addition of chlorosilanes to isolated or conjugated C=C bonds in homogeneous 

conditions, either under high pressure and temperature [53, 127] or under high energy 

irradiation [127, 132 - 134] has been reported.  

Similar methods, with either photochemical [135, 136] or thermal initiation [131, 137], are 

also employed for the hydrosilylation on hydrogen-terminated silicon surfaces [16]. The 

reaction is believed to start with the homolytic cleavage of the Si-H bond (Scheme 15) [127, 

138, 139], although a concerted mechanism has also been postulated [140].  

 

 

 
Scheme 15: Mechanism for radical-based hydrosilylation on silicon surfaces [16]. 

 
The free radical initiated hydrosilylation is supported on the silicon surface by the electron 

withdrawing effect of the Si bulk matrix [141]: the Si-H bond energy is decreased and the 

bond may be cleaved by UV light or thermal energy to form a silicon radical. The silicon 

hydride bound on a silica surface has also a low electron density due to the electron 

withdrawing effect of the silica matrix [69]. Therefore, the free radical induced 

hydrosilylation on this surface could also take place.  

 

3.1.1 Photochemical hydrosilylation 

 

Photochemical conditions provide a low temperature and reagentless way to induce the 

radical hydrosilylation reaction [142]. In order to test the photochemical variant on hydride 

modified silica surfaces, 10-undecylenic acid was used as a bifunctional spacer (Scheme 16).   
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Scheme 16: Reaction of 10-undecylenic acid with a silicon hydride terminated silica surface. 

 
The carboxylic group does not react with the silicon hydride spontaneously nor under UV 

irradiation [143], in contrast to amino, hydroxyl or aldehyde groups [135]. On the other hand, 

the ethene double bond is expected to undergo the described hydrosilylation reaction.  

The absence of a methyl group in 10-undecylenic acid will facilitate the characterization of 

the Si-C bond resulting from the photochemical reaction: methyl group resonances in a 13C 

NMR spectrum appear in the same range as those of carbon bound directly to a silicon atom 

(see below). Also, the COOH group may permit a straightforward attachment of redox-active 

moieties by an amide bond in a subsequent step.  

The Si-H modified silica materials used for the surface reaction are M1gTES, M1f SiH, and 

M4SiH (non-porous materials) as well as M2SiH (porous material). These different materials 

will be designated by the common abreviation MSiH. The non-porous and porous materials 

will be discussed separately. 

 
3.1.1.1 Immobilization of 10-undecylenic acid via photochemical hydrosilylation on non-

porous MSiH materials 

 
The following results and discussion refers to the non-porous materials only.   

After a suspension of 10-undecylenic acid and MSiH in dry hexane is irradiated with UV light 

from a medium pressure mercury lamp for several days, the DRIFT spectra (Figures 21 and 

29, page 94) of the resulting MCOOH materials show signals for the stretching (2923 and 

2857 cm−1) and the bending vibrations (1455 cm−1) of the alkyl C-H bonds as well as the 

stretching vibrations of the C=O group of the carboxylic acid (1708 cm−1). The presence of 

the O-H stretching vibration signal may be attributed to the carboxylic group or to adsorbed 

water (which is likely to be retained via hydrogen bonds with the COOH groups, even after 

the drying step). The 13C CP/MAS NMR spectra of  the MCOOH resulting from M1fSiH, 

M1gTES and M4SiH (see Figure 21 for the example of M4SiH) show a weak signal at 180 ppm 

and signals between 10 and 50 ppm, corresponding to the carbon atoms of the carboxylic acid 

group and the methylene groups of the alkyl chain, respectively.  
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The presence of these signals in the 13C CP/MAS NMR and DRIFT spectra of the MCOOH 

after several steps of washing and drying provides evidence for the strong attachment of the 

carboxylic acid spacer. If washing with acetic acid is omitted, the intensity of the signals of 

the carbonyl group and the alkyl chain in the DRIFT spectra of the MCOOH is higher. This 

demonstrates the importance of this particular washing step to remove non-reacted 10-

undecylenic acid that could remain adsorbed through hydrogen bonding with the silica bound 

carboxylic acid units [142]. The absence of adsorbed 10-undecylenic acid on the particles is 

further supported by the fact that signals of the alkene carbons of the acid in the 13C CP/MAS 

NMR spectra are missing. 

 

 

 
Figure 21: 13C CP/MAS NMR (left) and DRIFT (right) spectra of M4COOH. 

 

The DRIFT and NMR spectra also indicate that the strong attachment of the carboxylic acid 

spacer occurs via a covalent silicon-carbon link between the silica surface and a carbon atom 

of the alkyl chain. First, the comparison of the DRIFT spectra of M1gTES and M1gCOOH 

(Figure 29, page 94) show that the Si-H signal at 2250 cm−1 has strongly decreased, 

suggesting that most of the silicon hydride sites have reacted. In the case of M4COOH, the νSiH 

signal intensity has decreased as well (Figure 21), although to a lesser extend. The M4SiH 

nanoparticles are in an agglomerated state which may prevent the UV radiation to reach the 

nanoparticle surface within the aggregates.  

As already mentioned, in the 13C CP/MAS NMR spectrum, the signals at 114 and 139 ppm 

expected for the two sp2 carbon atoms of the terminal carbon–carbon double bond of 10-

undecylenic acid are not observed. This shows that the C=C bond has reacted. The signal at 

180 ppm in the 13C CP/MAS NMR spectrum is likely due to the unreacted carboxylic end of 
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the spacer. If this group had reacted directly with the silica surface, the carbonyl signal in the 
13C CP/MAS NMR spectrum would have been shifted upfield [144]. 

Two blank tests have been performed in parallel to check the assumption of the formation of a 

Si-C bond:  

First, 10-undecylenic acid in anhydrous and degassed hexane was irradiated for 4 days in the 

absence of silica particles. According to the NMR spectra after irradiation, no reaction of 10-

undecylenic acid is observed under these conditions. Similarly, the IR spectrum after 

irradiation of M1f SiH under the same conditions, but in the absence of 10-undecylenic acid 

does not show any change in the surface chemistry of M1f SiH. These results demonstrate that 

the Si-H groups on the silica and the C=C bond on the spacer only react when both are present 

under these conditions. 

Second, the irradiation of undecanoic acid in presence of M1f SiH does not yield any organic 

modification on the silica surface. Therefore, the attachment observed in the case of 10-

undecylenic acid is due to the reaction of the C=C bond whereas the COOH group is not 

involved. This is in agreement with the observation of the 13C NMR resonance for the 

carboxylic group in the spectrum of M1COOH (see above). 

These data are all consistent with the attachment of  10-undecylenic acid on the silica surface 

via a Si-C bond obtained from the reaction between the C=C and the Si-H groups. As a direct 

proof of our structural hypothesis, the resonance at 14 ppm in the 13C CP/MAS NMR 

spectrum may be assigned to a carbon atom directly bound to a silicon atom on the silica 

surface [15] (Figure 21).  

In order to proove the formation of a Si-C bond, a 29Si CP/MAS NMR spectrum was recorded 

for M4COOH. However, the TH signals due to the remaining Si-H groups are broad and overlap 

with the region where T3 groups are expected (- 65 ppm [145]).  

 

The photochemical attachment is reproducible if the particles are suspended without large 

agglomerates and if the suspension is kept strictly oxygen free. Any side reaction of 10-

undecylenic acid in the solution is prevented if the temperature of the suspension does not 

exceed 40 °C: The 1H and 13C NMR spectra of the solutions after separation from the particles 

show only the expected signals for 10-undecylenic acid. Therefore, under these conditions, 

only the desired hydrosilylation reaction occurs on the silica surface. If the temperature 

exceeds 60 °C, condensation of the carboxylic group with the silicon hydride and/or 

remaining silanol groups is observed and radical telomerization of the alkene moiety on the 

silica surface can be suspected from our results. 
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A high hydride concentration on the silica surface allows to suspend the particles MSiH in 

hexane. In comparison, the more hydrophilic unmodified silica particles M1 do not suspend in 

this solvent. In an attempt to generalize this procedure to the attachment of molecules with 

low solubility in hexane, other solvents have also been investigated for the hydrosilylation. 

However, only saturated aliphatic hydrocarbons (hexane, cyclohexane), which are highly 

transparent to UV light, gave satisfactory results. Signals for the alkyl carbons or for the 

carbonyl group can not be detected after photochemical treatment of 10-undecylenic acid in 

the presence of MSiH in dioxane or toluene.  

 
In conclusion, the reaction of non-porous MSiH materials with 10-undecylenic acid takes place 

under photochemical conditions at the carbon–carbon double bond to provide a carboxylic 

acid terminated surface.  

 

3.1.1.2 Photochemical reaction of 10-undecylenic acid with the porous M2SiH materials  

 

In the case of the porous M2SiH material (ABET = 103.6 m2 g-1), no organic modication is 

detected  by DRIFT on the silica surface after irradiation in presence of 10-undecylenic acid. 

M2SiH is the only porous material among the M SiH used for this reaction. Since amorphous 

silica is not transparent to UV light, no photochemical reaction is expected to occur inside 

such a porous material. The reaction may take place at the external surface of porous particles. 

However, the specific external surface area of M2SiH is very low (ASEM = ~ 0.5 m2 g-1) due to 

the large diameter of these particles (~ 5 µm). This explains why no signals for attached 10-

undecylenic acid are detected in the DRIFT spectrum of M2SiH after reaction. The difficulty 

to suspend the large M2SiH particles in the solvent may also affect the surface reaction. 

Therefore, the photochemical hydrosilylation method described here is limited to the non-

porous MSiH materials (M1f SiH, M1gTES, M4SiH).  

 

3.1.2 Thermal hydrosilylation 

 

The heterogeneous hydrosilylation on Si-H terminated silica surfaces with small olefin 

molecules in the gaseous state under high pressure and temperature conditions was 

described [53]. On silicon surfaces, thermally induced hydrosilylation reactions also take 

place in the condensed phase and can therefore be used for larger olefin molecules [16]. If this 
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reaction were possible on the silica surface, it could also be applied for the immobilization of 

the redox-active molecules needed for our purposes.  

 

3.1.2.1 Immobilization of 1-octadecene via thermal hydrosilylation 

 

Since the high temperature conditions may induce the reaction of other functional groups 

beside the C=C bond, the reaction is first investigated with 1-octadecene. Moreover, the 

boiling point of this compound makes it possible to perform the reaction in neat olefin. 

The porous M2SiH material, which did not react under the photochemical conditions, was used 

as the hydride modified silica matrix to test the hydrosilylation under high temperature 

conditions (Scheme 17). The higher surface area of porous materials enables a higher loading 

with modifiers, which facilitates their characterization. 

 

 

 
Scheme 17: Reaction of 1-octadecene with a silicon hydride terminated silica surface. 

 

We will denote the resulting alkyl modifier with 18 carbon atoms as C18 in the following. 

 

 

 
Figure 22: 13C CP MAS NMR (left) and DRIFT (right) spectra of M2C18. 
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The immobilization of 1-octadecene on hydride modified silica M2SiH was observed at 

temperatures above 160 °C. The material obtained from this reaction is referred to as M2C18. 

The presence of the alkyl groups on the silica surface after thorough Soxhlet washing and 

drying steps is unambiguously shown by the signals between 20 and 40 ppm in the 13C-

CP/MAS-NMR spectrum and between 2800 and 3000 cm-1 in the DRIFT spectrum 

(Figure 22). Based on elemental analysis (carbon content: 3.4 %) and the value of the BET 

surface area (103.6 m2 g-1, Table 10), the surface concentration of alkyl groups is 1.5 µmol m-2. 

 

The absence of signals between 110 and 140 ppm in the 13C-CP/MAS-NMR spectrum and 

between 3000 and 3100 cm-1 in the DRIFT spectrum shows that the carbon-carbon double 

bond has fully reacted. Moreover, the intensity decrease of the Si-H stretching vibration in the 

DRIFT spectrum after hydrosilylation also shows that some of the silicon hydride units have 

reacted:  

The relative amount of the reacted Si-H groups may be semi-quantitatively determined from 

the DRIFT spectra. For this purpose, the materials are diluted in KBr, so that the absorbances 

of the signals between 1500 and 4000 cm-1 are low enough to allow their quantitative analysis 

[113]. To enable an accurate comparison between different spectra, the integration value from 

the signal of the stretching vibration of Si–O–Si (νSiOSi) at 1870 cm−1 was used as an internal 

standard [113]. The integration values for νSiH were normalized with respect to this integral. 

The absolute value of the specific Si-H amount nSiH remaining in M2C18 is determined by the 

GC/TCD method. 

The comparison of the integration of the Si-H signals in the IR spectrum as well as the nSiH 

obtained from GC/TCD measurements of M2SiH and M2C18 (Table 12), show that about 1/3 of 

the initial silicon hydride groups have reacted during the hydrosilylation reaction.  

 

Table 12: Specific Si–H amount nSiH and relative 

νSiH integral before and after C18 modification. 

 

nSiH
[a]

 

/ µmol g-1 

relative 

νSiH integral[b] 

M2SiH 337.3 1.41 

M2C18 230.0 0.91 

difference -31.7 % -35.7 % 

[a] from GC-TCD analysis. [b] from DRIFT measurements. 
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The absence of any C=C bond related signal and the decrease of the νSiH intensity in M2C18 

are indirect evidence for the formation of a Si-C bond in a hydrosilylation reaction.  

Direct evidence for this reaction is however not unambigeously provided from these 

techniques. Although the surface area of M2C18 is high enough to apply 29Si CP MAS NMR 

spectroscopy, the same problem as for the characterization of M4COOH arises: The TH signals 

due to the remaining SiH groups are broad and overlap with the region where T3 groups are 

expected (- 65 ppm [145]).  

In the 13C CP MAS NMR spectrum of M2C18, the signal at 12.4 ppm may be assigned to the 

carbon atom of a Si-C bond but could as well be attributed to the CH3 group of the C18 chain. 

However, the unsymmetrical shape of this signal is in agreement with the possible 

overlapping contribution from both the CH3 and Si-C resonances. 

The absence of any unexpected signal in the spectra of M2C18 is good evidence for the 

absence of side reactions occuring during this reaction. Also, the 1H and 13C NMR spectra of 

1-octadecene re-isolated from the reaction mixture after separation from the particles show 

only the known signals for 1-octadecene and for the impurities originally present in 1-

octadecene (~10 % of octadecane and branched octadecene). Therefore, the reaction of 1-

octadecene on the particle surface occurs without polymerization in the solution. 

On the other hand, telomerization on a silica surface may occur [53, 127]. Indeed, the reaction 

between a silicon hydride and the C=C bond yields in a first step, a free radical center on the 

β-carbon in the addition product. This radical is expected to react with the hydrogen atom 

resulting from the homolytic cleavage of the Si-H bond. However, it may also react with a 

second C=C bond (Scheme 18). This yields a new C-C σ bond, which, after subsequent 

repetition of this step, would yield short polymers of the C18 groups covalently linked to the 

silica surface. The DRIFT and solid state NMR spectra do not make it possible to discriminate 

between the hydrosilylation product and this type of side reaction products (Scheme 19). 

 

 

 
Scheme 18: Possible mechanism for the telomerization of 1-octadiene on M2SiH surface at 

high temperature. 
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The C18 surface concentration (ΓC18) may give indirect information about this side reaction. 

From the GC-TCD analysis, we know that nSiH of M2C18 is lower by 107 µmol g
-1 compared 

to nSiH of M2SiH. This corresponds to a decrease in ΓSiH of 1.04 µmol m-2. In comparison, ΓC18 

is 1.50 µmol m-2. Since the amount of C18 chains present on the surface of M2SiH is about 

50 % higher than the amount of Si-H groups that have reacted, some telomerization side 

reaction probably occurs.  

Another possible side reaction may be Markovnikov addition. Neither the solid state NMR 

spectrum nor the DRIFT spectrum enables to discriminate the Markovnikov (Scheme 19) and 

the anti-Markovnikov products on the silica surface. However, since the reaction is induced 

by a free radical, the addition of the Si-H bond to the C=C bond is expected to yield the anti-

Markovnikov product with high selectivity [146]. 

 

 

 
Scheme 19: Possible side-reaction of the free radical induced hydrosilylation reaction. 

 

In summary, the covalent attachment of C18 on M2SiH demonstrates the feasability of a 

thermally induced hydrosilylation. Although this modified silica does not have any 

application in the attachment of redox-active molecules, it displays desired properties for 

reverse  phase HPLC (See 6.1). 

 

3.1.2.2 Immobilization of  1,7-octadiene via thermal hydrosilylation 

 

In order to apply the thermal hydrosilylation for the attachment of active centers, a second 

functional group is needed on the spacer. However, as mentioned previously, many functional 

groups may react with the Si-H bond under the high temperature conditions used. In order to 

prevent such side reactions, one possibility is to use an α,ω-diene, for example 1,7-octadiene, 

instead of 1-octadecene (Scheme 20). Both C=C bonds might react with the silica surface; 
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however, in the case where only one bond reacts, the second one may be used for the 

immobilization of active centers. 

The use of the diene would also facilitate the characterization of the type of bonding resulting 

from the thermal hydrosilylation reaction. Indeed, similarly to 10-undecylenic acid, used for 

the photochemical hydrosilylation reaction, the absence of a methyl group in the 1,7-

octadiene, prevents the possible overlapping of a methyl group signal with the resonance from 

the carbon atom of the Si-C bond in the solid state 13C NMR spectrum. 

 

 

 
Scheme 20: Reaction of 1,7-octadiene with silicon hydride terminated surface. 

 

The reaction of M2SiH with 1,7-octadiene in hexadecane as a solvent at 160 °C yields material 

M2C=C.  

As for M2C18, the presence of the organic modifier on M2C=C after the washing and drying 

steps is confirmed by IR and NMR spectroscopy as well as by elemental analysis.  

The signal between 9.5 and 12.5 ppm in the 13C CP/MAS NMR spectrum is consistent with a 

Si-C bond resulting from the radical hydrosilylation reaction. 

 

 

Figure 23: 13C-CP/MAS-NMR (left) and DRIFT (right) spectra of M2C=C before (top) and 

after (bottom) radical hydrosilylation reaction. 
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The presence of signals at 112 and 139 ppm in the 13C CP MAS NMR spectrum as well as at 

3077 and 1650 cm-1 (ν=C-H and νC=C respectively) in the DRIFT spectrum of M2C=C 

(Figure 23) shows that not all carbon-carbon double bonds have reacted. These unreacted 

C=C bonds could be used as a functional group for further modification of the surface. 

 

Based on the carbon elemental analysis results and the BET surface area, the surface 

concentration of alkenyl groups is 5.6 µmol m-2 and the specific amount is 580 µmol g-1 (nC18) 

of silica M2C=C. The specific amount of Si-H that has reacted can not be quantitatively 

determined by DRIFT because in this case the internal standard band at 1870 cm-1 overlaps 

with the νC=C band. A qualitative comparison of the νSiH intensities in the DRIFT spectra of 

M2C=C and M2SiH (Figure 23), however, shows that the Si-H groups have partially reacted. 

Moreover, nSiH of M2SiH  is only 330 µmol g-1 (Table 10). Therefore, the nSiH that has reacted 

is significantly lower than the nC18 that is present on the silica surface after reaction. This 

indicates that, in this case, telomerization of the diene, as a subsequent reaction to the  

hydrosilylation reaction, occurs to an appreciable extent. 

 

On the other hand, according to NMR investigations of the supernatant of the hydrosilylation 

reaction mixture after separation of the silica, polymerization of 1,7-octadiene does not occur 

in solution. This confirms that the reaction only occurs on the silica surface, which is 

consistent with the hypothesis of a radical induced hydrosilylation followed by a 

telomerization reaction (Scheme 21). 

 

 

 

Scheme 21: Possible mechanism for the reaction between M2SiH and 1,7-octadiene at high 

temperature. 
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The experiments discussed in this chapter demonstrate that the free radical initiated 

hydrosilylation reactions can be applied to modify Si-H terminated silica surfaces. Evidence 

for a strong attachment of the organic molecules on the silica surface is observed. However, 

only indirect evidence for the Si-C bond formation were established. Moreover, the possibility 

for a radical initiated surface telomerization as well as Markovnikov addition during the 

hydrosilylation can not be excluded.  

Direct evidence for all of these issues could be obtained by using a 1-alkene with 13C nuclei in 

position 1. This modifier type is investigated separately [147].  

Both photochemical and thermal hydrosilylation may be employed for the functionalization of 

the silica surface for the subsequent immobilization of redox-active molecules. The 

photochemical induction is advantageous owing to its mild reaction conditions. However, it is 

limited to non-porous materials since amorphous silica is not transparent to UV light. Because 

of the higher loading and application possibilities of porous materials, their functionalization 

via a radical hydrosilylation is also desired. In order to achieve the hydrosilylation of the Si-H 

groups within porous materials, the thermal initiation is needed.  

 

3.2 Base catalyzed dehydrogenative coupling of silicon hydride with terminal alkyne 

 

As an alternative route to the addition reaction of Si-H groups to C=C bonds (hydrosilylation, 

see 3.1), the formation of a Si-C bond via substitution reactions of carbanions at the Si-H 

group was investigated. The purpose is to obtain a Si-C bond without any telomerization side 

reaction in order to achieve a homogeneous surface modification.  

Silicon compounds in general display a higher reactivity toward substitution compared to the 

corresponding carbon compound. From a kinetic point of view, the larger covalent radius of 

the silicon atom results in a lower shielding against nucleophilic attack. Moreover, the empty 

d-orbitals of the silicon atom take part in substitution reactions, by increasing the coordination 

number of the transition state, leading to a lowering of the activation energy. Also, because of 

the presence of the d-orbitals, the nucleophile is not required to attack from the back with 

respect to the leaving group [148]. This is important, in order to make 2nd order substitution 

reactions possible on the silica surface as inversion of the configuration is prevented. 

Moreover, from a thermodynamic point of view, the lower electronegativity of Si compared to 

C as well as the generally lower bond strength of Si-X compared to C-X, makes the silicon 

compounds more reactive toward substitution than their carbon analogues [128]. 
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Si-Cl- or Si-O-Si-modified materials may be used as starting points for the formation of Si-C 

bonds. For example, strong nucleophiles, like methyl lithium (MeLi) or functionalized 

Grignard reagents were used to produce Si-C bonds from chlorinated [50] or dehydroxylated 

[30] silica surfaces. However, due to the strength of these nucleophiles, the extent of reaction 

on a single surface silicon atom is difficult to control and one or more surface siloxane bonds 

may be cleaved. For example, the reaction of a chlorinated silica surface with MeLi yields the 

T3, D2 and M products (Figure 1) [50]. The latter two display a poorer stability due to their 

lower cross-linking to the silica matrix (2 and 1 Si-O-Si bond respectively). To prevent the 

cleavage of the siloxane bonds during the alkyl group attachment on Si-Cl groups, weaker 

nucleophiles may be used. 

A second drawback with these starting materials is the production of silanol groups resulting 

from the cleavage of the siloxane bonds and the hydrolysis of the unreacted silicon chloride 

groups. To prevent the undesired formation of silanol groups, a less reactive silicon group 

should be used as electrophile for the reaction with carbanions. The Si-H group may be 

adequate for this purpose. Indeed, the Si-H bond is inversely polarized as compared to the    

C-H bond, and is therefore suitable for nucleophilic substitution [128] and is, at the same time, 

less reactive than the Si-Cl or siloxane bonds.  

In summary, Si-C formation on a silica surface via nucleophilic substitution ideally would 

involve the reaction of weak carbanions with Si-H groups. 

However, in this reaction, the hydride ion which is the leaving group, is a strong base itself. 

Therefore, the use of bases that are weaker than the hydride ion will yield a low amount of 

product as the equilibrium of the reaction will be shifted toward the starting material. One 

strategy for lowering the Gibbs free energy of the products would be to make the hydride a 

better leaving group. This is the case in the dehydrogenative coupling reaction (also called 

dehydrocondensation) where the hydride reacts with a proton, while the Si-C bond is formed. 

The resulting H2 is eliminated from the reaction mixture and the equilibrium of the reaction is 

shifted toward the product. To form a Si-C bond by dehydrocondensation, protic C-H groups 

(terminal alkynes or sp3 carbon atoms, carrying a H atom, in α position to electron 

withdrawing groups) may be used as nucleophiles. However, in this reaction, a high activation 

energy is needed. For example, the reaction between a terminal alkyne and Si-H only occurs 

above 300 °C [128]. Moreover, under these conditions, the addition of Si-H to the C≡C bond 

also occurs as a side-reaction. Therefore, to make this reaction applicable, a catalyst is needed. 

For example, dehydrogenative cross-coupling reactions of hydrosilanes with monosubstituted 

alkynes to produce alkynylsilanes are catalyzed by transition metal complexes (H2PtCl6 [149], 
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RhCl(PPh3)3) [150], Ir4(CO)12-PPh3 [151]). However, with these catalysts, the 

dehydrocondensation reaction competes with the hydrosilylation reaction. Higher selectivity 

toward the dehydrocondensation product was achieved when CuCl was used as catalyst [152]. 

However, as stated previously in the introduction, for our purpose transition metals should be 

avoided as catalysts, because of possible metal impurities remaining on the silica surface after 

modification. 

The dehydrogenative coupling reaction may also be catalyzed by a base. For example, an 

alcohol in the presence of a Si-H group and a catalytic amount of a base will produce a Si-O 

bond and H2 [128]. Similarly, primary amines react with Si-H, producing a Si-N bond and H2 

[52]. In this case, the amine is the nucleophile, and, at the same time, acts as the base to 

catalyze the reaction. 

For the formation of Si-C bonds, the reaction between reactive silane species (Ph-SiH3) and 

monosubstituted alkynes catalyzed by solid [153 - 156] as well as soluble bases [51] have 

been described. When the less reactive Et3SiH is used, contradictory results have been 

reported about the success of the reaction [51, 156].  

 

Since Si-H groups on the silica surface are also expected to be less reactive than Ph-SiH3, the 

base catalyzed dehydrogenative cross-coupling is first investigated in a model reaction with 

Et3SiH. Moreover, in order to make this reaction compatible with the goal of surface 

modification, a soluble base will be used. 

 

3.2.1 Base catalyzed dehydrogenative coupling between triethylsilane and 1-hexyne 

 

Si-C bond formation via dehydrogenative coupling reaction was tested in solution with 1- 

hexyne and Et3SiH. Lithium hexynide is used as the catalyst and was prepared in situ by 

reaction between butyllithium and 1-hexyne (Scheme 22). The base catalyzed reaction was 

performed in hexane as well as THF as solvents.  

The use of hexane as solvent does not yield any reaction between the terminal alkyne and the 

silane probably because of the poor solubility of lithium hexynid in hexane. On the other hand, 

the spectrometric data of the product formed in THF correspond to those expected for 

triethylhex-1-ynylsilane (9).  
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Scheme 22: Base catalyzed dehydrogenative coupling of triethylsilane with 1-hexyne. 

 

The 13C NMR spectrum unambiguously demonstrates the formation of the Si-C bond: The 

two sp hybridized carbons in triethylhexyn-1-ylsilane have chemical shifts of 81.2 (Figure 24) 

and 108.6 ppm. This is in agreement with literature values for other alkyn-1-ylsilane 

compounds [157, 158]. The signal at 81.2 ppm may be assigned to the sp carbon in the α 

position (Cα) to the Si atom, while the signal at 108.6 is assigned to the β sp carbon atom (Cβ).  

 

 

 
Figure 24:  13C NMR spectrum of 9 (excerpt showing resonance signal of Cα). 

 

Compared to the expected chemical shift for 13C nuclei of C≡C bonds (60 - 90 ppm), the 

signal of Cβ in the 13C spectrum of 9 is shifted strongly downfield. In contrast, from the 
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electronegativity difference between carbon and silicon, a shielding effect and therefore a 

high field shift are expected in alkynylsilane compounds. The opposite effect that is observed 

may be explained by interactions between the π-orbitals of the C≡C bond and low-lying 

unoccupied orbitals on silicon. Indeed, this type of orbital overlapping has been previously 

demonstrated for Si-C≡C compounds by IR spectroscopy [159] as well as electron 

transmission spectroscopy [160]. It results in a decrease of the electron density and a change 

of geometry of the π orbitals of the C≡C bond. Consequently, the shielding of both C nuclei 

of the C≡C bond, and particularly Cβ, is decreased, resulting in the observed chemical shift to 

lower field. 

 

Moreover, the presence of the 29Si satellites for the signal at 81.2 ppm (Cα) provides evidence 

of the formation of a bond between the silicon atom and the sp hybridyzed carbon atom 

(Figure 24). 

 

3.2.1.1 Kinetics 

 

The kinetics of the coupling reaction were investigated with 1H NMR spectroscopy. The 

reaction was performed in the presence of a known amount of an internal standard 

(hexadecane) in order to make quantification of the product possible. Aliquots were taken 

from the reaction mixture at certain times up to 7 days and immediately quenched. The 

volatile components (educts and solvents) of the reaction mixture were evaporated under 

reduced pressure. The residual liquid (product, potential side-products and internal standard) 

was investigated with 1H NMR spectroscopy. The amount of product present in each aliquot 

was obtained from the integration of the 1H NMR resonances relative to the one of 

hexadecane.  

Hexadecane was chosen as internal standard because of its high boiling point, preventing the 

loss of the standard during evaporation of the solvent. Moreover, aliphatic saturated alkanes 

were already present in the reaction mixture (heptane from the BuLi solution, which is 

evaporated after the reaction), therefore, hexadecane is not expected to interfere with the 

reaction. Finally, the strong CH2 signal of hexadecane in the 1H NMR spectrum (at ~ 1.26 

ppm) does not overlap with the signals of the product (Figure 25). 

The signals observed in the 1H NMR spectra of the product mixture at different reaction times 

correspond to the expected product and to the internal standard (Figure 25). Although 
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distillation of the aliquots was not performed, significant signals for side products are not 

observed.  

 

 

Figure 25: Time resolved 1H NMR spectroscopic investigation of the production of 9 in 

THF; [*]CH 2 resonances of hexadecane (internal standard). 

 

The determination of the amount of product in each aliquot from the NMR signal integration 

makes it possible to calculate the yields for the corresponding reaction times (Figure 26). Any 

signal of the product may be used for integration except the one due to the resonance of the 

methyl group 8. Indeed, it overlaps with the resonance of the methyl groups of hexadecane. 

Since in 1H NMR spectroscopy the integration of a signal is proportional to the amount of 

protons responsible for the resonance and since the amount of hexadecane initially present is 

known, the absolute yield of product 9 can be calculated. It is assumed that neither 

hexadecane, nor 9, are lost by evaporation during the reaction. After 7 days, the reaction 

seems to come to completion and the yield is about 80 %.  

Two additional experiments were also performed in order to determine the yield by isolating 

and weighing the product. After 1 and 6 days of reaction the yields were 21 and 69 % 

respectively. This is in good aggreement with the yields obtained from the 1H NMR 

investigations. The fact that a yield of 100 % is not achieved even aver 7 days may be explain 

by the slow loss of the volatile 1-hexyne educt through the condensing system.  
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Figure 26: 1H NMR spectroscopic investigation of the production of 9 in THF. 

 
This experiment shows that long reaction times are required for the formation of a Si-C bond 

between triethylsilane and 1-hexyne. A more detailled determination of the reaction order and 

of the rate constant was not attempted. 

 
3.2.1.2 Mechanism 

 
We expect the reaction between triethylsilane and 1-hexyne in presence of a catalytic amount 

of lithium hexynide to occur via a dehydrogenative coupling pathway (Scheme 23). In order 

to verify this assumption, two additional experiments were performed, namely the detection 

of the evolved hydrogen gas and the reaction of hexynide with Et3SiH in the absence of a 

proton source. 

 

Scheme 23: Mechanism of the base catalyzed dehydrogenative coupling of triethylsilane with 

1-hexyne. 
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Because of the slow reaction kinetics, the expected hydrogen formation was not observed as a 

gas evolution from the reaction mixture. Therefore, to detect the produced hydrogen, the same 

reaction was performed in a sealed vessel and the gas present after the reaction was analyzed 

by gas chromatography with a thermal conductivity detector. Qualitatively, this analysis 

shows that H2 is present in the closed vessel after reaction. It demonstrates that the leaving 

group of this reaction is H2 and not LiH. 

The quantification of the amount of evolved H2 was attempted by using the same method. 

However, the H2 leaks out of the sealed vessel at a significant rate after several hours. Owing 

to the long reaction time, this prevented a quantitative comparison between the amount of 

product and the amount of H2 produced during the reaction. 

  

The reaction of lithium hexynide with Et3SiH in the absence of 1-hexyne was designed to 

demonstrate the importance of the proton source. In practice, 1-hexyne was first reacted with 

a 10 % excess of BuLi to ensure that lithium hexynide is exclusively present. The addition of 

the base to Et3SiH results in the formation of triethylbutylsilane due to the excess of BuLi. 

However, triethylhex-1-ynylsilane 9 could not be detected. This demonstrates that only 

carbanions that are stronger nucleophiles than the hydride leaving group react with Si-H in the 

absence of a proton source. In this case the hydride from Si-H is expected to yield LiH instead 

of H2. This confirms that the reaction occuring between Et3SiH, hexyne and lithium hexynide 

is a dehydrogenative coupling reaction. In this case, the proton source acts as a Lewis acid to 

make the hydride a better leaving group in the form of H2. 

 

In summary, a Si-C link can be produced from a silane and a terminal C≡C bond in solution, 

and the experimental observations are consistent with the proposed mechanism (Scheme 23). 

The requirements for the base catalyzed dehydrogenative coupling reaction are the presence 

of a proton source and a nucleophile.  

 

3.2.2 Dehydrogenative coupling on the Si-H modified silica surface 

 

Since the dehydrogenative coupling of a terminal alkyne with a Si-H group is successful in 

solution, this reaction was also applied to a Si-H modified silica surface (M4SiH). The product, 

M4C≡C, was investigated with 29Si CP/MAS NMR, in order to find a direct evidence for T3 

groups resulting from the coupling of the surface Si-H groups with the terminal C≡C bond. 
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29Si CP/MAS NMR spectra of the product resulting from the sol-gel process of (MeO)3Si-

C≡C-R display resonances at -79 (T1), -87 (T2) and -97 ppm (T3) [161]. The same chemical 

shifts are expected for the T3 group in M4C≡C since the Si nucleus of the Si-C bond is in a 

similar environment.  

The 29Si CP/MAS NMR spectrum of M4C≡C (Figure 27) shows a complex signal with 

overlapping peaks in the region where the T groups are expected. Therefore, Gaussian 

deconvolution was performed. The envelope of 4 individual peaks correlates with the 

measured spectrum for a deconvolution with resonances at -73.5 (T2H), -84 (T3
H), -96 (T3) and 

-109 ppm (Q4). The signal at -96 ppm is too far downfield to be assigned to Q3 groups and the 

assignment as T3 is most likely, in accordance with ref. [161]. Despite the desired Si-C≡C unit 

formation, however, unreacted Si-H groups remain on the silica surface. 

 

 

 

Figure 27: 29Si CP/MAS NMR spectrum of M4CC (top) with Gaussian deconvolution results 

(bottom) and envelope of Gaussian components (top, broken line). 
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An optimization of the reaction to obtain fewer remaining Si-H groups is desired to clearly 

characterize the Si-C bond and make the resulting silica the basis of modified materials. 

 

In conclusion, 3 different methods were developped for Si-C bond formation from Si-H 

groups. The photochemically induced radical hydrosilylation reaction is adapted for the 

modification of non-porous particles. For amorphous porous silicas, the thermal variant is 

necessary to enable the reaction within the pores. Both methods make the functionalization of 

the silica possible. However, side reactions, especially radical induced surface telomerization, 

are suspected. The base catalyzed dehydrogenative coupling reaction of a terminal alkyne 

with the Si-H groups in solution is a promising alternative to the radical hydrosilylation 

methods. This reaction performed on soluble model compounds shows two valuable 

advantages: Side reactions are not detected, and direct evidence for the formation of the Si-C 

bond is obtained. Optimization of this reaction on the silica surface and the introduction of a 

second functional group are still required at this point. 

 

4 The redox-active molecules 

 

4.1 Introduction 

 

In the scope of interphase systems, the motivation to immobilize redox-active molecules on 

the Stöber particle surface is twofold :  

The redox-active modification may enable the investigation of the redox-active molecules’ 

interactions in interphases [103] as well as redox catalyses [9] in these systems by 

electrochemical means. In order to be suitable for both types of applications, the redox-active 

molecules must fulfill the following conditions: Both reduced and oxidized forms must be 

chemically stable, and electron exchange with the electrode must be fast and reversible [9]. 

 

Various derivatives of three different redox-active probes were chosen for the modification of 

the Stöber particles (the identity of R will be discussed later): Ferrocene derivatives (1a-c), 

diamine(ether–phosphine)dichlororuthenium (II) complexes (2a-b), and sterically hindered 

biphenyl amines (3a-b) were functionalized to enable their covalent attachment on the silica 

surface. 

 



4. The redox-active molecules 

78 

 

 

The discovery of ferrocene [162, 163], triggered intensive studies in the chemistry and 

electrochemistry [164] of organometallic compounds. The ferrocene/ferrocenium couple 

(Fc/Fc+) has ever since been a widely used model and reference [12] in electrochemical 

studies. Moreover, the mostly reversible Fc/Fc+ system was also used in electron transfer 

catalysis and redox catalysis [165]. Ferrocene is therefore the first choice for the redox-active 

modification of silica particles with a model compound [103] and will also be the main redox-

active group applied in this thesis. 

 

The diamine(ether–phosphine)dichlororuthenium(II) complexes 2 are similar to the Noyori 

type catalysts. The complexes developed by Noyori were successfully employed as 

precatalyst in the homogeneous hydrogenation of unsaturated ketones with high 

stereoselectivity and chemoselectivity [166, 167]. In an attempt to increase the stability of the 

catalytic intermediates of these complexes, an ether moiety was incorporated into the 

phosphine ligands. The hemilabile character of the ether–phosphines protects empty 

coordination sites at the metal center and the ether moieties act as intramolecular solvating 

ligands [168, 169]. These complexes display high activity, conversion and chemoselectivity 

as homogeneous catalysts for the hydrogenation of α,β-unsaturated ketones [168, 170]. 

Moreover, the complexes 2 were previously functionalized with trialkoxysilane groups and 

exhibited catalytic activity after incorporation into interphase systems [103, 171, 172].  

The diamine(ether–phosphine)dichlororuthenium(II) complexes display reversible redox 

behavior and their redox potential can easily be influenced by variations in their ligands [13, 

171]. Moreover, after chemical oxidation [169], the monocationic complexes are still 

catalytically active for the selective hydrogenation of conjugated ketones [173]. Due to these 

properties the complexes 2 are good candidates for the electrochemical monitoring and 

possibly control of catalysis in interphases. 
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Organic redox-active mediators are less common than inorganic ones due to the often low 

stability of their radical ion form [9].  

An example of organic electron transfer agents displaying stable radical cation states in the 

time frame of electroanalytical techniques are sterically hindered biphenyl amines 3 [174 - 

176]. The stability of the radical cation state is attributed to the electron donating group in a 

position para to the amino group [174], the delocalization of charge and the odd electron in 

the aromatic ring as well as the steric effect of the tert-butyl groups. Because of this stability, 

the oxidation of 3 is electrochemically reversible, and this makes compounds of type 3 a 

suitable candidate for electron mediation in redox reactions. 

 

In summary, molecules 1, 2 and 3 are chosen as model compounds for this thesis because of 

their redox reversibility and their potential interphase applications. The redox-active 

molecules 1 and 2 were previously functionalized with alkoxysilane groups for the 

immobilization on a silica surface [83, 87]. For the purpose of the hydrosilylation alternative 

route to silylation, 1, 2 and 3 will be derivatized with a terminal carbon-carbon double bond. 

 

4.2 Synthesis of ferrocene derivatives 

 

The formation of a ferrocene derivative with an alkoxysilane group bound via an amide bond 

(1c) was previously described [103]. A carbodiimide reagent was used for the coupling 

between ferrocenecarboxylic acid and the primary amine [177]. 

 

 

 

The straightforward amide formation strategy will also be used for the synthesis of the 

ferrocene moiety with a terminal C=C bond 1b. However, due to the side-reactions associated 

with the use of carbodiimide, an acyl chloride intermediate [178] will be preferred for the 

synthesis of 1b. 

The reaction was performed in two steps, both involving amide bond formation from acyl 

chloride groups (Scheme 24). Oxalyl chloride was used for the activation of ferrocene-

carboxylic acid. 
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Scheme 24: Synthetic route for the preparation of 1a and 1b. 

 

The chlorination of ferrocenecarboxylic acid with oxalyl chloride yields red crystals of the 

known ferrocenylcarbonyl chloride [178]. The reaction of this intermediate, which was not 

isolated, with an excess of ethylene diamine favors the formation of [(2-amino- 

ethyl)carbamoyl]ferrocene (1a). However, the disubstituted ethylene diamine side product 

(1d) was also obtained as a minor side-product. The derivative 1a was separated from the 

mixture in high purity by taking advantage of its water solubility.  
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The subsequent reaction of 1a with 10-undecenoyl chloride yields 1b bearing the desired 

terminal C=C bond. Recrystallization from acetone yields the product in good purity in the 

form of yellow crystals. 

 

The spectroscopic data, and in particular the signals at 171 and 175 ppm in the 13C NMR 

spectra, demonstrate the formation of the amide bonds for both 1a and 1b. Other 

spectroscopic features (1H and 13C NMR, MS, IR) for 1a and 1b are in agreement with the 

expected structures and are detailed in the Experimental Part. The carbon content from 

elemental analysis for both 1a and 1b is lower than expected. In the case of 1a, which was 

already described in the literature from a different synthetic route, the same observation was 

made and interpretated as the presence of water as an impurity [179]. 

 

4.3 Synthesis of diamine(ether–phosphine)dichlororuthenium(II) complexes 

 

The RuCl2(η
1-Ph2PCH2CH2OCH3)2(diamine) complexes 2a and 2b were prepared from the 

reaction of equimolar amounts of RuCl2(η
2-Ph2PCH2CH2OCH3)2 (11) with the diamine ligand 

to form five-membered chelates with ruthenium (see Scheme 25 for the preparation of 2a) 

[169, 170]. The hemilabile character of the ether–phosphine ligand facilitates the formation of 

the diamine(ether–phosphine)ruthenium(II) complexes [169].  

Complex 2b was prepared according to previously described procedures [83, 172]. 

 

 

 

The diamine ligand for the ultimate formation of 2a, N-oct-7-enylethylene-1,2-diamine (8), 

was prepared by monoalkylation of ethylenediamine with 8-bromo-1-octene (Scheme 25). 

The substitution may be effected by refluxing the mixture of both components in ethanol. A 

large excess of ethylenediamine was used in order to avoid the formation of other derivatives 

than the monoalkyl product and to bind the hydrobromic acid which is formed in the reaction.  
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Scheme 25: Synthetic route for the preparation of 2a. 

 

The spectroscopic data of the product from the reaction of ethylene diamine with 8-bromo-1-

octene are consistent with those expected for 8 (see 7.4). Side-products with multiple 

alkylation of the nitrogen atom were not detected by NMR, nor by MS spectroscopy. The 

immiscibility of the product with ethylendiamine facilitates the work-up of this reaction. In 

comparison, when shorter alkenyl substituents are used, fractional distillation is needed for 

the separation of the product from the excess of ethylendiamine [180]. 

 

The reaction of 8 with 11 yields a yellow product. The octenyl ligand made the work-up of 2a 

more difficult due to the good solubility of this ruthenium complex in hexane (similar 

complexes, e.g. 2b, precipitate in this solvent and are separated based on this property [168, 

169]). 2a was obtained in good purity only after precipitation and washing with cold 

petroleum ether (40/60) instead of n-hexane. 
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The signals observed in the 1H NMR spectrum of 2a can be assigned to the phosphine as well 

as to the diamine ligand. The integration value of the signal of the aromatic resonances due to 

the phosphine ligands and those of the protons from the carbon-carbon double bond of the 

diamine ligand is in agreement with the expected diamine to phosphine ratio. In addition, the 

chemical shift of the methoxy groups indicates that the oxygen atom is not coordinated to the 

ruthenium atom. This is consistent with η1-(P)-coordinated ether-phosphine ligands. 

 

The AB pattern observed for the 31P resonances is consistent with the chemical non-

equivalence of the two phosphine groups, resulting from the coordination of the non-

symmetric diamine ligand to the metal center. The 2JPP value of about 36 Hz suggests that the 

phosphine ligands are coordinated cis to one another [181, 182]. This observation is in 

agreement with the characterization of related complexes of type 2 [168].  

 

Table 13: 13C NMR data[a] of the resonances in the aromatic region of 2a and 2b. 

  ipso-C6H5   o-C6H5   m-C6H5   p-C6H5 

  δ13C / ppm 1JPC / Hz   δ13C / ppm 2JPC / Hz   δ13C / ppm 3JPC / Hz   δ13C / ppm 

                      

2a 136.57 (d) 28.54  133.44 (d) 8.05  128.41 (d) 8.05  129.01 (s) 

 134.15 (d) 32.93  133.26 (d) 8.05  128.01 (d) 8.05  128.76 (s) 

 overlapping signals  132.03 (d) 8.05  127.75 (d) 8.05  128.66 (s) 

 132.07 (d) 35.86  131.49 (d) 8.05  overlapping signals   

           

2b 136.51 (d) 28.97  overlapping signals  128.31 (d) 8.76  129.01 (s) 

 134.15 (d) 32.34  133.31 (d) 8.08  127.98 (d) 8.76  128.99 (s) 

 133.36 (d) 36.38  132.01 (d) 8.08  127.72 (d) 8.76  128.73 (s) 

  132.00 (d) 36.38   131.51 (d) 8.08   127.64 (d) 8.76     

[a] The spectra were recorded in CDCl3, the coupling patterns are given in brackets. 

 

The 13C NMR spectrum of 2a (recorded at 100.62 MHz) displays complicated signal patterns 

with signal overlap for the phosphine ligands in the aromatic region (Figure 28). The resolved 

signals may be assigned to the ipso, ortho, meta and para carbon nuclei according to their 

chemical shifts, coupling constants and coupling patterns (Table 13). In order to make the 

assignment of the overlapping signals possible, the spectrum of 2a is compared to that of 2b 
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which was recorded at a lower frequency. Since both spectra were recorded under different 

applied magnetic fields, the overlapping of the coupling pattern may not occur for the same 

signals in both spectra. Indeed, in the 13C NMR spectrum of 2b (measured at 62.90 MHz), 

two more doublets, at 133.36 and 127.64 ppm are identified (Table 13 and Figure 28).  

 

 

Figure 28: Aromatic regions of the 13C NMR spectra of 2b and 2a  measured at frequencies of 

62.90 and 100.62 MHz, respectively. 
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This makes it possible to assign 4 doublets to the ipso, ortho and meta C in each spectrum 

(Table 13). The para C displays overlapping signals that are identified as four singlets after 

processing of the spectra. This demonstrates that the 4 phenyl groups are chemically non-

equivalent, which is consistent with the structure of the complexes 2a and 2b: Indeed, because 

of the non-symmetric diamine ligand, the two phosphine ligands are not equivalent. In 

addition, since the ruthenium atom is an asymmetric center, the two phenyl groups of each P 

ligand are not chemically equivalent either. 

 

4.4 Synthesis of biphenylamine derivatives 3a-c 

 

The synthesis of three different derivatives of sterically hindered biphenyl amines (3a-c) was 

carried out (for 3b see also ref. [183]). The biphenyl amine 3c was synthesized in order to 

investigate the interaction of 3 with silica surfaces in the absence of a terminal C=C bond. 

 

 

 

The two main steps in the preparation of 3a-c both involve carbon-carbon σ-bond formation 

(Scheme 27). The first precursors are 1-bromo-4-(alkenyl)-benzene (4a-b), prepared from 1,4-

dibromobenzene and an α,ω-bromoalkene. For the synthesis of 4c, the corresponding 1-

bromoalkane is used. The synthon with the shortest chain length, 4-allylbromobenzene (4a, n 

= 1), is obtained from the reaction between 1,4-dibromobenzene and allylmagnesiumbromide 

[184] (Scheme 27). For longer chain lengths (n > 1), the coupling of 1,4-dibromobenzene and 

the α,ω-bromoalkene requires a catalyst. 

 

 
 

One possibility for the preparation of 4 with n > 1 is the Kumada cross-coupling reaction 

[185] between the corresponding α,ω-alkenyl Grignard reagent and 1,4-dibromo-benzene 
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(Scheme 27). The coupling reaction is catalyzed by Pd(dppf)Cl2, where dppf stands for 1,1´-

bis(diphenyl-phosphino)ferrocene [186, 187].  

The second synthetic route to 4 involves a Cu(I)-mediated coupling [188, 189] of the α,ω-

bromoalkene with the Grignard reagent obtained from 1,4-dibromobenzene (Scheme 27). 

The Kumada cross-coupling reaction and the Cu(I)-mediated coupling reaction were tested 

during the synthesis of 4b and 4c, respectively. The advantages and disadvantages of both 

synthetic routes are discussed in 4.4.1. 

 

The second precursor, the iminochinone 5 is synthesized by the electrochemical oxidation of 

2,4,6-tri-tert-butylanilin (Scheme 26), as described in the literature [190 - 192]. 

 

 

Scheme 26: Electrosynthesis of 5. 

 

The carbon-carbon σ-bond formation of the biphenyl backbone of 3a-c results from the 

reaction between the Grignard reagent obtained from 4a-c and the iminochinone 5 

(Scheme 27). The subsequent reduction of the iminochinol 6a-c induces the rearomatization 

of the aniline ring (Scheme 27). The product is obtained after deprotonation of the ammonium 

salt with aqueous ammonia. 

 

4.4.1 1-bromo-4-(R)-benzenes (4a-c) 

 

For the production of 4b and 4c, both the Kumada cross-coupling reaction and the Cu(I) 

catalyzed coupling reaction yield the desired product. Indeed, the signal at about 2.5 ppm in 

the 1H NMR spectra of both 4b and 4c is characteristic of the benzylic CH2 group resulting 

from the carbon-carbon σ-bond formation. Also, the coupling pattern of the aromatic protons 

(two doublets with equal coupling constants) is consistent with an 1,4-unsymmetrically 

disubstituted benzene ring. The other spectroscopic data (1H and 13C NMR as well as MS) 

correspond to the values expected for 4b and 4c (see 7.4). 

 



4. The redox-active molecules 

87 

 

Scheme 27: General synthetic route for the preparation of 3a-b. 

 

Both synthetic routes give relatively low yields (~20 %). The Cu(I) catalyzed reaction yields 

several side-products. In particular, the product from the reaction of both halogenated carbons 

of the educt is detected. Moreover, it was not possible to separate this particular side-product 

by column chromatography at this stage. On the other hand, the Kumada cross-coupling 

catalyzed by Pd(dppf)Cl2, did not result in any detectable side-products. The only impurity 

present is the unreacted 1,4-dibromobenzene, which can be eliminated by crystallization 

followed by column chromatography. 
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The synthesis of 4a also yields the expected product according to the spectroscopic data. It 

should be noted that 1,4-diallylbenzene is also obtained. However, in this case the product can 

be purified by distillation. 

 

In summary, precursors 4a-c were prepared in good purity. For n = 1, the reaction between 

allylbromide and bromophenylmagnesium bromide is used. For longer chain length (n > 1), 

the Kumada cross-coupling reaction is preferred over the Cu(I) catalyzed reaction. 

The relatively low yield of 4a-c is satisfactory because the yield limiting step of the synthetic 

route to 3a-c is the production of 5. 

 

4.4.2 3,5-di-tert-butyl-4-iminocyclohexa-2,5-dien-1-one (5) 

 

The absolute yield of the iminochinon 5, obtained from the electrooxidation of 2,4,6-tri-tert-

butylanilin, is limited by the size of the electrochemical cell. Compared to the origial 

references [190 - 192], a recrystallization step of the product from petroleum ether was 

introduced, yielding bright yellow crystals.  

Due to the sp2 hybridization of the N atom and the presence of the proton of the imine, the 

protons of the two tert-butyl groups as well as the two methine protons of the cyclohexadiene 

ring are not equivalent and should display separate signals in the 1H spectrum. However, this 

is not the case before recrystallization of the iminochinon: The tert-butyl and the methine 

protons display one singlet, each. This may be explained by the presence of protic impurities, 

inducing a proton exchange at the imine group (Scheme 28). 

  

Scheme 28: Proton exchange at the imine group catalyzed by protic impurities. 

 

If this proton transfer is fast compared to the NMR timescale, the two tert-butyl groups as 

well as the two methine groups will be seen as equivalent [191]. 
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After recrystallization in petroleum ether, a singlet is observed in the 1H NMR spectrum for 

the protons of each tert-butyl group and for each methine group. The splitting of the NMR 

signals, which is also observed in the 13C NMR spectrum, demonstrates that the 

recrystallization step eliminates protic impurities from the product. 

The absence of these impurities is important since 5 is reacted with a Grignard reagent in the 

next step. 

 

4.4.3 3,5-di-tert-butyl-4-imino-1-(4-R-phenyl)cyclohexa-2,5-dien-1-ol (6a-c) 

 

In order to facilitate the work-up of these products, 4a-c are used in excess to ensure that a 

maximum amount of 5 reacts. Indeed, the unreacted iminochinon 5 is difficult to separate 

from the product, while 4a-c are easily separated by filtering the product over silica and 

washing it with hexane. In this step, the excess of 4a-c is recovered in good purity after 

evaporation of the solvent. The product is then eluted from the silica with ethyl acetate and 

further purified with column chromatography. 

 

The main evidence for the production of 6a-c is the signal at 71.8 ppm in the 13C NMR 

spectrum corresponding to the carbon atom linked to the hydroxyl group resulting from the 

Grignard reaction. The other spectroscopic data correspond to those expected for the product. 

 

4.4.4 3,5-di-tert-butyl-4'-R-1,1'-biphenyl-4-amine (3a-c) 

 

The  successful reduction with Zn and HCl is demonstrated by the disappearance of the C-OH 

signal in the 13C NMR spectra. Moreover, the signal from the C-H groups of the 

cyclohexadiene ring is shifted from 6.23 to 7.34 in the 1H spectrum. This shows that the 

reduction of the hydroxyl and imine groups also induces the rearomatization of the 

cyclohexadiene ring, yielding the biphenyl backbone of 3a-c. 

 

4.5 Conclusion 

 

In summary, the redox-active molecules 1, 2 and 3 were derivatized with a terminal C=C 

bond. This opens the possibility for their covalent attachment on Si-H modified surfaces via 

hydrosilylation reactions. 

 



5. Covalent attachment of active molecules on the silica surface  

90 

5 Covalent attachment of redox-active molecules on the silica surface via the radical 

addition of Si-H to C=C bonds. 

 

In Chapter 3.1, the possibility to modify hydride terminated silica surfaces via free radical 

induced hydrosilylation reactions was demonstrated. The covalent attachment of a molecule 

(Y) by use of this reaction, can in general be achieved by two pathways (Scheme 29). In 

route I, Y is first coupled to an ω-substituted terminal olefin bearing a reactive group X. The 

covalent attachment of Y to the silica surface is then obtained from the hydrosilylation 

reaction between the surface Si-H and the terminal C=C bond. Therefore the silica material is 

only involved in the second step of the reaction. 

On the other hand, in route II, all reactions are performed on the surface of the solid phase: 

The hydride modified silica surface is first reacted with the ω-substituted terminal olefin. In a 

second step, immobilized X reacts with Y, which results in the immobilization of the active 

center (Scheme 29). 

 

 
Scheme 29: Modification pathway of hydride modified silica surface via hydrosilylation. 

 
Route II has the potential disadvantage of leaving unreacted linkers after the attachment of Y. 

Therefore, we will first focus on route I. 

 

5.1 Covalent attachment of active molecules on the silica surface via route I 

 

Radical hydrosilylation reactions are applied to the covalent attachment of the previously 

synthesized redox-active molecules functionalized with a terminal alkene (Chapter 4). 

As shown before (see 3.1.1.1), the photochemical hydrosilylation reaction only occurs if 

saturated hydrocarbons are used as solvent. This is not a drawback for the attachment of the 
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redox-active molecules used here, since all of them are soluble in hexane. A possible problem 

arises from the need for a relatively high amount of olefin in order to achieve a high surface 

coverage with the modifiers: For the model reaction, the concentration of 10-undecylenic acid 

was 0.1 M. However, for the modification with 1b, 2a and 3b, a lower concentration must be 

used due to the availability of these molecules. 

The thermal hydrosilylation model reaction was performed in the neat olefin (see 3.1.2.1). 

However, the redox-active molecules 1b, 2a and 3b need to be dissolved in a solvent due to 

their high melting points and their restricted availability. Mesitylene or hexadecane are used 

as high boiling point solvents for these reactions. 

 

5.1.1 Ferrocene attachment 

 

The photochemical hydrosilylation reaction of 1b with M1SiH (Scheme 30) was performed in 

hexane at a concentration of about 5 mM. In contrast to the photochemical hydrosilylation of 

10-undecylenic acid, the concentration of modifying molecules is about 20 times lower. 

Material M1f SiH was used as the silica matrix.  

 

 

 
Scheme 30: Thermal or photochemical induction of hydrosilylation reactions between M1SiH 

and 1b. 

 

The resulting material displays only very weak C-H stretching vibrations in the DRIFT 

spectrum. Therefore, the reaction occurs only in low yields under these conditions. The 

ferrocene derivative 1b was also exposed to the photochemical conditions in absence of silica. 

The characterization of the product after irradiation corresponds to 1b. Therefore, no side-

reaction occurs under UV irradiation. 

The reaction was also performed with 1b at the same concentration and M2SiH as a Si-H 

modified silica matrix in mesitylene under the thermal conditions. Unfortunately, after 1 h of 

reaction, the reaction mixture turned black. 1H and 13C NMR investigations of the reaction 

solution indicated that thermal decomposition of the ferrocene moiety had occurred.  
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5.1.2 Ruthenium complex attachment 

 
The stability of the complex 2a was tested under the radical hydrosilylation conditions, but in 

the absence of Si-H modified silica. A solution of 2a in hexane was irradiated by UV light for 

several days and another solution of 2a in hexadecane was heated to 160 °C for several hours. 

Under photochemical conditions, a light brown insoluble solid is obtained and under thermal 

conditions a dark brown precipate is produced. This demonstrate the poor stability of 2a 

under both types of conditions. Therefore, the attachment of 2a to the silica surface was not 

attempted neither by thermal, nor by photochemical hydrosilylation reactions. 

 
5.1.3 Biphenylamine attachment 

 
The organic redox-active molecule 3b was first exposed to the photochemical conditions in 

absence of silica. After irradiation, the spectroscopic data of the solid recovered from the 

solution correspond to the one expected for 3b. This demonstrates the stability of 3b under 

photochemical conditions. 

Similarly to the reaction with 1b, the photochemical hydrosilylation reaction of 3b was 

performed in hexane at a concentration of about 5 mM in presence of M1f SiH. The slightly 

yellow material resulting from the photochemical hydrosilylation of M1f SiH and 3b, displays a 

very weak C-H stretching vibration in the DRIFT spectrum. This confirms the results 

obtained for the experiment with the ferrocene derivative 1b: the use of the redox-active 

molecules at this lower concentration does not yield a satisfactory surface concentration of 

modifiers. 

The photochemical hydrosilylation of 3c was performed under the same conditions as for 3b 

in order to demonstrate that no attachment at all occurs in the absence of the C=C bond. As 

expected, no C-H signals are observed in the DRIFT spectrum. However, since 3b itself 

displays only low yields, a clear conclusion can not be drawn from this result. 

Due to the small amount of 3b that was available, thermal hydrosilylation was not attempted. 

 
In summary, two main factors prevent the application of route I for the immobilization of the 

redox-active molecules 1b, 2a and 3b. First, the concentrations required for the 

photochemical hydrosilylation reaction are not compatible with the amount of redox-active 

molecules available. In order to improve the surface coverage in redox-active modifiers, 

longer reaction times may be applied. However this is difficult in practice, since 4-5 days are 

already necessary when the optimal olefin concentration is used (see 3.1.1.1). Secondly, in 
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some cases, the stability of the redox-active molecules under thermal or photochemical 

conditions prevents the use of route I as a general synthetic pathway for the silica surface 

modification. 

 
5.2 Covalent attachment of active molecules on the silica surface via route II 

 
In contrast to route I, the alternative pathway of route II makes it possible to modify the Si-H 

surface with a reactive functional groups X that may be used in turn for the immobilization of 

the redox-active molecules. The group X may be chosen so that milder reaction conditions 

and lower concentrations of redox-active molecules can be applied. 

Two starting materials for the immobilization of the redox-active molecules via route II have 

already been described in the previous chapter with the preparation of -COOH (MCOOH) and  

–C=C (M2C=C) terminated silica surfaces. 

 
5.2.1 Immobilization of ferrocene by means of an activated carboxylic acid modified silica 

surface  

 
A straightforward activation of the carboxylic acid modified surface is performed by 

chlorination with oxalyl chloride. The resulting acyl chloride is then reacted with the amine 

functionalized ferrocene derivative 1a for the covalent attachment on the silica surface via an 

amide bond (Scheme 31). The reaction occurs at RT in short times and at low redox-active 

molecule concentration (~ 5 mM). The procedure was applied to materials M1f SiH, M1gTES, 

M4SiH and yields the corresponding MFc materials. 

 

 

  
Scheme 31: Synthesis of ferrocene-modified silica particles via route II based on 

photochemical hydrosilylation. 
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The DRIFT spectra of the intermediates of the synthetic route to MFc involving M1gTES, 

M1f SiH and M4SiH, are represented in Figures 29, 30 and 31 respectively. The preparation and 

characterization of the materials MCOOH were discussed previously (see 3.1.1.1). The DRIFT 

spectra of MCOOH display the νC=O band of the carboxylic group at ~ 1710 cm-1, the νSi-H  band 

of the unreacted Si-H groups at ~ 2280 cm-1 as well as the νC-H band expected for the CH2 

groups of the alkyl spacer (Figures 29, 30 and 31). A higher band intensity is observed for the 

M4 materials compared to the M1 materials. This is due to the higher specific surface area, 

and therefore the higher specific modifiers amount of the M4 materials. 

 

 

 
Figure 29: DRIFT spectra of bare silica M1g, hydride modified silica M1gTES, 10-

undecylenic acid modified silica M1gCOOH and Fc modified silica M1gFc. 

 
In the DRIFT spectra of M4Fc, and M1f Fc an additional band at 3095 cm-1 corresponding to 

the νC-H of the C-H goups of ferrocene is detected. In the case of M1gFc, the detection of this 

band is less obvious due to the overlapping of the Si-OH strectching vibrations. The signal at 

1542 cm−1 due to δNH in the DRIFT spectra of the MFc materials (Figures 29, 30 and 31), 

indicates the presence of amide groups. Moreover, the decrease of the intensity of the νC=O 

signal at 1708 cm−1 in the spectra of the MFc materials compared to the corresponding band in 
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the spectra of MCOOH shows that the amide has been produced by reaction with the carboxylic 

acid group linked to the silica surface. This indicates that the ferrocene unit is covalently 

bound to the silica surface via the alkyl spacer.  

 

 

 
Figure 30: DRIFT spectra of modified Stöber particles: hydride modified silica M1fSiH, 10-

undecylenic acid modified silica M1fCOOH and Fc modified silica M1fFc. 

 

The decrease of the νSi-H  in the DRIFT spectrum of MFc compared to the one of MCOOH 

(Figures 29, 30 and 31) might be due to the chlorination of the remaining hydride during the 

activation of the carboxylic acid with oxalyl chloride. A similar decrease has been observed 

for the signal of the Si-H vibration in the IR spectrum of M1gTES after treatment with oxalyl 

chloride as a blank test. 

The same procedure for the immobilization of ferrocene was performed with M1f SiH instead 

of M1f COOH. The absence of νCH, νC=O and δNH in the DRIFT spectrum of the resulting 

material indicates that 1a does not directly react with the Si-H modified silica surface under 

these conditions. 
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Figure 31: DRIFT spectra of hydride modified silica M4SiH, 10-undecylenic acid modified 

silica M4COOH and ferrocene modified silica M4Fc. 

 

The ferrocene surface concentration on the silica was determined using atomic absorption 

spectroscopy (AAS) and UV–vis spectroscopy. For AAS, the particles are directly injected in 

to an acetylene-air flame, while for the UV-vis measurements the particles are first 

hydrolyzed with a strong base before analysis [94]. 

The quantitative determination of the ferrocene contents by AAS yields surface 

concentrations (ΓAAS) of 1.26 × 10−6 mol m−2 for the materials prepared from M1f SiH, and  

1.96 × 10−6 mol m−2 for the materials prepared from M1gTES .
 This corresponds respectively to 

16 % and 25 % of the theoretical initial surface concentration of silanol groups [88] on M1 

materials, and is comparable to the surface concentration of a monolayer of ferrocene 

prepared on other non-porous surfaces as for example platinum electrodes covalently 

modified with ferrocene [193].  

UV–vis spectroscopy yields a surface concentration of ΓUV = 6.97 × 10−7 mol m−2, which is 

only 35% of ΓAAS. The determination of ΓUV, however, relies on the hydrolysis of the amide 

bond between the alkyl spacer and the ferrocene unit as well as a total destruction of the silica 
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matrix. Indeed, centrifugation of the suspension of M1gFc in aqueous KOH (1M) before the 

UV measurements yields a yellow solution absorbing light at 405 nm, indicating that 

ferrocenecarboxylate ions are present. However, an orange sediment is also obtained, showing 

that the silica particles are not fully hydrolyzed in the basic solution. In comparison, materials 

obtained from a silylation route are fully dissolved when treated under these conditions [94]. 

Thus, in the case of M1gFc ferrocene units may remain either adsorbed or covalently attached 

to the silica sediment. This explains why ΓUV is lower than ΓAAS, and is not a reliable measure 

of the ferrocene surface concentration. Consequently, UV–vis spectroscopy can not be used 

for the quantitative determination of the ferrocene units in M1gFc. However, on the other hand, 

this experiment shows that the organic modification via a silicon–carbon link prevents the full 

hydrolysis of the silica particles under basic conditions in this material. This is desirable with 

regard to its stability. 

 

In summary, the carboxylic acid modified surface prepared by the free radical induced 

hydrosilylation can be converted easily into the corresponding acyl chloride, and then be used 

in a subsequent reaction to immobilize active centers bearing an amine functional group (here 

a modified ferrocene).  

 

5.2.2 Free radical induced hydrobromination of a carbon-carbon double bond modified silica 

surface. 

 

The terminal C=C bond of the M2C=C material may also be employed for the attachment of 

redox-active molecules. C=C bonds can be modified by many reactions including 

electrophilic and radical additions, ozonolysis, metal catalyzed hydroamination [194], cross-

coupling [195] or metathesis [196] reactions, as well as Diels-Alder cycloadditions 

(Scheme 32). 

In order to limit the contamination of the silica surface as well as side reactions during 

subsequent modification steps, methods that involve gaseous reactants and reagents and that 

do not require metal catalysts, radical initiator or strong bases are preferred here. Thus, 

ozonolysis, epoxidation, cycloaddition and (initiator-less) radical addition reactions may be 

appropriate.  
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Scheme 32: Possible reactions of terminal C=C bonds. 

 

The conditions of the photochemically induced hydrobromination [197] (dry and acidic 

conditions, absence of catalysts, gaseous reactant) may be particularly compatible with the 

requirements for silica surface modification. Moreover, the homolytic cleavage of HBr by UV 

light should result in a selective anti-Markovnikov addition to the C=C bond. The resulting 

product with the bromo substituent in the 1-position would be useful for the further 

functionalization of the silica surface. 

 

 

Scheme 33: Photochemically induced hydrobromination of a C=C terminated surface. 

 

The hydrobromination was performed with material M2C=C in dry hexane under UV 

irradiation according to Scheme 33.  

The absence of carbon-carbon double bond signals in the NMR and DRIFT spectra of the 

hydrobrominated product (M2Br) demonstrates that the functional group had reacted 

(Figure 32).  
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Figure 32: 13C-CP/MAS-NMR (left) and DRIFT (right) spectra of M2Br after radical 

hydrobromination reaction. 

 

However, direct evidence for the presence of a bromo substituent in position 1 can not be 

obtained from these spectra: The C-Br vibrations are not detected in the IR spectrum due to 

their low absorptivities and the NMR spectrum displays only a broad signal at 60 ppm, where 

the signal for the C nucleus of –CH2Br is expected.  

 

To obtain more information on the outcome of the radical hydrobromination reaction, 1-

octene was added to the reaction mixture for the hydrobromination of the alkene modified 

silica in a competitive experiment. After reaction and sedimentation of the silica, the products 

present in the solution were analyzed with NMR spectroscopy. Resonances for 13C or 1H 

nuclei of C=C bonds are not detected in the corresponding NMR spectra, confirming that the 

hydrobromination reaction is quantitative. Moreover, according to the NMR spectra, the main 

product is 1-bromooctane. This is the expected product of an anti-Markovnikov addition of 

HBr to the carbon-carbon double bond of 1-octene. From the integration of the 1H NMR 

signals, the ratio of anti-Markovnikov to Markovnikov products is about 9 : 1.  

 

The reaction was also performed on octavinylsilsesquioxane 10a that may be considered as 

the soluble  low molecular weight equivalent of a C=C bond modified silica surface 

(Scheme 34). The expected product from this model reaction is 1,3,5,7,9,11,13,15-oktakis-(2-

bromoethyl)octasilsesquioxane (10b). 

 



5. Covalent attachment of active molecules on the silica surface  

100 

 

 
Scheme 34: Photochemically induced hydrobromination of 10a. 

 
In the high-resolution ESI mass spectrum of 10b, the most intense signals are obtained for 

[M+K +] and [M+Na+]. The splitting pattern, owing to the presence of 8 bromine atoms, is 

expected to display 9 signals. Furthermore, owing to the isotopic composition of carbon and 

silicon, each signal is expected to split in two, at least. However not all signals are seen 

because of their low intensity. In the case of [M+K+], 8 signals are clearly detected when only 

the most abundant isotopes of carbon and silicon are present in 10b and only 5 when one 13C 

or one 29Si nucleus is present (Figure 33).  

The signal pattern owing to the isotopic composition of bromine, carbon and silicon as well as 

the corresponding molecular weights are in agreement with those obtained by simulation.  

 

 

 
Figure 33: HR-ESI-MS of 10b (excerpt showing the signals for [M+K+] without 13C or 29Si 

nucleus [1], with one 13C or 29Si  nucleus [2] and the internal standard [*]). 
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Resonances for carbon nuclei of C=C groups were not detected in the 1H and 13C NMR 

spectra. Therefore, all the vinyl groups were hydrobrominated. In addition, the 1H NMR 

spectra display only two triplets, which demonstrate that the anti-Markovnikov product is 

obtained exclusively. The selectivity of the reaction is confirmed by the single signal 

observed in the 29Si NMR spectrum assigned to the symmetrical silsesquioxane 10b where all 

eight vinyl groups were converted into the anti-Markovnikov product. 

It should be noted that the photochemically induced hydrobromination of octavinyl-

silsesquioxane produces 10b in better yield and purity than the previously published 

procedures based on ref. [198]. 

 

In summary, the fact that the C=C bonds of 1-octene and of octavinylsilsesquioxane are fully 

hydrobrominated and that the anti-Markovnikov products are obtained in the homogeneous 

conditions, indicates that C=C bonds on the silica surface may react in the same manner. 

However, the application of the brominated spacer for the immobilization of active molecules 

has several limitations. In particular, the amination of the brominated surface requires reflux 

and long reaction times [100]. Under these conditions an aliphatic amine will also react with 

the remaining Si-H groups on the silica surface. Only a primary aromatic amine may react 

with the brominated spacer without unwanted reactions with the silica surface. 

It should be mentioned that other potential derivatives obtained from the C=C modified 

surface are promising for this purpose. In particular an aldehyde obtained by ozonolysis might 

enable a straightforward route for the attachment of active molecules. 

However, for this thesis, the reactive acyl chloride modified silica surface is preferred for the 

immobilization of the ferrocene derivatives.  

 

5.3 Conclusion 

 

The direct attachment of terminal C=C bond functionalized redox-active molecules 1b, 2a 

and 3b via route I was not achieved by photochemical or thermal hydrosilylation reactions 

because of two main factors. The need for a high concentration of the olefin is not compatible 

with the amount of redox-active molecules available. Moreover, in some cases, the redox-

active molecules show poor stability under thermal or photochemical conditions. 

Therefore, route 2 is necessary for the attachment of the redox-active molecules. The 

carboxylic acid modified surface prepared by the free radical induced hydrosilylation can be 

converted easily into the corresponding acyl chloride, and then be used in a subsequent 
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reaction to immobilize 1a. On the other hand, no straightforward reaction with either the 

activated MCOOH or MC=C surfaces makes the attachment of the ruthenium complexe of type 2 

and the biphenylamines 3 possible. Therefore for the subsequent steps of this thesis, we will 

only focus on ferrocene as the model for redox-active molecules. 

 

6 Applications 

 

The Si-H modification and the free radical hydrosilylation reactions described in Chapters E 

and F were carried out in order to meet the requirements for the immobilization of redox-

active molecules and catalysts. The properties of the resulting surfaces are sought-after for 

HPLC applications as well. Indeed, the synthetic strategy for the surface modifications are 

driven by the need for a surface free of Si-OH groups and metal traces as well as a stable 

attachment. Those issues are important in HPLC in order to achieve high separation power 

and make a wide range of applications possible for a given stationary phase. Therefore, beside 

the electrochemical investigation of the ferrocene modified materials, the performance as 

HPLC phase of the Si-H and C18 modified materials will be evaluated. 

 

6.1 HPLC separation with M2SiH and M2C18 

 

Silica is the predominant solid support for HPLC stationary phases. Its desirable properties  

include high mechanical strength [32], thermal stability [18] and the ability to accurately 

tailor particles of a specific diameter, pore size, and surface area [39]. The limitations of silica 

for HPLC applications are the presence of strong adsorption sites (silanol groups and metal 

impurities) and the sensitivity of the siloxane bonds toward hydrolysis. These will be 

discussed in more detail below: 

 

1. The polar acidic silanol groups on the silica surface induce peak tailing and loss of 

chromatographic resolution of basic analytes [32, 40, 41, 199]. Isolated silanols (non-

hydrogen bonded) are the most acidic and believed to be responsible for the undesired 

interactions with organic bases [40]. One approach to minimize the effect of the isolated 

silanols consists in the rehydroxylation of the silica surface [200]. The aim of this strategy is 

to obtain a high Si-OH surface concentration to ensure that most groups can interact via 

hydrogen bridges. 
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An opposite and more common method to improve the separation efficiency consist in the 

end-capping of the remaining silanol groups after organosilanization [40, 201] with for 

example trichlorosilane or hexamethyldisilazane. Although these methods are not quantitative 

[39], the tailing is reduced and the chromatographic resolution enhanced because the end-

capping groups block the access to the silanols groups [40]. Bulky substituents on the organic 

modifiers [202] or electrostatic shielding [203] may also be used to lower the accessibility to 

the silanols [40]. 

 

2. Metal impurities are another source of peak tailing in HPLC [204]. They are strong 

adsorption sites for complexing, and especially for chelating analytes. These interactions 

cause peak asymmetry and poor resolution of such analytes. The metal ions also affect the 

separation of organic bases by increasing the acidity of the adjacent silanols [205, 206]. The 

so-called “type A” silica materials, the first to be developped, have a high content of metal 

impurities [32]. Modern synthesis processes yield the so-called “type B” silica material with 

low metal content [32, 207], however contamination may still occur during surface 

modification if metals are involved in the reaction or during the HPLC separations.  

 

3. The sensitivity of the bonded phase toward hydrolysis in an aqueous environment [208] at 

low [202, 209, 210] as well as at high pH values [15, 32, 33, 35] depends on the cross-linking 

degree [209] and the presence of silanol groups. An increase in the number of siloxane bonds 

between an individual alkyl ligand and the silica surface enhances the stability [36, 209]. The 

silanol groups that participate in the hydrolysis are again of the non hydrogen-bonded type. 

Therefore, the actions taken to minimize the activity of the isolated silanol groups, 

additionally enhances the hydrolytic stability. 

 

The so-called “type C” silica, involving Si-H modified surfaces and hydrolytically stable Si-C 

bond formation by hydrosilylation reactions, were succesfully developped to enhance the acid 

stability of silica-based bonded phases [15, 39]. The potential drawback of these materials 

may arise from the use of a metal catalyst for the hydrosilylation reaction. Metal residues 

which are strong adsorption sites for chelating compounds, may contaminate the silica surface. 

Also, the various Si-H modification procedures previously described leave unreacted Si-OH 

groups (Chapter 2). 
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In contrast, the Si-H modification procedure and the free radical hydrosilylation reactions 

described in Chapters 2 and 3 were designed in order to meet the requirements for a surface 

free of Si-OH groups and metal traces as well as enhanced bonding stability. The application 

of this methods for the synthesis of “type C” silica materials may also enhance their HPLC 

separation quality. Therefore, the properties of the Si-H and C18 modified silica materials 

prepared previously (M2SiH and M2C18, respectively) were investigated as separation phase in 

HPLC.  

 

The standard reference material 870 (SRM 870) from the National Institute of Standards and 

Technology (NIST) [211, 212] was used as a test mixture to examine the general 

characteristics of the synthesized materials (M2SiH and M2C18)  as chromatographic sorbents. 

 

 

 
Figure 34: Structures and properties for components in SRM 870. 
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SRM 870 is a methanolic solution of uracil, toluene, ethylbenzene, quinizarin and 

amitriptyline and is used to characterize general aspects of liquid chromatographic (LC) 

column performance, including efficiency, void volume, methylene selectivity, retentiveness, 

and activity towards chelators and organic bases (Figure 34). Uracil is used as an indicator of 

the void time of the LC column. The retention of non-polar components such as ethylbenzene 

and toluene provides a measure of column retentiveness (column strength). Quinizarin (1,4-

dihydroxyanthraquinone) is a strong metal chelating reagent. The retention behavior of this 

component is expected to be indicative of the presence of metals in the chromatographic 

system. Increasing amounts of metal ions on the surface are indicated by increasing tailing,     

i. e. asymmetry, of the quinizarin peak. Amytriptylin is an organic base commonly used for 

column characterization. The asymmetry of the amytriptyline peak is an appropriate measure 

of the silanol activity of the separation phase [212]. 

The retention times of quinizarin and amitriptyline are strongly dependent on the pH, and 

changes in column temperature strongly influence the absolute retention of all components in 

SRM 870. Therefore, the described separations were carried out at the recommended 

temperature under neutral, buffered conditions [211, 212]. Quinizarin typically elutes after 

ethylbenzene and before amitriptyline.  

The peak identification was made on the basis of the relative absorption of the compounds at 

the various detection wavelengths (210, 254 and 480 nm). Quinizarin is the only compound of 

SRM 870 that shows a significative absorbance at 480 nm. On the other hand, uracil and 

quinizarin exhibit reduced absorbance at 210 nm. At 254 nm all 5 compounds may be 

detected. 

As characteristics of the materials, the retention factor (k’), the peak asymmetry (As) and the 

efficiency (N) for the various compounds under the SRM 870 test conditions were calculated 

[212]. 

 

6.1.1 HPLC separation of  SRM 870 with M2SiH  

 

The SRM 870 separation with M2SiH was performed under isocratic elution conditions as 

required by the SRM 870 test specifications. However, only two distinct signals are observed 

in the chromatogram (Figure 35). Based on the signal intensity in the spectrum at 254 nm as 

well as the absence of absorbance at 480 nm, the signal at t = 1.30 min is attributed to 

amytriptyline. The other components coelute without significant retention at t = t0 = 0.93 min. 
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Figure 35: Separation of SRM 870 with the chromatographic sorbent M2SiH under isocratic 

elution conditions (MeOH/buffer 80/20) with UV detection at 254 nm and 480 nm. 

 

The separation of amytriptyline from the other components of SRM 870 makes it possible to 

determine its chromatographic characteristics (Table 14). 

The peak asymmetry for amytriptyline is low. This indicates a weak activity toward the 

retention of the organic base. Since no end-cappping was performed and no bulky groups 

block the access to the surface, this result suggests that isolated surface silanol groups are 

very scarce in the M2SiH material. 

 

Table 14: Chromatographic characteristics of M2SiH under 

 isocratic elution conditions[a]. 

  k' N / m-1 As 

amitriptyline 0.52 28000 2.02 

a) UV detection at 254 nm, turacil = t0 = 0.93. 

 

Attempts to fully eliminate the silanol groups in order to diminish the silanol activity, by 

dehydroxylation for example, are generally counter productive [213]. Indeed, if only few 

silanol groups remain, those would be of the isolated type which are the most able to undergo 

ion-exchange interactions with organic bases [40]. According to the IR investigations of the 

MSiH materials (see 2.3.2), isolated silanol groups are also present in the materials resulting 

from the chlorination-reduction sequence. 
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Still, the HPLC separation of amytriptyline with M2SiH does not display significant peak 

tailing. This indicates that the isolated silanol groups detected by DRIFT spectroscopy are not 

located on the surface. Therefore, the surface silanol groups, which are accessible to the 

chlorination and reduction have reacted to a large extend. On the other hand, the bulk silanol 

groups only undergo condensation which is known to leave unreacted isolated silanol groups 

whose amount depends on the applied temperature [88]. 

In summary, the HPLC separation demonstrates that the chlorination-reduction sequence 

produces materials with low silanol activity because of  the condensation and reduction of the 

surface silanol groups including the isolated groups. 

 

6.1.2 HPLC separation of  SRM 870 with M2C18 

 

The M2C18 phase obtained from the thermal hydrosilylation reaction of the C18 chains on 

M2SiH (Chapter 3) display improved separation power as compared to M2SiH. The optimal 

separation of all 5 compounds of SRM 870 is achieved when a gradient elution is performed 

(Figure 36).  

 

 

 

Figure 36: Separation of SRM 870 with the chromatographic sorbent M2C18 a) UV detection 

at 254 nm, b) UV detection at 210 and 480 nm: Gradient elution: 60 % methanol/ 

40 % buffer (v/v) hold 5 min to 80 % methanol/ 20 % buffer (v/v) between 5 min to 

6 min. 
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The elution order is as follows: uracil, toluene, ethylbenzene, quinizarin and amytriptyline. 

This is in agreement with the elution order obtain with other C18 phases [212]. The separation 

factor is about 1.57 under the gradient elution conditions. The chromatographic value for the 

indvidual components of SRM 870 are given in Table 15. The resolution of toluene and 

ethylbenzene is not sufficient in order to determine As of these two components. 

 

Table 15: Chromatographic characteristics of M2C18 with gradient elution[a]. 

 k' N / m-1 As 

toluene 0.30 32100 - 

ethylbenzene 0.47 31800 - 

quinizarin 1.70 22100 1.72 

amitriptyline 10.38 39800 2.96 

a) UV detection at 254 nm, turacil = t0 = 0.93, αethylbenzene/toluene = 1.57. 

 

In order to compare the chromatographic characteristics of the M2C18 material with other 

separation phases, the HPLC test must be performed under isocratic conditions [212]. In this 

case, ethylbenzene and toluene almost coelute with a retention factor of 0.18. Therefore, 

M2C18 as a HPLC separation phase shows a poor methylene selectivity. On the other hand, 

quinizarin and amytriptyline are well separated under the standard test conditions. This makes 

it possible to determine the chromatographic characteristics for these two components 

(Table  16). 

 

Table 16: Chromatographic characteristics of M2C18 under  

isocratic elution conditions[a]. 

 k' N / m-1 As 

quinizarin 0.58 11000 3.34 

amitriptyline 5.94 4700 3.59 

a) UV detection at 254 nm, turacil = t0 = 0.87. 

 

The peak for amytriptyline shows an increased asymmetry compared to the separation with 

M2SiH. This indicates that the surface concentration of isolated silanol groups has increased 

during the hydrosilylation reaction. The presence of water traces in the hydrosilylation 
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reaction mixture may explain the production of silanol groups by rehydroxylation of the 

surface siloxane bonds under the high temperature conditions. On the other hand, production 

of silanol groups by homolytic cleavage of siloxane bonds is unlikely under the radical 

conditions. However according to the DRIFT spectra, the production of isolated silanol 

groups is a minor side reaction. This is in accordance with the HPLC results. Indeed, the peak 

tailing (As = 3.59) remains moderate compared to commercial columns [212]. 

 

The asymmetry factor As of quinizarin is typically between 1 and 4 for commercial columns 

[212]. In comparison the M2C18 phase displays a relatively high peak tailing for quinizarin 

(As = 3.34). This indicates the presence of some metal ions on the silica surface. However, the 

free radical induced hydrosilylation reaction was performed without transition metal catalysts 

and therefore, is not the source of metal impurities. 

 

6.1.3 Conclusion 

 

The HPLC investigations of M2SiH and M2C18 deliver additional information on the surface 

chemistry of these materials. The peak asymmetry of amitriptyline after separation with 

M2SiH demonstrates that the chlorination-reduction sequence produces a material almost free 

of surface isolated silanol groups.  

On the other hand, according to the peak tailing of organic bases after separation with M2C18, 

some silanol groups are produced during the hydrosilylation reaction. However, their effect 

on the HPLC separation is moderate, indicating that their surface concentration remains low. 

The chlorination-reduction sequence followed by C18 surface modifications are a 

dramatically different strategy for the synthesis of C18 HPLC phases compared to the 

conventional silylation method. Still, at the early stage of their development, the M2C18 

phases already match their silylated equivalent for the separation of organic bases. On the 

other hand the peak tailing of chelating analytes may still be improved. The source of metal 

impurities is not determined at this point. The solvent used during modification and HPLC 

tests as well as the original silica materials are two potential sources. Finally, the methylene 

selectivity of the M2C18 phase is low. Optimization of the thermal hydrosilylation reaction, in 

order to achieve higher surface concentration and lower the possible side reactions, may 

improve the separation quality.  
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6.2 Electrochemical properties of material M1gFc 

 

It was shown in Chapter 5.2.1 that ferrocene derivatives may be covalently bound to a silicon 

hydride modified silica surface via a hydrosilylation reaction. In order to investigate the 

electron transfer on the particle surface with cyclic voltammetry, the redox-actively modified 

particles must be immobilized on an electrode surface (Scheme 35).  

 

 

 
Scheme 35: Adsorption of ferrocene modified particles on the Pt surface. 

 

It has been previously described that the immersion of a platinum electrode in a suspension of 

redox-actively modified particles results in the attachment of the particles on the Pt surface 

[103]. This behavior is attributed to the spontaneous adsorption of the modified particles on 

the Pt electrode. The spherical particles form a more or less ordered layer and display the 

redox behavior of immobilized redox-active species. A semi-quantitative analysis of the 

electrochemical properties of this system demonstrates the occurence of a charge transfer 

between redox-active molecules on the particle surface. A quantitative analysis, however, was 

limited by the lack of periodicity and homogeneity in the particle layers: The presence of 

multilayers of particles disables a quantification of the total amount of silica particles present 

on the electrode surface. Knowledge of the amount of particles would allow to determine the 

amount of redox-active molecules present on the electrode surface which could be compared 

to the amount of redox-active molecules being electrochemically active. This information is 

important to determine the accessibility of the redox-active molecules to the redox process. 

Also, due to the lack of order, the benefit of the well defined shape and dimension of the 

particle is lost: indeed the presence of multilayers and clusters of particles opens the 

possibility for electron hopping between two layer of particles and therefore it is not possible 
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to precisely determine the distance over which the electron hopping is taking place and thus 

no kinetic information for this process can be gained.  

 

6.2.1 2D arrangment of silica particles on Pt surface. 

 

A monolayer (ideally a 2D hexagonally packed crystal) of particles is desired to clearly define 

the dimensions in which the electron transfer is taking place and to be able to determine 

which proportion of the redox-active molecules present on the particle surface are accessible 

for the redox process (Scheme 36). 

 

 
Scheme 36: Hexagonally packed 2D crystal of particles on a flat surface. 

Several methods have been described for the preparation of periodic 2D (monolayer) and 3D 

crystals (multilayers) of colloid particles on flat subtrates [61]. The most straighforward 

method is the gravitational sedimentation from a colloid suspension onto a horizontal 

substrate. However, this method is better suited for the preparation of 3D crystals. Also this 

method does not involve any adsorption interaction between the particles and the substrate 

and therefore a sintering step at 900 °C is needed to ensure a stable attachment of the particles 

[214, 215]. This requirement makes gravitational sedimentation unsuitable for the attachment 

of redox-actively modified particles. Another option is the use of capillary forces [216]. For 

example silica particles can be assembled in 2D crystals on glass substrates [217], or in 3D 

crystals on silicon wafers [218, 219] by dip-coating or by spin-coating methods [220]. 3D 

crystals of amino functionalized silica particles have also been prepared on hydrophilic glass 

substrates [221] and 2D crystals of carboxylic acid modified particles have been prepared on 

modified silicon substrates. The preparation of 2D crystals from redox-actively modified 

colloids or on platinum electrodes have – to our knowledge – not been described so far. As a 

first step toward the assembly of a monolayer of redox-actively modified silica particles, the 

immobilization of bare silica particles on Pt electrodes by capillary forces was tested. 
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The formation of the silica particle monolayer was performed by a vertical capillary method 

(dip-coating) [217]: Silica particles M1c were suspended under ultrasonication in 

ethanol/water mixtures at different pH. Hydrophilic Pt electrodes (after oxidation with HNO3) 

were dipped into the suspension and drawn out in the vertical direction at a constant rate with 

a stepper-motor. At the meniscus, the evaporation of the solvent creates a convective flux 

which drives the particles toward the upper part of the platinum substrate (Scheme 37). At the 

particle surface - gas interface, the attractive capillary force allows the packing of the particles 

in a dense monolayer. 

In order to allow the formation of the meniscus, the substrate should have a length of 1 cm in 

one of its dimensions at least. The dimensions of platinum spade electrodes (1 × 1 cm) as well 

as platinum wire electrodes (2 cm in length and 1 mm in diameter) are suitable for this 

purpose. 

 

 
Scheme 37: Substrate-suspension-air interface during dip-coating [217]. 

 

The important variables associated with colloidal crystallization by dip-coating include the 

concentration of particles, the evaporation rate and surface tension of the solvent, the surface 

charges of the particle and substrate and the withdrawal speed [222]. 

 

The resulting electrode surface was investigated with scanning electron microscopy 

(Figure 37). The best results are obtained when the dip-coating of bare silica particles is 

performed in basic (pH = 10) and aqueous conditions on a hydrophilic Pt surface. 
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Figure 37: Scanning electron micrograph of M1c (d~250 nm) after dip-coating on a Pt spade 

electrode. 

 

The SEM pictures show a dense layer of silica particles over the whole electrode surface with 

some isolated particles (light spots) sitting on top of this layer as well as a few holes (dark 

spots). While the denser hexagonal arrangement (face centered cubic, fcc) of spheres is the 

predominant structure, occasional defects with body centered cubic (bcc) arrangement, such 

as those apparent in Figure 37, were observed. The deviation from a true 2D crystal is 

probably due to heterogeneity in the flatness of the Pt surface: The surface irregularities may 

act as a template resulting in the bcc packing observed in some regions [223, 224].  

The absence of clusters and the high coverage of the electrode are desired properties for the 

adsorption of redox-active molecules for a quantitative analysis of the electrochemical data. 

 

The 2D arrangment on the Pt surface was then attempted with the M1f SiH and the M1gFc 

materials. However, after Si-H and Fc modification, the conditions described previously for 
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the dip-coating of bare silica particles can not be used because the Si-H modified particles can 

not be suspended in ethanol/water mixture. The hydrophobic character of these particles may 

be due to the absence of silanol groups on their surface. Therefore, the Si-H modified particles 

were suspended in ethanol, instead of an aqueous solution and the dip-coating procedure was 

performed from this suspension. The presence of the adsorbed particles is obvious as a 

colorless film on the electrode surface. However, after complete drying, the film was partially 

lost. After immersion of the electrode into a fresh solution or electrolyte without particles for 

electrochemical measurements, the film was completely lost.  

 

6.2.2 Spontaneous adsorption of M1gFc on platinum electrode surfaces 

 

Because of the poor film stability obtained after dip-coating of M1f SiH and M1gFc, an 

alternative adsorption procedure is needed. The spontaneous adsorption procedure may be 

adequate providing that the resulting particle film does not display multilayers or 

agglomerates of particles (Scheme 38). At this conditions, the potential electron transfer 

would occur in a well defined system (the surface of a single silica particle). Also the 

determination of the amount of redox-active molecules accessible to the electrochemical 

process may be achieved, since the total amount of silica particles on the electrode surface 

may be obtained (see 6.2.3). 

 

 

 
Scheme 38: Isolated particles on a flat surface. 

 

The adsorption of the ferrocene modified particles M1gFc was performed by immersing 

polished Pt disk electrodes in stirred suspensions of particles for several hours. Under these 

conditions, material M1gFc adsorbs spontaneously on platinum electrodes from a suspension 

in dichloromethane according to the SEM investigations (Figures 38 and 39). If the platinum 

electrode is exposed to the suspension of particles for a short time (1 h) only, isolated particles 

or small clusters are found on the surface (Figure 38). After longer exposure times (5 h), 
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however, large agglomerates of particles are obtained (Figure 39). In both cases, the 

electrodes may be dried and dipped in fresh solutions without significant loss of adsorbed 

particles. Therefore the particle film obtained after short times of spontaneous adsorption may  

enable the quantative analysis of their electrochemical properties.  

 

 

 
Figure 38: Isolated ferrocene-modified silica particles (M1gFc) and small clusters on a 

platinum electrode after 1 h of exposure: SEM images at 5000 × magnification 

(left) and cyclic voltammogram in CH2Cl2/NBu4PF6 (0.1 M) at 0.02 Vs−1 (right). 

 

On the other hand, the spontaneous adsorption of M1f Fc results again in a weak adsorption 

with loss of the film after drying. It should also be mentioned that M1gFc is easily 

resuspended by means of ultrasonication under destruction of the adsorbate film.  

This contrasts with previous observations when modified silica particles with remaining non-

reacted silanol groups were adsorbed on a platinum surface [103]. In the latter case the 

adsorbed particles could only be removed by polishing the electrodes; ultrasonication did not 

significantly disturb the adsorbed layer. The strong adsorption is likely due to the interactions 

of the remaining Si-OH groups with the oxidized platinum surface. On the other hand, in 

M1gFc, we expect that most of the Si-OH groups have reacted with triethoxysilane [108], and, 

after the photochemical step, unreacted hydride groups remain on the silica surface. In the 

case of M1f Fc, which results from the chlorination-reduction sequence, the absence of Si-OH 

groups on the surface was demonstrated in Chapters 2 and 6.1. Such surfaces are more 

hydrophobic than that of M1 or the materials described in ref. [103], and therefore a different 

interaction with the platinum electrode occurs: The fact that the more hydrophobic particles 

preferentially agglomerate with those already adsorbed on the surface instead of forming a 
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dense layer, is also in contrast to earlier observations [103] and shows that in the present case 

the particle-particle interactions are stronger than the particle-Pt surface interactions.  

 

6.2.3 Electrochemistry of adsorbed M1gFc 

 

The Pt-disk electrodes modified by spontaneous adsorption of M1gFc were used for the 

electrochemical investigations. Cyclic voltammograms of electrodes modified with M1gFc in 

an electrolyte without any redox-active compound show the characteristic signals for the 

reversible oxidation and reduction of the immobilized ferrocene for both the electrodes with 

isolated particles and small aggregates or with large clusters of particles (Figures 38 and 39). 

 

 

  
Figure 39: Clusters of ferrocene-modified silica particles (M1gFc) on a platinum electrode 

after 5 h of exposure: SEM images at 5000 × magnification (left) and cyclic 

voltammogram in CH2Cl2/NBu4PF6 (0.1 M) at 0.02 Vs−1(right). 

 

The current/potential curves at electrodes with M1gFc show a slightly lower capacitive current 

than voltammograms at the bare electrode. Therefore, backgroud correction leads to artifacts 

and the cyclic voltammograms are represented without background correction. However, for 

the determination of the electrochemical data of M1gFc, the CV of the non-modified electrode 

were used for background correction, followed by a manual baseline correction in order to 

account for the difference in capacitive current. Values of the formal potential E0(M1gFc), 

measured as the mid-point potential (E0 = (Ep
ox + Ep

red)/2, with Ep
ox and Ep

red being the 

oxidation and reduction peak potentials), are presented versus the ferrocene/ferrocinium ion 

redox couple (Table 17). For isolated particles and for large agglomerates of M1gFc on 
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platinum electrodes, the same E0(M1gFc) are obtained. The difference to the redox potential of 

the ferrocene derivative 1b is only 0.018 V. This is similar to the ferrocene modified material 

discussed in ref. [103].  

 

Table 17: Electrochemical parameters of isolated and clustered ferrocene modified  

particles adsorbed on a Pt electrode[a]. 

parameter isolated clustered particles 

E°(M1gFc) 0.177 ± 0.003 0.177 ± 0.001 

E°(M1gFc) - E°(1b) 0.018 0.018 

∆Ep (0.02 V s-1) 0.01 0.07 

∆Ep (0.1 V s-1) 0.06 0.09 

∆Ep (0.25 V s-1) 0.13 0.10 

Qred/Qox
[b] 0.99 - 

[a] all potentials given in V vs Fc/Fc+, [b] at 0.02 V s-1. 

 

The redox process observed in the current/potential curves may be explained by the oxidation 

and reduction of the immobilized Fc units on the particles that are in direct contact with the 

electrode surface. In principle, a charge transport by electron hopping along the surface of 

adsorbed Fc-modified particles makes the Fc units over the whole particle surface accessible 

to the redox process [103]. Kinetic information for this charge transport may be obtained from 

variable scan rate experiments [7]. The shape of the voltammograms as well as the peak 

current – scan rate dependency makes it possible to determine the type of electron transfer 

(either adsorption or diffusion type). 

However, slight decreases in peak current between subsequent measurements at constant scan 

rate indicate that the particles are slowly desorbing from the electrode surface. This variation 

in the amount of particles present on the electrode surface prevents the quantitative analysis of 

the CVs recorded at variable scan rates. Therefore, the study of the electron transfer from the 

variable scan rate experiment is restricted to a qualitative analysis of the shape of the CVs. 

The voltammogram of the electrode with isolated particles at low scan rates (v < 0.05 Vs−1) 

shows adsorption-type signals (Figure 38) with a small separation of the peak potentials (∆Ep 

= 0.01 V at v = 0.02 Vs−1). The ratio of the transferred charges Qred/Qox indicates an almost 

fully reversible electron transfer (Qred/Qox = 0.98). At faster scan rates (v > 0.1 Vs−1), the 
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shape of the curves changes into an unsymmetrical one with larger ∆Ep (Table 1), which is 

characteristic of diffusion type signals. 

The transition from adsorption-type to diffusion-type signals with increasing scan rates in the 

case of the isolated particles M1gFc has already been observed for other types of redox-

actively modified particles [103] or dendrimers [7] immobilized on a platinum electrode. This 

transition depends on the ratio between the diffusion layer thickness δ at a given scan rate and 

the particle diameter.  

At low scan rates, δ is much larger than the diameter of the adsorbed particles and, under 

these conditions, the electrochemical properties of the redox-active molecules bound to the 

particles resembles those of molecules directly attached to the electrode surface. As the scan 

rate increases, δ decreases. For scan rates fast enough, the diffusion layer thickness becomes 

comparable to or even smaller than the diameter of the adsorbed particles. At this point, the 

kinetics of the electron transfer between neighboring redox centers on the particle surface 

becomes significant in the voltammetric response. The diffusion-like shape of the 

current/potential curves at faster scan rates is not due to freely diffusing molecules but rather 

to the kinetics of electron-hopping along the redox-actively modified silica particle surface 

[103]. 

 

Further evidence for the occurence of the charge transfer by electron hopping may be 

obtained from the amount of ferrocene units accessible to the redox process. 

The surface concentration of ferrocene on M1gFc from cyclic voltammetry (ΓCV) is calculated 

from the amount of electrochemically accessible ferrocene units on the particle surface (NFc(P)) 

and the geometrical surface area of one particle (Ap) according to Equation 10: 

 

NFc(P) ΓCV =   
Ap 

                                                          (10) 

 

Ap is calculated from the diameter obtained from SEM measurements (Ap = π dSEM
2) and NFc(P) 

is obtained from the total amount of electrochemically accessible Fc units on the electrode 

surface (NFc(E)) and the amount of particles adsorbed on the electrode surface (Np(E)). 

 

NFc(E) ΓCV =                
Np(E) π dSEM

2 Fffffffffffffffff                    f (11)
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NFc(E) is calculated from the charge (Q) associated with the oxidation of the adsorbed Fc 

which corresponds to the area under the oxidation wave (NFc(E) = Q / n F) [225]. This 

integration is performed for current-potential curves obtained at low scan rates (0.02 V s-1) at 

which the charge transfer shows an adsorptive behavior and no kinetic characteristics to 

ensure that all accessible Fc units are oxidized. The SEM pictures of the electrodes with 

isolated particles makes it possible to determine Np(E) (Np(E) = Γp AE, where Γp is the surface 

concentration of particles on the electrode and AE the geometrical surface area of the 

electrode). Therefore, the surface concentration of electrochemically accessible ferrocene 

units on the silica particle surface (ΓCV) is calculated from Equation 12 (see 8.3): 

 

Q 
 

ΓCV = 
Γp AE n F π dSEM

2  
(12) 

 

The value of ΓCV = 1.15 × 10−6 mol m−2 may be compared to the surface concentration of 

ferrocene obtained by AAS (ΓAAS = 1.96 × 10−6 mol m−2). As a result, 58 % of the Fc units 

present on the particle surface are accessible to the redox process. Obviously, not all Fc units 

are involved in the electrode reaction. However, the amount of Fc units immobilized on the 

particle surface that have a direct contact with the platinum electrode is expected to be much 

lower. The electron-hopping process between neighboring redox centers (intermolecular 

charge transfer) explains why a higher fraction of the metal centers than expected is involved 

in the electron-transfer process occurring between the electrode and the particles.   

 

Current/potential curves of the electrode with large clusters of particles do not follow the 

same pattern. At all scan rates investigated, the shape of the cyclic voltammograms has 

diffusion-like characteristics (Figure 39 and Table 17). This is explained if the electron-

hopping between neighboring redox centers also crosses over to the neighboring particles in 

different layers of the cluster. The SEM images of this electrode show that the clusters of 

particles have diameters in the range of several micrometers (Figure 39). These clusters are 

larger than the diffusion layer thickness even at low scan rates. Consequently, the shape of the 

cyclic voltammograms deviates from adsorption characteristics already at low scan rates, 

because the electron-hopping takes place over the whole cluster via an interparticle charge 

transfer. Nevertheless, the voltammetric results show that for large agglomerates as well as for 

isolated particles an important fraction of the redox centers are accessible to the redox process. 

This implies a charge transfer by electron-hopping. 
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6.2.4 Conclusion 

 

Cyclic voltammetry of the M1gFc particles indicates that Fc units over the whole particle 

surface are electrochemically accessible by an electron hopping mechanism. In addition to the 

intermolecular charge transfer between ferrocene units on the surface, an interparticle charge 

transfer between adjacent particles within large agglomerates is also taking place. The latter 

mechanism was not observed in a previous study [103], probably because the contact between 

the particles was not tight enough owing to different surface properties. According to cyclic 

voltammetry and AAS measurements, more than half of the redox-active molecules is 

accessible to the electrochemical process. 

However, the rate constant of the electron transfer could not be determined from variable 

scane rate experiments because of the poor stability of the adsorbate film. The strong 

adsorption on Pt surfaces necessary for quantitative electrochemical analysis was not achieved 

because of the absence of surface Si-OH groups. Still, turning back to materials with surface 

Si-OH groups is not pertinent in our opinion. Indeed, the inertness of the matrix, which 

implies the absence of Si-OH groups, is desired for interphase systems in general (see 

Introduction). Therefore, the search for an alternative electrode material for the adsorption of 

such hydrophobic particles should be one priority research direction. For example doped 

silicon with a chemically modified surface [226] may be a promising material for the 

adsorption and electrochemical investigation of the M1gFc materials. 

 

7 Experimental part 

 

7.1 General procedures 

 

All reagents were used without further purification unless otherwise stated.  

Anhydrous solvents were obtained as follows: THF, diethyl ether, dioxane, hexane and 

toluene by distillation from sodium and benzophenone followed by storage over molecular 

sieves (3 Ǻ); dichloromethane from distillation followed by storage over basic alumina; 

CH3CN by 3 successive distillations from P2O5, CaH2 and again P2O5, followed by storage in 

presence of neutral alumina [236]. 

Argon 4.8 was used as the inert gas in all experiments. Argon was pre-dried with KOH, 

Mg(ClO4)2, and Sicapent columns before use. Oxygen impurities from argon were removed 
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with a heterogeneous Cu reagent (BASF, R 3-11). Hydrogen 5.0 was dried with a Sicapent 

column before use. 

The reaction flasks were pre-dried with a heat gun under high vacuum. All chemicals, which 

were air or water sensitive, were stored under inert atmosphere. Compounds that are not 

described in the experimental part were synthesized according to the literature. 

 

7.2 Materials 

 

All chemicals were purchased from Aldrich, Fluka or Merck and were of reagent grade.  

The Kromasil particles (M2, 5 µm, 300 Å pore diameter) were received from EKA Chemicals. 

Chromatography grade (M3, type 60, 70−230 mesh, 60 Å pore diameter) and fumed silica 

(M4, particle size 7 nm) were purchased from Aldrich. 

 

7.3 Analytical techniques 

 

High resolution NMR spectroscopy 

The 1H and 13C solution NMR spectra were measured on a Bruker Advance 400, which 

operated at 400.16 MHz for 1H and 100.62 MHz for 13C nuclei. The 31P and 29Si solution 

NMR spectra were measured on a Bruker DRX 250 spectrometer, which operated at 

250.13 MHz for 1H, 62.90 MHz for 13C, 101.25 MHz for 31P and 49.69 MHz for 29Si nuclei. 

All NMR spectra were recorded at 295 K in CDCl3, chemical shifts were calibrated to the 

residual proton and carbon resonance of the deuterated solvent (δH = 7.25 ppm, δC = 77.0 ppm 

for CDCl3), and/or to an external standard (TMS for 1H, 13C, 29Si and 85 % H3PO4 for 31P). 

Data are reported as follows: chemical shift (multiplicity: s = singlet, d = doublet, t = triplet, 

m = multiplet, br = broadened, integration, J = coupling constant (Hz),  peak assignment). 

 

Solid state NMR spectroscopy 
29Si CP/MAS NMR experiments were performed in 7 mm ZrO2 rotors with a Bruker ASX 

300 spectrometer equipped with a double-resonance MAS probe head and operating at a 

resonance frequency of 300.12 MHz for 1H and 59.63 MHz for 29Si. For M4SiH, about 150000 

scans were accumulated at a spinning speed of 3 kHz, with a CP mixing time of 500 µs and a 

cycle delay of 2 s. For M2SiH and M2TES about 78000 scans were accumulated at 300 K and 

295 K respectively and a spinning speed of 4.5 kHz, a relaxation delay of 1 s and a contact 

time of 5 ms were chosen. For all experiments, the proton 90° pulse length was set to 6.5 µs 
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and heteronuclear two-pulse phased modulation (TPPM) decoupling was applied during 

acquisition. The chemical shifts were referenced to Q8M8 [235]. The spectra were 

deconvoluted into individual peaks for the various components under the assumption that the 

four different peaks are strictly Gaussian. 

 

Mass Spectrometry 

Mass spectra were recorded on a Finnigan Triple-Stage-Quadrupol Spectrometer (TSQ-70) 

from Finnigan-Mat with electron-impact (EI) or fast-atom bombardment (FAB) as ionization 

methods. High-resolution ESI-MS (FT-ICR) was carried out on a Bruker Daltonic APEX 2 

spectrometer and results are reported as follows: (ESI): calculated mass for the most intensive 

isotope combination of the corresponding compound followed by found mass. 

  

Cyclic voltammetry 

Cyclic voltammograms were recorded with a BAS 100 B/W electrochemical workstation. All 

electrochemical experiments were carried out at room temperature under argon with a gas-

tight full-glass three-electrode cell. The working electrode was a Pt disk electrode (Metrohm, 

electroactive area A = 0.064 cm2). The disk was polished before each experiment with α-

Al 2O3 (0.05 µm). The counter electrode was a platinum wire (diameter 1 mm) spiral with an 

outer diameter of 7 mm. As potential reference a Haber-Luggin double reference electrode 

[234] was used. The resulting potentials refer to the Ag/Ag+ redox system (0.01 M in CH3CN 

with 0.1 M NBu4PF6). All potentials are reported to an external Fc/Fc+ standard [12] and were 

rescaled to E°(Fc/Fc+) = +0.218 V vs. Ag/Ag+ (dichloromethane). 

 

IR spectroscopy 

DRIFT experiments were performed on a Bruker IFS 25 IR spectrometer[a] with the Praying 

Mantis DRIFT unit from Harrick. The samples were dried at 100 oC under reduced pressure 

for several hours and mixed with dry KBr at a ratio of 1:20. The DRIFT spectra were 

recorded from 4000 to 500 cm−1 versus pure KBr as blank. The Si–H and Si–OH contents 

were semi-quantitatively obtained from the integration of the stretching vibration bands in the 

DRIFT spectra. To enable an accurate comparison between different spectra, the integration 

value from the signal of the stretching vibration of Si–O–Si (νSiOSi) at 1870 cm−1 was used as 

an internal standard [113]. The integration values for νSiH and νSiOH were normalized with 

                                                 
[a] Equipment from AK Wesemann, Institut für Anorganische Chemie. 
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respect to this integral. For the semi-quantification of Si–H and Si–OH groups, the highest 

normalized integral value for νSiH and νSiOH was set as 100 %, and values for the other silica 

materials of the same type are given relative to this. 

 

Dynamic light scattering (DLS) 

A Coulter N4 Plus PCS spectrometer[ a ] (Beckman Coulter) with a 10 mW He-Ne laser 

(632.8 nm) was used. The silica particles (300 mg L-1) were suspended in filtered ethanol (100 

nm Millipore filter) under ultrasonication for 30 min. The DLS experiments were performed 

in quartz or glass cuvettes (d = 1 cm) with 4 transparent sides at an angle of  90°. All 

experiments were performed at 20 °C using temperature equilibration for 5 min before each 

run. Weight analyses of the data were performed using a size distribution processor (SDP) 

based on the Contin algorithm [227, 228] providing an analysis of sizes (31 bins analysis). 

 

Scanning electron microscopy (SEM) 

Sample preparation on aluminum support: The silica materials were suspended in ethanol at a 

concentration of ~ 10 mg mL-1 and left under ultrasonication for one hour. One drop of the 

suspension was then placed on an aluminum support. The ethanol was evaporated by slowly 

spinning the Al support by hand.  

Sample preparation on platinum support: The silica particles were immobilized on Pt 

electrodes by spontaneous adsorption as described in ref. [103] or by dip-coating as described 

below. 

Scanning electron microscope (SEM) images of the silica materials on the Al or Pt support 

were obtained without sputtering from a ZEISS DSM 962[b] at 5 keV. The diameter of the 

particles was determined from the SEM images as an average of at least 200 particles for each 

sample. 

 

Nitrogen isotherm measurements - BET 

Adsorption and desorption isotherms were measured at 77 °K with nitrogen on a ASAP 2010 

instrument[c] (Micrometrics). The samples were degassed at 423 °K and 1 mPa for 14 h before 

adsorption measurements. 

                                                 
[a] Equipment from AK Oelkrug, Institut für Physikalische Chemie. 
[b] Equipment from AK Chassé, Institut für Physikalische Chemie. 
[c] Equipment from the Center for Applied Geosciences. 
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The specific surface area was calculated according to the multipoint Brunauer, Emmet and 

Teller (BET) method. The mean pore diameter was calculated according to Barrett, Joyner 

and Halenda [101] from the desorption branch of the isotherm (BJH desorption method). A 

cylindrical pore shape was assumed in the calculations. 

 

Atomic absorption spectroscopy 

The AAS measurements were performed on a SpectrAA-20 from Varian[a] with a four-lamp 

turret in an air-acetylene flame.  

Approximately 15 mg of M1f Fc / M1gFc weighed to the nearest 0.1 mg were suspended in 10 

mL of distilled water under ultrasonication for 2 h. For calibration, aqueous solutions of 

Fe(NO3)3 in the concentration range 2×10−5 to 2×10−4 M were prepared from the atomic 

spectroscopy standard solution. The absorbances of the suspension of M1f Fc / M1gFc and of 

the calibration solutions were measured at a wavelength of 248.3 nm after injection in the air-

acetylene flame. The ferrocene surface concentration (ΓAAS) is calculated by dividing the 

specific ferrocene amount obtained from the AAS measurements by the specific surface area 

of the Stöber particles obtained from SEM measurements (ASEM). 

 

UV-vis spectroscopy 

The UV-vis absorptions spectra were recorded on a Perkin Elmer Lambda 2 UV-Vis 

spectrometer[b]. 

For the quantification of ΓFc, approximately 60 mg of M1gFc were weighted to the closest 0.1 

mg and suspended in 1 M KOH for 2 h under ultrasonication. Before the UV–vis 

measurements, the suspension was centrifuged to remove non-hydrolyzed silica particles. For 

calibration, ferrocenecarboxylic acid solutions in a concentration range from 2 × 10−5 to 

2 × 10−4 M in 1 M KOH were treated in the same way as the suspension of M1gFc. The UV–

vis spectra of M1gFc  and the ferrocenecarboxylic acid solutions were recorded between 800 

and 200 nm and the signal at 405 nm was integrated after baseline subtraction. The ferrocene 

surface concentration (ΓUV) is calculated by dividing the specific ferrocene amount obtained 

from the UV-vis measurements by the specific surface area of the Stöber particles obtained 

from SEM measurements (ASEM). 

 

                                                 
[a] Equipment from AK Wesemann, Institut für Anorganische Chemie. 
[b] Equipment from AK Oelkrug, Institut für Physikalische Chemie. 
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Dip-coating  

Silica particles M1c (200 mg) were suspended under ultrasonication for 1 h in 10 mL of 

ethanol/water (1:1). The pH of the suspension was raised to pH 10 with KOH. Pt spade 

electrodes were polished with alumina 0.05 µm and hydrophilized in nitric acid (30 %) for 1 h 

under ultrasonication. They were dipped in the suspension at 25 °C and drawn out of the 

suspension in the vertical axis at a speed of 60 µm s-1 with a computer controlled stepper-

motor (Limes 90 from Owis). The resulting electrode surface was investigated with scanning 

electron microscopy. 

 
Gas chromatographic determination of Si–H content[a] [108, 118]  

All gas chromatographic measurements were performed on a Carlo Erba GC6000 Vega Series 

2 (Model 6300) at an oven temperature of 90 °C. The gas chromatograph was equipped with 

two packed columns filled with molecular sieve, type 13X, mesh size 80/100. The signal was 

detected by a thermal conductivity detector HWD 430, operating at 100 °C and 250 °C at the 

body and the filament, respectively. Signals were recorded and subsequently integrated by an 

electronic integrator HP 3390A. Argon 5.0 was used as carrier gas. 

Sample preparation: A 12 mL glass vial was filled with 10 mL of a 1 M solution of potassium 

hydroxide in ethanol. The silica sample material was weighed into a capless plastic reaction 

tube of about 0.5 mL, which was then placed in the glass vial avoiding contact between the 

silica sample and the reaction solution. The glass vial was closed with a rubber septum and an 

aluminum cap. It was then shaken in order to immerse the reaction tube with the silica sample 

into the reaction solution. After the vial was left in a water bath for one hour at 60 °C, it was 

allowed to cool to room temperature for 20 min. Afterwards, a 200 µl gas sample was taken 

by a gas-tight syringe using a Chaney adapter for improved reproducibility and injected 

immediately for GC-TCD analysis. The system was calibrated with liquid samples of Et3SiH 

from 0.1 to 2.0 µl (about 0.6 to 12.5 µmol). The calibration samples were treated exactly as 

described above and the resulting integration values could be fitted linearly with a standard 

deviation of 11 %. 

 

HPLC Column packing[b] 

The chromatographic sorbents M2SiH and M2C18 were slurry-packed into 125 mm x 4.6 mm 

stainless steel columns from Bischoff at 35 MPa employing a Knauer pneumatic HPLC 

                                                 
[a] performed by D. Joosten, AK Wesemann, Institut für Anorganische Chemie. 
[b] performed by B. Dietrich, AK Albert, Institut für Organische Chemie. 
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pump[a]. Thus, 1.6 g of the modified silica were dispersed in 25 mL 2-propanol, by sonication 

in an ultrasonic bath for about 10 s. This suspension was poured into the reservoir of the 

packing system and the system was topped off. The column was downward packed with 2-

propanol as solvent. The excess of stationary phase on the top of the column was carefully 

removed and finally the inlet frit and end-fitting were installed and the ends plugged. The 

columns were conditioned for 10 h with a methanol/water mobile phase at a flow rate of 0.1 

mL min-1. 

 

HPLC tests[b]  

Chromatographic tests were performed at 23 °C using a series 1100 HPLC instrument[a] 

(Agilent) with UV-detection at 210, 254 and 480 nm. All solvents were filtered and degassed 

before use. The test mixture (Standard Reference Material 870; SRM 870) [211, 212] was a 

methanolic solution of uracil, toluene, ethylbenzene, quinizarin and amitriptyline. The mobile 

phase was a gradient of 60 % methanol/ 40 % buffer (v/v) hold 5 min to 80 % methanol/ 20 % 

buffer (v/v) between 5 min to 6 min. The buffer, 20 mmol/l aqueous potassium phosphate, 

was adjusted to pH 7.0 ± 0.1 by mixing solutions of the dibasic and monobasic form of the 

buffer. The mobile phase had a flow rate of 2.0 mL min-1. 

 

Spontaneous adsorption and electrochemistry of M1gFc.  

Material M1gFc (200 mg) was suspended under ultrasonication in dichloromethane (10 mL). 

Platinum disk electrodes (diameter d = 3 mm) were mirror polished with α-Al 2O3 (0.05 µm) 

and dipped into the suspension under light stirring for at least 1 h. The electrodes were not 

washed after removal from the suspension, in order to prevent the loss of adsorbed particles. 

The solvent remaining at the electrode tip was first allowed to dry in air and then under 

reduced pressure at RT. SEM pictures of the electrodes (magnification 5000 ×) were used to 

determine the surface concentration of particles on the platinum surface by measuring the 

surface area occupied by 500 silica particles. The total amount of particles immobilized on the 

electrode surface was obtained by multiplying the surface concentration of particles by the 

area of the electrode. Electrochemical experiments were performed as described above. 

Baseline correction of the voltammograms was done with Origin 6.0 before determination of 

formal potentials. The number of electrochemically accessible ferrocene units on the electrode 

surface is obtained from the area under the oxidation wave of the cyclic voltammogram [193] 
                                                 
[a] Equipment from AK Albert, Institut für Organische Chemie. 
[b]  performed by B. Dietrich, AK Albert, Institut für Organische Chemie. 
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at a scan rate of 0.02 V s−1. The value of ΓCV (on the silica particle surface) is obtained from 

the total number of electroactive ferrocene units and the number of silica particles on the 

electrode surface (see 6.2.3 and 8.3). 

 
7.4 Synthetic procedures 

 
Stöber particles (M1a - M1g). The concentrations and volumes of reactants and reagents 

used for the synthesis of the M1 materials are summarized in Table 18. Isopropanol was used 

as solvent for the synthesis of the larger particles (M1d – M1e) while ethanol was used for the 

smaller ones (M1a - M1c and M1f - M1g). A mixture of the respective alcohol and water was 

heated to 45 °C. After the temperature of the mixture was equilibrated for 1 h, aqueous 

ammonia (25%) and TEOS were quickly added under strong stirring. After 3 h at 45 °C under 

continued strong stirring, the resulting particles were separated by centrifugation and washed 

twice with water and once with ethanol using ultrasonication and centrifugation after each 

step. The particles were dried at 100 °C overnight and then at 600 °C in a tubular furnace 

under reduced pressure for 4 days. The silica surface was rehydroxylated by suspending the 

particles in 1 L of aqueous HCl (3%) under reflux for 1 h. After centrifugation, the silica was 

then washed twice with water and once with ethanol. Finally, it was dried overnight at 100 °C.  

 
Table 18: Experimental conditions for the preparation of silica particles. 

    volume / mL   concentration  / M   

material  VTEOS VNH3 VH2O VAlcohol  [TEOS] [NH3] [H2O]  

M1a   22.3 15.4 129.6 330[c]   0.20 0.41 15.61   

M1b  27.9 17.5 72 383[c]  0.25 0.47 9.30  

M1c  27.9 17.5 72 383[c]  0.25 0.47 9.30  

M1d  33.5 22 57.6 390[d]  0.30 0.58 8.00  

M1e[a]   540 203.4 251.1 3600[d]   0.53 0.59 4.70   

M1f [b]  84 52.5 216 1150[c]  0.25 0.47 9.30  

M1g  27.9 17.5 72 383[c]  0.25 0.47 9.30  

[a] prepared by Straub [83], [b] 3 times scale-up from the procedure of M1b/M1c/M1g, 

[c] ethanol, [d] isopropanol. 

 

[(2-Aminoethyl)carbamoyl]ferrocene (1a). The following procedure is a combination of and 

a simplification from the original references [178, 179, 230]. Ferrocenecarboxylic acid (1 g, 
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4.4 mmol) was suspended in dichloromethane (50 mL). Oxalyl chloride (1 mL, 12 mmol) was 

added dropwise to the suspension. The cloudy orange suspension became dark red and clear. 

After 30 min, the dichloromethane and the excess oxalyl chloride were removed under 

reduced pressure. The resulting red solid was then dissolved under argon in 30 mL of dry 

dichloromethane and added dropwise to a stirred solution of ethylene diamine (5 mL, 75 

mmol) in dry dichloromethane (30 mL). After 1 h, the orange and turbid suspension was 

mixed with aq. KOH (10 %, w/w). The dichloromethane phase was recovered after separation 

from the aqueous phase. After filtration and elimination of the solid, dichloromethane was 

recovered and evaporated under reduced pressure. The remaining solid product was washed 

with ethyl acetate/hexane 1:9 and then dissolved in water. After filtration the water was 

recovered and evaporated. The orange product was dissolved in dichloromethane and the 

solution was filtrated again. After evaporation of the solvent, the orange product is dried 

under high vacuum conditions; resulting raw yield: 0.83 g (3 mmol, 70 %). Mp: 118.4 °C. 1H-

NMR (CDCl3, 400.16 MHz): δ (ppm) 1.36 (2H, s, NH2), 2.81 (2H, m, CH2NH2), 3.35 (2H, m, 

CH2NH ), 4.1 (5H, C5H5), 4.25 and 4.65 (4H, C5H4), 6.5 (1H, s, NH). 13C{1H}-NMR (CDCl3, 

100.62 MHz): δ (ppm) 42.0 (CH2NH2), 42.5 (CH2NH ), 68.5–70.7 (ferrocene), 171 (C=O). IR 

(DRIFT): ν� (cm−1), 3300 (br, νNH), 3083 (s, νCH, Fc),  2926, 2862 (s, νCH, CH2), 1647 (w, νC=C, 

Fc), 1626 (s, νC=O, amide I), 1541 (s, δNH, amide II), 1455 (w, δCH, CH2). Anal. Calcd for 

C13H16N2OFe: C, 57.38; H, 5.93; N, 10.29. Found: C, 56.63; H, 5.92; N, 9.73. (Lit.: C, 55.40; 

H, 6.16; N, 9.90 [179]). EI-MS: 70 eV (m/z):  272.1 (M+). E°(1a) = 166 mV vs Fc/Fc+ in 

CH3CN. 

 

[2-(Undec-10-enamido)ethyl]carbamoyl]ferrocene (1b). The ferrocene derivative 1a (100 

mg, 0.37 mmol) was dissolved in 10 mL of dry CH2Cl2 and 10-undecenoyl chloride (80 µL, 

0.37 mmol) was added dropwise under argon. The reaction mixture was left 1 h under stirring 

at RT and then quenched with aqueous KOH (20 mL, 10 % w/w). The organic phase was 

recovered and the solvent was evaporated. The resulting orange oil was recovered and 

purified by column chromatography (stationary phase: silica type 60, mobile phase: 

acetone/CH2Cl2 1/1) to give a yellow solid. After recrystallization from acetone, yellow 

crystals were obtained. Yield: 95 mg (0.22 mmol, 60 %). 1H-NMR (CDCl3, 400.16 MHz): δ 

(ppm) 1.17-1.37 (12H, m, CH2), 1.57-1.69 (2H, m, CH2), 2.01 (2H, m, CH2=CH-CH2), 2.20 

(2H, t, CH2-C=O), 3.49 (4H, m, -CH2NH-), 4.18 (5H, C5H5), 4.33 and 4.79 (4H, t, C5H4), 4.94 

(2H, m, CH2=CH-), 5.78 (1H, m, CH2=CH-) 7.32 and 7.52 (2H, s, NH). 13C{1H}-NMR 

(CDCl3, 100.62 MHz): δ (ppm) 25.65, 28.65, 28.84 and 29.10 (-CH2-), 33.54 (=CH-CH2-), 
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36.39 (CH2-C=O), 39.66 and 40.18 (-CH2NH), 68.18 (CH, C5H4, Fc), 69.56 (C5H5, Fc), 70.40 

(CH, C5H4, Fc), 75.30 (C, C5H4, Fc), 113.97 (H2C=CH-), 138.85 (H2C=CH-), 171.89 and 

175.06 (C=O). Anal. Calcd for C24H34N2O2Fe: C, 65.75; H, 7.82; N, 6.39. Found: C, 64.63; H, 

7.85; N, 6.35. EI-MS: 70 eV (m/z): 438 (M+), 229 (FcCONH2)
+, 213 (FcC=O)+, 185 (Fc)+. 

E°(1b) = 161 mV vs Fc/Fc+ in CH2Cl2. 

 

N-oct-7-enylethylene-1,2-diamine (8). To a mixture of ethylenediamine (10 g, 0.17 mole) 

and  8-bromo-1-octene (97%, 3 g, 0.016 mole) was added sufficient absolute ethanol (50 mL) 

to dissolve the two immiscible liquids. The solution was refluxed for 3 h and ethanol was 

evaporated, causing the residual liquid to separate into 2 layers. The upper layer was 

recovered, 30 mL of water were added and the precipitated colorless solid was extracted with 

ether (3 × 25 mL). The combined organic phases were washed with water (2 × 50 mL), dried 

over anhydrous sodium sulfate and the solvent evaporated. A slightly yellow liquid is 

obtained; yield 2.2 g (13 mmol, 82 %). 1H-NMR (CDCl3, 400.16 MHz): δ (ppm) 1.15-1.40 (m 

8H -CH2-), 1.69 (s -NH2), 2.00 (quartet 2H H2C=CH-CH2-), 2.55 (t 2H -NH-CH2-), 2.62 (t 2H 

NH2-CH2-), 2.76 (t 2H -NH-CH2-), 4.83 (s 1H -NH-), 4.85-5.0 (m 2H H2C=CH-), 5.76 (m 1H 

H2C=CH-). 13C{1H}-NMR (CDCl3, 100.62 MHz): δ (ppm), 27.13, 28.76, 28.94 and 30.01 (-

CH2-), 33.64 (H2C=CH-CH2-), 41.64 (NH2-CH2-), 49.82 and 52.44 (-NH-CH2-), 114.13 

(H2C=CH-), 139.02 (H2C=CH-). EI-MS: 70 eV (m/z): 171.2 (M + H+), 154.2 (- NH3), 140.2 

(- CH2-NH2). 

 

(N-oct-7-enylethylene-1,2-diamine)dichlorobis[(methoxyethyldiphenyl)phosphine] 

ruthenium(II) complex  (2a). The diamine ligand 8 (85 mg, 0.5 mmol, 10 % excess) was 

dissolved in dry dichloromethane (25 mL) and the solution added dropwise to a stirred 

solution of 11 [231 - 233] (300 mg, 0.45 mmol) in dry dichloromethane (25 mL) under argon. 

A color change from red-brown to green is observed. After the reaction mixture had been 

stirred for another 45 min at room temperature, the volume of the solution was concentrated 

to about 2 mL under reduced pressure. After addition of 15 mL of petroleum ether (40-60), 

the solvent was evaporated under reduced pressure until the precipitation of a yellow solid 

occured. The solid was separated from the remaining solvent, washed three times with 15 mL 

portions of cold petroleum ether (40-60), and dried under vacuum. Yield : 270 mg (0.32 mmol, 

72 %) of a yellow powder. 1H-NMR (CDCl3, 400.16 MHz): δ (ppm) 0.6-1.35 (m 8H -CH2-); 

1.8-2.0 (m 4H H2C=CH-CH2-, -NH2), 2.19 (s 1H NH), 2.3-3.3 (m, 14H, PCH2, CH2O, 

NH2CH2, -NHCH2-), 2.85 and 2.91 (2s 6H OCH3), 4.80-5.0 (m 2H H2C=CH-), 5.71 (m 1H 
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H2C=CH-), 7.0-7.8 (m, 20H, C6H5). 
13C{1H}-NMR (CDCl3, 100.62 MHz): δ (ppm), 24.5, 

26.5 (2d, 1JPC = 27.08 Hz, PCH2), 26.7, 28.6, 28.7 (-CH2-), 33.55 (H2C=CH-CH2-), 42.5 

(NH2CH2), 49.1, 51.9 (2s NHCH2), 57.5, 57.6 (2s OCH3), 69.0 (m CH2O), 114.2 (H2C=CH-), 

128.0, 128.4 (2d, 3JPC = 8.05 Hz, m-C6H5), 131.5, 132.0 (2d, 2JPC = 8.1 Hz, o-C6H5), 131.9, 

132.3 (2s p-C6H5), 134.15, 136.55 (2d, i-C6H5), 138.9 (H2C=CH-). 31P{1H}NMR (CDCl3, 

161.98 MHz): δ (ppm) 37.5 (d, AB, 2Jpp = 36.27 Hz), δ 34.3 (d, AB, ²Jpp= 36.28 Hz). FAB-MS 

(m/z): 830.4 (M+), 795.4 (M - Cl), 660.1 (M - diamine ligand), 393.1 (M - 2 etherphosphine 

ligands), 245.2 (Etherphosphine ligand). Anal. Calcd for C40H56Cl2N2O2P2Ru: C, 57.83; H, 

6.79; N, 3.37. Found: C, 57.25; H, 6.91; N, 3.67. E°(2a) =  -18 mV vs Fc/Fc+ in CH2Cl2. 

 

4-Allylbromobenzene (4a). 4-Allylbromobenzene 4a was prepared according to ref. [184]. 

bp: 55 °C/ 5 × 10-2 mbar (Lit. bp 93 °C/18 mbar); yield: 5.6 g (28 mmol, 38 %). 1H-NMR 

(CDCl3, 400.16 MHz): δ (ppm) 3.32–3.39 (m 2H CH2), 5.01–5.11 (m 2H H2C=CH), 5.83–

6.03 (m 1H H2C=CH-), 7.06 (d, J = 8.5 Hz, 2H arom), 7.41 (d, J = 8.5 Hz, 2H arom).  
13C{1H}-NMR (CDCl3, 100.62 MHz): δ (ppm) 39.46 (=CH-CH2-), 116.21 (H2C=CH-), 

119.80 (C-Br, Ar), 130.27 (meta C), 131.36 (ortho C), 136.67(H2C=CH), 137.50 (para C). 

 

4'-Allyl-3,5-di- tert-butyl-1,1'-biphenyl-4-amine (3a). Magnesium turnings (0.11 g, 4.5 

mmol) were flame dried with a hot gun under vacuum and suspended in 4 mL of dry THF. A 

solution of 1,4-allylbromobenzene 4a (1.2 mL, 4.5 mmol) in dry THF (40 mL) was added 

dropwise to the magnesium suspension under argon atmosphere at RT. The reaction was 

started by slightly heating and addition of one drop of CCl4. Once the solution became turpid, 

the heating was stopped, and the rest of 4a was added so that the reaction sustained a gentle 

reflux. After addition of all 4a and disappearance of the Mg turnings, a solution of vacuum-

dried 5 (0.7 g, 3.2 mmol) dissolved in 15 mL of dry THF (15 mL) was added dropwise under 

argon. The reaction mixture was left under stirring at RT for 1 h and was then quenched with 

aq. sat. NH4Cl solution (50 mL). The aqueous phase was removed and extracted with Et2O (4 

× 25 mL). The combined organic phases were concentrated and dried overnight with K2CO3. 

After evaporation of the solvent, a yellow oil is obtained. The oil was dissolved in a mixture 

of EtOH (3 mL) and acetone (7 mL). Zinc powder (0.1 g, 1.5 mmol) was added under stirring. 

The reaction mixture was cooled with an ice bath and conc. HCl (1 mL) was added dropwise. 

After 2 h of stirring, aq. NH3 solution (25 %, 10 mL) was added. The aqueous phase was 

removed and extracted with Et2O (3 × 25 mL). The combined organic phases were dried 

overnight with Na2SO4. After filtration and evaporation of the solvent, the brown-red oil was 
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dissolved in hexane. The precipitate was discarded and after evaporation of the solvent, the oil 

was recovered and purified by column chromatography (stationary phase: silica type 60, 

mobile phase: hexane/ethyl acetate 4/1) to give 3a as a red-brown oil (0.31 g, 0.97 mmol, 

30.2 %). 1H-NMR (CDCl3, 400.16 MHz): δ (ppm) 1.44 (s 18H CH3), 3.34 (d, 2H, J = 6.61 Hz, 

H2C=CH-CH2), 4.15 (s 2H NH2), 5.0-5.1 (m 2H H2C=CH-), 5.9 - 6.00 (m 1H H2C=CH-), 

7.13 (d, J = 8.14 Hz, 2H arom), 7.34 (s 2H arom), 7.39 (d, J = 8.14 Hz, 2H arom). 13C{1H}-

NMR (CDCl3, 100.62 MHz): δ (ppm) 30.22 (-CH3), 34.56 (=CH-CH2-), 39.85 (-C(CH3)3), 

115.67 (H2C=CH-), 123.82 (CH, Ar-NH2), 126.77, 128.74 (CH, Ar), 129.89 (para C, Ar-NH2), 

134.32 (C-C(CH3)3), 137.59 (H2C=CH-), 137.64, 140.52 (C, Ar), 143,04 (C-NH2). EI-MS: 70 

eV (m/z): 321.2 (M+), 306.2 (- CH3), 281.2 (-C3H5), 266.2 (- t-Bu). 

 

1-Bromo-4-(pent-4-enyl)-benzene (4b). Magnesium turnings (1.03 g, 42 mmol) were flame 

dried under vacuum and suspended in 20 mL of dry Et2O. A solution of 5-bromopent-1-ene 

(4.1 mL, 35 mmol) in dry Et2O (10 mL) was added slowly to the magnesium suspension 

under argon atmosphere at RT. The reaction was slightly exotherm and the suspension 

became turpid. After complete addition, the suspension was stirred under reflux at 40 °C for 

90 min. The solution was then separated from the remaining magnesium and added dropwise 

under argon at RT to a solution of 1,4-dibromobenzene (9.7 g, 41 mmol) and 1,1´-

bis(diphenyl-phosphino)-ferrocene-palladium(II)chloride (0.41 g, 0.47 mmol) in dry THF (10 

mL). After a few minutes a color change from red to yellow is observed. The reaction mixture 

is stirred under reflux at 70 °C overnight. A mixture of a white (MgBr2) and a yellow 

precipitates (catalyst) and a colorless solution are obtained. The reaction is quenched with 

aqueous NH4Cl (saturated, 20 mL) and extracted with pentane (3 × 20 mL).  The combined 

organic phases were filtered over silica (type 60) and concentrated under vacuum. The 

resulting yellow liquid was cooled down to – 18 °C to crystallize the unreacted 1,4-

dibromobenzene. The liquid was recovered and purified by column chromatography 

(stationary phase: silica type 60, mobile phase: hexane) to give a colorless liquid, 1-bromo-4-

(pent-4-enyl)-benzene (1.35 g, 6 mmol, 17.1 %). 1H-NMR (CDCl3, 400.16 MHz): δ (ppm) 

1.68 (m 2H -CH2-CH2-CH2-), 2.07 (q 2H =CH-CH2-CH2-), 2.57 (t 2H -CH2-CH2-Ar), 4.99 (m 

2H H2C=CH-), 5.81 (m 1H H2C=CH-), 7.04 (d 2H arom. meta H), 7.38 (d 2H arom. ortho H). 
13C{1H}-NMR (CDCl3, 100.62 MHz): δ (ppm) 30.38 (-CH2-CH2-CH2-), 33.08 (=CH-CH2-

CH2-), 34.62 (CH2-CH2-Ar), 114.89 (H2C=CH-), 119.37 (Ar-Br), 130.18 (meta C), 131.28 

(ortho C), 138.28 (H2C=CH), 141.33 (quart C). EI-MS: 70 eV (m/z): 224.1/226.1 (M+), 

182.0/184.0 (- C3H5), 169.0/171.0 (- C4H7), 155.0/157.0 (- C5H9). 
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3,5-Di-tert-butyl-4-imino-1-(4-pent-4-enylphenyl)cyclohexa-2,5-dien-1-ol (6b). 

Magnesium turnings (0.24 g, 9.9 mmol) were flame dried under vacuum and suspended in 10 

mL of dry THF under argon. 4b (1.35 g, 6 mmol) dissolved in 20 mL of dry THF was added 

dropwise to the magnesium turnings under argon. After 5 mL of 4b was added, the suspension 

was heated to 50 °C in order to start the reaction. Once the solution became turpid, the heating 

was stopped, and the rest of 4b was added so that the reaction sustained a gentle reflux. After 

addition of all the 4b, the reaction mixture was heated to reflux for 3 h. The solution was then 

allowed to cool to RT, and if necessary, separated from the remaining Mg turnings with a 

pipette. The Grignard product was immediately used for the next step. Vacuum-dried 5 (0.57 

g, 2.6 mmol), was dissolved in dry THF (15 mL) under argon and added dropwise to the 

Grignard mixture under argon. The reaction mixture was left under stirring at RT for 1 h and 

was then quenched with aq. sat. NH4Cl solution (50 mL). The aqueous phase was removed 

and extracted with Et2O (4 × 25 mL). The combined organic phases were concentrated and 

dried over night with K2CO3. After evaporation of the solvent, a brown-red oil is obtained. 

The oil is dissolved in 5 mL of hexane and filtered through a short silica column. The silica 

was washed with hexane (100 mL), resulting in the elution of the unreacted 4b, which was 

recovered after evaporation of the solvent. The product, that remained adsorbed on the silica, 

was eluted with ethyl acetate (100 mL). After evaporation of the solvent, the product was 

purified by column chromatography (stationary phase: silica type 60, mobile phase: 

hexane/ethyl acetate 9/1) to give 6b as a red oil,  (0.44 g, 1.2 mmol, 46 %). 1H-NMR (CDCl3, 

400.16 MHz): δ (ppm) 1.31 (s 18H CH3), 1.70 (m 2H -CH2-CH2-CH2), 2.08 (q 2H H2C=CH-

CH2), 2.59 (t 2H -CH2-Ar), 4.95 - 5.05 (m 2H H2C=CH-), 5.77 - 5.87 (m 1H H2C=CH-), 6.23 

(s 2H CH of the cyclo-hexadiene ring), 7.12 (d  J = 8.0 Hz, 2H arom), 7.30 (d  J = 8.0 Hz, 2H 

arom), 10.02 (s 1H =NH). 13C{1H}-NMR (CDCl3, 100.62 MHz): δ (ppm) 30.44 (-CH2-CH2-

Ar), 30.59 (CH3), 33.25 (CH2=CH-CH2-), 34.84 (-C(CH3)3), 34.85 (-CH2-Ar), 71.80 (C-OH), 

114,71 (H2C=CH-), 125.02, 128.58 (CH, Ar), 136.16 (CH of the cyclohexadiene ring), 138.5 

(H2C=CH), 140.33, (CH2-C, Ar), 141.52 (COH-C, Ar) ,143.71 (C-C(CH3)3), 167.10 (C=NH). 

EI-MS: 70 eV (m/z): 365 (M+), 348.2 (- OH), 308.2 (- OH - C3H5). 

 

3,5-Di-tert-butyl-4'-pent-4-enyl-1,1'-biphenyl-4-amine (3b). The iminochinol 6b (0.44 g, 

1.2 mmol) was dissolved in Et2O (30 mL) and zinc powder (0.08 g, 1.22 mmol) was added 

under stirring. The reaction mixture was cooled with an ice bath and conc. HCl (1.2 mL) was 

added dropwise. After 2 h of stirring, aq. NH3 (25 %, 4 mL) was added. The aqueous phase 

was removed and extracted with Et2O (3 × 25 mL). The combined organic phases were dried 
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over night with Na2SO4. After filtration and evaporation of the solvent, the brown-red oil was 

dissolved in hexane. The precipitate was discarded and after evaporation of the solvent, the oil 

was recovered and purified by column chromatography (stationary phase: silica type 60, 

mobile phase: hexane/ethyl acetate 4/1) to give 3b as a red-brown oil (0.2 g, 0.57 mmol, 

48 %). 1H-NMR (CDCl3, 400.16 MHz): δ (ppm) 1.44 (s 18H CH3), 1.68 (m 2H -CH2-CH2-

Ar), 2.06 (q 2H H2C=CH-CH2), 2.57 (t 2H -CH2-Ar), 4.17 (s 2H NH2), 4.8-5.0 (m 2H 

H2C=CH-), 5.7 – 5.8 (m 1H H2C=CH-), 7.13 (d, J = 8.0 Hz, 2H arom), 7.34 (s 2H arom), 7.37 

(d, J = 8.0 Hz, 2H arom). 13C{1H}-NMR (CDCl3, 100.62 MHz): δ (ppm)  30.25 (CH3), 30.63 

(-CH2-CH2-Ar), 33.35 (CH2=CH-CH2-), 34.57 (-C(CH3)3), 34.92 (-CH2-Ar), 114.65 

(H2C=CH-), 123.80(CH, Ar-NH2), 126.63, 128.63 (CH, Ar), 130.00 (para C, Ar-NH2), 134.33 

(C-C(CH3)3), 138.69 (H2C=CH), ), 140.08, 140.14 (C, Ar), 142.97 (C-NH2). EI-MS: 70 eV 

(m/z): 349.2 (M+),  334.0 (- CH3), 308.0 (- C3H5). 

 

1-Bromo-4-pentylbenzene (4c). Magnesium turnings (0.5 g, 20 mmol) were flame dried 

under vacuum and suspended in 4 mL of dry THF. A solution of 1,4-dibromobenzene (4.7 g, 

20 mmol) in dry THF (20 mL) was added slowly to the magnesium suspension under argon 

atmosphere at RT. If the reaction did not start after the addition of a few drops, the suspension 

was slightly heated. Turpidity and coloration of the solution indicated the start of the reaction. 

After the addition of all the 1,4-bromobenzene, the suspension was stirred until it had cooled 

to RT. A catalytic amount of CuBr, codissolved with LiBr, in 1 mL of dry THF was added. 

Subsequently, 1-bromopentane (2.5 ml, 20 mmol) was added dropwise under argon. The 

reaction was started by slightly heating the suspension. The reaction mixture was stirred at RT 

overnight and quenched by the addition of aq. sat. NH4Cl solution until pH 7 was reached. 

The reaction mixture became blue and was then extracted with Et2O (3 × 6 mL). The 

combined organic phases were washed with a 0.5 N Na2S2O4 solution and dried with MgSO4. 

After filtration and evaporation of the solvent, the oil was recovered and purified by column 

chromatography (stationary phase: silica type 60, mobile phase: hexane) to give a colorless 

liquid, 4c (0.72 g, 3.2 mmol, 16 %). 1H-NMR (CDCl3, 400.16 MHz): δ (ppm) 0.85 (m 3H 

CH3), 1.24 (m 4H -CH2-), 1.51 (m 2H -CH2-CH2-Ar), 2.48 (m 2H -CH2-Ar), 7.00 (d, 2H arom. 

meta H), 7.30 (d 2H arom. ortho H). 13C{1H}-NMR (CDCl3, 100,62 MHz): δ (ppm), 13.98 

(CH3), 22.49 (CH3-CH2-) 30.98 and  31.35 (-CH2-), 35.29 (CH2-Ar), 119.24 (C-Br), 130.13 

(meta C), 131.22 (ortho C) 137.81 (quart C). The signals for 1,4-bromobenzene are also 

present in both NMR spectra. EI-MS: 70 eV (m/z): 226.1/228.1 (M+), 169.0/171.0 (M - C4H9), 

155.0/157.0 (M - C5H11). 
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3,5-Di-tert-butyl-4'-pentyl-1,1'-biphenyl-4-amine (3c). Magnesium turnings (0.08 g, 3.2 

mmol) were flame dried under vacuum and suspended in 2 mL of dry THF under argon. 1-

Bromo-4-pentylbenzene 4c (0.72 g, 3.2 mmol) dissolved in 10 mL of dry THF was added 

dropwise to the magnesium turnings under argon. Before all 4c was added, the suspension 

was heated to 50 °C in order to start the reaction. Once the solutions became brown and turpid, 

the heating was stopped, and the rest of 4c was added. The reaction mixture was then stirred 

at RT for 2 h. The Grignard product was immediately used for the next step. Vacuum-dried 5 

(0.72 g, 3.2 mmol), was dissolved in dry THF (5 mL) under argon and added dropwise to the 

Grignard mixture under argon. The reaction mixture was stirred at RT for 2 h and was then 

quenched with aq. sat. NH4Cl solution (50 mL). The aqueous phase was removed and 

extracted with Et2O (4 × 25 mL). The combined organic phases were concentrated and dried 

over night with K2CO3. After evaporation of the solvent, a brown-red oil was obtained. The 

oil was then dissolved in Et2O (30 mL) and zinc powder (0.2 g, 3.2 mmol) was added under 

stirring. The reaction mixture was cooled with an ice bath and conc. HCl (3.5 mL) was added 

dropwise. After 2 h of stirring, cold aq. NH3 (25 %, 10 mL) was added. The aqueous phase 

was removed and extracted with Et2O (3 × 25 mL). The combined organic phases were dried 

over night with Na2SO4. After filtration and evaporation of the solvent, the resulting brown-

red oil was dissolved in hexane. The precipitate was eliminated and after evaporation of the 

solvent, the oil was recovered and purified by column chromatography (stationary phase: 

silica type 60, mobile phase: hexane/ethyl acetate 4/1) to give 3c as a red-brown oil (0.22 g, 

0.63 mmol, 19.8 %). 1H-NMR (CDCl3, 400,16 MHz): δ (ppm) 0.83 (s 3H CH3-CH2-), 1.28 (m 

4H CH2), 1.43 (s 18H C-CH3), 1.55 (m 2H -CH2-CH2-Ar), 2.51 (m 2H -CH2-Ar), 4.13 (s 2H 

NH2), 7.14 (d, J = 8.0 Hz, 2H arom), 7.34 (s, 2H, arom), 7.38 (d, J = 8.0 Hz, 2H arom). 
13C{1H}-NMR (CDCl3, 100,62 MHz): δ (ppm) 14.02 (CH3-CH2-), 22.55 (CH3-CH2-), 30.20 (-

C(CH3)3), 31.24 and 31.56 (-CH2-), 34.47 (-CH2-Ar), 35.53 (-C(CH3)3), 123.70 (CH, Ar-NH2),  

126.51, 128.18 (CH, Ar), 130.01 (para C, Ar-NH2), 134.19 (C-C(CH3)3), 139.93, 140.42(C, 

Ar), 142.88 (C-NH2). EI-MS: 70 eV (m/z): 351.2 (M+),  336.0 (- CH3), 294.2 (- C4H9). E°(3c) 

= 427.9 mV vs Fc/Fc+ in CH2Cl2. 

 

3,5-Di-tert-butyl-4-iminocyclohexa-2,5-dien-1-one (5). The iminochinone 5 was prepared 

according to [190 - 192], followed by recrystallization from petrolether (60-90). The resulting 

bright yellow crystals (0.1 g, 0.46 mmol, 13 % yield) were dried under reduced pressure. mp 

80.2 °C (Lit. 83 °C [191]). 1H-NMR (CDCl3, 400,16 MHz): δ (ppm) 1.34 (s 9H C-CH3), 1.37 

(s 9H C-CH3), 6.29 (s 1H CH), 6.42 (s 1H CH), 11.36 (s 1H NH). 13C{1H}-NMR (CDCl3, 
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100.62 MHz): δ (ppm) 30.58 (-C(CH3)3), 31.06 (-C(CH3)3), 34.91 (-C(CH3)3), 36.81 (-

C(CH3)3), 127.08 (CH), 128.04 (CH), 155.57 (C-C(CH3)3), 162.35 (C-C(CH3)3), 166.19 

(C=NH), 188.60 (C=O). EI-MS: 70 eV (m/z): 219.2 (M+),  204.2 (- CH3), 176.2. Anal. Calcd 

for C14H21NO: C, 76.67; H, 9.65; N, 6.39. Found: C, 76.40; H, 9.83; N, 5.82. 

 

Si–H modified silica (MSiH). The silica material (10 g) is placed in a quartz tube with a quartz 

frit located in its middle. The quartz tube is mounted vertically in a tubular oven (Figure 40). 

The bottom part of the quartz tube is connected to a 100 mL round bottom flask with gas 

connection, containing 15 mL of thionyl chloride. The connection between the round bottom 

flask and the quartz tube is closed and the top part of the quartz tube is connected to vacuum 

(~ 10−2 mbar). The silica is then heated to 200 oC under vacuum for at least 6 h. Under 

vacuum the temperature is raised from 200 to 800 oC in 4 h and then kept at 800 oC for 

another 6 hours. Subsequently, the connection to vacuum is closed and the quartz tube is 

flushed from the bottom with argon, bypassing the round bottom flask filled with SOCl2. 

Once the argon pressure has equilibrated, the top of the quartz tube is connected to a water 

bubbler for evacuation of the exhaust gas. The argon flow fluidizes the silica, which 

approximately doubles in volume. The argon is then driven through the flask with thionyl 

chloride which is stirred and heated to 60 oC with a water bath. Within 3 h the argon flux has 

driven all the thionyl chloride through the silica still heated to 800 oC. 15 min after all the 

thionyl chloride has evaporated, the gas flow is changed to pass through the flask by-pass, 

argon is replaced by hydrogen and the temperature of the oven is raised to the desired value, 

typically 900 oC. After 2 h, the valve at the top of the quartz tube is closed, the hydrogen flow 

is stopped and the resulting MSiH material is allowed to cool down under a hydrogen 

atmosphere. 

M1f SiH.  

Diameter = 212 nm (from DLS), 209 ± 14 nm (from SEM). ABET = 16.9 m2 g−1. IR (DRIFT): 

ν� (cm−1), 3748 (isolated νSiO-H, weak), 2265 (νSi−H, broad), 1870 (νSi−O−Si), 1300 – 1000 

(νSi−O−Si). 

M2SiH. Diameter = 5.8 ± 0.7 µm (from SEM). ABET = 103.6 m2 g−1. 29Si CP/MAS NMR: δ 

(ppm) −100.8 (Q3), −83.7 (T3
H). IR (DRIFT): ν� (cm−1), 3748 (isolated νSiO-H, weak), 2286 

(νSi−H, strong), 1870 (νSi−O−Si), 1300 – 1000 (νSi−O−Si). 

M3SiH. ABET = 172.6 m2 g−1. 29Si CP/MAS NMR: δ (ppm) −100.7 (Q3), −83.8 (T3
H). IR 

(DRIFT): ν� (cm−1), 3743 (isolated νSiO-H, weak), 2285 (νSi−H, strong), 1870 (νSi−O−Si), 1300 – 

1000 (νSi−O−Si). 
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M4SiH. ABET = 301.6 m2 g−1. 29Si CP/MAS NMR: δ (ppm) −100.1 (Q3), −83.5 (T3
H). IR 

(DRIFT): ν� (cm−1), 3746 (isolated νSiO-H, weak), 2283 (νSi−H, strong), 1870 (νSi−O−Si), 1300 – 

1000 (νSi−O−Si). 

 

 

 

Figure 40: Experimental set-up for the chlorination and reduction of the silica materials. 

 

Preparation of M2A and M2B. For the preparation of M2SiHA, M2 was heated from room 

temperature to 1000 oC in 5 h with the set-up shown in Figure 40 under hydrogen gas flow. 

The temperature was kept at 1000 oC for 2 h and the silica was then allowed to cool to room 

temperature under hydrogen atmosphere. For M2B the same procedure as for MSiH is 

performed, modified, however, by omitting the chlorination step. 

M2A. IR (DRIFT): ν� (cm−1), 3746 (isolated νSiO-H, weak), 2288 (νSi−H, medium), 1870 

(νSi−O−Si), 1300 – 1000 (νSi−O−Si). 

M2B. IR (DRIFT): ν� (cm−1), 3748 (isolated νSiO-H, strong), 2290 (νSi−H, medium), 1870 

(νSi−O−Si), 1300 – 1000 (νSi−O−Si). 
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Triethoxysilane modified silica (MTES). Material M1g or M2 (2 g) was dried overnight at 

100 °C under reduced pressure and then suspended in dry toluene (30 mL). Triethoxysilane 

(500 µL, 2.7 mmol) was added and the suspension was heated under reflux for 24 h. The 

resulting silica (MTES) was washed with toluene and twice with ethanol and then dried under 

reduced pressure at 100 oC. 

M1gTES. IR (DRIFT): ν� (cm−1), 3800–2600 (νSiO-H, strong), 2250 (νSi−H, strong), 1870 

(νSi−O−Si), 1650 (hydrogen bonded H2O on SiOH), 1200–1000 (νSi−O−Si).  

M2TES. ABET = 115 m2 g−1. 29Si CP/MAS NMR: δ (ppm) −110.2 (Q4), −100.2 (Q3), −84.0 

(T3
H), −73.3 (T2

H). IR (DRIFT): ν� (cm−1), 3800 – 2600 (νSiO-H, strong), 2983, 2939, 2904 (νCH), 

2243 (νSi−H, strong), 1870 (νSi−O−Si), 1650 (hydrogen bonded H2O on SiOH), 1200 – 1000 

(νSi−O−Si). 

 

10-Undecylenic acid  modified silica (MCOOH). The hydride modified silicas M1f SiH, 

M1gTES or M4SiH (500 mg) were dried under reduced pressure at 100 °C overnight and 

suspended under ultrasonication for 1 h in dry hexane (25 mL). The suspension was then 

mixed with 10-undecylenic acid (500 µL, 2.5 mmol) in a 250 mL quartz flask and degassed 

by argon bubbling for 30 min. The suspension was irradiated with a 700 W medium pressure 

mercury lamp for 4 to 8 days. No filters were employed. The distance between the quartz 

flask and the UV lamp as well as the intensity of the UV light were adjusted so that the 

temperature of the suspension did not exceed 40 °C during the reaction. Silicas MCOOH were 

separated from the solution by centrifugation, washed with hexane, ethanol, acetic acid and 

again with ethanol, and dried overnight under reduced pressure at room temperature. 
13C CP/MAS NMR: δ 14.0 (Si-CH2), 20–50 (CH2, broad), 180 (-COOH). IR (DRIFT): ν� 

(cm−1), 2923 and 2857 (m, νCH, CH2), 2250 (w, νSiH), 1708 (m, νC=O), 1455 (w, νCH). 

10-undecylenic acid after the reaction: 1H-NMR (CDCl3, 400.16 MHz): δ (ppm) 1.22 (m 10H 

-CH2-), 1.55 (m 2H CH2-CH2-COOH), 1.96 (m 2H CH2=CH-CH2-), 2.26 (t 2H CH2-COOH), 

4.84-9.95 (m 2H CH2=CH-), 5.66-5.78 (m 1H CH2=CH-), 11.84 (br s 1H COOH). 13C{1H}-

NMR (CDCl3, 100.62 MHz): δ (ppm), 24.55 (CH2-CH2-COOH), 28.81, 28.95, 28.97, 29.11, 

29.19 (-CH2-), 33.70 (CH2=CH-CH2-), 34.04 (CH2-COOH), 114.07(CH2=CH-), 138.93 

(CH2=CH-), 180.64 (COOH). 

 

1-Octadecene modified silica (M2C18). Hydride modified silica M2SiH (2 g) was dried under 

vacuum at 100 °C and suspended in neat 1-octadecene (50 mL, 90 %). The suspension was 

heated to 180 °C under stirring for 3 days. After the reaction, the silica was separated from the 
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solvent by centrifugation and washed with hexane in a Soxhlet apparatus overnight. Finally, 

the silica was dried overnight under vacuum at 110 °C. 13C CP/MAS NMR (50.32 MHz): δ 

(ppm) 12.42 (br, Si-CH2, -CH3), 22-35 (-CH2-). IR (DRIFT): ν� (cm−1), 3760 – 3550 (w, νOH, 

SiOH), 2960 (m, νCH, CH3), 2927, 2857 (s, νCH, CH2), 2279 (s, νSiH), 1870 (m, νSi−O−Si), 1466 

(w, δC-H) 1200 – 1000 (νSi–O–Si). Elemental analysis: C = 3.36 % 

Recovered 1-octadecene after the reaction: 1H-NMR (CDCl3, 400.16 MHz): δ (ppm) 0.91 (t 

3H CH3), 1.29 (m 26H -CH2-), 1.41 (m 2H -CH2-), 2.07 (m 2H CH2=CH-CH2-), 4.94-5.04 (m 

2H CH2=CH-), 5.79-5.89 (m 1H CH2=CH-). 13C{1H}-NMR (CDCl3, 100.62 MHz): δ (ppm), 

14.13 (-CH3), 22.73 (-CH2-CH3), 28.99, 29.21, 29.42, 29.57, 29.68, 29.75 (-CH2-), 31.98 (-

CH2-CH2-CH3), 33.87 (CH2=CH-CH2-), 114.07 (CH2=CH-), 139.23 (CH2=CH-). 

 

1,7-Octadiene modified silica (M2C=C). Hydride modified silica M2SiH (2 g) was dried under 

vacuum at 100 °C and suspended in 1,7-octadiene (20 mL) diluted in dry hexadecane (30 mL). 

The suspension was heated to 180 °C under stirring for 3 days. After the reaction, the silica 

was separated from the solvent by centrifugation and washed twice with each of the following 

solvents at about 50 °C: cyclohexane, hexane and ethanol. Finally the silica was dried 

overnight under vacuum at 110 °C. 13C CP/MAS NMR (50.32 MHz): δ (ppm) 9.52 (Si-CH2, -

CH3), 20-40 (-CH2-), 111.93 (CH2=CH-), 139.15 (CH2=CH-). IR (DRIFT): ν� (cm−1), 3800 – 

2600 (w, νOH, SiOH), 3077 (w, νCH, C=C-H),  2926, 2861 (s, νCH, CH2), 2264 (s, νSiH), 1870 

(m, νSi−O−Si), 1647 (w, νC=C), 1450 (w, δCH) 1200 – 1000 (νSi–O–Si). Elemental analysis: C = 

5.57 %. 

Recovered 1,7-octadiene in hexadecane after the reaction: 1H-NMR (CDCl3, 400.16 MHz): δ 

(ppm) 0.95 (t, 3JHH = 6.87 Hz, 6H CH3, hexadecane), 1.33 (m 28H CH2, hexadecane), 1.47 (m 

4H -CH2-), 2.11 (m 4H CH2=CH-CH2-), 4.94-5.14 (m 4H CH2=CH-), 5.65-5.85 (m 2H 

CH2=CH-). 13C{1H}-NMR (CDCl3, 100.62 MHz): δ (ppm), 14.11 (CH3, hexadecane), 22.80, 

29.51, 29.81, 29.85, 32.06 (CH2, hexadecane), 28.50 (CH2), 33.74 (CH2=CH-CH2-), 

114.31(CH2=CH-), 138.83 (CH2=CH-). 

 

Triethylhexyn-1-ylsilane (9). A solution of 1-hexyne (3 mL, 26 mmol) in dry THF (60 mL) 

was cooled to 0 °C and n-butyllithium (2.7 M in heptane, 3 mL, 8.1 mmol) was slowly added 

under stirring. The solution was left to equilibrate to RT for 15 min. Triethylsilane (3 mL, 19 

mmol) was then added and the solution was heated to reflux for 6 days. The reaction mixture 

was quenched with aq. sat. NH4Cl solution (100 mL). The aqueous phase was separated and 

extracted with Et2O (3 × 25 mL). The combined organic phases were concentrated and the 
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residual liquid was distilled under reduced pressure using a Vigreux column. A clear liquid 

(2.5 mL) was obtained as the main fraction at 125 °C/ 3 mbar. Yield: 2.43 g (12.4 mmol, 

69 %).  1H NMR (400 MHz, CDCl3): δ (ppm) 0.57 (q, 6H, Si-CH2-CH3), 0.91 (t, 3H, Si-CH2-

CH3), 0.98 (t, 9H, CH2-CH2-CH3), 1.35-1.55 (m, 4H, CH2), 2.24 (t, 2H). 13C{1H}NMR 

(100.62 MHz, CDCl3): δ (ppm) 4.6 (Si-CH2-CH3, 
1J(13C-29Si) = 56.4 Hz), 7.4 (Si-CH2-CH3), 

13.5 (CH2-CH2-CH3), 19.5 (CH2), 21.8 (CH2), 30.9 (C-CH2), 81.2 (Si-C≡C, 1J(13C-29Si) = 

82.7 Hz), 108.6 (Si-C≡C, 2J(13C-29Si) = 14.6 Hz). 29Si NMR (49.69 Hz, CDCl3): δ (ppm) 8.65. 

MS (EI): m/z: 196.1 (M+), 167.1 (- Et), 139.1 (- Bu), 111.1, 97.1. IR (KBr, cm-1): 2954, 2934, 

2912, 2874 (s, νCH), 2173 (s, νC≡C), 1628 (br), 1457 (m), 1237 (m), 1013 (s), 973, 953 (m), 

722 (s). Anal. Calcd for C12H24Si: C, 73.38; H, 12.32. Found: C, 73.30; H, 12.40. 

  

Kinetic experiment - triethylhexyn-1-ylsilane (9). A solution of 1-hexyne (10 mL, 87 

mmol) and hexadecane (0.5 mL, 1.7 mmol) in dry THF (60 mL) was cooled to 0 °C and n-

butyllithium (2.7 M in heptane, 10 mL, 27 mmol) was slowly added under stirring. The 

solution was left to equilibrate to RT for 15 min. Triethylsilane (10 mL, 62 mmol) was then 

added and the solution was heated to reflux. Aliquots (~ 2 mL) were taken from the reaction 

mixture and immediately quenched with an aq. sat. NH4Cl solution (5 mL). The time of 

quenching was recorded for each aliquot. The aqueous phase was removed and extracted with 

Et2O (3 × 5 mL). The combined organic phases were concentrated under reduced pressure 

(3 × 10-2 bar at 40 °C) and the residual liquid was investigated with 1H NMR spectroscopy. 

The integration of the resonance from hexadecane was set to 1 and the integration of the 

signals from 1.35 to 1.6 ppm from the product (Table 19) was plotted versus time. 
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Table 19: Reaction time and integration values of the signal from 1.35 to 1.6 ppm. 

reaction time  integration between  amount of 9 yield 

/ min 1.35 and 1.6 ppm / mmol / % 

0 0.00 0 0 

55 0.15 1.8 2.9 

254 0.34 4.0 6.5 

1170 1.03 12.3 19.8 

1445 1.31 15.6 25.1 

2750 2.36 28.1 45.3 

4460 3.22 38.3 61.8 

5495 3.60 42.8 69.1 

7150 4.05 48.2 77.7 

8580 4.19 49.9 80.4 

10080 4.24 50.5 81.4 

 

1-Hexyne modified silica (M4C≡C). Material M4SiH (1 g) was dried under vacuum at 100 °C 

overnight and suspended in dry dioxane (20 mL). A solution of 1-hexyne (3 mL, 26 mmol) in 

dry dioxane (20 mL) was cooled to 0 °C and n-butyllithium (2.7 M in heptane, 3 mL, 8.1 

mmol) was slowly added under stirring. The solution was left to equilibrate to RT for 15 min, 

and then added to the suspension of M4SiH. The suspension was heated to reflux under stirring 

for 7 days. After the reaction, the silica was separated from the solvent by filtration and 

washed with dioxane, diethylether and dichloromethane. Finally, the silica was dried 

overnight under vacuum at 110 °C. 29Si CP/MAS NMR (59.63 MHz): δ (ppm) -73.5 (T2H),     

-84 (T3
H), -96 (T3), -109 (Q4). 

 

Acyl chloride modified silica (MCOCl). The carboxylic acid modified silicas M1f COOH, 

M1gCOOH or M4COOH (500 mg) were dried for 3 h at 100 °C under reduced pressure and then 

suspended under ultrasonication in dichloromethane (10 mL). Oxalyl chloride (100 µL, 1.2 

mmol) was added and after 30 min of stirring, the solvent and the excess oxalyl chloride were 

removed under reduced pressure. Under an argon atmosphere, the resulting acyl chloride 

modified silica (M1f COCl, M1gCOCland M4COCl) were used immediately, without further 

treatment, for the preparation of MFc. 
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Ferrocene modified silica (MFc). Substituted ferrocene 1a (20 mg, 0.074 mmol) was 

dissolved in dry dichloromethane (15 mL) and added to MCOCl under argon. The mixture was 

left under ultrasonication at 40 °C for 2 h. The resulting MFc was then washed with the 

following series of solvents: dichloromethane, ethanol, dichloromethane, ethanol, water and 

ethanol. The lightly yellow-colored material was dried overnight under reduced pressure. 

M1f Fc, M1gFc, and M4Fc displayed similar IR vibration bands. The intensities were larger in 

the case of M4Fc (high surface area material). IR (DRIFT): ν� (cm−1),  3350 (broad, νN−H), 3098, 

(w, νC−H, ferrocene), 2923 and 2857 (s, νC−H, CH2), 2270 (νSi−H), 1712 (m, νC=O, carboxylic 

acid), 1632 (m, νC=O, amide I), 1542 (m, δNH, amide II), 1455 (m, δC−H, CH2). 

The ferrocene surface concentration on M1Fc was determined from the total iron content 

obtained from AAS measurements: ΓFc = 1.26 × 10−6 mol m−2 for M1f Fc, and ΓFc = 

1.96 × 10−6 mol m−2 for M1gFc. 

 

ω-Bromooctyl modified silica (M2Br). Material M2C=C (2g) was placed in a quartz round 

bottom flask and dried under vacuum at 100 °C overnight. The silica was suspended in 50 mL 

of dry n-hexane with 100 µL of 1-octene. Dry HBr gas was prepared by  dropwise addition of 

bromine to neat 1,2,3,4-tetrahydro-naphthalene in presence of iron powder as catalyst [197]. 

The HBr gas was passed through neat 1,2,3,4-tetrahydro-naphthalene and a cryo trap (dry ice / 

chloroform, -65 °C) for purification. The dry HBr gas was then passed through the suspension 

which was irradiated with a 700 W medium pressure mercury lamp for 2 h. No filters were 

employed. After reaction the particles were separated by filtration and washed with n-hexane 

(3 times). Finally, the silica was dried overnight under vacuum at 100 °C. The solution was 

evaporated under reduced pressure to recover the product from the hydrobromination of 1-

octene. 13C CP/MAS NMR (50.32 MHz): δ (ppm) 11.49 (Si-CH2), 20-50 (-CH2-). IR 

(DRIFT): ν� (cm−1), 3760 – 3000 (br, νOH, SiOH), 2928, 2858 (s, νCH, CH2), 2263 (m, νSiH), 

1870 (m, νSi−O−Si), 1455 (w, δCH) 1200 – 1000 (νSi–O–Si). 

Hydrobromination of 1-octene : 1-bromooctane. 1H-NMR (CDCl3, 400.16 MHz): δ (ppm) 

0.92 (t 3H CH3), 1.26 (m 8H -CH2-), 1.42 (m 2H -CH2-CH3), 1.69 (d 3H CH3-CHBr), 1.82 (m 

2H -CH2-CH2Br), 3.39 (d 2H CH2Br), 3.97 (m 1H -CHBr). 

 

1,3,5,7,9,11,13,15-oktakis(2-bromoethyl)octasilsesquioxane[a] (10b). Octavinylsilsesquiox-

ane (0.250 g) was placed in a quartz round bottom flask and dried under vacuum at 50 °C 

                                                 
[a] The synthesis and characterization of 10b was performed in cooperation with D. Ruiz Abad, AK Mayer,  
Institut für Anorganische Chemie.  



7. Experimental part 

 

142 

overnight and then suspended in 50 mL of dry n-hexane. Dry HBr gas, prepared in situ [197], 

was bubbled through the suspension which was irradiated with a 700 W medium pressure 

mercury lamp for 2 h. After reaction, the solvent was evaporated under reduced pressure, 

yielding 10b as a white solid (0.506 g, quantitative yield). Mp: 235 °C. 1H-NMR (CDCl3, 

250.13 MHz): δ (ppm) 1.51 (t, 16H, 3JHH = 8.27 Hz, Si-CH2-), 3.51 (t, 16H, 3JHH = 8.27 Hz, -

CH2-Br). 13C{1H}-NMR (CDCl3, 62.90 MHz): δ (ppm) 17.95 (Si-CH2-), 27.02 (-CH2-Br). 
29Si NMR (49.69 Hz. CDCl3): δ 70.22 ppm. HR-MS (ESI): calcd for C16H32Br8Si8O12K 

[M+K +]: 1318.30731, found 1318.30724. Anal. Calcd for C16H32Br8Si8O12: C, 15.01; H, 2.50; 

Br, 49.94. Found: C, 14.74; H, 2.48; Br, 48.68. 

 

8 Appendix 

 

8.1 Polydispersity index (PDI) 

 
In macromolecule chemistry, the standard deviation (σ) of the molecular weight distribution is 

given by Equation 13 [229]: 

 

(13) 

where MN is the number average molecular weight and MW the weight average molecular 

weight. 

 

The coefficient of variation (cv), also called g-index [91], is the standard deviation divided by 

the mean. Because MN is also the statistical mean, 

 

       

   (14)

 
The polydispersity index (PDI) [92], is defined as 

 

 

(15)

therefore, 

 

                                        

(3) 
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8.2 Geometrical specific surface area (A) 

 

Ap 
  Ap = 4 π r2  Ap = surface area of one particle 

A =
mp   mp =Vp × ρSiO2  mp = mass of one particle 

       r = radius of a particle 

4 π r2 
 

Vp = 4/3 π r3 
 ρSiO2 = silica density (2.2 × 106 g m-3) 

A =
Vp × ρSiO2      Vp = volume of one particle 

       d = diameter of a particle (m) 

4 π r2 
     

A =
4/3 π r3 × ρSiO2       

      

3 
  

r = d / 2 
  

A = 
 r × ρSiO2        

        

6 
     (5)

A =
d × ρSiO2        

 

8.3 Surface concentration of ferrocene on M1Fc from cyclic voltammetry (ΓCV): 

 

NFc(P) 
 

NFc(E) 
 NFc(P) = amount of Fc on one particle 

ΓCV =   
Ap  

NFc(P) = 
Np(E)  Ap = surface area of one particle 

    Ap =   π d 2  d = diameter of a particle 

      NFc(E) = amount of Fc on the electrode  

      Np(E) = amount of particle on the electrode  

NFc(E) 
 NFc(E) =  Q / n F  Q = charge associated with the oxidation of Fc 

ΓCV = 
Np(E) π d 2  Np(E) = Γp AE  n = number of electron  

     F = Faraday constant (96485 C mole-1) 

      Γp = surface concentration of particles on  

      the electrode 

Q 
    

AE = geometrical surface area of the electrode 

 

(12) 

 

 

ΓCV = Γp AE n F π d 2      
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9 Conclusion 

 

The objective of the thesis is the immobilization of redox-active molecules on a simplified 

interphase system with a controlled geometry in order to investigate their interactions in such 

environments with, among other, electrochemical tools. Since the product resulting from the 

standard silylation modification procedure are not suitable for the preparation of the desired 

systems, the surface modification via a stable Si-C bond from a modified Si-H surface became 

the main synthetic challenge. 

 

The spherical particles necessary as solid matrix for the simplified interphase system were 

synthesized by a modified Stöber process. The synthetic strategy involves high water 

concentration as well as post-synthesis high temperature treatment in order to reduce the 

microporosity. The characterization with scanning electron microscopy and dynamic light 

scattering, demonstrates that the silica particles are monodisperse and non-agglomerated 

spheres. Also the gas physisorption isotherms show that the materials can be considered as 

non-porous. The diameter of the particles can be tuned in the sub-micrometric range by a 

precise control of the reaction conditions. The non-porosity is necessary to ensure a 

homogeneous environment and a good accessibility to the redox-active molecules. The 

monodispersity and the well-defined properties makes them suitable for the quantitative 

analysis of electrochemical investigations.  

 

For the silica surface modification via stable Si-C bonds, a Si-H terminated surface is desired 

as starting material. The chlorination-reduction sequence at high temperatures introduced in 

this thesis, opens a new route for the synthesis of Si-H modified silica surface. According to a 

quantitative analysis of the evolved hydrogen from the reaction of the modified surface with 

ethanol/KOH, a high Si-H surface concentration is achieved. Also the procedure is 

reproducible for many types of silica materials. IR as well as 29Si CP MAS NMR 

spectroscopy demonstrate that the T3
H groups are the main product while the reaction of Si-

OH groups by reduction or dehydroxylation is almost quantitative. The high degree of cross-

linking of the Si-H groups with the silica matrix as well as the absence of silanol groups are 

desired for the stability, homogeneity and inertness of the matrix. This contrasts with Si–H 

modifications obtained from low temperature methods where silanol groups remain after the 

reaction and a large proportion of T2
H groups are produced.  
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The characterization of the Si-H modified materials also makes it possible to propose the 

assignment of the νSiH band at 2283 cm-1 in  IR spectroscopy to the T3
H groups.  

The chlorination is the key step to achieve a high Si–H coverage, and the optimal temperature 

for the reduction step is about 900 oC. Under these reaction conditions, as shown by the SEM 

and DLS measurements as well as by the BET and BJH analysis, the physical properties, such 

as shape, pore size and surface area, remain essentially unchanged. Only micropores are lost 

due to the high temperatures employed during the procedure.  

Thus, the chlorination-reduction sequence represents an ideal strategy to provide the starting 

material for further silica surface modification with redox-active molecules by reaction of the 

Si–H groups. Moreover, the simple and efficient access to Si–H terminated silica may also 

open new modification routes and further applications of such materials, e.g. in separation 

science and catalysis. To the best of our knowledge, this is the first procedure enabling a 

silicon hydride surface modification that may be applied to all types of silica surfaces, 

producing a high surface concentration, possibly allowing large scale ups and leaving the 

surface free of any other functionalities beside the Si-H groups. 

 

Free radical initiated hydrosilylation reactions were developed to produce a Si-C bond from 

Si-H terminated silica surfaces. Both photochemical and thermal initiation may be employed. 

A strong attachment of the organic molecules on the silica surface is obtained. Indirect 

evidence, like decrease in the Si-H surface concentration, absence of C=C signals in the IR 

and NMR spectra of the modified materials are in agreement with the formation of a Si-C 

bond. Moreover the reaction occurs exclusively on the silica surface according to NMR 

investigations of the reaction solution. However, direct evidence for the Si-C bond formation 

could not be established with 13C or 29Si solid state NMR spectroscopy, because of weak 

signal intensity and signal overlapping, respectively. Moreover, the possibility for a radical 

initiated surface telomerization as well as Markovnikov addition during the hydrosilylation 

reaction can not be excluded. Still, the free radical hydrosilylation is advantageous over the 

transition metal catalysed- or radical initiator induced reactions because it leaves the silica 

surface free of impurities. 

The photochemical induction is advantageous with regard to its mild reaction conditions for 

the modification of non-porous materials. A carboxylic acid functionalized surface was 

obtained via this method. Since amorphous silica is not transparent to UV light, 

hydrosilylation of the Si-H groups within porous materials requires a thermal initiation. A 

C18 as well as a terminal C=C bond modified surface were obtained from this route. 



9. Conclusion 

146 

As an alternative to the radical hydrosilylation methods, a base catalyzed dehydrogenative 

coupling reaction of a terminal alkyne with Si-H groups is proposed. The reaction performed 

on soluble model compounds shows two valuable advantages: side reactions are not found, 

and direct evidence for the formation of the Si-C bond is obtained. The kinetics of the reaction 

where investigated with 1H NMR spectroscopy. The reaction needs several days to complete,  

but a high yield is achieved. A dehydrogenative coupling mechanism was proposed and 

supported by experimental observations: No reaction occurs in absence of a proton source 

which is believed to act as a Lewis acid to make the hydride a better leaving group. This is 

confirmed by the experimental detection of H2 when the reaction is performed in presence of 

a proton source. The optimization of this reaction on the silica surface and the attachment of 

redox-active molecules via this route are still needed at this point. However, this reaction is 

promising as a general modification method for silica surfaces. 

 

The direct attachment of terminal C=C bond functionalized redox-active molecules was not 

achieved by photochemical or thermal hydrosilylation reactions because of the poor stability 

under the reaction conditions and / or the need for high concentration of the olefin. On the 

other hand, the carboxylic acid modified surface prepared by the free radical induced 

hydrosilylation can be converted easily into the corresponding acyl chloride, and then be used 

in a subsequent reaction to immobilize ferrocene units bearing an amine functional group. A 

surface concentration similar to the one expected for a ferrocene monolayer is obtained. 

The terminal C=C bond modified silicas obtained by thermal hydrosilylation may also be 

further functionalized by radical hydrobromination. Characterization by DRIFT and NMR 

spectroscopy shows that the silica bound C=C groups have fully reacted. Indirect evidence on 

the outcome of the reaction is obtained from low molecular weight model compounds: the 

fact that the C=C bonds of 1-octene and of octavinylsilsesquioxane are fully hydrobrominated 

and that the anti-Markovnikov products are obtained under homogeneous conditions, suggests 

that C=C bonds on the silica surface may react in the same manner. Furthermore, the use of a 

silsequioxane as model compound led to the production of the bromoethyl substituted 

octasilsesquioxane by radical hydrobromination in better yield and purity than the previously 

published procedures. 

However, the application of the brominated spacer for the immobilization of active molecules 

has several limitations. Therefore, the reactive acyl chloride modified silica surface was 

preferred for the immobilization of the ferrocene derivatives.  
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As a first application of the Si-H terminated silicas modified by radical hydrosilylation, their 

performances as HPLC separation phases were tested. The chlorination-reduction sequence 

followed by C18 surface modification opens a new synthetic strategy for the preparation of 

low silanol activity C18 HPLC phases compared to the conventional silylation method. At the 

early stage of their development, the C18 modified phases already match their silylated 

equivalent for the separation of organic bases. On the other hand the peak tailing of chelating 

analytes may still be improved. The source of metal impurities is not determined at this point. 

The solvent used during modification and HPLC tests as well as the original silica materials 

are two potential sources. Finally, the methylene selectivity of the C18 modified phase is low. 

Optimization of the thermal hydrosilylation reaction, in order to achieve higher surface 

concentration and lower the extent of possible side reactions, may improve the separation 

quality.  

The HPLC investigation of the Si-H and C18 modified silicas delivers additional information 

on the surface chemistry of these materials. The peak asymmetry of organic bases after 

separation with Si-H modified materials demonstrates that the chlorination-reduction 

sequence produces a material almost free of surface isolated silanol groups. On the other hand, 

according to the peak tailing of organic bases after separation with C18 modified particles, 

some silanol groups are produced during the hydrosilylation reaction. However, their effect 

on the HPLC separation is moderate, indicating that their surface concentration remains low. 

 

The second application of the silicon hydride terminated silicas modified with redox-active 

molecules by radical hydrosilylation is their electrochemical investigation, which is also the 

original objective of the thesis. 

In order to support a precise quantitative analysis of the electrochemical results, a two 

dimensional particle assembly on electrode surface was carried out. Dip-coating experiments 

with bare silica particle yield the desired monolayer coverage on hydrophilic platinum 

surfaces. However, the hydrophobic character of the ferrocene modified particles resulted in 

weak particle-electrode interactions. The spontaneous adsorption of isolated particles on the 

electrode surface is preferred for the qualitative analysis of the charge transfer mechanism and 

quantitative analysis of the redox-active molecules’ accessibility. 

The electrochemical investigation makes it possible to elucidate the mechanism of the charge 

transfer within the simplified interphase system: Cyclic voltammetry of the ferrocene 

modified particles indicates that ferrocene units over a large part of the particle surface are 

electrochemically accessible by an electron hopping mechanism. In addition to the 
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intermolecular charge transfer between ferrocene units on the surface of a single particle, an 

interparticle charge transfer between adjacent particles within large agglomerates is also 

taking place. Moreover, the proportion of active molecules that are accessible to the redox 

reaction were determined from the comparison of the ferrocene surface concentration 

obtained from cyclic voltammetry with the one obtained from atomic absorption spetroscopy. 

The accessibility of more than half of the ferrocene units to the redox process is a further 

evidence for a charge transfer occuring along the particle surface. 

These redox-active molecule interactions and the charge transfer by electron hopping 

observed for the ferrocene as a model system are important requirements for the scope of 

electrochemical investigation and control of immobilized catalyst in interphases, which 

should be the subject of future work. 
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